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Abstract

Ubiquitous deployment of low-cost mobile positioning devices and widespread use of high-speed wireless networks have
resulted in a rapid growth of location-based applications. While location-based services provide a wide range of life
enhancing experiences to users, the exposure of location information poses significant privacy risks that can invade the
users’ location privacy. Location privacy risks can be mitigated using location anonymization techniques that perturb the
raw location of users to make the location indistinguishable from that of a set of other users. A fundamental limitation of
traditional location anonymization techniques is that they are developed as unidirectional techniques that fail to support
multi-level control of access to location data when data users have different access privileges on the exposed location
information. As a result, location information once perturbed can not be reduced in terms of anonymity or degree of
perturbation even when some data users have access to fine granular information in the exposed data. Recent techniques
on reversible spatial cloaking techniques employ data anonymization keys to perturb a user’s location in a pseudo-random
manner such that the anonymized location information can be de-anonymized later using the anonymization keys. While
reversible spatial cloaking provides support for multi-level location privacy, their performance is limited by their adopted
spatial cloaking model in which the location perturbation occurs solely in the spatial domain without considering the
temporal domain. Hence, reversible spatial location cloaking techniques obtain lower success rate and lower spatial
resolution of the perturbed location leading to unreliable anonymization and lower service quality. This paper presents a
new suite of reversible cloaking techniques that reversibly perturb location information of users using a spatio-temporal
cloaking model, allowing data perturbation to occur along both spatial and temporal dimensions while still ensuring that
the spatio-temporal expansion process is reversible when suitable access keys are provided. The proposed model achieves
higher success rate and higher spatial resolution compared to reversible spatial cloaking. We compare our techniques
through extensive experiments on real road networks. The results show that our techniques offer better QoS performance
than the existing approaches and demonstrate strong attack resilience against adversarial attacks.

Keywords: Location privacy, multilevel privacy, reversible cloaking algorithm, spatio-temporal cloaking algorithm,
k-anonymity, road network.

1. Introduction

Wide-spread availability of high-bandwidth wireless net-
works and the proliferation of GPS supported mobile de-
vices have rapidly increased the demands for location-based
service applications. In the big data era, the user experi-
ence of location-based service applications is widely en-
hanced through novel combinations of both location and
contextual information of users from multiple data sources
leading to more personalized and more customizable ser-
vices than ever. Examples include personalized naviga-
tion (“it is not easy to drive through this road based on
user’s past driving behavior”), weather forecast (“the rain
at your current location will stop exactly after 11 min-
utes.”) and location-based social networking (“you have
one friend currently in the same restaurant”). According
to recent surveys [1, 2], nearly 68% of the US population
own and use a smartphone and roughly 90% of them use

location-based service applications, implying that on an
average over six out of ten people use services that require
location information. While location-based services find
numerous potential benefits, they also open new doors for
privacy threats. The exposure of private location informa-
tion can have many undesirable effects ranging from receiv-
ing unwanted location-related advertisements and spam to
experiencing even life-threatening events leading to physi-
cal attacks [40]. With the advent of big data and big data
analytics, the risk of disclosing location information is fur-
ther exacerbated as an adversary can correlate the exposed
location with information from various other data sources
to infer more accurate and fine-grained information about
individuals [26].

The risks of disclosing private location information can
be reduced by using location anonymization techniques.
Location anonymization refers to the process of perturbing
user location information such that the perturbed informa-

Preprint submitted to Elsevier December 18, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/163106871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tion becomes indistinguishable from that of a set of other
users. A user is considered to be location k-anonymous if
her location information is indistinguishable from the lo-
cation information of at least k−1 other users in a spatial
or spatio-temporal space. As an extension to the location
k-anonymization model, location l-diversity [33] and seg-
ment l-diversity [44] constraints have been proposed to fur-
ther strengthen the privacy offered by these solutions. Sev-
eral location perturbation techniques based on anonymiza-
tion and differential privacy [5, 9, 10, 17, 19, 22, 24, 30, 45]
have been proposed in the literature to tackle the location
privacy problem. However, a fundamental limitation of
these existing location privacy protection schemes is that
location information once perturbed to provide a certain
anonymity level cannot be reversed to reduce anonymity or
the degree of perturbation, which means different location
data users have no choice but to get the perturbed location
information with same privacy level. In such a scenario,
the owners of the location information lose the multi-level
privacy control of their data requiring even privileged data
users to access information at lower accuracy and granu-
larity than what they are entitled to. For instance if Alice
is concerned about her location privacy, she might decide
to expose her location with a certain privacy level at a
location-based social network [37]. However, she may wish
to give her friends access to a reduced anonymity level as
she may trust them more than the others. Also, Alice
may want to give access to her exact location information
to some of her close friends who are most trustworthy.

Recent techniques [27] on reversible spatial cloaking
techniques employ data anonymization keys to perturb a
user’s location in a pseudo-random manner such that the
anonymized location information can be de-anonymized
later using the anonymization keys. While reversible spa-
tial cloaking provides support for multi-level location pri-
vacy, their performance is limited by their adopted spatial
cloaking model in which the location perturbation occurs
solely in the spatial domain without considering the tem-
poral domain. Hence, reversible spatial location cloak-
ing techniques obtain lower success rate and lower spa-
tial resolution of the perturbed location leading to unre-
liable anonymization and lower service quality. This pa-
per presents a new suite of reversible cloaking techniques
that reversibly perturb location information of users using
a spatio-temporal cloaking model, allowing data pertur-
bation to occur along both spatial and temporal dimen-
sions while still ensuring that the spatio-temporal expan-
sion process is reversible when suitable access keys are pro-
vided. The proposed model achieves higher success rate
and higher spatial resolution compared to reversible spa-
tial cloaking. We compare our techniques through exten-
sive experiments on real road networks that show that our
techniques offer better QoS performance than the exist-
ing approaches and demonstrate strong attack resilience
against adversarial attacks.

The rest of the paper is organized as follows: Section 2
provides a background and an overview of the multi-level

reversible location anonymization problem. In Section 3,
we discuss two reversible spatio-temporal cloaking schemes
that support multi-level location privacy, namely time-first
reversible spatio-temporal cloaking scheme and space-first
reversible spatio-temporal cloaking scheme. In Section 4,
we present the analysis of our experiments on realistic road
network traces generated using GTMobiSim. We discuss
related work in Section 5 and we conclude in Section 6.

2. Overview of Concepts and Models

In this section, we first present the location anonymity
models used in our work and describe the composition of a
user-defined privacy profile that captures customized pri-
vacy requirements of the users. We then introduce the
spatio-temporal cloaking model used in our work that al-
lows data perturbation to occur along both spatial and
temporal dimensions. We discuss the proposed class of
reversible cloaking schemes that can leverage the spatio-
temporal cloaking model to support the multi-level loca-
tion privacy requirements of users while ensuring high ser-
vice quality. Finally, we discuss the attack models used for
evaluating the attack resilience of the proposed schemes.

2.1. Location anonymity models
In this paper, We use two anonymity models, namely

location k-anonymity and segment l-diversity for protect-
ing the location privacy of users. They are defined as fol-
lows.

Definition 1 (Location k-anonymization). The location
information of a user is said to be k-anonymous if the lo-
cation information is indistinguishable from the location
information of at least k-1 other users.

Definition 2 (Segment l-diversity). The location infor-
mation of a user is said to be segment l-diverse if the ex-
posed location contains at least l well-represented road seg-
ments.

The location k-anonymity requirement ensures that the
exposed location of a user is indistinguishable from a set
of other users on the road network. However, satisfying lo-
cation k-anonymity alone may not be sufficient to protect
the location privacy of the user in cases when there are
homogeneity attacks [33]. For instance, if all the k users
contained in a k-anonymized spatial region are present in
a single physical location, such as a hospital, then even
though there are k users in the cloaked region, an adver-
sary observing the region can still infer the actual loca-
tion of the subject with high certainty. To protect against
such scenarios, the notion of location l-diversity has been
introduced [28, 33]. A cloaked location satisfies segment
l-diversity [44] if the cloaked region not only includes k
distinct users but also contains l well represented road
segments. Therefore, from an attacker’s perspective, a
cloaking area with more segments increases the difficulty
to track a user and hence ensuring a larger l-diversity pro-
vides higher location privacy.
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(a) Spatial cloaking (b) Temporal cloaking (c) Spatio-temporal cloaking

Figure 1: Cloaking models

2.2. User-defined privacy profile

In practice, each anonymization request should include
a user-defined privacy profile, which indicates customized
anonymization requirements desired by the user. A user
specifies a pair of values, denoted as (δk, δl), as her desired
anonymization level, where δk and δl indicates the numbers
of users and segments that she would like the cloaking re-
gion to contain. Besides δk and δl, the privacy profile also
includes two QoS-related parameters, namely the spatial
tolerance σs and temporal tolerance σt, which indicate the
maximum acceptable cloaking spatial area and the maxi-
mum time delay to receive the response [17, 30, 44]. There-
fore, a complete user-defined privacy profile contains four
parameters, represented as (δk, δl, σs, σt).

2.3. Spatio-temporal cloaking model

To satisfy the k-anonymity requirement δk, a cloak-
ing algorithm can include mobile users by expanding the
cloaking region geographically and/or extending the wait-
ing time window, thus resulting in three cloaking mod-
els, namely spatial cloaking, temporal cloaking and their
combination spatio-temporal cloaking. Figure 1 explains
the relationship and differences among the three mod-
els. Suppose a user sends an anonymization request with
(δk = 10, δl = 2) at t0, then the cloaking region should
contain at least ten mobile users and two segments. Fig-
ure 1(a) shows the result of spatial cloaking, which expands
the cloaking region as a two-dimensional spatial area to in-
clude nine other mobile users to satisfy (δk = 10, δl = 2).
In this example, the result includes eight segments from s1
to s8, which are restricted by the σs. In Figure 1(b), un-
like spatial cloaking, the temporal cloaking includes nine
other mobile users by extending the waiting time win-
dow W along the time axis so that the other nine mobile
users passing the minimum number of segment requested
by δl = 2 are included in the cloaking region to satisfy
δk = 10. In the example, the temporal cloaking results in
a cloaking region containing only two segments s4 and s6
while the mobile users are accumulated through the wait-
ing time window W restricted by the σt. Alternatively, as
shown in Figure 1(c), the spatio-temporal cloaking expands
in all the x, y and t axes so that a three-dimensional box is
formed to include the required number of mobile users. To
achieve a certain δk, the cloaking spatial area generated by

the spatio-temporal cloaking is smaller than the one gen-
erated by spatial cloaking while larger than the one gen-
erated by temporal cloaking. Meanwhile, the waiting time
window W required by spatio-temporal cloaking is between
the ones required by the other two models. Therefore, we
can see that there is a tradeoff between the cloaking spatial
area and the waiting time window W regarding δk and the
spatio-temporal cloaking is a general model to handle this
tradeoff. In addition, we may treat spatial cloaking and
temporal cloaking as two special cases of spatio-temporal
cloaking. In practice, by properly leveraging this tradeoff,
spatio-temporal cloaking can usually achieve better results.
Consider an anonymization request with (δk, δl, σs, σt), to
satisfy δk, spatial cloaking may easily lead to a cloaking re-
gion larger than σs while temporal cloaking may also lead
to a response delay longer than σt. In contrast, spatio-
temporal cloaking can make full use of available resources
within the QoS requirements (σs, σt) to satisfy (δk, δl).

2.4. Multilevel location privacy management system

Our work aims at developing techniques for support-
ing a multilevel location privacy management system (Fig-
ure 2) for location-based services (LBS), which allows a
LBS user to expose location information with different
granularity to other users. In this system, mobile users
first submit their real location information to a reversible
cloaking process. Such a process can be operated by trusted
LBS providers as a functional module supporting reversible
and fine-grained location cloaking for their users. In case
of untrusted LBS providers, the reversible cloaking process
can be implemented using a trusted third party anonymizer
[5, 27, 44]. Upon receiving the real location information,
the reversible cloaking process then generates multiple se-
cret keys and uses these keys to pseudo-randomly cre-
ate multiple levels of cloaked location information from
user’s real location information. After that, the reversible
cloaking process sends the secret keys to the mobile user
and exposes the cloaked location information correspond-
ing to the highest privacy level. From then on, privileged
data users can request secret keys from the mobile user to
reduce the privacy level of the exposed cloaked location
information to access the information with higher accu-
racy. Compared with conventional location cloaking sys-
tems [5, 17, 18, 44], the system in Figure 2 offers several
advantages. First, instead of an all-or-nothing access con-
trol, this system enables a multi-level access control that
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Figure 2: Multilevel location privacy management system

allows different groups of data users to access the location
data with different levels of utility and privacy. Second,
this system allows the data owner to manage the access
to the location data using secret keys. The data owner
can determine a set of access rules and make the locally
stored secret keys be automatically sent to privileged data
users based on the rules. Last but not the least, with the
reversible cloaking algorithms, the system allows the mul-
tiple levels of cloaked location information to be derived
from a single cloaked location information exposed at the
LBS provider through the access keys and thus minimizes
the storage overhead for maintaining multiple versions of
the cloaked location information.

2.5. Reversible spatio-temporal cloaking

The performance of the multilevel location privacy man-
agement system highly depends on the adopted reversible
cloaking techniques. In [27], a class of reversible cloak-
ing techniques was designed based on the spatial cloaking
model. However, as we discussed in section 2.3, the per-
formance of such reversible spatial cloaking techniques is
limited by the spatial cloaking model. In this paper, we
develop a new set of reversible cloaking techniques based
on the more advanced spatio-temporal cloaking model,
which can efficiently support the multi-level location pri-
vacy management system with higher success rate and
higher spatial resolution while ensuring higher service qual-
ity.

An example of the reversible spatio-temporal cloaking
process with N privacy levels is shown in Figure 3. In
the example, the user-defined privacy profile can be de-
noted as UDPP = {(δik, δil , σi

s, σ
i
t)|1 ≤ i ≤ N − 1}, with

UDPP i = (δik, δ
i
l , σ

i
s, σ

i
t) representing the profile for a spe-

cific privacy level Li. Specifically, we define privacy level
L0 as the cloaking box that is actually the snapshot of the
segment of the actual user at t0. In addition, each privacy
level, Li is associated with a secret key, Keyi, which is
used to drive the anonymization process for that privacy
level. Therefore, with access to the anonymization key of a
particular privacy level, users of the cloaked location data
can selectively de-anonymize the cloaking box to reduce
privacy levels and obtain finer location information. A de-
tailed example of a four level case is shown in Figure 3.
The segment s4 contains the actual user, so its snapshot
at query time t0 forms the cloaking box of level, L0. Using
the key Key1 to reach the privacy level, δ1k, δ

1
l of L1, the

cloaking box is expanded along spatial axes by including

Figure 3: Reversible spatio-temporal cloaking

s6 while at the same along the time axis from t0 to a time
window W1. Then, Key2 is used further to expand the
cloaking box to meet δ2k, δ

2
l of level L2 by adding segments

{s3, s5} and extending W1 to W2. Finally, {s1, s2, s7, s8}
are added and W2 is extended to W3 by using the key,
Key3 to reach the highest privacy level, L3.

Later, when the cloaked location information needs to
be reduced in privacy levels, it can be done using the
secret keys. For instance, for accessing the information
at the lower privilege level, L2, Key3 can be used to ex-
actly identify and remove the segments {s1, s2, s7, s8} from
the spatial cloaking region and also shrink window W3

to W2 so that the cloaking box of level L2 can be re-
stored. Similarly, using both Key3 and Key2, the seg-
ments {s1, s2, s7, s8, s3, s5} can be removed and W2 can be
reduced to W1, which result in the cloaking box of level L1.
Therefore, by merely managing the secret keys among the
location data users at different privilege levels, the whole
process protects location privacy under multiple discrete
levels as customized in the user-defined privacy profile.

2.6. Attack model

An anonymization scheme is considered to be strong if
it makes it harder for the attackers to infer the original
location information from the anonymous cloaking area.
However, when it is extended to a multilevel framework,
the ability of the attackers to correctly reduce the pri-
vacy level should also be taken into account. Given that
an adversary at one privilege level may attempt to access
the finer information entitled to users of a higher priv-
ilege level, we need to ensure that even if the attacker
has complete knowledge of the reversible spatio-temporal
cloaking algorithm, no additional information can be in-
ferred without the access to the secret anonymization keys.
In this paper, we introduce two attack models: (i) re-
play attack and (ii) network-distance attack to evaluate
the attack-resilience of the proposed multi-level spatio-
temporal cloaking schemes. Similar to the adversary mod-
els in [5, 30, 44], we primarily focus on snapshot exposure
of location information for supporting snapshot location-
based queries. For continuous location-based queries, with
the additional ability to combine and correlate informa-
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tion from the location exposure of multiple snapshot in-
stances, the adversary’s chances of inferring the true lo-
cation can be increased [14, 35]. While addressing such
query-correlation attacks is a promising direction for fu-
ture work, the scope of the replay attack model considered
in our work is limited to snapshot queries.

2.6.1. Replay Attack

In the replay attack, each segment within the cloak-
ing region is iteratively considered to be the segment of
the actual user and the associativity for all the segments
are calculated by simulating the cloaking algorithm from
this assumed start segment. If the number of segments
shared by the replayed cloaking region generated from a
segment, si, and the real cloaking region generated from
the real start segment is Ni. The associativity, Ai of si,
can be calculated as Ai = Ni∑

Ni
. After obtaining Ai for all

the segments within the cloaking region, the uncertainty
of the attacker can be quantified by Entropy [38] measured
as E = −

∑
Ai logAi. The Entropy is a measure of the

amount of information required to break the anonymity
provided by the system. Therefore, the larger the entropy,
the higher is the uncertainty of the attacker and the scheme
is more attack-resilient. The purpose of the replay attack
is to infer the location of the actual user in terms of the
segment where the user is located. However, in a multi-
level location privacy model, the purpose of the attacker
may be just to infer finer location information correspond-
ing to a lower privacy level. Therefore, even if the cloaking
algorithm provides high resilience to replay attacks, it may
not be safe under attacks that target at just reducing the
privacy levels as opposed to exactly inferring the actual
user’s location. Next, we introduce the network-distance
attack that aims at reducing the anonymity level of the
exposed location based on network distance information
in the exposed cloaked location.

2.6.2. Network Distance Attack

In the network-distance attack, the attacker’s goal is to
identify which privacy level each segment in the cloaking
region belongs to. This attack can be effective because
many road-network based cloaking algorithms expand the
cloaking region by adding new segments adjacent to the
current cloaking region. Therefore, the inference attack
becomes very effective when the cloaking algorithm leaves
the actual user location close to the center of the cloaking
area. In other words, with higher confidence, the attacker
can guess that the segments far away from the center of
the cloaking region belong to the higher privacy levels as
those segments are likely to be added near the end of the
cloaking process.

Precisely, in the network-distance attack, given a cloak-
ing region, the attacker first computes the distance be-
tween each segment of the cloaked region and the center
of cloaking area. Let the set of segments within the cloak-
ing region be represented as C = {cs1, cs2, ..., csn}. The
distance, d(csi, csj) between two segments csi, csj in the

cloaked region is defined as the distance between their mid-
points along their road segments and the network distance
of csi indicates the distance between csi and the center of

the cloaking area. It is computed as ndi =
∑n

j=1 d(csi,csj)

n−1 .
The attacker then estimates the likelihoods of a segment
belonging to a privacy level by assigning higher likelihoods
to segments with higher network distance to the higher pri-
vacy levels. Based on this information, the attacker can
guess the privacy level a particular segment belongs to.
Therefore, in order for a location cloaking scheme to be
resilient to this attack, every segment added to the cloaked
region should be equally probable to be located within the
cloaking area. In other words, the probability distribu-
tion of the network distance of any segment added to the
cloaked region should follow a uniform distribution, thus
maximizing the uncertainty of the attacker in this attack.

In the next section, we present our proposed reversible
spatio-temporal location cloaking mechanisms that sup-
port multi-level location privacy over road networks.

3. Reversible Spatio-Temporal Cloaking

A successful spatio-temporal cloaking should satisfy
both σs and σt. In general, it is hard to determine which
of the many possible cloaking boxes is the optimal one as
it should be determined in a customized manner. For the
type of LBS requests that users prefer more accurate re-
sponse using a smaller cloaking area, the spatio-temporal
cloaking box with the smallest bottom area while the high-
est height would be the best choice. In contrast, for the
type of LBS requests that users prefer shorter response
delay, the spatio-temporal cloaking box with the short-
est height while the largest bottom area offers the best
performance. In this section, we present two different
multi-level reversible spatio-temporal cloaking techniques
satisfying the two types of LBS requests, respectively. We
first present time-first reversible spatio-temporal cloaking
(TF-RSTC), which aims at generating the spatio-temporal
cloaking boxes with the smallest spatial cloaking area by
first expanding itself along the time axis. We then present
space-first reversible spatio-temporal cloaking (SF-RSTC),
which results in the spatio-temporal cloaking boxes with
shortest response delay by first expanding along the spatial
axes.

3.1. Time-first reversible spatio-temporal cloaking

Intuitively, to minimize the spatial cloaking area, the
available time σt should be made full use of. Therefore, in
time-first reversible spatio-temporal cloaking (TF-RSTC),
the height of a cloaking box is directly set to the maximum
allowable value, namely σt, to aggregate the maximum
number of mobile users for each segment, thus increasing
the weight of each segment before a spatial cloaking algo-
rithm is performed. Then, segments with boosted weights
are gradually added to the spatial cloaking area to expand
the cloaking box along x-y axes until (δk, δl) is satisfied.
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Figure 4: Time-first reversible spatio-temporal cloaking

There are two main challenges in this process. First, in
the cloaking time window W that starts at ts and ends at
te, the position of location exposure time t0 in the window
should be chosen in a randomized manner, otherwise it
may be exposed. For example, if we set ts = t0 and extend
the window along one direction of time axis, the adversary
who knows the information ofW can easily infer t0 because
of the deterministic scheme and then leverage this vulnera-
bility to locate the real user as one of the mobile users who
were included into the cloaking box at t0. Therefore, the
location exposure time t0 should be uniformly distributed
in W to be perturbed. To achieve this, the cloaking time
window W should be extended along two directions of the
time axis. The positive extension corresponding to the fu-
ture time should be bounded by temporal tolerance set by
the service user, namely |te − t0| ≤ σt, to guarantee an
acceptable delay of feedback. However, even though the
negative extension pointing corresponding to the past has
no influence on feedback delay, it should also be bounded.
A very long negative extension may aggregate too many
mobile users on each segment. In segment-based algo-
rithms over road networks, each time one segment is added
or removed, the change of δk will be very large in this
case, which fails to control the anonymity level in a fine-
grained manner. Therefore, we set |W | = |te−ts| = σt and
ts ≤ t0 ≤ te to bound both positive and negative exten-
sion by σt and also perturb t0. In other words, the window

W can be viewed as a sliding window with a fixed length
σt, which is bounded by the range [t0 − σt, t0 + σt]. An
example of such a window is the W1 in Figure 4. The real
position of the window is pseudo-randomly determined by
a secret key. We will discuss this later.

Algorithm 1: TF-RSTC
Input : Road network graph G, original segment su,

original request time t0, number of privacy levels
N , secret keys {Ki

s|1 ≤ i ≤ N − 1}, user defined
{(δik, δ

i
l , σ

i
s, σ

i
t)|1 ≤ i ≤ N − 1}.

Output: A cloaking area CloakAN−1 and a set of users
CloakUN−1 for privacy level LN−1.

1 Initially, t0e = t0, σ0
t = 0;

2 for i = 1 to N − 1 do
3 R = PseudoRandomNext(Ki

s);

4 T = σit − σ
i−1
t ;

5 tis = ti−1
e − σit + T ∗ R mod 100

100
;

6 tie = tis + σit;

7 Wi = [tis, t
i
e];

8 for each segment s′ satisfying dist(s′, su) ≤ σs do
9 Weight s′ based on Wi;

10 end

11 {CloakAi, CloakU i} ← SEF ;

12 end

The second challenge arises due to the requirement of
having multiple levels. In a mutli-level scenario withN pri-
vacy levels, as discussed in section 2.5, each privacy level
Li, except L0, has a user-defined σi

t. Usually, a higher pri-
vacy level expecting larger δk is given longer σt for getting
more mobile users. We now consider window W1 = [t1s, t

1
e]

for a higher privacy level L1 and window W2 = [t2s, t
2
e] for

a lower privacy level L2 and we assume |W1| < |W2| based
on the rule. Since both the two windows should include t0,
the position of the two windows may have two probabili-
ties. In the first case, the smaller window W1 is fully in-
cluded by the larger window W2, namely t2s ≤ t1s < t1e ≤ t2e.
One example of this fully included situation can be found
in Figure 4. In the second case, W1 and W2 are only in-
tersected, which indicates either t2s ≤ t1s < t2e ≤ t1e or
t1s ≤ t2s < t1e ≤ t2e. However, we have to force the first
probability to happen because the intersection case will
make an adversary easily infer that t0 locates in the inter-
section area, thus significantly compromising the cloaking
result.

We propose the TF-RSTC algorithm that can properly
handle both the challenges (Algorithm 1). The algorithm
takes the road network graph data, user’s original loca-
tion information, multi-level number and a secret key and
a profile (δik, δ

i
l , σ

i
s, σ

i
t) for each level as inputs. For each

privacy level (line 2-12), the algorithm takes three steps to
pseudo-randomly expanding the spatio-temporal cloaking
box in a reversible manner, namely time window expan-
sion (line 3-7), segment weight increment (line 8-10) and
finally spatial expansion (line 11). In both first and third
step, the reversibility is supported by using the secret key
as a seed of a pseudo-random number generator (line 3 and
11) and then leverage the created pseudo-random numbers
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to serve as providers of randomness during window expan-
sion and segment selection. As a result, when later the
same secret keys are used, the same randomness can be
re-generated to narrow the window and remove segments,
thus allowing the secret key holders to reduce the privacy
level in a deterministic manner while preventing any party
without the keys to do the same thing. During time win-
dow expansion, after generating a pseudo-random num-
ber, the algorithm first computes the expansion amount
T , which indicates the amount of length increased from
window Wi−1 in the last round to window Wi in the cur-
rent round. In TF-RSTC, as the goal is minimizing spatial
cloaking area, the window length is always expanded to its
maximum allowable amount, so T should be the difference
of σt between two adjacent privacy levels. Once T has
been set, a part of its amount is pseudo-randomly cut off
through T ∗ R mod 100

100 and then added to the lower bound
of the range of the window in the current round, which
then determines the start time ts of the current window
(line 5). After that, the end time te is simply the sum of ts
and σt (line 6) and the current window is finalized (line 7).
To sum up, this time window expansion process offers the
following properties: (1) windows at all privacy levels are
all with the length of their maximum allowable amounts;
(2) a higher privacy level window is always longer than a
lower privacy level window and it always covers all lower
privacy level windows in full; (3) the multi-level window
expansion is performed in a pseudo-random manner, which
allows only the secret key holders to later narrow the win-
dow and de-anonymize the cloaking box along the time
axis. After the time window of a particular privacy level
has been decided, the mobile users passing the reachable
segments from user’s original location information within
σs are accumulated to increase the weight of those seg-
ments. Finally, the spatial expansion function (SEF) can
be used to expand the cloaking box along the spatial axes
to form the cloaking box with CloakA and CloakU that
satisfies the (δk, δl) of the current privacy level. It is worth
noting that both RGE and RPLE proposed in [27] can be
adapted to work as the spatial expansion function. We
discuss more details about how RGE and RPLE can be
adapted in section 3.3.

3.2. Space-first reversible spatio-temporal cloaking

Unlike TF-RSTC, in the space-first reversible spatio-
temporal cloaking (SF-RSTC), the spatio-temporal cloak-
ing box first expands itself in the spatial domain along x-y
axes to capture all available segments in the area bounded
by σs. After that, the cloaking box gradually expands it-
self along the time axis by including more mobile users
passing the same area at different timestamps until δk
is satisfied. As a result, the SF-RSTC scheme enables
shortest response delay at the price of the largest spatial
cloaking area. Similar to TF-RSTC, the SF-RSTC algo-
rithm should also solve the two challenges presented in
section 3.2. In addition, the two challenges should be han-
dled in a way that the time window W gradually increases

Figure 5: Space-first reversible spatio-temporal cloaking

its length along the two directions of the time axis in a
step-by-step manner. The reason for this requirement is
to make the response delay as small as possible without
violating the privacy protection.

To handle the challenges under the new circumstances,
we propose the SF-RSTC algorithm as shown in Algo-
rithm 2. In addition to the inputs taken by the TF-RSTC
algorithm, the SF-RSTC algorithm requires a window ex-
tension rounds M , which indicates the number of times
that a window spends to increase its length from zero
to the maximum allowable amount. Intuitively, a larger
M tends to results in a smaller window increment step
and therefore a smaller window length is more likely to be
found. In contrast, a smaller M may reduce the algorithm
running time because of its coarse-grained search. In the
algorithm, for each privacy level (line 2-23), the spatial
expansion function is first run under the restriction that
there is no room to expand the cloaking box along the time
axis (line 3). In other words, the algorithm first gives it
a try to see whether the maximum spatial cloaking area
generated purely through the spatial expansion function
can directly satisfy (δk, δl) (line 20-22). If not, the algo-
rithm will start to gradually increase the time window W
(line 4-19). Similar to the TF-RSTC algorithm, the secret
key is used to provide pseudo-randomness (line 5). The
algorithm will try M rounds (line 7-18) of window length
increment, with each round increasing the window length
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by an amount 4t (line 6). For example, in Figure 5, the
algorithm spent three rounds to set W1 and two rounds to
set W2. During the jth round at the ith privacy level, the
window with its current length σi

t = σi−1
t +j∗4t is pseudo-

randomly determined within the range [ti−1e −σi
t, t

i−1
s +σi

t],
thus guaranteeing that the current window can fully cover
all lower privacy level windows (line 8-12). After the win-
dow has been set, the mobile users passing the spatial
cloaking region generated through the first try (line 3)
during the extended time window are accumulated (line
13). If the updated result can satisfy (δk, δl) for this pri-
vacy level, the algorithm will go to the next privacy level
(line 14-17), otherwise the algorithm will further increase
the time window with another 4t in the next round until
either (δk, δl) is satisfied or the window length has been
increased for M rounds.

Algorithm 2: SF-RSTC
Input : Road network graph G, original segment su,

original request time t0, number of privacy levels
N , secret keys {Ki

s|1 ≤ i ≤ N − 1}, user defined
{(δik, δ

i
l , σ

i
s, σ

i
t)|1 ≤ i ≤ N − 1}, window extension

rounds M .
Output: A cloaking area CloakAN−1 and a set of users

CloakUN−1 for privacy level LN−1.
1 Initially, t0e = t0, σ0

t = 0;
2 for i = 1 to N − 1 do
3 result← SEF ;
4 if result == FAIL then
5 R = PseudoRandomNext(Ki

s);

6 4t =
σi
t−σ

i−1
t

M
;

7 for j = 1 to M do

8 σit = σi−1
t + j ∗ 4t;

9 T = σit − σ
i−1
t ;

10 tis = ti−1
e − σit + T ∗ R mod 100

100
;

11 tie = tis + σit;

12 Wi = [tis, t
i
e];

13 Update result based on W i;
14 if result == SUCCESS then
15 {CloakAi, CloakU i} ← result;
16 break;

17 end

18 end

19 end
20 else
21 {CloakAi, CloakU i} ← result;
22 end

23 end

3.3. Reversible spatial expansion

In both the TF-RSTC and SF-RSTC algorithms pre-
sented in the previous two subsections, we abstract the
spatial expansion of the cloaking box as an external func-
tion called at line 11 of Algorithm 1 and line 3 of Algo-
rithm 2, respectively. To make the two algorithms fully re-
versible, similar to the way that window expansion can be
pseudo-randomly controlled by secret keys, we also need to
use the secret keys to pseudo-randomly select segments to
expand the spatial cloaking region so that later the same

keys can be applied by privileged data users to identify
and remove these segments. In the rest of this subsection,
we first present the high level idea of using keys to pseudo-
randomly select segments to form spatial cloaking regions
in a reversible manner. We then review the two approaches
proposed in [27] for implementing reversible spatial cloak-
ing, namely reversible global expansion (RGE) and re-
versible pre-assignment-based local expansion (RPLE). Fi-
nally, we discuss how RGE and RPLE techniques can be
adapted and used as the spatial expansion function in TF-
RSTC and SF-RSTC algorithms.

In reversible spatial cloaking, the anonymization and
de-anonymization processes are considered as a continu-
ous selection and removal of road segments on the geo-
graphic road map respectively. To ensure that the pro-
cess is reversible, the segments are selected in a pseudo-
random manner. Each road segment on the map is linked
to several other segments, which are located close to it.
Once a road segment S is selected during anonymization,
the next selected road segment is from one of its linked
segments. With a certain access key, a fixed segment S′

among them is deterministically selected. However, with-
out the access key, all its linked segments would have the
same probability to be selected, thus making the selec-
tion process pseudo-random and making it impossible to
reverse without possessing the access key. Then, during
the de-anonymization process, the newly selected segment
S′ maps to the previous road segment S using the ac-
cess key. The algorithms checks which road segment is
linked with S′ to narrow down the options and whether
segment S′ can be deterministically selected with the ac-
cess key if we assume a segment is S. A key challenge
here is the ‘collision’ issue that could happen in the de-
anonymization process. That is, we may find multiple
road segments that meet the conditions to be the can-
didate of the previously chosen road segment. To address
this issue, in RGE, for each road segment selection during
anonymization, the links of previously selected segments
are rebuilt on the fly to avoid collisions and optimize the
selection based on the current state. In RPLE, prior to
the anonymization process, all the road segments in the
map are pre-assigned their links in a collision-free man-
ner. As a result, RGE has larger anonymization runtime to
build collision-free links on the fly but smaller memory re-
quirement while RPLE has smaller anonymization runtime
but requires larger memory space to store the collision-free
links. Next, we review the process of RGE and RPLE with
Figure 6 and Figure 7, respectively.

In both Figure 6 and Figure 7, the current cloaking re-
gion is {s8, s9, s11}, where s8 is the last selected segment,
and the algorithms are selecting the next segment to be
added into the cloaking region. In RGE (Figure 6), the
three selected segments {s8, s9, s11} and the same number
of non-selected nearby segments {s6, s10, s14} are taken
to form a 3x3 square matrix, where the cells are filled
with 0-2 in a way that each row/column has no repeated
value. Assume that the pseudo-random number Ri gen-
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Figure 6: Reversible global expansion

Figure 7: Reversible pre-assignment-based local expansion

erated through the access key gives Ri mod 3 = 2, then
s14 will be the next selected segment because only the cell
[s8][s14] has value 2 at row s8. Later in de-anonymization,
after removing s14, the same matrix can be formed and
the same access key can give Ri mod 3 = 2. By look-
ing at column s14, since only the cell [s8][s14] has value
2, the algorithm understands that s8 should be the next
removed segment. In this way, the reversibility can be es-
tablished in a collision-free manner. Unlike RGE, in RPLE
(Figure 7), prior to the anonymization process, the algo-
rithm has generated one forward list and one backward
list for each segment in the map. All the lists have the
same length, which is six in the example. Assume that the
pseudo-random number Ri gives Ri mod 6 = 3, then s14
will be the next selected segment because it is the third el-
ement in the forward list of s8. Later in de-anonymization,
since s8 is also the third element in the backward list of
s14, with the same access key giving Ri mod 6 = 3, the
algorithm is able to remove s8 after s14. As can be seen, to
establish reversibility in RPLE, s14 should be at the same
position in the forward list of s8 where s8 is located in the
backward list of s14. With this objective, in RPLE, the
two lists for all the road segments can be generated in a
greedy manner.

Both RGE and RPLE can be adopted as the spatial
expansion function used in TF-RSTC and SF-RSTC algo-
rithms. However, they must be adjusted in two aspects.

First, in a spatio-temporal cloaking box, the same mobile
user may appear at different segment within the box at dif-
ferent timestamps. To avoid counting such a mobile user
for multiple times, when each new segment is selected to
be added into the cloaking region, such collision should
be first detected and the repeated mobile users should be
removed. Second, in the original RGE and RPLE algo-
rithms, the algorithm will stop when only δk is satisfied.
However, in the new context, the algorithm should stop
only when both δk and δl are satisfied.

4. Experimental Evaluation

In this section, we first present the experimental setup,
and then evaluate the performance of proposed reversible
spatio-temporal cloaking schemes.

4.1. Experimental setup

To simulate and compare different anonymization ap-
proaches, we use GTMobiSim mobile trace generator for
road network [3]. Our experiments were designed based on
a real road network map of northwest part of Atlanta, in-
volving 6979 junctions and 9187 segments, obtained from
maps of National Mapping Division of the USGS. There
are 10,000 cars randomly generated along the roads based
on Gaussian distribution. Once a car is generated, the as-
sociated destination is also randomly chosen and the route
selection is based on shortest path routing. All the cloak-
ing schemes are implemented in Java with the help of GT-
MobiSim. For all experiments, we repeated 100 times and
took the average as results.

Our experimental evaluation consists of three parts.
In the first part, we compare the performance of reversible
spatio-temporal cloaking schemes proposed in this work
with the existing reversible spatial cloaking schemes [27],
namely reversible global expansion (RGE) and reversible
pre-assignment-based local expansion (RPLE). In the rest
of this section, when a spatial cloaking algorithm XYZ
is applied as the spatial expansion function in time-first
reversible spatio-temporal cloaking (TF-RSTC) (line 11
of Algorithm 1) or space-first reversible spatio-temporal
cloaking (SF-RSTC) (line 3 of Algorithm 2), we refer to
the corresponding spatio-temporal cloaking algorithms as
TF-XYZ and SF-XYZ respectively. Since both RGE and
RPLE can be applied in both TF-RSTC and SF-RSTC,
we implement and compare all the possible combinations,
namely TF-RGE, TF-RPLE, SF-RGE and SF-RPLE, with
RGE and RPLE. Our results show that the reversible spatio-
temporal cloaking schemes achieve higher success rate and
higher spatial resolution compared to reversible spatial
cloaking.

In the second set of experiments, we implement and
compare the proposed reversible spatio-temporal cloaking
schemes (TF-RGE, TF-RPLE, SF-RGE, SF-RPLE) with a
set of irreversible spatio-temporal cloaking schemes. The
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Figure 8: Reversible spatio-temporal cloaking and reversible spatial
cloaking comparison

irreversible spatio-temporal cloaking schemes are imple-
mented by adopting two conventional spatial cloaking al-
gorithm, namely Random Sampling (RS) and Star-based
road network expansion (SE) [44] in TF-RSTC and SF-
RSTC, which results in TF-RS, TF-SE, SF-RS and TF-SE
schemes. The comparison of the eight algorithms shows
that although the reversible spatio-temporal algorithms
can offer the reversibility feature, their performance eval-
uated with different evaluation metrics are still as good
as the irreversible ones without the reversibility feature,
which demonstrates that the reversibility feature does not
come at the cost of a performance drop.

Finally, in the third part of experiments, we compare
and evaluate the attack resilience of the four reversible
spatio-temporal cloaking schemes (TF-RGE, TF-RPLE,
SF-RGE, SF-RPLE) against replay attack and network
distance attack.

4.2. Reversible spatio-temporal cloaking and reversible spa-
tial cloaking comparison

In the first part, we compare four reversible spatio-
temporal cloaking schemes (TF-RGE, TF-RPLE, SF-RGE,
SF-RPLE) with two reversible spatial cloaking schemes
(RGE, RPLE) regarding two evaluation metrics. The first
metric is relative spatial resolution (RSR), which is de-
fined as the ratio of the size of the maximum allowable
spatial area size specified by the spatial tolerance σs to the
size of obtained cloaking area from algorithms. A larger
RSR refers to a smaller cloaking area, which has a higher
probability to provide more accurate LBS responses. The
second metric is success rate, which simply refers to the ra-
tio of the number of cloaking requests receiving successful
responses that satisfy corresponding user-defined privacy
profiles to the number of total cloaking requests.

The performance of the six algorithms are evaluated
by varying the anonymity level δk as

δk = 10i for i = 1, 2...20

Also, the spatial tolerance, σs, is set as a function of the
anonymity level, δk such that

σs = 400
√
i =

40δk√
i
for i = 1, 2...20

where the unit is meter(m). Therefore, the maximum al-
lowable special region is a circular region with the user’s
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Figure 9: Space-first and Time-first reversible spatio-temporal cloak-
ing comparison

actual location as the center and the spatial tolerance, σs
as the radius. We also set 5% standard deviation for each
σs and the segment diversity level δl is fixed to be 10. In
addition, the temporal tolerance σt is fixed to 30 seconds
for spatio-temporal algorithms.

The results of RSR with varying δk are shown in Fig-
ure 8(a), where we observe three points. First, compared
with RGE and RPLE, their implementation in space-first
reversible spatio-temporal cloaking (SF-RSTC), namely
SF-RGE and SF-RPLE, perform lower RSR. In contrast,
the implementation of RGE and RPLE in time-first re-
versible spatio-temporal cloaking (TF-RSTC), namely TF-
RGE and TF-RPLE results in much higher RSR. The rea-
son is that SF-RSTC schemes first expand cloaking boxes
in the spatial domain, which may quickly make RSR close
to 1, namely the situation that the obtained cloaking area
is close to the maximum allowable area. Theoretically,
RSR offered by SF-RGE and SF-RPLE should be simi-
lar to that offered by RGE and RPLE. However, when
cloaking region has been expanded to the maximum allow-
able area while σk is still not satisfied, SF-RGE and SF-
RPLE can further extend cloaking boxes along the time
axis while RGE and RPLE have to stop and response a
‘FAIL’. This difference makes SF-RGE and SF-RPLE pro-
vide even lower RSR. In contrast, TF-RSTC schemes first
expand cloaking boxes along the time axis, thus result-
ing in much smaller spatial cloaking area and much higher
RSR. Second, in all three scenarios, cloaking schemes with
RGE always perform higher RSR than cloaking schemes
with RPLE. The reason is that RGE generates lists for seg-
ments in a dynamic on-the-fly manner, which helps make
segments within the cloaking region tighter and the cloak-
ing area smaller. Finally, we observed that when δk in-
creases, only RSR offered by TF-RSTC schemes also in-
creases. The main reason is that the accumulation of mo-
bile users along the time dimension in TF-RSTC schemes
makes the expansion of cloaking boxes in spatial domain
fall behind the expansion of maximum allowable area due
to the increment of δk.

In Figure 8(b), we show the results of success rate
with varying δk. When δk increases from 10 to 200, the
success rates offered by RGE and RPLE eventually de-
crease from higher values close to 100% to very low val-
ues, 71% for RGE and 52% for RPLE. In contrast, the
success rates offered by all the reversible spatio-temporal
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Figure 10: Space-first spatio-temporal cloaking
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Figure 11: Time-first spatio-temporal cloaking

cloaking schemes are always at 100%. This shows that re-
versible spatio-temporal cloaking schemes can significantly
improve request success rate by making full use of both σt
and σs.

To sum up, the results of the first part of experiments
prove that the reversible spatio-temporal cloaking algo-
rithms proposed in this work offer higher relative spatial
resolution and higher query success rate than the reversible
spatial cloaking algorithms in [27].

4.3. Reversible and irreversible spatio-temporal cloaking
comparison

In the second part of designed experiments, we com-
pare four reversible spatio-temporal cloaking algorithms
(TF-RGE, TF-RPLE, SF-RGE, SF-RPLE) with four irre-
versible spatio-temporal cloaking algorithms (TF-RS, TF-
SE, SF-RS, SF-SE). For short, the random sampling (RS)
scheme first chooses the road segment containing the ac-
tual user. It then randomly adds segments within the
bounded area restricted by σs into the cloaking region un-
til the requirements of δk and δl are met. In the star-
based road-network expansion(SE) [44], instead of ran-
domly choosing segments from the bounded region in a dis-
crete manner, the segments are chosen continuously based
on an expansion scheme. The expansion begins from the
segment containing the actual user and randomly expands
such that each newly added segment is adjacent to at least
one other segment in the currently formed cloaking region.

We first evaluate the eight algorithms in terms of re-
sponse delay and RSR when δk is changed from 10 to 200.
The results are shown in Figure 9. Here, we fix δl to 10, σs
to 300m and σt to 30s. As can be seen in Figure 9(a), all
the TF-RSTC algorithms have their response delay close
to 15s, namely a half of σt. This is because all TF-RSTC

algorithms directly extend the time window length to σt
and the window end is randomly taken within the range.
In contrast, all SF-RSTC algorithms perform much smaller
response delay, especially when δk is small. The reason is
that a smaller δk requires fewer mobile users to be col-
lected along the time axis, thus resulting in a smaller win-
dow length. In Figure 9(b), the RSR of all the TF-RSTC
algorithms is much larger, indicating that smaller spatial
cloaking area can be provided. Therefore, to sum up, in
cases when a shorter delay is the primary objective, SF-
RSTC algorithms work much better. We can conclude
that TF-RSTC algorithms should be preferred when more
accurate feedback is expected.

Next, we separately evaluate SF-RSTC algorithms and
TF-RSTC algorithms using additional metrics, which are
anonymization time, response delay, relative spatial resolu-
tion (RSR) and success rate. In Figure 10, we evaluate the
performance of the four SF-RSTC algorithms with varying
σs = 300m, 350m, 400m, 450m and we fix δk to 200, δl to
10 and σt to 30s. In SF-RSTC algorithms, the cloaking
box first extends along x-y axes before σs is reached and
then turns to the time axis to capture more mobile users to
satisfy δk. In Figure 10(a), following the growth of σs, the
anonymization times of all the algorithms increase because
larger σs indicates more segments to be included into the
cloaking area. In this case, for all the tested spatial toler-
ances, the boundary of the bounded area is reached first,
so the RSR of all algorithms is always minimum (Figure
10(c)). Once all the available segments have been cap-
tured, the extension of cloaking box turns to the time axis.
For a smaller σs, a longer time window is required as shown
in Figure 10(b). In Figure 10(d), the success rates of all
algorithms in all four cases are very close to 1 indicating
that the techniques are highly reliable.
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Figure 12: Attack resilience

Finally, in Figure 11, we evaluate the performance of
the four TF-RSTC algorithms with varying σt = 0s, 10s,
20s, 30s and we fix δk to 200, δl to 10 and σs to 1000m. In
TF-RSTC algorithms, the cloaking box first extends along
the time axis to reach σt. In Figure 11(a), the anonymiza-
tion time of all the four algorithms decreases when σt is
larger. Larger time window means smaller spatial cloaking
area, thus fewer required segments. Figure 11(b) measures
the number of active segments with different σt. A seg-
ment is said to be active if it can fill the k-user requirement
of δk by at least one user once it is added to the cloaking
area. For a larger σt, a mobile user has more chance to
pass more segments, which also means a segment may be
passed by more mobile users and have a higher chance to
become active. When σt is close to 0s, which shows a
snapshot record, only 2133 segments among the 9187 seg-
ments are active. This value increases to 3443 when σt
rises to 30s. In Figure 11(c), the relative spatial resolution
(RSR) is measured. For all the four algorithms, the RSR
increases significantly, especially for TF-RGE and TF-SE.
The reason for that is the increment of the number of ac-
tive segments, which makes the algorithms satisfy δk with
fewer selected segments, thus smaller cloaking area and
larger RSR. Figure 11(d) shows the results of success rate.
The success rates of all the algorithms rise towards 100%
with increasing σt. For the case when σt is 30s, the success
rates of the four algorithms are almost the same, which is
very close to 1.

As can be seen from the results, the reversible spatio-
temporal algorithms maintain similar performance as ir-
reversible techniques in terms of anonymization time, re-
sponse delay, relative spatial resolution (RSR) and suc-
cess rate. Thus the reversibility feature of the proposed
schemes does not come at the cost of any reduction in
performance.

4.4. Attack resilience evaluation

This set of experiments evaluate the effectiveness of the
four reversible spatio-temporal cloaking algorithms (TF-
RGE, TF-RPLE, SF-RGE, SF-RPLE) in terms of their
resilience to replay attack and network distance attack.

For replay attack, average information entropy is used
as the metric to evaluate the uncertainty of the attacker:
entropy = −

∑
Ai logAi, where Ai is the associativity for

each segment. Here, higher entropy means higher random-
ness and higher uncertainty for the attacker in inferring the
true location of the user, thus leaking out less informa-
tion and providing better privacy protection. Figure 12(a)
shows average entropy of the replay attack with varying
δk. It can be seen that both SF-RGE and SF-RPLE of-
fers higher average entropy than TF-RGE and TF-RPLE,
which is the results of larger spatial cloaking area pro-
vided by SF-RSTC algorithms. In addition, RPLE per-
forms higher average entropy in both TF-RSTC and SF-
RSTC than RGE, which indicates that the looser cloaking
region offered by RSTC has higher randomness than the
tighter cloaking region offered by RGE.

In order to measure the resilience of the schemes against
network distance attack, we measure entropy that captures
the uncertainty of the attacker in identifying which privacy
level a cloaking segment belongs to. In this experiment, we
consider eight privacy levels beyond L0 and therefore, the
highest possible entropy of a network-distance attack in
this case would be 3. This highest entropy represents the
highest possible uncertainty of the adversary representing
the scenario when the associativity of all the segments for
all the eight levels follow a uniform distribution. Figure
12(b) shows the results for varying δk. As can be seen,
both TF-RGE and TF-RPLE offer higher entropy than
SF-RGE and SF-RPLE. In SF-RSTC algorithms, since the
spatial cloaking area is usually expanded close to the maxi-
mum allowable area, the position of the real user is usually
closer to the center of the maximum allowable area. As a
result, the probability to find the segment containing the
real user through network distance attack becomes higher.
In contrast, TF-RSTC algorithms can perform much bet-
ter resilience regarding network distance attack. In addi-
tion, we can find that RPLE performs higher entropy in
both TF-RSTC and SF-RSTC than RGE, which is also
the results of looser cloaking region offered by RSTC.

Thus, this set of experiments shows that even though
all algorithms offer significant resilience against the ad-
versarial attacks, the TF-RSTC algorithms offer relatively
higher resilience against network distance attack while the
SF-RSTC algorithms offer higher resilience against the re-
play attack.

5. Related Work

Location privacy has been an active area of research in
the past. Broadly, location privacy protection mechanism
can be classified into policy-based protection techniques
and inference prevention-based techniques. Policy-based
schemes give users permission to define privacy rules ac-
cording to the service request, thus getting users’ active
participation. The inference-prevention schemes are more
focused on prevention by protectively processing and per-
turbing the location information prior to disclosure. The
latter can be further broken down into location data per-
turbation techniques represented by [17, 30, 45, 27, 47, 48]
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and trajectory inference prevention techniques represented
by [7, 8, 34, 35, 36].

Location data perturbation schemes consists of per-
turbation through dummies [25, 21], information-theoretic
approaches [47, 48], spatial location cloaking [5, 11, 17, 19,
24, 30, 45] and differential privacy [4, 6, 9, 10, 22, 23]. The
goal of location data perturbation is to perturb users’ real
location information so that the injected uncertainty can
resist potential attacks made by adversaries. In dummy-
based approaches [25, 21], when a user sends a query to
one LBS provider, some dummy locations are also sent
with the query. The dummy trajectories should have sim-
ilar properties of the real trajectories so that adversaries
with map information cannot distinguish the real trajecto-
ries from the dummy trajectories. In information-theoretic
approaches [47, 48], to reduce privacy leakage, the location
data of a user consists of public data that is safe to be
released and private data that should be well protected.
However, information about private data may be revealed
from the public data. To solve this, the public data of a
user can be obfuscated through a carefully designed prob-
abilistic obfuscation function so that information of pri-
vate data is hard to be inferred from the obfuscated public
data [47].

In the past, there have been many works related to
spatial location cloaking. To proactively protect user’s lo-
cation privacy, k-anonymity, which was proposed for sen-
sitive data protection [42], was applied to protect location
privacy in the context of location-aware systems [20]. Since
then, the techniques related to spatial cloaking has been
developing rapidly. CliqueCloak algorithm proposed in
2004 considered the individual user’s personalized privacy
requirement for the first time [17]. A grid-based cloak-
ing framework, Casper further extended this model with
a privacy-aware query processor [30, 31]. Subsequently,
a directed-graph based cloaking algorithm was proposed
to improve the success rate of anonymization [45] and the
Hilbert Cloak algorithm uses a Hilbert curve to fill the
whole area and track users [19].

These traditional cloaking schemes have some limita-
tions. Most traditional cloaking techniques were designed
for mobile users traveling on Euclidean space, recent work
has considered the location cloaking problem under a con-
strained road network model [12, 44, 49]. In [41], loca-
tion labels are introduced to distinguish locations of mo-
bile users to sensitive and ordinary locations, which can be
viewed as an enhanced cloaking technique in the IoT sce-
nario. In [43], the fully trusted Anonymizer, which is usu-
ally required by most traditional cloaking schemes to per-
form the cloaking algorithms, is replaced by a function gen-
erator distributing the spatial transformation parameters
periodically. In [32], an information-theoretic approach
was introduced to define the notion of perfect location pri-
vacy, which indicated how to ensure users’ perfect location
privacy through anonymization methods. In [39, 50], game
theory models were applied to further enhancing cloaking
schemes. Specifically, the privacy-utility tradeoff was mod-

eled as a Stackelberg Bayesian game in [39] while a hide-
and-seek game-theoretic model was used in [50] to prevent
the rational trusted third party from colluding with ratio-
nal adversaries.

Another dimension of recent work has studied the lo-
cation privacy problem by perturbing the location infor-
mation based on differential privacy constraints prior to
disclosure [4, 6, 23]. Differential privacy [15, 16] provides
rigorous protection against adversaries with background
knowledge and quantifies the privacy in a mathematically
provable manner. By carefully applying differential pri-
vacy mechanisms [15, 16, 29] to the trajectory data, the
personal location information in the disclosed statistical
output can be protected. Usually, the raw location dataset
is first transferred to a special data structure, such as
Prefix tree [10, 22] or N-gram [9]. Then, the differen-
tial privacy protection mechanisms (e.g. Laplace Mecha-
nism [15], Exponential Mechanism [29]) inject noises to the
data structures before releasing them for further process-
ing. While differential privacy provides a more formal and
rigorous privacy guarantee against background knowledge
attacks, it can result in a higher perturbation and may
provide a lower data utility compared to anonymization
techniques. Thus in cases where there is a lack of back-
ground knowledge and when the risks of such attacks are
minimal, anonymization techniques are likely to provide a
higher data utility compared to differential privacy.

As we can observe, most existing location privacy pro-
tection mechanisms have focused on developing unidirec-
tional location perturbation approaches that do not allow
fine granular information to be inferred even when some
users have the privileges to access it. The reversible spa-
tial cloaking algorithms proposed in [27] use access keys to
control the pseudo-randomness required for generating an
attack-resilient spatial cloaking region, thus allowing data
owners to control the utility and privacy levels of their
data. These algorithms are spatial cloaking algorithms
that expand the cloaking region only along the spatial di-
mension. As a result, reversible spatial location cloak-
ing techniques obtain lower success rate and lower spa-
tial resolution of the perturbed location leading to lower
reliability and reduced service quality. In contrast, the
work presented in this paper leverages the more sophisti-
cated spatial-temporal cloaking model [18] that perturbs
the location data along both spatial and temporal dimen-
sions while still ensuring that the spatio-temporal expan-
sion process is reversible when suitable access keys are pro-
vided. Our experimental results show that, compared with
the two reversible spatial cloaking algorithms in [27], the
reversible spatio-temporal cloaking schemes proposed in
this paper have a significant performance improvement in
terms of spatial resolution and query success rate.

6. Conclusion

In this paper, we presented a new class of reversible
spatio-temporal cloaking mechanisms for supporting multi-
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level privacy requirements in access controlled environ-
ments. We argue that conventional location perturba-
tion techniques are irreversible and are not inherently de-
signed to support multi-level privacy of users. While re-
cent techniques on reversible spatial cloaking techniques
employ data anonymization keys to perturb a users lo-
cation in a pseudo-random manner, the performance of
these schemes in terms of success rate and service qual-
ity is limited by their adopted spatial cloaking model in
which the location perturbation occurs solely in the spa-
tial domain. In this work, we have developed two reversible
spatio-temporal cloaking mechanisms namely (i) time-first
reversible spatio-temporal cloaking and (ii) space-first re-
versible spatio-temporal cloaking scheme that effectively
support multi-level privacy, allowing users with higher priv-
ileges to obtain finer location information through reduced
anonymity levels. The proposed techniques allow data per-
turbation to occur along both spatial and temporal di-
mensions while still ensuring that the spatio-temporal ex-
pansion process is reversible when suitable access keys are
provided. We evaluate the proposed techniques through
extensive experiments on real road networks that show
that the proposed model achieves higher success rate and
higher spatial resolution compared to the reversible spa-
tial cloaking and offers better QoS performance and strong
attack resilience against adversarial attacks.
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