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Especialização em Engenharia de Software

Dissertação orientada por:
Prof. Doutor Hugo Alexandre Tavares Miranda

2018





Agradecimentos

Agradeço ao meu orientador Hugo Miranda pela constante disponibilidade e apoio.
Foi incansável durante todo o desenvolvimento deste trabalho de modo a torná-lo o melhor
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Resumo

Este documento foca-se no trabalho que foi feito na dissertação de mestrado no Depar-
tamento de Informática da Faculdade de Ciências da Universidade de Lisboa ao longo de
um ano. O objectivo inicial foi criar um protótipo de middleware em ambiente de simulador
que servisse o propósito de facilitar disseminação de dados num ambiente urbano de cidade
inteligente.

Apesar de apontármos para uma solução mais genérica possı́vel, por de trás deste
objectivo e servindo de motivação existe um cenário de caso de uso no qual nos focámos.
Este cenário descreve uma cidade na qual a recolha do lixo tem que ser otimizada e
em cada caixote existe um sensor que produz leituras do nı́vel atual de enchimento. O
desafio coloca-se em disseminar a informação produzida por estes sensores de uma forma
eficaz e sem grandes gastos de recursos. Como tal, recorremos ao facto de já existir uma
infraestrutura subjacente para resolver o problema. Através da utilização de carros de
polı́cia, bombeiros, táxis ou por exemplo camiões do lixo, fazemos com que estes ajudem
na recolha das leituras feitas pelos sensores. O facto de esta recolha de leituras ser feita
localmente por veı́culos que circulam na cidade, permite que as baterias dos sensors sofram
uma descarga menor do que se tivessem que enviar diretamente a informação para o destino
final mas utilizando recursos mais dispendiosos.

Para melhorar esta ideia e de forma a que o resultado final fosse o mais completo
possı́vel, começámos então por fazer um estudo do estado da arte. Ao ler e considerar
trabalho feito nas áreas de espaços de tuplos, redes tolerantes a atraso, cidades inteligentes,
simuladores de redes, redes de sensores e difusão epidémica foi possı́vel melhorar conside-
ravelmente o produto final desta dissertação. Este estudo de outros trabalhos é sem dúvida
um passo muito importante no decorrer desta dissertação, pois através de observação, quer
de lacunas, quer de pontos fortes existentes noutras soluções, permitiu considerar e pensar
de forma competente a solução a desenvolver. Partindo então deste estudo foi definido um
modelo de sistema que permitiu perceber de forma eficaz alguns requisitos e condições
que tinham de ser cumpridos.

Dado este trabalho inicial foi então definido a especificação para o middleware. Foi
determinada uma semântica para o espaço de tuplos que suporta a persistência de dados
para cada um dos nós da rede. Após isto, foi implementado uma versão de espaços de
tuplos em C/C++ que cumprisse esta mesma semântica. Em comunhão foi elaborado um
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protocolo que permitisse que estes espaços de tuplos fossem sincronizados entre os vários
nós existentes na rede. Este protocolo foi concebido utilizando conceitos de flooding e
difusão epidémica. Para além disso foi criado um canal prioritário para que se podesse
proceder ao envio de leituras cujo o cariz fosse mais importante. De forma a manter um
certo nı́vel de eficiência no middleware, foi também criado um mecanismo de remoção
de tuplos duplicados na rede. Este mecanismo recorreu ao uso de epócas definidas em
tempo de configuração. Foi também delineado uma forma parcimoniosa de serialização
dos tuplos trocados na rede com o objetivo de melhorar a eficiência deste middleware. Por
fim, criámos uma forma de atualização de código para os sensores que também utiliza a
infraestrutura de cidade para se disseminar para cada sensor.

Toda esta implementação foi feita especificamente para o Network Simulator 3, sendo
desenvolvida em C/C++. O simulador de redes em questão tornou-se extremamente útil
pois permitiu testar numa fase embrionária um cenário que dado a escala seria dı́ficil
de avaliar numa situção real. Pelos inúmeros módulos já existentes de raiz, foi possı́vel
implementar caracterı́sticas como comunicação 3G/4G ou simulação de bateria em cada
sensor.

De forma a oferecer uma grande flexibilidade para que este middleware possa ser
aplicado em diferentes cenários com diferentes caracterı́sticas, criámos uma configuração
parametrizável de valores que fazem com que o middleware se adapte. Esta flexibiliade
é muito importante para o seu funcionamento dado que, muitos ambientes urbanos têm
caracterı́sticas diferentes, como por exemplo densidade populacional, o que por sua vez,
afeta o número de veı́culos presentes na infraestrutura.

Após a implementação do protótipo de middleware passámos então à fase de avaliação.
Para esta fase de avaliação começámos em primeiro lugar, por procurar dois padrões de
mobilidade de veı́culos em ambientes urbanos. Estes padrões servem para ser aplicados
no simulador de rede de forma a criar um movimento realista e relevante para as nossas
simulações. Os cenários escolhidos foram: um conjunto de posições de GPS de múltiplos
táxis na cidade de Roma e também o registo de posições de GPS para uma rede de
transportes de autocarro na zona urbana de Seattle. Apesar de haver algumas diferenças
relevantes entre estes dois padrões, como por exemplo a dimensão total do cenário, esta
mesma descrepância entre eles serve para avaliar o middleware em diferentes ambientes.
Escolhidos então estes padrões foi desenhado um plano para os testes. De forma a criar
alguma relevância estatı́stica foi feita uma bateria de simulações sobre o middleware, sendo
no total efectuadas 480 simulações. Com os resultados destas simulações, dos quais foram
extraı́dos valores como taxa de entrega e latência de entrega, foram utilizadas algumas
métricas relevantes para fazer uma avaliação. Usando gráficos gerados, foi possı́vel efetuar
uma discussão da eficiência do middleware podendo avaliar certas situações nas quais
determinadas caracterı́sticas se sobressaı́ram. No entanto ficou claro que é ainda necessário
fazer uma avaliação muito mais extensa de todo o trabalho dado a complexidade inerente
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aos múltiplos parametros que existem no middleware, que sendo dispostos em diferentes
configurações podem apresentar resultados muito dı́spares.

Por fim, foram tiradas algumas conclusões do que foi feito e das limitações que
atualmente apresenta. Nesta conclusão foi revisto se os objectivos que inicialmente se
propôs foram de alguma forma cumpridos. Foi também discutido algum trabalho que
pode vir a ser feito no futuro. Este trabalho futuro apresenta algumas funcionalidades que
melhoram a eficiência e usabilidade do middleware. Um exemplo é o enriquecimento
da semântico do espaço de tuplos utilizado que permitirá ao utilizador efectuar mais
facilmente pesquisas de tuplos com um esforço mais reduzido.

Palavras-chave: Computação ubı́qua, redes móveis ad hoc, middleware, espaço de tuplos
e redes de sensores sem fios.
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Abstract

This document focuses on the work done on the master thesis at the Informatics
Department in the Faculdade de Ciências da Universidade de Lisboa. With this work we
aim at offering a reliable middleware that is capable of supporting data dissemination in a
network composed of different types of hardware. Mainly these different components are
sensors and mobile devices. We hope to offer a solution that is deployable in scenarios
that have an high degree of heterogeneity without compromising the quality of service and
functionalities of the applications used with the middleware. With these type of proposal
we expect to cover many cases of ubiquitous computing such as the ones we find in smart
cities scenarios.

Although our solution is aiming to be as generic as possible we take a practical case
into account in order to provide a working example of our work. We take advantage of
the infrastructure now available in some cities such as a mobile ad hoc network composed
of public service vehicles. Doing so we will use our work in a garbage collection project
where sensors read data from garbage cans in order to inform a set of base stations of their
garbage levels. With this we allow the optimization of garbage collection in the future.
Also by testing our middleware in this scenario we intend to gather more information that
may allow for future improvements in the middleware.

So far we were able to implement a working prototype simulation designed for the
Network Simulator 3. In this simulation we used some mobility patterns and tested the
middleware in order to achieve results on its delivery rate and other metrics.

By perusing previous work done in studied areas of research such as tuple spaces and
wireless sensor networks, we were able improve our concept. As a goal we look forward
to create a piece of software that contributes to the community, making ease the process
of going about our routines, work and the way we live in a more automated and pleasant
smart city.

Keywords: Ubiquitous computing, mobile ad hoc networks, middleware, tuple space and
wireless sensor network.
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Chapter 1

Introduction

1.1 Motivation

Many cities and urban areas are trying to transform themselves into smart cities, in an
effort to improve the quality of life of its citizens. This work aims to develop a generic
framework for IoT so that it can be deployed in a number of scenarios envisioned for smart
cities. Nonetheless we take into account one practical case that will help us experiment
and define a more refined model. We can define the case scenario for this work as a smart
city where garbage collection can be improved. Garbage bins are deployed in a widespread
area and can get full and stay full for some time. This situation has a bad visual effect
and raises public health issues. The work done by city councils and garbage collection
companies is not easy as it is challenging to predict when and where a garbage bin will
need to be collected. Fortunately, to solve this problem one can deploy sensors that are able
to measure garbage levels in each bin, and afterwards use the data produced to optimise
the garbage collection process. By collecting several fullness level readings it is possible
to understand how the waste grows in several areas and define new garbage truck routes in
run-time, saving fuel and avoiding unnecessary detours.

To reduce communication costs, the framework leverages on city vehicles such as
police cars, fire trucks, ambulances or even garbage trucks themselves as communication
media to deliver the data produced by the sensors, alleviating the network infrastructure
and extending the devices battery lifetime. Benefits emerge from the use of short range
communications protocols, in contrast with infrastructure communication channels that
have great impact on the battery usage.

This application is abstracted in a model where several different components with
distinct characteristics must communicate small amounts of data with an high frequency to
a sink node. These components are mainly sensors and mobile agents. With this premise,
many messages have to be exchanged between participants and several contacts have to be
established. However message passing is costly for the sensors as they depend on a battery
with limited capacity. Preserving battery is an important objective, as it allows for a longer
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lifetime of the sensors inside the network, reducing maintenance frequency and costs. In
spite of battery saving concerns it is also important to perform the timely delivery of the
data produced by the sensors without decreasing significantly the delivery rate. With our
proposal we intend to offer a dependable solution for this issues that takes advantage of
the surrounding infrastructure and environment.

The solution reported in this work consists of splitting the above mentioned components
into three modules which are integrated into a middleware supporting communication
among them. The first module is composed of resource constrained sensors that are able
to perform readings and transmit the data. The second module is composed by nodes
with high mobility and plentiful of resources that allow for the dissemination of the data
produced by the first module. Finally the last module is described as stationary and
resourceful, where the data must be delivered and processed. This partition permits to
define a specific behaviour in a way that creates a flow of data between the modules by
assigning specific roles for each of the components.

The middleware is inspired by a tuple spaced based communication model for DTNs
(Delay Tolerant Networks). Tuple spaces define a common format as well as anotations
that facilitate communication. Our model also contemplates priority requirements that
define how a sensor can behave, such as quality of service or energy costs, permitting the
use of more costly communication media in some cases and bidirectional messages to
support sensor reconfiguration.

1.2 Objectives

The overall objective of this work consists in devising and evaluating a framework to
collect and pass data from sources to sinks in a urban scenario using heterogeneous devices
and sensors. To achieve this goal, we developed a middleware framework that aims to
fulfil the following:

• Implement a tuple space solution for DTNs that can be used by the several compo-
nents of the network to pass data to each other;

• Create the semantics for the communication between sensors and sinks, allowing
the use of some patterns in order to filter specific data;

• Develop a routing strategy capable of spreading data even when the number of
messages traded between the participants is large;

• Create an API that offers the possibility of code deployment and different configura-
tions regarding the sensor resources;
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• Perform an evaluation of the work in order to understand its limitations and capabili-
ties.

1.3 Contributions

This work provides the following contributions:

• A middleware capable of easing the data flow in networks characterized by their
high mobility and dynamic connections;

• Improve the automatic processing in smart cities in order to make them more efficient
thus contributing for an improved quality of life;

• A study on the efficiency of the message passing solution developed.

1.4 Document Structure

This document is structured according to the following schema:

• Chapter 2 – Related Work: this chapter comprises a set of previous research that is
in relation to this work and somehow has some influence in the way our research
was conducted and designed. We also present some important base concepts relevant
to the solution;

• Chapter 3 – System Model: were the analysis and requirements for the work are
exposed in a description of the problem;

• Chapter 4 – A Delay-Tolerant Protocol for Smart Cities: in this section a description
of the solution for the problem is presented with some detail;

• Chapter 5 – Implementation: details about the implementation of the work are
described in this section as well as some information about the technology used;

• Chapter 6 – Evaluation: a chapter were the results of the work are discussed in depth
and an overall evaluation of the middleware efficiency and usability is presented;

• Chapter 7 – Conclusion: contains a final discussion about the overall work were
some conclusions are drawn as well as the suggestion of some possible future work.





Chapter 2

Related Work

The diversity of IoT devices has been increasing, providing an ever growing number of
services, from fixed sensors, that are able to perform measurements, to mobile devices
with powerful processing power. These devices can be arranged in groups and specific
patterns and form interesting systems to spread data around an widespread area. Cities try
to use their infrastructure alongside with these devices in order to increase automation and
increase the quality of life.

Two important networking models typically associated with these devices are mobile
ad hoc networks (MANET) and wireless sensor networks (WSNs). A MANET is a network
composed of mobile nodes each with its independent movement. Connections between
these nodes are opportunistic and so MANETs can be described as a highly dynamic
network. This type of network typically uses strategies such as flooding or some type
of controlled flooding. Flooding is a type of message diffusion in which the message
is delivered to all possible nodes in order to make it arrive to its destination as soon as
possible [6].

WSNs are composed of several independent sensors distributed over a geographical
area. Sensors communicate between them and cooperatively try to send data to a specific
point (sink). These networks can scale to a very large number of devices [1].

Also in relevance to this work are the delay/disrupt tolerant networks (DTNs). A delay
tolerant network is characterized by a lack of continuous connectivity. In an environment
such as this, the delay in delivering a message can be sometimes measured in hours or days.
To support this type of communication the nodes of the network are required to be able
to store the data until it can be delivered to the destination or propagated to other nodes.
In many scenarios the connectivity patterns are very difficult to predict and whenever
a connection is established it can have a very low bandwidth. An example of this type
of networks is space exploration missions where a satellite roaming through space can
only contact the ground control to send data a few times a year. This is due to resource
restrictions and also by its environment and the absolute distance back to earth which may
greatly increase the latency [5].
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Lastly we introduce the concept of Publish/Subscribe. In this model there are two main
entities, the publishers and the subscribers. The publishers are the content creators. In
topic based publish/subscribe publishers associate each message to a specific topic. On the
other hand the subscribers subscribe to a specific topic and get notified each time some
message with that topic is created. This communication is done asynchronously. Besides
topic based subscription there are also other types, of which the content based is also worth
mentioning. In content based messages are delivered to the subscribers if the attributes or
the content of a message match constraints defined by the subscriber [6].

After this brief introduction of concepts we now take a look of some more detailed
work about certain topics related to our work.

2.1 Tuple Spaces

Huge delay and sparse connectivity are problems that are expected in networks such as
MANETs and DTNs, so asynchronous communication is an important aspect that must
be supported by the middleware. In the matter of data sharing we take a look at the tuple
spaces paradigm and some previous work done in the area.

Tuple spaces were first introduced by Linda [2] as a paradigm for parallel computing.
Unlike many other models, Linda doesn’t use message passing or shared variables to allow
processes to communicate with each other. Instead it uses a data object called tuple and
it shares them in an abstraction named tuple space. A tuple is a finite unordered list of
elements. Tuple spaces allow for a high decoupling of the processes involved, meaning that
two or more processes can communicate without the need of knowing each other directly
or even synchronously. Linda offers a simple set of operations: eval, out, in, rd. The out
operation is used to generate a new tuple and place it in the tuple space. The in reads a
tuple and removes it from the tuple space whilst the rd does the same without removing
it. In Linda, both in and rd operations block the process until one tuple matching the
read/in passed as an argument is found on the tuple space. In order to perform the in and
rd operation a formal/actual tuple must be defined to perform the matching of the desired
tuple. Formal tuples use wildcards in its fields as to expand the range of possible matches.
Taking the following tuple as an example:

<” a s t r i n g ” , ? f l o a t , ? i n t e g e r , ” a n o t h e r s t r i n g ”>

Executing a in with this tuple will search for a tuple that shares the exact same string
in the first and last field and has the same types of the second and third fields. On the other
hand actual tuples represent a specific tuple with real values. In their case no wildcards are
allowed. An example of an actual tuple is presented below:

<” an a c t u a l s t r i n g ” , 2 . 2 3 , 4 , ” a n o t h e r s t r i n g ”>
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Linda was designed to offer an alternative to other parallel programming models to
distributed systems. As an alternative L2imbo [3] came forward as an important platform
due to its connectionless programming platform paradigm and a uniform architecture for
QoS control and monitoring. This is achieved by adding deadlines to tuples. By doing
so, an out operation includes a lifetime defining the time the tuple can reside in the tuple
space. The deadlines can also be applied to the in and rd operations which allows to have
time-out operations without having to create the inp and rdp primitives. Furthermore by
applying QoS monitoring agents it is possible to track key aspects of the system. E.g.
two typical forms of QoS agents that can be used in L2imbo are the connectivity and cost
monitors. The first allows to watch over the characteristics of the infrastructure whilst the
second is able to determine the cost associated with the current communication link.

Another important change was the possibility to create multiple tuple spaces. Origi-
nally, Linda was designed to support parallel programming featuring a single tuple space.
This adaptation provides means to address issues such as performance, partitioning and
scalability. In order to create multiple tuples spaces, clients use the out operation to the
universal/global tuple space, which serves as a control center, indicating that they want
to create a tuple space and its characteristics. Besides this there are also use, discard and
terminate primitives that allow for a more complex usage of this tuple space model and
even allow recursively creating more tuple spaces over each other. Although this was one
important advance in the tuple space paradigm regarding nodes with mobility, the model
used by L2imbo is nomadic and still requires some sort of base station or static node.

Lime [4](Linda in a mobile environment) is also based on Linda although it assumes
a MANET mobility model to allow the use of tuple spaces in a more dynamic and
unpredictable scenario. Lime authors notion of communication links also take into account
several aspects such as host departure due to mobility that enable an efficient tuple trading
in more resilient scenarios.

2.2 Delay Tolerant Networks

A DTN (Delay Tolerant Network) is a type of network that is designed specifically to
address situations where the connectivity between nodes changes often. Occasionally, this
type of networks can experience partitions for an indefinite amount of time due to their
characteristics such as low number of contacts and high delay. Contacts can be defined as
connections established between nodes whenever possible due to physical characteristics.
This type of properties makes DTNs an interesting and challenging class of networks.
Since many of the contacts are opportunistic and sometimes it is hard to know when and
where a contact will occur, routing can become a complex problem. For this type of
problems, the store-and-forward technique is employed. In most cases, routing is done
dynamically and reactively, meaning that the path for the routing is defined as the message
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travels through the network. Besides this, DTNs are supported by many devices that have
strict resource limits and managing them efficiently also becomes a problem.

The knowledge about the network can be very helpful in routing. E. g. knowing the
mobility pattern of a node contributes to optimise whenever the other communication node
should expect a connection. A complex study of this type of influences is presented in
papers such as Jain et al. [5]. This presents several types of knowledge oracles, each
capable of withholding different types of information, two delay tolerant scenarios (remote
village and city bus lines) and several protocols that take advantage of these oracles. The
results show that having more knowledge increases the overall performance of the routing.

Considering these types of knowledge it is possible to split awareness into categories as
it is described by Garbinato et al. [6]. The first is Context-Oblivious Routing where there
is no knowledge about any possible path to route. For this type of situation, approaches
such as flooding and disseminating the message as widely as possible are the most common
practices. The second is Partially Context-Aware Routing. In this category algorithms
exploit some piece of context as a way of optimising their routing. For this case many of
the algorithms are customised for a specific type of context information. Lastly there is
Fully Context-Aware Routing that exploit all the context information and besides this also
provides mechanisms to handle and use context information.

2.3 Gossip

Gossip is a network broadcast communication protocol that relies on probabilities to
disseminate data. It is characterized by the repeated probabilistic exchange of data between
nodes. By having this probabilistic component it means that the communication partners
are chosen in a non-deterministic way. Also by definition gossip is intended to be repeated
endlessly.

Whenever a node has to broadcast a message it chooses a set of t nodes (where t is
called fanout) from its know collection of contacts and only propagates the message to
that set. When node receives a message for the first time it stores it in a buffer. In this
buffer there is a ∆ time in which a node remembers a message in order to do gossip it.
The buffer contains all messages to be gossiped in each protocol round. If a node receives
the same message twice it is discarded. Usually the fanout is taken randomly as a way of
increasing the probability of spreading the data to different nodes each time a message
has to be broadcasted and retransmitted. This type of protocols tend to perform well in
distributed systems were they ensure high scalability and reliability [7].

One of the first papers to present a formal definition for gossip is the Epidemic
Algorithms for Replicated Database Maintenance [8]. The paper uses a complex epidemic
mechanic mixing three methods: the direct mail, anti-entropy and rumour mongering.
Direct mail can be roughly summed up to attempting to notify all other know connections
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when update. Rumour mongering consists of branding new updates as ”hot rumours”
and whenever a node has one it takes periodic cycles to spread that information to other
nodes chosen randomly. Finally anti-entropy is the act of regularly choosing another
node to exchange its database contents. This is used as a way of achieving consistency
in a very reliable way, although it is a very slow method to employ and cannot be used
as frequently as the other two methods. The rumour mongering and the anti-entropy
methods are both examples of epidemic processes, that are used together to form a complex
epidemic protocol.

Another interesting example is Pbcast (Probabilistic Broadcast) [9] that is designed
mainly for voting-style protocols, e.g. database quorum protocols. In this protocol,
whenever a process/node desires to initiate a vote it sends a message to a random set
of other processes and each of them randomly propagates to another set of members. It
uses a fixed number of rounds in which each process participates in at most one round.
Additionally processes choose their gossip target by tossing a weighted random coin for
each other possible destination.

The gossip protocols presented so far weren’t conceived to support mobile networks.
However, Gossip can also be applied as a diffusion mechanism for these networks. An ex-
ample, is the work done in ”A Socio-Aware Overlay for Publish/Subscribe Communication
in Delay Tolerant Networks” [10], where the notion of gossip is used together with delay
tolerant networks. The paper uses gossip as a form of community/membership detection
that helps to support their Socio-Aware Overlay using the publish/subscribe paradigm.

2.4 WSNs Application Deployment

One important feature for WSNs is the capability of deploying and updating applications
after the sensors have been deployed with the smallest cost possible. Ideally, sensors should
also be able to accept remote configuration and to adapt behaviour of those applications
without having to physically access each sensor as doing so is practically impossible.

Agilla [11] emerged as a flexible solution to those problems. By adopting a mobile
agent-based paradigm, Agilla allows for agents to migrate across nodes in a dynamic and
intelligent way as each agent works as a virtual machine with dedicated instructions and
its own data memory. Agilla presents itself as a platform that simplifies the way that WSN
applications are developed by allowing for developers to write software in a higher-level
language that is able to migrate between nodes. Agilla uses tuple spaces to coordinate the
several agents and access physical resources. With our middleware we hope to enhance
this concept a little bit further by employing the usage of other networks (MANET). In
contrast to the previous example we aim to extend the range of transmission of the data
produced as we use a complementary network to support the wireless sensor network in its
data dissemination.
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2.5 Smart Cities

By looking at the following examples we can see that most smart cities of nowadays use
many Iot devices and networks such as MANETs and together they can form interesting
solutions. Although there are many examples we consider that there are many more
possibilities yet to be explored and the field is still going to advance much further in the
future. Ribeiro et al. [12] recently presented a survey of public transport routes of users
of a bus transportation system. By placing several RaspberryPi devices on the buses and
taking advantage of the several access points that each bus carries, the authors were able to
gather enough data to create several Origin Destination (OD) matrices that allowed them
to understand where people got in and off the bus and thus optimising bus routes in the
future. Simões et al. [13] also exploits the usage of unmanned aerial vehicles (UAV) to
assist in case of any emergency and Li et al. [14] proposes the usage of vehicle to vehicle
technology and its infrastructure to synchronize traffic lights. By taking a close look at
specific traffic patterns and also taking concern in dynamic changes such as peak hours in
traffic they are able do draw a system model. With this model they afterwards apply an
hybrid genetic algorithm that is to offer an optimization solution that adapts dynamically
whenever the traffic decreases or increases.

2.6 Network Simulators

Network simulators have an important role in the area since they enable the execution of
experiments that otherwise would be very hard to do due to their scale and complexity.
The most relevant for this work is the ns-3 [15] that offers a collection of modules to
create different types of simulations. The modules vary from internet appliances to energy
management or mobility. By offering all these modules and many other features, ns-
3 became quite popular in the community as well as his predecessor NS-2. Networks
simulators are an important part of the work done in this report. They allow for the
execution of big scale tests that help collect data to measure the performance of the
middleware without the difficulties and costs involved in the deployment of large scale
testbeds.
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System Model

The system model assumes a network widespread over a urban area, composed of devices
with different characteristics and limitations. According to their role and behaviour devices
can be arranged in three groups, a group of sensor nodes distributed over a geographical
area, a mobile ad hoc network (MANET) and a group of base stations where the data
produced by the sensors must be delivered.

The sensor network is where the requirements are most restrictive since there are many
resource constraints due to the nature of the hardware deployed. Battery life, processing
capabilities, storage and communication range are considered to be minimal and must be
always taken into account throughout the lifetime of the system. Sensors are expected
to remain static most of the time and only experiencing small displacements with low
but unknown frequency. They are also expected to communicate using at least one of
the following wireless technologies, Zigbee, Wifi, Sigfox or 3G/4G. Considering battery
consumption and cost, the latest options are reserved for scenarios deemed critical where
the data must be sent as quickly as possible to a sink station. Sensors are expected to
collect data and send it as soon as possible using shorter ranges and lower power networks.
To accomplish this any node in the network can use the MANET to disseminate data.

Requirements for the MANET are somewhat more relaxed since it is expected that
mobile nodes have a substantial amount of resources and can easily withhold larger
amounts of data. Each of these nodes is considered mobile and capable of passing through
several sensors and other mobile nodes many times a day, although no assumptions on their
movement patterns is. Their communication is also expected to be done using wireless
radio and their primary purpose is to forward the data to the base stations in a timely and
reliable manner.

The base stations or sinks are static nodes that expect to receive data from the MANET
at anytime and aggregate that data for further processing. They interact with the MANET
nodes at well known ”delivery points”. They have no resource restrictions and are designed
to be the endpoint of the data arriving from sensors. The relations between the mobility
and resources of each group is presented in Table 3.1.
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Resources

Low High

M
ob

ili
ty Low Sensor Network Base Stations

High - MANET

Table 3.1: Mobility versus Resources

The scenario fits nicely into the characteristics of a delay tolerant network. Regarding
the sensors, an API will allow to program them so that their behaviour can adapt to several
resource scenarios and also adjust the way they manage their resources as its availability
varies. This is done by using heuristics that with a local energy model can determine
how to behave. Besides this, the API will also allow for run-time code deployment (e.g.
bugfixes) that can spread to all sensors or groups of sensors. Sensors can have different
roles. In smart cities scenarios, for example, some sensors can detect traffic behaviour and
others weather conditions. Multicast groups can be defined within the network and apply
changes and configurations to specific groups of sensors. Code deployment is done in the
inverse direction of the data flow produced by the data sources, thus the code deployment
changes travel from the base station to the MANET and are eventually delivered to the
sensors.

Figure 3.1: Overall system groups and interactions between them.

Communication leverages on the tuple spaces paradigm, using Linda [2] like semantics.
For instance sensors will apply an out operation to send a tuple with data to the MANET
and base stations will perform the in operation using a template to receive the data produced
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by the sensors. During the data flow in the MANET several in and out operations will also
be performed as each node exchanges tuples with another node. Figure 3.1 depicts all the
three groups forming the global tuple space. Each of the nodes in those groups has a local
view of the data, with its own local tuple space. While the sensors produce data and the
MANET deliver it, the base stations will form a more complete view of the system as they
try to hold a history of all the data produced by the sensors.





Chapter 4

A Delay-Tolerant Protocol for Smart
Cities

The design of the whole solution evolves around the idea of forming a global tuple space
that comprises the sensors, the nodes and the base stations. Each of these will have a
local tuple space. Participants share and exchange with each other in order to spread the
data. We will also employ some strategies to perform garbage collection to remove stale
tuples in the network (content that is no longer in need to be diffused) and the possibility
of performing code redeployment and changes in the configuration.

4.1 Tuple Semantics

The framework honours Linda tuple definition [2], supporting tuples of any form and with
undefined number of fields. However, to benefit from all its capabilities, in particular,
garbage collection of old tuples, some specific predefined structures are required. This
main structure is used for sharing data and is composed of the following elements:

<messageType , ID , epoch , c o u n t e r , typeMask , va lue , t imes tamp>

• messageType - defines the type of the message, which must be one of the following
possibilities:

data – used for carrying data;

control – used as customizable tuples for controlling garbage collection;

param – contains a specific value for a parameter to change the sensor behaviour;

code – used to inform that the tuple contains a code update;

beacon – used to inform that a node is nearby;

ack – represents the acceptance of a message;

15
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generic – any other possible tuple.

• ID – unique node identifier;

• epoch – implementation of the garbage collection mechanism;

• counter – implementation of the garbage collection mechanism;

• typeMask – data type of value (see Table 4.2);

• value – the value in the tuple;

• timestamp – the creation date of the tuple.

An example of a tuples definition is given below:

<” d a t a ” , 0 0 : 0 0 : 0 0 : 0 0 : 0 1 , 1 , 21 , ” t e m p e r a t u r e ” , 2 . 3 f , 28342>

In the first tuple, the first field represents a data reading, the second indicates that the
data source unique ID (MAC address) of ”00:00:00:00:01”, the third expresses that the
current epoch is 1, the fourth field indicates the a unique counter (see Section 4.3) used for
garbage collections purposes, the fifth field means that the tuple contains a float and the last
two fields contain the data value and a UNIX timestamp. In contrast with the remaining
message types, code tuples only have five fields, being the first the ”code” message type,
the second the sensor ID, the third and forth the current epoch number and code version
and lastly the snippet of code. The tuple structure is as follows:

<” code ” , ID , epoch , codeVers ion , ” c o d e S n i p p e t ”>

An example is given below:

<” code ” , ” 0 0 : 0 0 : 0 0 : 0 0 : 0 1 ” , 1 , 2 , . . . >

To perform an in operation one can use a formal tuple and wildcards to catch specific
data. For instance to get all tuples that contain readings from the sensor with a specific
sensorID (second tuple field) the following formal tuple will suffice only defining the type
and ID and using wildcards on all the other fields:

<” d a t a ” , ” 0 0 : 0 0 : 0 0 : 0 0 : 0 2 ” , ? , ? , ? , ?>
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4.2 Tuple Spaces

Each element in the network will possess a local tuple space interface that offers the
possibility of storing tuples locally. The local interface offers all the basic tuple operations
such as in and rd. Each one of these local tuple spaces holds a small set of the all the
tuples in the network forming together the global tuple space. The way each one of these
tuple spaces trades messages and achieve an overall consistency is discussed in section
4.3.

4.3 Tuple Spaces Synchronization

In an effort to populate the global tuple space with the data from each local one, sensors
attempt to forward their local tuple space to any passing by MANET node. Each of those
nodes will attempt to retransmit the received data to any other possible node to increase
the probability of having them delivered to a base station. Synchronization is triggered
by participants receiving the beacon type tuples broadcasted by other nodes. However, to
save sensor resources only the MANET nodes broadcast beacons. Besides this, sensors
in a resource saving fashion vary between two possible states. Either they are sleeping or
they are idle listening for a beacon.

Synchronization is inspired in the gossip communication approach [7]. Whenever each
MANET node has to retransmit its tuples, we use an adjusted notion of fanout to select
a small set of tuples to be sent instead of selecting the gossip target nodes. On the other
hand we perform a broadcast to all possible nodes instead of a small set of targets as done
traditionally in gossip. This technique is useful to limit the number of duplicate tuples in
the global tuple space. Additionally, tuples are equipped with a sequence number unique
to each sensor. This sequence number is composed by three elements: the sensor ID, the
epoch number and the counter. It is possible to cross these three elements to identify a
tuple uniquely. Whenever a MANET node receives a tuple that has the same sequence
number it is able to discard it thus avoiding unnecessary tuple copies.

A side effect of this model is the decreased efficiency of the middleware. If the global
tuple space contains too many tuples, they can be spread perpetually thus provoking a
retransmission of futile stale tuples that have been already delivered to a base station.
Without a garbage collection mechanism the uncontrolled conveyance of data might render
the network useless due to the amounts of stale data that it stores.

Epochs impose an expiration date on tuples. The epoch number defines in which
epoch the message was produced and the counter grows monotonically within each epoch.
Periodically, the base station increments the epoch number, which becomes propagated by
the beacons advertised by the participants.

To implement garbage collection, the middleware dictates: i) that all participants are
required to tag the tuples they create with the highest epoch number observed; and ii)
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purge their local tuple space from tuples created E or more epochs beyond, with E being a
configurable parameter that can be adapted to the observed networking performance. The
efficiency of this result depends directly on the epoch duration. By using this method it is
possible to ensure that eventually all old tuples will be discarded from the MANET.

Synchronization between the sensor’s local tuple spaces is not supported. As a sensor
starts to perform readings it stores its tuples locally until it is able to dispatch them. To do
so it uses two alternatives, either it sends them to one of the nodes in the MANET as soon
at it establishes contact or it uses a more expensive protocol (Sigfox or 3G/4G) to send it
directly to the base station. The latter solution is reserved for tuples with priority and is
used at the expense of more resources but offers much less latency. For both the situations,
a simple rd operation is used to pass the tuple and afterwards discarding locally the data.

Base stations receive data from the MANET or directly from a sensor. In the base
stations the bulk of the data is stored allowing for a further and extensive data analysis.

4.4 Code Deployment and Parametrization

The platform allows for code deployment and parameters to be passed to the application
using special tuples. In order to receive them the sensors will perform rd operations to
any tuple containing either ”code” or ”param” messageType. Being sent from the base
stations these tuples will be carried by the MANET in order to reach the sensors and
spread the desired reconfigurations. If a tuple contains the ”param” type it will represent a
parametrization to be applied to the application. Upon receiving it, each sensor changes
its behaviour to comply with the new parameter value. If the message type is ”code” a
new snippet of code will be deployed at every sensor and change its routine. This snippet
is passed in the tuple as a string of bytes. Each sensor upon receiving a new snippet of
code will try to perform a hot swapping of the code. In case the code has compilation
problems the changes will not be performed and the sensor will continue to run as normal.
Although this last part regarding the compiling of the code and hot swapping is not yet
fully implemented it is intended to be developed as future work.

4.5 Communication Protocols Description

In order to allow the different participants of the middleware to communicate between
them we designed a few simple protocols for each interaction. Between them they also use
different types of messages each with its unique way of serializing.

Most messages will share a common header. This header has a size of 9 bytes and it is
formed as depicted in Figure 4.1:

The first three bits of the header form a mask that indicates the message type. There
are seven possible message types. The type definition is presented in the Table 4.1.
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0 0 1 0 0 0 0 0 6 bytes 1 byte 1 byte ...

Control Byte EpochSensor ID Counter

Tuple type bits Reserved bits

Figure 4.1: Common header.

tuple Type bits

data 0 0 0

control 0 0 1

param 0 1 0

code 0 1 1

beacon 1 0 0

ack 1 0 1

generic 1 1 0

Table 4.1: Message Types.

The last five bits of the first byte are reserved for future use. The next six bytes are
used to store the sensor ID (e.g. mac address) and the last two bytes of the header store the
epoch and counter.

The payload for each message type is structured according to the schemas depicted in
Figure 4.2 to 4.6:

Common Header 1 byte mask int or float or string 4 bytes

Reading Type Date

Figure 4.2: Data type payload.

Common Header 1 byte mask int or float or string

Reading type

Figure 4.3: Param type payload.

Common Header code binary

Figure 4.4: Code type payload.
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Common Header

Figure 4.5: Beacon, control and ack type payload.

Common Header 1 byte mask int or float or string ...

Reading type

Figure 4.6: Generic type payload.

Whenever a tuple is marked with priority there is only one possible serialization and to
comply with the message size dictated by sigfox, which is 12 bytes we only allow for the
epoch of the message, the message counter and the value and its type to be passed due to
bandwidth restrictions. The value can only be up to 4 bytes.

1 byte 1 byte mask 1 byte mask at most 4 bytes

Epoch Counter Reading type

Figure 4.7: Data type with priority payload.

Value Description Type

1 Integer int

2 Float float

3 String string

4 Temperature int

... ... ...

Table 4.2: Reading Types.

The reading types define the value type as shown in Table 4.2. By default we offer
three types that correspond to an integer, float or string but up to 32767 distinct types can
be defined, permitting to associate some semantic to this tuple. For the given example a
new type with the description ”Temperature” was defined and associated to the reading
type 4.
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4.5.1 Sensor on MANET Node Communication Protocol

This protocol is designed to allow the communication between the sensors group and the
MANET node group and behaves as follows. As a MANET node moves, it frequently
broadcasts a beacon message in order to announce its presence to other nodes or sensors.
If a sensor is awake and manages to receive this message it will initiate an exchange with
the MANET node. It initially performs an in operation of its data tuples and sends them to
the MANET node. If it receives back an ack message it then discards the tuples, otherwise
it puts them back in the tuple space. In case it has no data to send to the MANET nodes
it sends an ack message so that the other end might proceed with the protocol. After this
transaction, the sensors receive possible code changes and parameters. The epoch is carried
in every message header, so whenever a sensor receives a beacon it is able to update is
epoch. Figure 4.8 illustrates the protocol described.

Sensor MANET node

sleep

wake up

in / send

sleep

beacon

beacon

data/ack

ack

code

param
recv / out

Figure 4.8: Sensor and MANET node communication protocol.
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4.5.2 MANET Node On Node Communication Protocol

When two MANET nodes get in contact with each other they synchronize their tuple
spaces. When a node receives a beacon message from another node it sends back an ack
message and so the first node sends its data, code and param tuples. The latest epoch
(known by the node) is also sent in the beacon message thus allowing both nodes to update
their epoch counter. This protocol is also executed in the inverse way since the other node
also sends a beacon message and so the protocol is initiated by both nodes. Figure 4.9
illustrates the protocol described.

Intermediate node 1 Intermediate node 2

beacon

ack

data

code

param

Figure 4.9: Intermediate node on node communication protocol.

4.5.3 MANET Node On Base Station Communication Protocol

The exchange between an MANET node and a base station is similar to the one described
in section 4.5.1 for sensor to MANET node communication. Upon receiving a beacon
message the base station will send an ack to inform that it is ready to receive the data.
Afterwards the node either sends its tuples or an ack to tell the sink it has no data to send.
Finally the base station sends all its code and param tuples. Figure 4.10 illustrates the
protocol described.

Intermediate node Base station

beacon

ack

data/ack

code

param

Figure 4.10: Intermediate node on base station communication protocol.



Chapter 5

Implementation

In this chapter we approach two main implementation aspects. In the first section we
discuss the usage of the ns-3 network simulator and the modules used to create an accurate
simulation for the middleware. In the second chapter we present some small implemen-
tation notes on pieces of software that we consider interesting and presented challenges
during the creation of the middleware.

5.1 ns-3

ns-3 is a discrete event network simulator that allows for the creation of big and complex
simulations. It is implemented mainly in C/C++ and Python thus allowing for the simu-
lations to be written in both these languages. This middleware version for ns-3 (version
3.27) was written in C/C++. ns-3 consists of several modules each with its capabilities
that cohesively allow for the whole simulation to be built. The bulk of the simulation was
supported by the core, internet, network, propagation models and wifi models modules.
With them as building blocks the behaviour of the three agents (sensor, MANET node and
base station node) was built into the application module using the appropriate inheritance
patterns in the classes offered by ns-3.

For the battery management, the ns-3 energy module was used with a LiIon energy
source and a wifi radio energy model, that considers power consumption in several states
(transmitting, receiving, idle and sleeping)[16]. To simulate the priority channel and given
that there is no SigFox module in ns-3, the LTE Models module was used, communi-
cating with the internet over a PGW server linked to several antennas. Regarding the
mobility scenarios the ns-3/ns-2 mobility module loaded the several mobility patterns.
BonnMotion[17] was used to generate the manhattan grid mobility scenario. Even tough
this scenario was not used in the evaluation we considered it important as it allowed us
to test the middleware in the earlier phases. NetAnim was used to view the generated
simulations and the communication between the several nodes. For our evaluation we
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simulated using a optimized build version of ns-3.

Figure 5.1: Software organization of ns-3.[18]

5.2 Implementation Notes

The data of each experiment was collected using custom tracer classes that wrote into
files. This files contained the necessary information to track each event and associate it
with a specific node and a specific timestamp. To process the data, bash and gnuplot [19]
were used to create some relevant charts using the metrics defined in Section 6.1. The
automation of the tests for the simulations was done using also bash to create scripts that
performed the multiple runs required and automatically effected the variation between
each step (see Chapter 6).

Several challenges arose while implementing the middleware. The first was the tuple
serialization which required extensive use of bitwise operations and C lang primitives.
This serialization has to be as fast and as effective as possible as it is widely used during
the middleware lifetime.

Another interesting challenge that emerged was the implementation of the packet
fragmentation due to the UDP 65355 max byte size datagram. For this, we implemented
a payload fragmentation layer that splits packets into 1500 bytes pieces and sends them
over the network. On the receiving side this layer keeps tracks of each message and only
delivers to the application after having all the required frames. This layer also keeps track
of a possible timeout, for instance if a datagram is missing a part after a certain time it will
be discarded as to avoid wasting unnecessary resources. This situation happens mostly
with code tuples, which are considerably larger than the others.

In Figure 5.2 we show the algorithm for the UDP datagram defragmentation. In this
algorithm we first start by copying the contents of the message into a buffer and we
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1: function FRAGMENT(packet,m socket out)
. Where packet - packet to fragment, m socket put - output socket

2: buffer← allocate memory (packet.size)
3: copyData (buffer, packet)
4: h← packet.header

5: seqNumber++ . Which is a state variable held initially with 0
6: nFragments← ceil(max(1, (packet.size - h.serializedSize)) / PAYLOAD SIZE)

. Where PAYLOAD SIZE is 1500
7: shift← packet.size

8: for each i fragment from last to first do
9: st← min((packet.size - h.serializedSize - (i * PAYLOAD SIZE)), PAYLOAD SIZE )

10: shift← shift - st
11: sBuffer← allocate memory (st + HEADER SIZE) . Where HEADER SIZE is 9
12: write to buffer(sBuffer, seqNumber)

13: if it is the last fragment or the only fragment then
14: write first bit in ninth byte with one to buffer
15: end if

16: write fragment number to the remaining 7 bits of the ninth byte to buffer
17: copyData(buffer, sBuffer)
18: add header
19: m socket out→ send(sBuffer)
20: end for
21: end function

Figure 5.2: UDP Fragmentation

increase the number of sent messages in the fragmentation layer (line 2 to 5). Afterwards
we calculate the number of 1500 bytes fragments to be sent (line 6). With this value we
repeat for each fragment the same procedure, this is done from the last fragment to the first
to reduce the number of memory allocations when receiving the message on the other end.
The procedure consists in determining if the size to copy is 1500 or smaller (line 9) and
then proceding with the filling of the buffer to send (sBuffer). In case it is the last fragment
we write in the first bit of the ninth byte to work as a flag (line 13 to 15). Finally we fill
the other 7 bits of the ninth byte with the fragment number and send the message over the
socket.

Regarding the unfragmentation of the message we show the algorithm in Figure 5.3.
Each time that the middleware receives a fragment it is required to verify if the whole
message is complete before delivering it. First we start by allocating a buffer with the
data from the fragment (line 3 to 4) and then we read the seqNumber of the message (line
5). Using the mac address of the source node and the seqNumber of the fragment we are
able to build an unique key (line 6), this key is used to store and find each fragment in a
memory structure (line 9). If the key is already in the structure it means that we have a
record of the message but it is still wanting on more fragments before it can be delivered.
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Otherwise a new allocation of memory in that structure is required to allow to keep track
of a new incoming message(line 11). In case the key is already present, a new allocation
of memory might be needed if the fragment number is bigger than the previous (line 14),
this seldomly happens because on the sending side we send the last fragment first. Next
we copy the fragment to the structure and annotate that one less fragment is required (line
16 to 18). Finally we check if it there are no more fragments missing, if not, we copy the
whole set of fragments to a buffer and deliver it as the entire message up to the rest of the
middleware (line 19 to 27).

1: function UNFRAGMENT(packet, mac)
. Where packet - packet to fragment, mac - is source mac address

2: h← packet.header
3: buffer← allocate memory (packet.size)
4: copyData (buffer, packet)

5: seqNumber← read from buffer(h.serializedSize, buffer, 8)
6: key← concatenation from mac:seqNumber
7: moreFrags← first bit of ninth byte
8: offset← remaining 7 bits of the ninth byte

9: pair← frags.find(key)
. Where frags is a state variable that keeps track of fragments delivered to each unique sequence
number

10: if pair is null then
11: fgs← allocate memory to the fragments pointers with offset size

. Where fgs is a struct that stores the fragments corresponding to a message
12: else
13: fgs← pair.second
14: check if realloc is needed to new offset
15: end if

16: allocate memory for fragment
17: copyData(fgs.frags[offset], buffer + h.serializedSize + HEADER SIZE)
18: fgs.fragsMissing--

19: if fgs.fragsMissing == 0 && !moreFrags then
20: ret← allocate memory to fit the message
21: remainingBytes← fgs.nBytes . Where nBytes has the number of the message bytes
22: for each i fragment do
23: copyData(ret, fgs.frags[i], MIN(PAYLOAD SIZE, remaining))
24: remaining← remaining - PAYLOAD SIZE
25: end for
26: end if

27: return ret
28: end function

Figure 5.3: UDP Unfragmentation
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Evaluation

The middleware is designed to be adaptable to different scenarios where certain factors may
change the overall behaviour of the application. Aspects such as the time each sensor is kept
sleeping or the interval between beacons sent by a MANET node can have different impact
on the results. We allow the customisation of some of these aspects as a way of tuning the
middleware to perform as optimal as possible in its surrounding environment. For instance
one can choose saving more battery and increasing the sensor lifetime trading it off with a
smaller delivery rate or using the priority channel more frequently but taking a bigger toll
on the battery. It is clear that these changes have benefits and disadvantages, nonetheless,
depending on each scenario/objective, good results can be obtained by customizing the
middleware to each case. For our evaluation we will focus manly on the variation of the
sleepTime, fanout and MANETNodes.

6.1 Evaluation Metrics

In order to evaluate the efficiency of the service it is important to define a few metrics
to understand its performance. Defining good metrics that enable to see the pros and
cons of the middleware is an important step to improve it. With this in mind, several
evaluation metrics that focus on different aspects have been defined. The main features
of the middleware have been taken into account. By using this set of metrics we hope to
check if the functionalities proposed are relevant to real use case scenarios.
Besides offering a short description of the metrics used we also perform a small explanation
on how they relate with the application parameters since there is a clear influence on how
changing parameters can affect the overall performance of the middleware. The evaluation
metrics are the following:

• Delivery rate per sensor: In all the simulations we track every tuple produced
in each sensor and check if they arrive to a base station node. By analysing this
information it is possible to obtain a percentage of how many messages a sensor
manages to deliver. This metric is perhaps one of the most important because it

27
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shows the overall efficiency of the middleware since in many cases a high delivery
rate is one of the main objectives. It’s relation to the chosen parameters is a complex
one since almost every one of them can have a direct effect on the delivery rate. For
instance if we choose bigger sleep times for the sensor they might miss possible
contacts with a MANET node and thus deliver less messages;

• Sensor battery over time: Extending the life time of a sensor is somewhat important
in real case scenarios where many sensors are spread over a big area and replacing
the batteries presents a big logistical problem. One of the main targets of this
middleware is to preserve as much battery as possible and only communicate (waste
resources) when necessary. However, battery consumption can be understood as
a trade-off given that saving more battery means having a smaller delivery rate or,
at least, an increase in latency. We track the battery consumption of each sensor
over the time. The number of messages sent through the priority channel, the time a
sensor stays awake and the amount of data it passes into the MANET are the main
factors in battery consumption;

• Message delivery over time: Tracking how the messages are delivered in a timeline
is also an interesting way of looking at possible results. It tells us how the MANET
itself behaves and may suggest possible ways of improving the way it communicates
or the ways it moves over the area. A constant delivery over the time is perhaps the
expected outcome but in many cases this might not be true. For instance in a scenario
where the MANET has more mobility during night time, the delivery might be more
efficient during those hours. By looking at the way the middleware performs with
this metric one can better adapt it to the desired situation. Changes in the delivery
over time can mainly be influenced by the mobility patterns, the fanout chosen for
each MANET node and the beacon interval between each node;

• Message delivery of the epochs: The garbage collection mechanism implemented
in the middleware has its benefits and it is considered crucial in the system. Nonethe-
less it has to be customised to each situation or it might over perform in a way that
decreases delivery rate. If the epoch time and range is defined with very small values,
some messages might be discarded even before being delivered and thus decreasing
the delivery rate of the whole system. This situation is clearly a problem. One must
be able to use its benefits without compromising other features. To do so, one can
look at this metric and compare it to other metrics to understand how the garbage
collection mechanism can be used without hurting the overall performance and still
carry out its important job in cleaning already delivered data in the MANET;

• Number of contacts per sensor: By looking at the number of contacts a sensor
establishes one can link it to the way its battery is consumed and how frequently it
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delivers data to the MANET. This number is influenced mainly by how many times
and how frequently a sensor wakes up to communicate and by the visits the sensor
receives from passing by MANET nodes. More communication means more delivery
rate but it also means more battery depletion, hence the importance in evaluating how
many contacts a sensor establishes over his life time. Depending on each situation a
balance has to be achieved between these two situations;

• Battery over the number of contacts: The relation between the number of contacts
and the battery usage contributes to understand if too many or too few contacts are
being made. If combined simultaneously with the delivery rate, it allows to tune
parameters such as the sleep time and the beacon interval to achieve a good balance
between the number of messages that are delivered and the battery decay;

• Messages delivered over the priority channel: The priority channel is destined to
be used only as a desperate measure, to perform a push directly to a base station node.
By defining a priority level (threshold in %) messages that surpass the indicated
value are sent directly at the cost of more resources. By contemplating the percentage
of messages sent through this channel conclusions regarding the overall performance
can be taken. If too many messages are being sent with priority, although the delivery
rate might be high, a huge amount of battery is being expended. In contrast if the
delivery rate is low and there are virtually no messages being sent through this
channel, perhaps another priority heuristic or threshold must be taken into account.
This type of evaluation is needed when optimising the middleware and a clear
balance must be obtained in order to obtain maximum performance at the lowest
cost possible.

• Latency: Also considered a very important metric it tells us the time (delay) that
a message took to reach its destination. By taking a timestamp when a message is
produced and another when it’s delivered we can measure its delay. Low latency is a
much procured feature in many network protocols.

6.2 Parameters

The parameters we enable to change in the middleware are the following:

• beaconInterval – The time in seconds between the transmission of beacons. In
practice initiates communication with another node in the network;

• fanout – Describes how many messages are to be sent in each communication
between the MANETNodes;

• sleepTime – The time in seconds for each sensor to sleep;
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• awakeTime – The time a sensor stays awake and thus is able to communicate with
other nodes;

• priorityLevel – Threshold for the priority heuristic to decide if a reading need to be
sent through the priority channel;

• epochTime – The time in seconds of the duration of a single epoch;

• epochRange – The number of epochs that a tuple will be preserved after it as been
created. If a tuple is older than the epoch range it is discarded.

• port – The application port used for all the communication.

Regarding scenario specific parameters we have four possible parameters:

• nMANETNodes – The number of MANETNodes in the simulation;

• nWSNNodes – The number of sensors in the simulation;

• nBaseNodes – The number of base station nodes in the simulation;

• nAntennas – The number of LTE antennas.

Besides this and due to the fact that simulations were run in ns-3 other parameters had
to be included in other to build realistic scenarios. They are the following:

• simTime – The time in seconds for the whole simulation;

• transmissionRange – The transmission range in meters for each Wifi device;

• cleaningTime – Time in seconds to perform a garbage cleaning in a sensor, wiping
out the garbage level;

• readTime – The time interval in seconds for data to be produced in each of the
sensors;

• initialEnergy – The initial energy in joules of the battery in each sensor;

• voltage – The voltage of the battery;

• idleCurrent – The current during idle state;

• txCurrent – The current when transmitting.
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During the course of our evaluation we predefined a specific configuration file with
default parameters. The default configuration is presented in Table 6.1.

Parameter Value Parameter Value
port 5000 nAntennas 1

simTime 172800 voltage 3
nMANETNodes 60 initialEnergy 31752
beaconInterval 60 idleCurrent 0.273

tRange 20 txCurrent 0.38
fanout 10 txPowerStart 7.5

nWSNNodes 100 txPowerEnd 7.5
sleepTime 600 nBaseNodes 1
awakeTime 30 epochTime 3600

cleaningTime 172800 epochRange 24
readTime 3600 priorityLevel 75

Table 6.1: Default configuration file in the simulations.

For the default values we try to resemble what would be a real use case scenario. So
being, as to define these values we used the following rationale: i) The port value was
chosen simply to allow the application to work. ii) For the simTime we chose 2 days
of simulation because it allows enough time for the epoch mechanism to start having its
effects. iii) Regarding the number of nodes in the network (nMANETNodes, nWSNNodes
and nBaseNodes) we chose these values because there was a significant trade-off between
simulator performance and the number of vehicles we wanted to use. iv) The beacon
interval is one minute, which we feel is enough to start communications between other
listening nodes. v) The tRange was set to 20 meters, which although it is small comparing
to regular values, was set so due to many characteristics such as building and other cars.
vi) The sleepTime and awakeTime for the sensors is 10 minutes and 30 seconds respectively.
We chose this values in an attempt to reduce battery consumption during the simulation.
vii) The cleaningTime and readTime were set at 2 days and 1 hour respectively. Regarding
the cleaning time we assumed that each bin was visited by a garbage collection truck every
2 days. For the time between that reading we decided to generate 1 reading per hour. This
reading per hour times the number of sensors, generates 1440 readings per day. viii) The
nAntennas was defined with 1 since it is able to hold connections to all the existing nodes.
ix) The voltage, initialEnergy, idleCurrent, txCurrent, txPowerStart, txPowerEnd were set
according to specific values to represent a Panasonic CGR18650DA Li-Ion Battery. x) The
priorityLevel was set at 75% threshold because the value is very close to a full garbage bin,
but it is high enough to avoid an heavy charge on the priority channel. This default value is
intended to be use in simulations that specifically test the priority channel, therefore all our
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generated reading for the tests are bellow this level.

6.3 Mobility Patterns

As means to evaluate our middleware we chose two testbed scenarios using real life data.
Besides this during the implementation phase we used a synthetic scenario generated by
the bonnMotion tool [17]. This scenario uses the Manhattan Grid model which assumes a
set of orthogonal streets in a city based in the Manhattan island in New York.

Albeit the generated scenario was useful for testing the middleware behaviour we do
not consider its simulations worthy due to the fact that they lack proof of concept validation
as an accurate example of an urban city setting. Furthermore both the real case scenarios
we used have already been used in the scientific community and in contrast to the testebed
scenario have been proven as somewhat accurate.

Regarding the real case scenarios, the first one we used was a dataset of taxi movements
in the city of Rome, Italy [20]. This data was collected over the course of 6 months in
which 370 cabs participated. For each taxi, a GPS location was reported every 7 seconds.
This topology mirrors a big part of European urban areas riddled with sinuous streets and
considerable traffic. For this reason we regard this scenario as a valuable test case for our
middleware evaluation.

For the second scenario we chose a different topology style. We used the traces of the
actual movement of buses in Seattle, Washington, USA [21]. Resembling more a grid
style scenario this dataset complements the topology of the previous one, thus allowing
to test in two disparate environments. In the dataset up to 1200 buses were traced over a
period of 2 weeks.

Between these scenarios there is a great disparity in the area covered, being the Seattle
scenario substantially larger than the Rome scenario. This different characteristic may
have some impact in the simulations, especially due to the fact that the number of nodes
between scenarios will be the same.

In both mobility traces dataset we implemented a Java program that converted the
original trace points to ns-3 trace movements files. These files are then used with the
ns-3/ns-2 mobility module to enable the movement of the MANET nodes in the simulations.
In the Java program in order to convert the original trace coordinates we used the aid of the
Open Traffic Sim project from Delft University in the Netherlands [22] which offers the
tools to convert from the WGS84 (World Geodetic System) to the cartesian coordinates.

For the simulations we generated 20 sets of 60 nodes each from the Rome and Seattle
dataset, with each scenario providing 10 sets. With this data we then produced the trace
files for the garbage bins and base stations positions. By looking at all the possible
coordinates that the vehicles pass we do a merge sort to sort the positions by the number
of possible contacts (times that a vehicle will pass by). Finally we choose the 201 most
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visited positions and of these, we take 100 random positions to place our garbage bins.
The most visited position is chosen for the base station. We take this approach because we
believe that it resemblances what really happens on a real urban scenario.

(a) Probability of at least one car entering in a cell in 6 hours
in Rome dataset [20].

(b) Area covered by the Seattle
bus traces [21].

Figure 6.1: Rome and Seattle mobility pattern areas.

6.4 Results & Discussion

On each of the tests performed we varied a single parameter to verify the effects that each
one of these parameters has on the performance of the middleware. Remaining ones were
kept with the default values described in Section 6.2.

Per experiment we analyse the delivery rate, the number of contacts established, the
delivery by time, the delivery by epoch and the usage of battery over time. Figure 6.2 shows
the percentage of delivered message for each of the sensor present in the simulation using
the default parameters and using the Rome scenario. Knowing the delivery rate is useful to
determine if there are specific sensors that need are somehow failing to communicate with
the MANET and need special handling.
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Figure 6.2: The delivery rate of each sensor.

In Figure 6.3 we manage to verify how many contacts were established per sensor. This
information is important because is can clarify how to adapt the MANET node movements
patterns.

Figure 6.3: The number of contacs per sensor.

Regarding the battery consumption along the time in Figure 6.4 it is possible to observe
how the average remaining capacity of the batteries in the sensors evolves over time. An
analysis over the information available on this graph is useful for further optimizations
regarding the sleep and awake time parameters.
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Figure 6.4: The remaining capacity of all the batteries over a time.

With Figure 6.5 the number of messages delivered per epoch is displayed. This
information is relevant as means to optimize the epoch range and duration of each epoch.

Figure 6.5: Message delivery per epoch.

Finally in Figure 6.6 we present the number of delivered messages over the time. This
is relevant since it allows to gather information from the MANET nodes mobility pattern,
for instance when most contacts occur with a node and a base station.
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Figure 6.6: Message delivery over time.

By doing this type of analysis we allow for an individual evaluation of each single
test run by itself as well as we afterwards use this processed data to perform an overall
evaluation regarding several test runs.

To provide for a more valuable evaluation some statistical relevance is required. There-
fore for each step in a variation we perform 10 runs each with a subset of nodes from the
Roma and Seattle mobility scenarios. By doing this we are more capable of eliminating
possible outliers in simulations that do not correspond to the average efficiency and capa-
bility of the middleware. As means to accomplish this we envisioned a test plan for our
simulations. Our current evaluation focused on the analysis in the fluctuation of three main
parameters which we consider to be the most volatile when influencing the efficiency of
the middleware, sensor sleep time, fanout and the number of MANETNodes. Being so we
envisioned the tests as follows:

fanout – We performed 8 variation steps regarding the possible fanout used in the MANET.
Each one of this steps was reproduced 10 times on each mobility scenario. The
smallest value for fanout was 5 and it suffered increments of +5 for each step.
By shifting this parameter we intend to see an increase in the delivery rate of the
middleware or a decrease in its latency.

sleepTime – For the sleep time we performed 10 steps each reproduced 10 times. This is
done with a starting value of 300 seconds and with an increment of +300 seconds
per step.

nMANETNodes – Finally for the number of nodes in the MANET. We executed 6 varying
steps 10 times each. Starting at a value of 30 nodes in the MANET and increasing
by +10 each step.

Overall we aimed to have a set of 480 test results. For the remainder of this section
we look at the processed results of these experiments and we discuss the efficiency of the
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middleware.

Varying fanout of the MANET. First we take a look of the fanout effects in the delivery
rate of the data produced. As we can see in Figure 6.7, the increase of the fanout parameter
increases the delivery rate, although the gains are not impressive.
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Figure 6.7: Fanout variation effects on the delivery rate.

This is due to the fact that as each MANET nodes exchanges more tuples with another
node they will increase the likeliness of the tuples will eventually encounter a base station
and deliver those tuples. Although the effects on the Seattle scenario are more visible
we are still able to observe a small increasing trend in the Roma scenario. From this
information we draw conclusions on the fanout. We think that bigger fanout values
contribute to a growth in the delivery rate. However the value has to be capped to a certain
point and that values should be slightly above 40, as the curves suggest that the growing is
decreasing rapidly. Furthermore, considering the time set to each epoch it makes no sense
having a much bigger fanout than the number of tuples produced daily.

The fanout effects on the latency present us with a very different result. As seen in
Figure 6.8 Rome and Seattle curves present opposing behaviours.
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Figure 6.8: Fanout variation effects of the latency.

The expected results of latency reduction with an increase in fanout are only observed
in the Roma taxis scenario. By having a bigger fanout, one should expect that the tuples
would be delivered more quickly and thus the latency would decrease. However the same
pattern did not apply in the Seattle buses scenario. Instead of experiencing a decrease in
the latency the opposite happened. This can be explained due to the fact in certain cases
or scenarios a bigger fanout can contribute to a more congested network and increase the
number of duplicate tuples in the network. Being so, in this situation more duplicate tuples
can be delivered to a base station while the undelivered will be withhold.

Nonetheless we consider that having a bigger fanout is positive in most cases in term
of increasing the delivery rate and decreasing the latency. It is also to note that since the
simulation takes 2 days to run, values generated close to the simulation ending, due to the
latency will not be delivered and thus contribute to a smaller delivery rate.

Effects of the sleep time variation. Regarding the delivery rate, we can see that there is a
great gap between the results in both the scenarios. This difference can be attributed mainly
to the characteristics of the mobility pattern. In Figure 6.9 we can see that increasing the
sleep time of a sensor for the taxis scenario decreases the delivery rate. This happens
because with a bigger sleep time sensors will have a smaller change of contacting a
MANET node to deliver its tuples. Nonetheless, we consider the decrease in the Rome
curve is relatively small and in the Seattle curve insignificant. Therefore, we conclude that
in order to spare battery resources it is beneficial to increase the sleepTime. However there
is a limit in the sleepTime increase were the delivery rate will become very close to 0%,
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this happens when the sensors sleep for such prolonged amounts of time that they have no
change to ever communicate with a MANET node.
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Figure 6.9: Sleep time variation effect on the delivery rate.

With the latency effects as seen in Figure 6.10 the results show the expected increase
in the latency. Since the sensor takes more time to deliver any tuple to the MANET, the
time they take to be delivered will also increase and therefore the latency will be higher in
cases where the sleep time is bigger. This delay in delivering the tuples to the MANET is
due to the fact that with bigger sleep times there is an higher chance that the cycle between
sleep and awake time does not coincide with a passing MANET node. To avoid this type
of behaviour without increasing significantly the awake time, which may lead to a large
amount of battery consumption, there is a need to carefully tune the sleep time to the
schedules of possible moving MANET nodes.

With the Seattle scenario the lack on effects in the delivery rate shows us that other
parameters haver bigger influence in this situation and as an optimization other aspects
should be tuned. In this particular case we believe that the curve stability is provoked by
an inefficient MANET because even with the smallest time, that assures some contacts, the
delivery is almost equal to the step with the largest sleep time. Therefore, the MANET is
not disseminating the data efficiently and a increase of node numbers or a smaller beacon
time should be experimented with.

Figure 6.11 confirms our expectations concerning energy saving. With the Roma taxis
mobility pattern the results are straightforward as it is possible to observe an increase in
the remaining capacity of the battery, this being due to the sensors spending more time in
idle state instead of listening state, which allows them to preserve more battery. The same
situation happens in the Seattle buses scenario with the exception of a spike in the second
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Figure 6.10: Sleep time variation effect on the latency.

step.

This situation can be attributed to a synchronization of the awake and sleep time of the
sensors that allows them to pick up more contacts. Therefore, by having more contacts
they will spend more time receiving beacon from MANET nodes and will waste more
energy delivering tuples. It is also worth noting that the curves do not grow linearly. This
happens because with a bigger sleep time less communications will be established. With
this, the curve growth will be different each step because it will have less contacts and thus
waste less battery.

In general reducing the sleep time brings its advantages, specially regarding the battery
consumption. Nonetheless this parameter has to be customized carefully because it has
its trade offs. Saving more battery will imply having less communication and a bigger
latency value. Once again we remark that it mainly depends on the environment that the
middleware is deployed and a specific tuning must be applied to each individual case.

Effects of the number of MANET nodes. By looking at Figure 6.12 we can see that
the effects on the delivery rate of the variation of mobile nodes are notorious. In both the
mobility scenarios having more nodes in the MANET will increase the overall delivery
rate. This is due to the fact that more nodes will increase the chances of tuples being
delivered to a base station.

Finally by evaluating Figure 6.13 we are able to observe the effects on latency by
different number of nodes. At first, for both cases, it is notorious that for the first step in
the simulations we defined a relatively small value for the MANET nodes. This being,
due to the fact that in the second step there is a decrease in the latency. This shows us that
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Figure 6.11: Sleep time variation effect on the remaining battery capacity.
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Figure 6.12: Number of MANET nodes effect on delivery rate.

there is a minimal threshold for the number of participants in the MANET and below that
threshold the latency will increase considerably.

In the Roma taxis it is apparent that as we increase the number of nodes the latency
decreases drastically at first and afterwards follows a smaller decreasing trend. This is
caused because with more MANET nodes in the scenario they will disseminate the data
faster and therefore increase the probabilities of having it sooner on a node approaching
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the base station. Regarding the Seattle buses for the first step the same situation as the
Roma taxis happens. For the rest of the steps the latency does not decrease but stays
somewhat stabilized. We conclude that this situation happens because the epoch range
and time defined for this situation is not appropriate. This is visible by looking at the
delivery rate graph and seeing that adding more nodes does effectively allow to deliver
more messages. Thus, if the latency increases it means that although more messages
were eventually propagated, each message was less likely to be shared between MANET
nodes due to an over increasing number of duplicate tuples and therefore taking more time
to be delivered. This duplicate tuples if present in great numbers may have a negative
effect over the way the middleware disseminates data using the fanout mechanism because
in a dissemination round there is a chance of a node only sending duplicate tuples to
another node. In conclusion, having more MANET nodes will have a better efficiency
output for the middleware. Contrary to other parameters they have no negative effects in
the performance of the middleware if other parameters such as the epoch are taken into
account.
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Figure 6.13: Number of MANET nodes effect on latency.
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Conclusion

The work done so far has fulfilled our initially proposed objectives. We were able to
implement a tuple space solution that serves as an important component for the network
participants and created the semantics for the communication between them. We also
developed a routing strategy and provided means to adapt and configure the middleware
to different scenarios. Finally we also performed an evaluation to exemplify some of its
limitations and capabilities. Overall with this work we have been able to create a working
middleware prototype for ns-3 as a proof of concept. Simulations suggest that it is feasible
to employ such piece of software in a urban scenario. Regardless, we feel due that to the
great amounts of variables present in the middleware, from the mobility pattern it uses to
the several customisable parameters, a great amount of work in evaluating the middleware
must still be done. Tests regarding, for instance, a better understanding of the battery
consumption together with the usage of the priority channel still need to be executed (at
the moment the ns-3 energy module is not prepared to account for energy wasted with the
LTE module). In summation we believe that a more profound evaluation of the middleware
is an important step in understanding its applicability to real world scenarios. With our
work so far we were also able to understand that this middleware is highly dependable on
a background study to customize and optimize the parameters and the routes done by the
supporting MANETS. For each specific case there has to be a comprehensive tuning of
the middleware due to its surroundings and environment. Besides this we also observed
that our work performed reasonably better in a urban setting such as Rome. Exploring this
idea could be an interesting way of evaluating the middleware, by exposing it to scenarios
with the same characteristics. Lastly we think that besides further evaluation other features
could be added to the middleware and tested.

We envisioned a few changes to implement in the middleware in possible future
versions. By adding this features we see an increase of value in the middleware and also an
opportunity to enhance its role in developing the smart cities of the future. Our proposals
for the future work are the following:

43
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Multicast Groups Currently any code update or parametrization transmitted to the net-
work will influence all the sensors deployed. We propose the creation of multicast
groups between the sensors in a way that specific updates are able to be sent to a
limited set of sensors. This can be achieved by assigning this groups at configure
time and although the updates can reach any sensor only the ones belonging to the
target group of the update will indeed be affected by the changes. This feature is
intended to be used together with the possibility to broadcast updates to the entire
collection of sensors. This adaptation can be very useful in situations where the
deployed sensors have different characteristics and therefore being able to tune it to
its specific environment would offer substantial efficiency gains.

Binary Operators Although the middleware provides a functional tuple space, several
improvements in its semantics would increase its usability when implementing the
behaviour of the sensors in the network. By allowing the use of rd and in operations
with binary operators in certain tuple fields it is possible to match specific ranges of
values instead of any tuple. E.g. by using the following tuple it is possible to match
all data tuples with values of type 1 and with bigger or equal value than 2.0:

<” d a t a ” , , , , 1 , ”>= 2 . 0 f ” , >

With this new semantics the tuple filtering would become more powerful thus
enabling for a more refined search without forcing the tuple space user to filter the
results afterwards.

Real test case Further evaluation is also an important aspect to take into account. Besides
the simulations we performed, a real use case is also important to prove the efficiency
of the middleware. Taking this into account, we contemplate in doing in the future a
live test with several microprocessors serving as sensors, MANET nodes and base
stations.

Priority send from MANET Although we offer the possibility of sending messages us-
ing the priority channel, this type of communication comes with a cost. To reduce
this expense the sensors could pass this burden to one of the MANET nodes. By
equipping the mobile nodes also with the priority channel technology they could
relay the data directly to a base station and supporting the energy costs instead of
the sensor, where the resource limitations are highly constrained.
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p. N/A, Inforum, 2017.

[14] Z. Li, M. Shahidehpour, S. Bahramirad, and A. Khodaei, “Optimizing traffic signal
settings in smart cities,” IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 2382–
2393, 2017.

[15] “NS-3.” https://www.nsnam.org/. Accessed: 2018-04-30.

[16] D. Halperin, B. Greenstein, A. Sheth, and D. Wetherall, “Demystifying 802.11 n
power consumption,” in Proceedings of the 2010 international conference on Power
aware computing and systems, p. 1, 2010.

[17] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn, “Bonnmotion:
a mobility scenario generation and analysis tool,” in Proceedings of the 3rd interna-
tional ICST conference on simulation tools and techniques, p. 51, ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering), 2010.

[18] “NS-3 Manual: Organization.” https://www.nsnam.org/docs/manual/
html/organization.html. Accessed: 2018-04-23.

[19] “Gnuplot Plot Project.” http://www.gnuplot.info/. Accessed: 2018-03-23.

[20] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi, “CRAW-
DAD dataset roma/taxi (v. 2014-07-17).” Downloaded from https://crawdad.

org/roma/taxi/20140717, July 2014.

[21] J. G. Jetcheva, Y.-C. Hu, S. PalChaudhuri, A. K. Saha, and D. B. Johnson,
“CRAWDAD dataset rice/ad hoc city (v. 2003-09-11).” Downloaded from https:

//crawdad.org/rice/ad_hoc_city/20030911, Sept. 2003.

[22] “Open Traffic Sim.” https://opentrafficsim.org/. Accessed: 2018-05-
12.

https://www.nsnam.org/
https://www.nsnam.org/docs/manual/html/organization.html
https://www.nsnam.org/docs/manual/html/organization.html
http://www.gnuplot.info/
https://crawdad.org/roma/taxi/20140717
https://crawdad.org/roma/taxi/20140717
https://crawdad.org/rice/ad_hoc_city/20030911
https://crawdad.org/rice/ad_hoc_city/20030911
https://opentrafficsim.org/


Bibliography 49

[23] S. Schnitzer, H. Miranda, and B. Koldehofe, “Content routing algorithms to support
publish/subscribe in mobile ad hoc networks,” in 37th Annual IEEE Conference on
Local Computer Networks - Workshops, pp. 1053–1060, Oct 2012.

[24] H. Miranda, S. Leggio, L. Rodrigues, and K. Raatikainen, “A power-aware broadcast-
ing algorithm,” in Personal, Indoor and Mobile Radio Communications, 2006 IEEE
17th International Symposium on, pp. 1–5, IEEE, 2006.




	List of Figures
	Introduction
	Motivation
	Objectives
	Contributions
	Document Structure

	Related Work
	Tuple Spaces
	Delay Tolerant Networks
	Gossip
	WSNs Application Deployment
	Smart Cities
	Network Simulators

	System Model
	A Delay-Tolerant Protocol for Smart Cities
	Tuple Semantics
	Tuple Spaces
	Tuple Spaces Synchronization
	Code Deployment and Parametrization
	Communication Protocols Description
	Sensor on MANET Node Communication Protocol
	MANET Node On Node Communication Protocol
	MANET Node On Base Station Communication Protocol


	Implementation
	ns-3
	Implementation Notes

	Evaluation
	Evaluation Metrics
	Parameters
	Mobility Patterns
	Results & Discussion

	Conclusion
	Bibliography

