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STRUCTURE DETERMINATION OF HETEROGENEOUS BIOLOGICAL SPECIMENS 
IN CROWDED ENVIRONMENTS. 

Benjamin Andrew Himes, PhD 

University of Pittsburgh, 2018 

The central dogma of molecular biology describes a strictly linear flow of 

genetic information stored in DNA transferred through RNA and translated into protein 

products. In the “post-genomic era” however, it is evident that abundant information 

flows from protein to protein and even protein back to DNA. The field of Structural 

Biology seeks to understand how the spatial and temporal organization of that 

information is stored and transmitted via the three-dimensional structure and 

dynamics of biological macromolecules. X-ray crystallography, nuclear magnetic 

resonance, and single particle cryo-electron microscopy (cryo-EM) are the primary 

techniques available to the structural biologist to deduce structure and dynamics at or 

near atomic resolutions. These tools are generally limited to the study of stable 

molecules that can be purified biochemically. Other approaches, like super-resolution 

light microscopy and cryo-electron tomography (cryo-ET), are amenable to the study of 

more labile macromolecular complexes or those found in situ; however, they are 

limited to resolutions of tens of nanometers. Improving the resolving capability of 

cryo-ET with sub-tomogram averaging to routinely reach beyond 10 Å is the primary 

goal of this work. My unique contribution to the field of structural biology is a 

suite of software tools called emClarity (enhanced macromolecular 

classification and alignment for high-resolution in situ tomography) which allows 

scientists with minimal computational background to probe the structural states of 

conformationally variable molecules present in complex and crowded environments. 
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Structural Biology is a discipline that seeks to find a functional and mechanistic 

understanding of the molecular interactions governing the life of the cell, and ultimately 

the organism, by determining the three-dimensional (3D) distribution of atoms in 

macromolecular complexes. These macromolecules are commonly referred to as 

“particles,” a convention I adopt here. Structural “snapshots” of particles in a given 

conformation, which may or may not correspond to a functional state, can be obtained 

from purified specimens in vitro. These snapshots sample a conformational landscape 

that is often dynamic and thereby require additional information from biochemical and 

biophysical experiments to build a functional model. 

The techniques traditionally used to probe biomolecules on the length scale of 

hydrogen bonds, Nuclear Magnetic Resonance (NMR) and Macromolecular X-ray 

crystallography (MX), measure the characteristics of an ensemble of molecules. Cryo-

electron microscopy (cryo-EM) on the other hand, can measure information from 

individual particles, and so is particularly well suited to the study of heterogeneous 

samples of large biological macromolecules and their complexes. 

Cryo-EM records images formed in a transmission electron microscope (TEM) that 

are, to close approximation, projections of the 3D-Coulomb potential of the specimen as 

1.0 INTRODUCTION 
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described further in section 1.1. A simple mathematic relationship referred to as the 

central section theorem1 shows that the Fourier transform of a 2D projection is equal to a 

central section of the 3D Fourier transform of the object. Strictly speaking, this theorem 

only applies where the curvature of the Ewald Sphere is negligible [1,2], i.e., where the 

“projection approximation” holds. In this regime, the Fourier transforms of many 

projections from different angles are resampled onto their respective central sections in 

3D, and upon filling up Fourier space, the inverse Fourier transform returns the 3D-

Coulomb potential of the object (a so-called EM map 2). This relationship is shown 

schematically in Figure 1.1. 

There are two primary varieties of cryo-EM used to obtain the angular distribution 

of projections needed to perform this 3D reconstruction, single particle analysis (SPA) 

and cryo-electron tomography (cryo-ET). 

1 Sometimes the Fourier slice theorem 
2 This is not quite the same as the result from X-ray crystallography, which is a 3D electron density map. 
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The Fourier slice theorem is invoked to reconstruct the 3D electrostatic potential of the 

specimen by filling in central sections of its 3D Fourier transform with the Fourier transform of 

2D projections from many angles. Reproduced from [3] with permission. 

Figure 1.1 Schematic illustrating Fourier Reconstruction 
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Cryo-ET is an alternative technique that provides 3D reconstructions for individual 

instances of macromolecules, even in a crowded environment where particles overlap in 

projection [7]. The additional information about each particle is made available by 

collecting many projections of the same sample as it is rotated relative to the optical axis 

in the TEM [8]. These tilted images provide a modest resolution along the optical-axis at 

the expense of the attainable global resolution, which is usually in the tens of nanometers 

[9]. 

This resolution may be improved using a hybrid of SPA and cryo-ET called cryo-

electron tomography with sub-tomogram averaging and classification (cryoSTAC3) [10]. 

The input for cryoSTAC is many 3D sub-tomograms that are cut out in silico from the full 

tomogram, although in principle, nothing is preventing the use of projection data directly 

as in SPA. The main distinction between SPA and cryoSTAC is that the latter produces 

a 3D reconstruction for every individual particle. 

Another more practical difference is that cryoSTAC lags significantly behind SPA in 

the resolutions routinely obtained [11], owing to a number of obstacles to reaching a sub-

nanometer resolution in situ using cryoSTAC. In this dissertation, I focus on new methods 

in image processing address these challenges, in particular, correction for Ewald sphere 

curvature, spatially variable sample distortions and displacements, and reduction of the 

computational cost of working with the thousands of 3D volumes required. All of these 

3 For an in-depth treatment of cryoSTAC and background on cryo-ET the reader is referred to [41]. 
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are shown to contribute to making resolutions better than one nanometer routinely 

accessible in cryoSTAC. In the remainder of this chapter, I introduce the essential 

background needed to understand the results of this dissertation. References to 

comprehensive treatments of specific topics are made where needed; for a history of the 

development of the field of cryo-EM with an emphasis on cryo-ET the reader is referred 

to the introduction in [12]. 

1.1 IMAGE FORMATION IN THE TRANSMISSION ELECTRON MICROSCOPE

The transmission electron microscope (TEM) has the same essential components as an 

optical light microscope operating in transmission mode: a radiation source, a condenser 

lens system that focuses the radiation onto the sample, a transparent sample, an 

objective lens that focuses the scattered radiation, a magnifying lens system, and a 

detector. Compared to light, electrons interact very strongly with matter, and many 

specialized forms of electron microscopy have been developed to take advantage of this 

fact (chapters 2-9, Hawkes and Spence) [14]. This strong interaction requires the TEM 

column to be maintained at a high-vacuum to prevent spurious scattering of electrons 

outside of the specimen. This high-vacuum in turn causes a liquid sample to rapidly 

evaporate; one solution to this problem that also preserves high-resolution details, is to 



 6 

freeze the specimen and maintain it at temperatures around 80 K using liquid nitrogen4. 

To avoid the formation of crystalline ice and instead produce a vitrified ice, preserving a 

nearly native hydrated state, the freezing may be accelerating by using a cryogen with a 

larger heat capacity than liquid nitrogen, such as liquid ethane or liquid propane [13].  

For our purposes, we are concerned with the high-resolution TEM also known as 

phase-contrast TEM. The three primary events are shown schematically in Figure 1.2: 

the electrons scatter from the specimen, they are focused into a diffraction pattern in the 

back focal plane of the objective lens, and finally, they form an image in the conjugate 

image plane.  

“Real” and “reciprocal” spaces referred to in Figure 1.2 are synonymous with 

“position” and “momentum” space5. These are dual spaces mathematically related to one 

another by the Fourier transform, a fact that is used extensively in image formation theory 

and image processing in TEM [14]. 

4 It is thought that using even lower temperatures via liquid helium would help to provide further protection 
against radiation damage, however, there is a poorly understood loss of contrast and apparently increased 
specimen motion [149,150]. 
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 1.1.1 Imaging aberrations 

Due to the imperfect nature of magnetic lenses, several wave aberrations distort the exit 

wave. The strongest of these are the third-order6 aberrations, also called the primary 

Seidel aberrations, of which the spherical aberration, coma, and astigmatism are most 

pertinent to cryo-EM of biological macromolecules [15].   

The coefficient of spherical aberration is fixed for a given objective lens [20]. The 

other aberrations may be corrected through microscope alignment [21,22], and residual 

errors in microscope alignment may be corrected computationally in later computer 

6 The ideal gaussian wave front is quadratic. 

Figure 1.2 three central aspects of image formation 
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processing of the images. Correction of residual astigmatism becomes increasingly 

relevant beyond 8 Å resolution and so has been routinely done in SPA [23]. Correcting 

residual axial coma (beam tilt) was discussed early on [24], and first demonstrated in 

1986 by Henderson and colleagues [25]. These image processing corrections are rooted 

in contrast transfer theory. 

 1.1.2 Electron scattering 

When speaking of scattering, it is perhaps intuitive to envision electrons as individual 

particles, however, considering the wave nature of electrons makes many aspects of the 

theory of image formation easier to discuss. The incoming high-energy electrons may be 

represented by a wave function, and if the object is thin enough7 to be treated as if it were 

at a single distance from the focal plane of the objective lens, then the “projection 

approximation” simplifies the expression for the exit wave function to: 

𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥,𝑦𝑦) ≅  𝜓𝜓𝑒𝑒𝑖𝑖(𝑥𝑥,𝑦𝑦)𝑒𝑒𝑒𝑒𝑖𝑖 ∫𝑉𝑉(𝑒𝑒,𝑦𝑦,𝑧𝑧)𝑑𝑑𝑧𝑧    𝑒𝑒𝑒𝑒 1.1 

Where 𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is the object’s Coulomb potential and 𝜎𝜎 = 2𝜋𝜋𝜋𝜋𝑚𝑚𝑒𝑒𝑒𝑒ℎ−2, with the 

relativistic electron wavelength (𝜋𝜋) mass (𝑚𝑚𝑒𝑒) and charge (𝑒𝑒) and the Planck constant ℎ.  

7 “Thin enough” depends on the atoms present, the imaging parameters, and the resolution of a particular 
experiment as discussed in detail in  [16]. 
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For a derivation of the transmission function (the exponential on the right in  eq 1.1) 

the interested reader is referred to the treatment by De Graef [15].  

If, in addition to being thin, the specimen is composed primarily of light atoms, as 

is the case in biological specimens, the resulting projected potential will be << 1. In this 

case, equation 1.1 may be  expanded into a Taylor series and truncated after the first two 

terms, giving the approximate exit wave function under the weak phase object 

approximation (WPOA) in equation 1.2 [17]: 

𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥,𝑦𝑦)  ≈  �1 + 𝑖𝑖𝜎𝜎𝑉𝑉𝑧𝑧(𝑥𝑥, 𝑦𝑦)�  𝑒𝑒𝑒𝑒 1.2 

The exit wave function then propagates through the vacuum in the TEM column 

and is focused using electromagnetic lenses, as first practically demonstrated in 1931 

through the efforts of Knoll and Ruska [18]. These lenses are quite imperfect and modify 

the exit wave as it is focused. The resulting wave aberrations (section 1.1.2) were 

quantified by Scherzer in the late 1940s [19], and their impact on image formation is 

described by contrast transfer theory (section 1.1.3).  

1.1.3 Contrast transfer theory 

The collective effect of spherical aberration, imaging out of focus, and axial astigmatism 

is a spatial frequency dependent phase shift [76] 

𝜒𝜒𝑞𝑞 =  𝜋𝜋𝜋𝜋𝑒𝑒2 �− 1
2
𝐶𝐶𝑠𝑠𝜋𝜋2𝑒𝑒2 +  (𝛥𝛥𝛥𝛥1+𝛥𝛥𝛥𝛥2

2
+  𝛥𝛥𝛥𝛥1−𝛥𝛥𝛥𝛥2

2
𝑐𝑐𝑐𝑐𝑐𝑐 2(𝜑𝜑0 − 𝜑𝜑))�   𝑒𝑒𝑒𝑒 1.3
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The relativistic wavelength (𝜋𝜋) is calculated from the accelerating voltage8, and the 

spherical aberration (𝐶𝐶𝑠𝑠) is constant for a given microscope9. Spatial frequency (𝑒𝑒) is the 

independent variable leaving the astigmatism angle (𝜑𝜑) which is defined as the angle 

between the major axis and the image X-axis, and under focus10 (𝛥𝛥𝛥𝛥). 

How this phase shift affects the transfer of information from object to image is the 

subject of contrast transfer theory, and the reader is referred to chapter 3.3 in [27] for an 

accessible treatment. A more detailed discussion relating contrast transfer theory to 

image reconstruction can be found in [151]. Mathematically speaking, for a weakly 

scattering object, the Fourier transform of the bright field image is obtained by multiplying 

the Fourier transform of the projected object with the contrast transfer function (CTF). 

𝑪𝑪𝑪𝑪𝑪𝑪 =  −�1 − 𝐴𝐴2𝑐𝑐𝑖𝑖𝑠𝑠�𝜒𝜒𝑞𝑞� − 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐�𝜒𝜒𝑞𝑞�  𝑒𝑒𝑒𝑒 1.4 

In equation 1.4 “A” refers to the percentage of amplitude contrast, which can be 

approximated as constant with respect to spatial frequency and is typically assumed to 

lie between 0.07-0.14 [26]. As the sinusoidal form of equation 1.4 suggests, the CTF 

8 2.51 pm for 200 KeV and 1.97 pm for 300 KeV radiation. 
9 For the instruments currently used for biological specimens this is usually around 2 mm, while for those 
used in material science the value is often closer to 0.5 mm. The worse aberration in biological TEM is a 
compromise on the size of the lens pole piece gap [20]. 

10 Note that in biological TEM, the convention is to define under focus > 0, such that the origin of the 
microscope is set to the back-focal plane of the objective lens.  
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produces characteristic oscillations in the power spectrum of the object, which may be 

estimated from the periodogram11 as described in more detail in chapter 2.2.4. 

A qualitative understanding of the effect of the CTF is useful and is illustrated in Figure 

1.3 Using the atomic coordinates for the enzyme Beta-galactosidase (PDB 6CVM), the 

projected object potential12 as calculated using the multi-slice approach [152] is shown in 

Figure 1.3 A. The CTFs for three under-focus values are plotted in Figure 1.3 B. Including 

these in the wave propagation shows that the signal is increasingly delocalized as the lens is 

set farther from focus (Figure 1.3  C-E). Also, the spread is frequency dependent; the low-

resolution contrast is enhanced while the high-resolution details are now primarily outside the 

particle envelope. This increase in low-resolution contrast far from focus is commonly 

exploited to facilitate later image processing steps in both SPA and cryoSTAC. Figure 1.3 

F-H shows images simulated with the same defocus values but with explicit water molecules,

1.5x the particle thickness, and shot noise following a Poisson distribution. 

11 The Fourier transform of the image auto-correlation function. 

12 the integral inside the exponential term in equation 1.1. 
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(A) Projected electrostatic potential using atomic coordinates from PDB-6CVM. (B) The plot

of the CTF for 70 nm (black), 350 nm (blue), and 1750 nm (green) under-focus. (C-E)

Multi-slice propagation of assuming the increasing defocus plotted in (C). (F-H) the same

simulation now including explicit water molecules to give a realistic image. 

Figure 1.3 Visualizing the CTF as a function of under-focus 



 13 

1.2 IMAGE RESTORATION 

Fortunately, the effects of the CTF, within the approximations of linear imaging 

theory, are relatively straightforward to correct. Because there are regions where the 

CTF does not transmit any information to be recorded, a range of imaging parameters 

must be used on different images, which are then combined into the final result. The 

modulation by the CTF is commonly restored by a Wiener filter, which has been 

described succinctly as a “careful division” by the CTF [27]. The care that is referred to 

here is the inclusion of an estimate of the spectral signal to noise ratio in the 

denominator, which prevents overamplification of noise. 

𝐹𝐹 𝑊𝑊𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑊𝑊  =  
𝐶𝐶𝐶𝐶𝐹𝐹𝑒𝑒

∑ ‖𝐶𝐶𝐶𝐶𝐹𝐹𝑒𝑒‖2𝑁𝑁
𝑒𝑒 + 1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�
 𝑒𝑒𝑒𝑒 1.5 

The estimate of the SSNR is strongly impacted by the solvent surrounding the 

particles in the sample [28], and in Chapter 2 I present a solution to this problem tailored 

to cryoSTAC. In this chapter, I also discuss solutions that help to alleviate deviations from 

linear imaging theory that are particularly relevant to thicker samples often used in 

cryoSTAC, in particular, the breakdown of the projection approximation.  

One additional assumption in image restoration is that the 3D Fourier transform of 

the object is adequately sampled to permit interpretation up to some resolution. A simple 

condition was given by Crowther that reveals a linear relationship between the resolution 

attainable and the diameter of the specimen in real space divided by the angular sampling 

[29]. 



1.3 THE MISSING WEDGE-EFFECT 

While I have stated that there is a 3D reconstruction for each particle in a tomogram, it 

is vital to note that this reconstruction is distorted due to an incomplete angular 

sampling of Fourier space. The angular range the specimen is tilted to is limited in 

practice to ~+/- 60˚ although for samples that are very thin, especially 2D crystals, 

closer to 70˚ may be reached [30]. This sampling is limited primarily by the increased 

probability of scattering due to the additional thickness of the specimen, inversely 

proportional to the cosine of the tilt angle, which results in fewer electrons reaching the 

detector in total, while a higher percentage of those that do are due to inelastic 

scattering such that the higher tilts have lower SNR. Figure 1.4 A, B show the 3D 

sampling function which represents the achievable sampling in Fourier space. The 

oscillations are due to the CTF, while the color runs from low-resolution (blue) to high-

resolution (orange). 

Not only does the high-resolution information fade at high tilts, but it 

also progressively degrades as the specimen accumulates radiation damage. The 

region of lowest SSNR is the wedge-shaped region perpendicular to the tilt axis in 

Figure 1.4 A.  
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Figure 1.4 The missing-wedge effect 

A) 3D sampling function in Fourier space for a typical tomogram, acquired with a bi-

directional tilt-scheme starting from 30˚. The colors indicate spatial frequency 

(1/resolution) running from low (blue) to high (red). (B) looking down along the beam 

direction, the oscillations of the CTF are apparent. (D-E) applying a 2D missing-wedge to 

the same image illustrate the two primary effects: elongation along the missing-wedge 

direction, and removal of linear/planar features perpendicular to the wedge. (F-G) 

magnified view of Einstein’s eyes from D and E. 
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The “missing-wedge effect” refers to the distortions in the 3D reconstruction due to 

this under-sampling. In Figure 1.5 D an image of Einstein with a horizontal missing-

wedge (inset) and zoomed in portion of his eye in Figure 1.5 F shows the characteristic 

drop in resolution and elongation of density parallel to the missing-wedge, especially 

evident in the normally circular pupil. A second significant effect is that linear or planar 

features perpendicular to the wedge are not well represented, as illustrated in Figure 1.5 

F, G where Einstein’s eyelid is no longer visible. 

1.4 CHALLENGES IN STRUCTURAL STUDY OF HETEROGENEOUS SAMPLES

Arguably, the greatest strength of cryo-EM as a technique, compared with NMR and MX, 

is the ability to record and analyze measurements from individual instances of biological 

macromolecules. Although averaging is necessary to reach SNR levels high enough to 

reconstruct interpretable density maps, the ability to use pattern recognition and machine 

learning algorithms permits the analysis of individual particles. In the case of cryoSTAC 

where each particle is represented by a unique 3D-density map, the analysis of individual 

particles is particularly promising granted the image features due to the missing-wedge 

can be accounted for. 

The missing-wedge effect distorts the sub-tomograms strongly and impacts all 

aspects of image processing in cryoSTAC. Current state-of-the-art software makes 

compromises in accurately compensating this effect in exchange for computational 
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tractability. In addition to the well-known missing-wedge effect, local specimen distortions 

and the accuracy of CTF correction considering the breakdown of the projection 

approximation in thick specimens also need to be addressed if cryoSTAC is to reach a 

higher resolution routinely. The primary focus of my research has been developing 

methods for the determination of these maps from variable and heterogeneous 

specimens, at resolutions better than 10 Å as demonstrated for the icosahedral hepatitis 

B virus capsid using SPA some 20 years ago [31]. These methods have been developed 

and tested on three primary biological samples: ribosomes, bacterial chemotaxis receptor 

signaling arrays, and purified HIV-1 virus-like particles.  
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Macromolecular complexes are intrinsically flexible and often challenging to purify for 

structure determination by single particle cryo-EM. Such complexes may be studied using 

cryoSTAC, which in exceptional cases reaches a sub-nanometer resolution, yielding 

insight into structure-function relationships. All maps from cryoSTAC currently deposited 

in the EMDB with resolution < 9 Å are from macromolecules that form ordered structural 

arrays, like viral capsids, which dramatically simplifies structural determination. Extending 

this approach to more common specimens that exhibit conformational or compositional 

heterogeneity and may be available in limited numbers remains challenging. To this end, 

I developed emClarity, a GPU-accelerated image processing package, and demonstrate 

significant improvements in the resolution of maps compared to those generated using 

the current state-of-the-art software. Furthermore, I devised a novel approach to sub-

tomogram classification that reveals conformational states not previously observed with 

the same data. 

2.0 HIGH-RESOLUTION STRUCTURAL DETERMINATION OF 
HETEROGENEOUS SPECIMENS USING CRYOSTAC 



2.1 INTRODUCTION 

Recent advances in the capabilities of cryo-EM are changing how we think about the 

structural determination of complex biological assemblies. In addition to reaching a near-

atomic resolution, the development of advanced classification techniques, such as 

maximum-likelihood classification as implemented in FREALIGN [32] or RELION [33], 

has enabled possibilities for probing macromolecular functional dynamics using an SPA 

approach. For a sample to be suitable for SPA, it must yield tens to hundreds of thousands 

of individual instances of biological macromolecules [34]. Commonly called “particles,” 

they must first be purified to relatively high compositional and conformational 

homogeneity [35] and subsequently imaged in many different orientations.  These two 

conditions are often difficult to achieve, especially as the size and number of components 

increases, and are features common to the assemblies of biological complexes often 

found at the heart of cellular activities [9]. When this is the case, cryo-ET is capable of 

generating 3D reconstructions of pleomorphic samples in situ is the preferred approach 

These reconstructions (tomograms) are generally limited to 3-4 nm resolution. This 

limit on the resolution of a tomogram is largely due to the extremely limited electron dose 

(1-2 electrons/Å2 per projection, ~60-120 electrons/Å2 in total) chosen to minimize 

radiation damage to samples during the collection of many projection images. Additionally, 

the signal in these noisy images is not distributed evenly in the tomogram, a consequence 

of primarily the increasing specimen thickness at high tilt angles which limit the angular 
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sampling to about +/- 60° in practice. This uneven sampling of the 3D specimen in 2D 

projections results in anisotropic resolution, and the resulting distortion is colloquially 

referred to as the “missing-wedge effect” (MWE) named for the shape of the sub-sampled 

region in Fourier space of a single-tilt-axis tomogram.  

These resolution-limiting issues can be overcome when many copies of a 

macromolecule are present in a tomogram, extracted in silico, aligned to a common 

reference frame, and averaged using cryoSTAC procedures that share many similarities 

to SPA. Such averaging can increase the signal to noise ratio (SNR) in the final map and 

also complete the angular sampling in the average, alleviating the MWE. Classification 

refers broadly to the use of statistical analysis to sort out heterogeneity as described later. 

For cryoSTAC to work, the bias due to the MWE during image processing must be 

mitigated. This is accomplished by explicitly considering the contribution of each sub-

tomogram to the final average as a function of spatial frequency in Fourier space. In 

practice, this means the (dis)similarity metric used for alignment and classification must 

be modified to consider only the sampled regions of each volume. The two most common 

metrics are the constrained cross-correlation [36–38] and the constrained-Euclidean 

distance [39,40])  

The function used to constrain these distance metrics depends on the sampling of 

the specimen and describes the extent of information transfer during the imaging process. 

This 3D-sampling function (3D-SF) defines the information transfer based on all 

contributing projection’s CTFs, the exposure in each projection, the sample thickness as 

a function of the tilt angle, and the weights applied in the reconstruction of the tomogram 
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(Figure 1.4). The 3D-SF has also been referred to as the 3D Contrast Transfer Function 

(3D-CTF) [40]. However, this creates some confusion with an unrelated process called 

3D-CTF correction. To avoid ambiguity, I avoid the term “3D-CTF” altogether as it is a bit 

of a misnomer given the CTF is inherently 2D. Instead, I refer to “3D-CTF correction” as 

Ewald sphere correction since the variation of focus with depth is equivalent to the 

curvature of the Ewald sphere [1]. The reader is referred to recent reviews which cover 

both the general principles [41] and computational approaches [42,43] in greater depth. 

Even a rough estimate of the 3D-SF using a binary missing-wedge mask makes it 

possible to obtain sub-tomograms averages at low resolutions, 15-20 Å. With the particles 

aligned to a common reference frame, any conformational differences that exist should 

be identified and the resulting subgroups separated into different averages. This 

characterization is commonly referred to as “classification” and allows for separation of 

multiple biological states from the same sample, in turn permitting in situ structural 

determination of functional conformations [30,44].  

The ability to perform 3D-classification of unknown states semi-independently from 

the alignment procedure is arguably the greatest strength of cryoSTAC relative to SPA 

because each particle is reconstructed as a unique, albeit distorted, 3D volume. With 

these per-particle 3D reconstructions, it is possible to directly analyze the 3D-variance 

without any bootstrapping techniques, an approach useful for focusing in on dynamic 

portions of the specimen, the value of which has been discussed extensively [45–47].  
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To date, few structures have been solved at resolutions better than 10 Å using 

cryoSTAC [40,48–53]. This resolution is a critical threshold beyond which flexible 

molecular fitting approaches are more reliable [54]; an avenue for integrating high-

resolution data into medium resolution maps and investigating dynamic or transient 

complexes [30,49,55]. 

I present here a complete set of GPU-accelerated programs called emClarity for 

enhanced macromolecular classification and alignment for high-resolution in situ 

tomography, designed to make the sub-nanometer resolution the norm rather than the 

exception for cryoSTAC. I have focused my efforts on the steps in cryoSTAC image 

processing that are likely to yield the greatest improvements, as suggested by empirical 

observation and theoretical calculations [50,56–58]: accuracy of tilt-series alignment, 

improved defocus determination and CTF correction, explicit treatment of anisotropic 

resolution, and more robust classification. A typical cryoSTAC workflow is illustrated in 

Figure 2.1 with areas of significant improvement in emClarity highlighted in red, while 

novel additions to the pipeline are in orange boxes. 



 23 

Figure 2.1 Typical cryoSTAC workflow 

Blue background indicates steps in a typical cryoSTAC workflow, where red text denotes 

routines substantially improved in emClarity. Orange background indicates novel algorithms not 

available in other published software. Double-headed, dashed arrows indicate optional branch 

points that may be included during any given cycle of refinement.  
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2.2 METHODS AND ALGORITHMIC DEVELOPMENTS 

All cryo-EM methods seek to refine the orientation of each particle with respect to 

the microscope reference frame. In SPA this is a 5-parameter search space, 

while in cryoSTAC it is a 6-parameter search space, three Euler angles, and 

three spatial coordinates. This search is carried out by comparing a reference structure 

to each particle at different orientations and scoring each using constrained-cross-

correlation (least squares minimization) or Euclidean l2-norm (likelihood 

maximization.) 

Caution must be taken to avoid fitting to the noise in cryo-EM data [59]. 

A modification to the iterative methods used, deemed the gold-standard approach 

[60], robust to this problem and independent of the alignment algorithm, has 

been demonstrated to produce satisfying results [61]. Care must be taken in 

cryoSTAC where a reference-based search (template matching) is often needed to pick 

out the particles of interest from the tomograms before entering the sub-tomogram 

workflow. The information used in the template matching program is generally restricted 

to 40Å as is common in the field [36,53]. This resolution has been sufficient to locate 

and roughly orient particles of various shape and dimension while also limiting any 

correlation between half-sets to at most ~ 26Å13, a resolution beyond which the data 

are considered independent [62].  

13 The real-space masking of the particle introduces an extra correlation in Fourier space equal to 2 𝐷𝐷⁄ , where D is the 
diameter of the mask [144]. For a globular protein of molecular weight 250 KDa, the diameter is ~ 75 Å, and so an 
upper bound on the correlation introduced is(40 Å)−1 −  �75/2 Å�

−1
 ≅ (26 Å)−1.
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During alignment, a low-pass filter shaped according to a modified version of the 

figure-of-merit [63] which is based on the gold-standard Fourier Shell Correlation (FSC) 

is applied to the data. The modification I make forces the Fourier amplitudes to zero after 

the point where the 1-bit criterion [64] interests the FSC curve. This point is often near an 

FSC of 0.33 and seems to provide a reasonable balance between reducing over-fitting 

while also permitting convergence, which may be very slow if too little detail is available 

in the reference used for refinement. 

2.2.1 Refinement of tilt-series alignment 

A prerequisite for 3D reconstruction of a tomogram is the refinement of the projection 

geometry, including tilt-axis angle, in-plane shifts and rotations, magnification, tilt angle, 

and possibly other distortions like non-perpendicularity of the electron beam or skew 

between the x & y-axes [65]. This process (tilt-series alignment) is most commonly 

accomplished by using gold beads as high-contrast fiducial markers. Additional 

approaches, based on locating and tracking image features [66–68] or on projection 

matching using an intermediate tomogram as a 3D model [38] are available, but their 

success is generally sample-dependent [41], and these require significant user input, 

which has been somewhat ameliorated by automation with the recently released Appion 

package [69].  

I have integrated into emClarity a novel algorithm called tomo-CPR (tomogram 

constrained particle refinement) for the iterative refinement of the tilt-series alignment 

using an approach that shares some similarity with the “particle polishing [70]” 



 26 

implemented for SPA in RELION. The most important difference is that the reference 

projections used for orientation determination include information from neighboring 

particles as well as non-particle information from the tomogram. Adding this signal to the 

reference accomplishes essentially the same thing as subtracting it from the data. 

Another smaller difference is in how tomo-CPR constrains neighboring particles to 

behave similarly. As in SPA they are constrained within a given projection but are 

additionally required to vary smoothly as a group from projection to projection through the 

tilt-series.  

Tomo-CPR is illustrated in Figure 2.2. First, I replace the density corresponding to 

our particles of interest in the original tomogram with a copy of the high SNR 

reconstruction and then re-project that synthetic tomogram along with a 3d model of the 

sub-tomogram origins using the IMOD program tilt. This also includes any local 

alignments previously determined and allows us to create a reference tilt-series along 

with a model for each sub-tomograms position in the 2d-projections. Tiles around each 

projected sub-tomogram origin are masked out and convolved with the CTF of the data 

projection at that point, using a defocus calculated from geometric considerations of the 

offset to the tilt-axis and the tilt-angle. The sub-tomogram fiducial positions in the data 

projections are then refined via cross-correlation, and these refined positions are then fed 

into IMOD’s tiltalign as if they were derived from gold-fiducial, allowing us to take 

advantage of local refinements and robust fitting as described previously [71].  
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Figure 2.2 Tomogram constrained projection refinement (tomo-CPR) 

(A) Schematic overview for reference generation in the Tomo-CPR. The instances of structural

noise resulting from the complex 3D environment of the sample are captured by projecting the

full tomogram with the particle of interest replaced by the high SNR average.  (B-C) Cartoon 

illustrating overlapping information in the projections arising from other particles, other 

components in the specimen, and variable defocus as a function of tilt. Examples of non-tilted 

(D) and tilted (E) projections used to generate references for the yeast 80S tomo-CPR. Tiles

centered on the projection origin of each sub-tomogram are convolved with the CTF considering 

the individual sub-tomograms defocus, which varies with tilt angle and location in the tomogram. 

Particles are observed to overlap, even without tilting, while features due to contaminants (white 

arrows) and the carbon edge (white chevron) would affect the accurate determination of local 

particle drift using a simple projection of the average for cross-correlation. 



2.2.2 Maximizing weak signal in the reconstructions 

2.2.2.1 Real space masking 

Real space masks that follow the particle envelope are useful in the maximization of the 

SSNR as they exclude solvent. However, care must be taken to avoid inadvertently 

introducing spurious correlations by application of the same real space masks to 

data from each half-set [72]. For each half set, I apply a simple but effective iterative 

dilation algorithm to derive a soft-edged mask that loosely follows the particle’s 

envelope. I start from the highest intensity pixels found within an envelope defined by a 

smoothed version of the current map, and gradually relax the threshold for 

neighboring pixels of those included in the previous iteration, thereby enforcing 

connectedness while allowing weak density to contribute Figure 3.3. Including weak 

density based on spatial constraints means that flexible regions of 

macromolecules or complexes that have variable occupancy are retained by using 

such a masking approach that is based on connectivity. 
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2.2.2.2 Fourier space masking 

Image features of a given size distributed across the map in real space are co-

localized in reciprocal space by spatial frequency, such that masks can be applied 

to specific resolution bands. High-resolution features degrade at a faster rate as a 

function of electron exposure, and so I have adapted for projections of tilted specimens 

the optimal exposure filter [73] described initially for SPA. Briefly, I apply the exposure-

based filter to each projection during correction of the CTF phase inversions before 

reconstruction. Based on some anecdotal observations, this filter may be too 

severe, and future investigation into sample dependent filtering may prove fruitful in 

further extending the resolution. 
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Figure 2.3 Iterative real-space masking algorithm 

← Median filter a copy of input map  

← Select pixels > 4σ above the mean as seeds to exclude dust 

← Dilate the binary mask progressively adding connected pixels above a 

gradually relaxed threshold 

← Calculate the Euclidean distance from all zero pixels to the nearest non-zero, 

adding those that are < 10 Å. 

← Smooth the binary mask three times and normalize to a max value of one. 
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2.2.3 3D-SF Calculation 

3𝐷𝐷 𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆𝑖𝑖𝑠𝑠𝑆𝑆 𝐹𝐹𝐹𝐹𝑠𝑠𝑐𝑐𝐹𝐹𝑖𝑖𝑐𝑐𝑠𝑠 ≡ 𝑆𝑆𝐹𝐹3𝐷𝐷 =  � � 𝐶𝐶𝑒𝑒,𝑗𝑗�𝐶𝐶𝐶𝐶𝐹𝐹𝑒𝑒2𝑑𝑑�
2
𝑆𝑆2𝑑𝑑𝐸𝐸𝑥𝑥𝑆𝑆𝐹𝐹𝑖𝑖𝑆𝑆𝐹𝐹𝑒𝑒𝐸𝐸𝑒𝑒2𝑑𝑑  𝑒𝑒𝑒𝑒 2.1

𝑍𝑍

𝑒𝑒=1

𝑆𝑆

𝑗𝑗=1
 

The first term in the summation is the combined transformation of projection (i) into the 

tomogram and sub-tomogram (j) into the final average. The second term is the standard 

expression for the CTF limited to third-order Seidel aberrations [74], the third is the Radial 

weighting used for single-axis tilt geometry, and the fourth is the optimal-exposure filter 

as defined [73], Z is the number of projections in each tilt-series, and S the number of 

sub-tomograms. 

2.2.4 Improved defocus determination 

Even with the advent of direct electron detectors, estimating the defocus in an image with 

a dose of only 1-2 e-/Å2 requires precise microscope alignment, optimized data collection 

schemes and a sample that provides abundant signal [48]. For cases where these 

conditions are not met, I have devised a new algorithm to maximize the information 

available for estimating the defocus value. For the initial defocus determination, I apply 

rotational averaging to the power spectrum as estimated from periodogram averaging, as 

described previously [75]. After obtaining this primary estimate of the mean defocus at 

the height of the tilt-axis, I then fit a 2D astigmatic function to the average power spectrum 

without rotational averaging, as is routine in SPA [76] using a low pass version of the 

power spectrum for background subtraction [77]. 
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The number of periodograms available for coherent averaging is substantially 

fewer in tilted images due to the defocus gradient perpendicular to the tilt-axis. To 

increase the number of periodograms available for coherent averaging, the known 

defocus gradient may be used to resample the portion of the power spectrum between 

the first two zeros of the CTF [78], an approach currently used in IMOD to enhance the 

accuracy of the global defocus determination. This factor is determined to be the ratio of 

the given tile to the defocus at the tilt-axis (personal communication, David Mastronarde). 

I derived a more accurate scaling factor which extends this concept to resample all the 

CTF information.  

The approach takes advantage of the discrete Fourier transform’s implicit 

dependence on the sampling rate (S) and image size (N) in a way that effectively maps 

an image with defocus Δf0 + ΔΔf →  Δf0  by changing where the spatial frequency is 

sampled in the image of the transform. 

First, I note that the phase aberration of the CTF is dominated by the defocus term: 

 𝜒𝜒𝑞𝑞 ≅  −𝜋𝜋𝜋𝜋Δ𝛥𝛥𝑒𝑒2   ∵  𝜆𝜆Δ𝛥𝛥𝑞𝑞2
1
2𝐶𝐶𝑠𝑠𝜆𝜆

3𝑞𝑞4
=  �2⋅10

−12�1⋅�4⋅10−6�
1
⋅(109)2

1
2⋅(2⋅10

−3)1⋅(2⋅10−12)3⋅(109)4
 =  8

8⋅10−3
 = 103          eq 2.2 
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Δ𝛥𝛥0
ΔΔ𝛥𝛥

 (𝑒𝑒02𝑒𝑒1−2 − 1)  = 1

𝑒𝑒1(𝑠𝑠) =
𝑠𝑠 − 𝑆𝑆 2⁄
𝑆𝑆 ∙ 𝑆𝑆

�1 +
ΔΔ𝛥𝛥
Δ𝛥𝛥𝑜𝑜

�
1
2

 𝑒𝑒𝑒𝑒 2.3 

Any error due to the approximations made in Eq. 2.2 will become increasingly 

significant as ΔΔ𝛥𝛥 → Δ𝛥𝛥𝑜𝑜 , i.e., for images recorded closer to focus. To address this 

shortcoming, I use eq. 2.3 only as an initial estimate for the scaling factor, which is then 

refined for each row of tiles by maximizing the correlation measured between calculated 

1D CTFs with defocus Δf0 + ΔΔf →  Δf0 at frequencies beyond the first zero crossing. 

2.2.5 Improved CTF correction 

The two predominant software packages for tilt-series CTF correction are CTFPLOTTER 

and CTFPHASEFLIP [78] included in the IMOD package [79], and TOMOPS and 

TOMOCTF [75]. They differ mainly in their approach to background subtraction and 

amplitude restoration, the former relying on an estimate of the detector’s MTF, and the 

latter implementing a novel filter that acts similarly to a Wiener filter while tuning the 

strength of signal dampening in three different regions. Both approaches are sub-optimal 

as they rely on amplification of intensity in individual projections which are particularly 

noisy, and thereby reduce the fidelity with which the CTF amplitude modulations may be 

restored [27]. 

Δ𝛥𝛥0(𝑒𝑒02 − 𝑒𝑒12) =  ΔΔ𝛥𝛥𝑒𝑒12

−𝜋𝜋𝜋𝜋Δ𝛥𝛥0𝑒𝑒02  =   −𝜋𝜋𝜋𝜋(Δ𝛥𝛥0 + ΔΔ𝛥𝛥)𝑒𝑒12

From there it is simple to show that: 



A more attractive approach is to correct the phases on the projections, and then to 

address the amplitudes after reconstructing the 3D map. One such approach uses a 

Wiener-like filter which takes an estimate of the SSNR(q) as an integral part of the 

statistical model underlying the adaptation of RELION for sub-tomogram averaging [40]. 

The 3D sampling model used in this case is also responsible for the phase correction of 

the individual particles, which I suggest is a poor choice given the high defocus (2-4μm) 

used in tomography as it inevitably leads to significant aliasing of the CTF unless images 

too large to be practical are used [80].  

2.2.5.1 CTF phase correction 

Rather than extracting and correcting the phases on tiles, I compute the forward 

Fourier transform once for each projection and then multiply by the CTF for a 

given defocus, inverse transform and cut out the valid region. This helps to prevent 

aliasing as the projection images are typically 3-5K pixels square 

2.2.5.2 CTF amplitude correction 

I have adapted a version of the “volume normalized Single-particle Wiener Filter,” and 

as our filter is necessarily a post-reconstruction filter, I start with equation eight from the 

original paper [81]. Note that equation 2.4 assumes the ad-hoc Wiener constant in 

equation 2.5 to be negligible. 
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𝐹𝐹𝑆𝑆𝑆𝑆𝑊𝑊𝑡𝑡(𝒒𝒒ℎ𝑘𝑘𝑘𝑘)

=  
𝑆𝑆𝐹𝐹3𝐷𝐷

𝑆𝑆𝐹𝐹3𝐷𝐷 +
𝛥𝛥𝑝𝑝𝑎𝑎𝑊𝑊𝑒𝑒𝑒𝑒𝑎𝑎𝑘𝑘𝑒𝑒
𝛥𝛥𝑚𝑚𝑎𝑎𝑠𝑠𝑘𝑘

�1 − 𝐹𝐹𝑆𝑆𝐶𝐶𝑚𝑚𝑎𝑎𝑠𝑠𝑘𝑘(𝒒𝒒ℎ𝑘𝑘𝑘𝑘)
2𝐹𝐹𝑆𝑆𝐶𝐶𝑚𝑚𝑎𝑎𝑠𝑠𝑘𝑘(𝒒𝒒ℎ𝑘𝑘𝑘𝑘)

� � 1
𝑠𝑠𝑞𝑞
∑ 𝑆𝑆𝐹𝐹3𝐷𝐷 𝑞𝑞 ∈ 𝒒𝒒ℎ′𝑘𝑘′𝑙𝑙′  �

 𝐹𝐹𝐿𝐿𝑆𝑆𝐿𝐿(𝒒𝒒ℎ𝑘𝑘𝑘𝑘)  𝑒𝑒𝑒𝑒 2.4 

The least squares estimate, which is a Wiener filtered reconstruction with an ad-

hoc Wiener constant is defined below in Eq 2.5. I have made three major changes to the 

filter: 

𝐹𝐹𝐿𝐿𝑆𝑆𝐿𝐿(𝒒𝒒ℎ𝑘𝑘𝑘𝑘) =
∑ ∑ 𝐶𝐶𝑒𝑒,𝑗𝑗𝐶𝐶𝐶𝐶𝐹𝐹𝑒𝑒2𝑑𝑑𝑆𝑆2𝑑𝑑𝐸𝐸𝑥𝑥𝑆𝑆𝐹𝐹𝑖𝑖𝑆𝑆𝐹𝐹𝑒𝑒𝐸𝐸𝑒𝑒2𝑑𝑑𝐹𝐹𝑒𝑒2𝑑𝑑  𝑍𝑍

𝑒𝑒=1
𝑆𝑆
𝑗𝑗=1

∑ ∑ 𝐶𝐶𝑒𝑒,𝑗𝑗�𝐶𝐶𝐶𝐶𝐹𝐹𝑒𝑒2𝑑𝑑�
2
𝑆𝑆2𝑑𝑑𝐸𝐸𝑥𝑥𝑆𝑆𝐹𝐹𝑖𝑖𝑆𝑆𝐹𝐹𝑒𝑒𝐸𝐸𝑒𝑒2𝑑𝑑𝐹𝐹𝑒𝑒2𝑑𝑑     +    1𝑍𝑍

𝑒𝑒=1
𝑆𝑆
𝑗𝑗=1

 𝑒𝑒𝑒𝑒 2.5 

First, the 3D-SF is weighted for critically under-sampled regions, where the SSNR 

estimated by the FSC is less reliable. This is done by choosing a minimum acceptable 

sampling threshold, 0.2 * median(𝑆𝑆𝐹𝐹3𝐷𝐷  > 0 ), and then scaling 𝑆𝑆𝐹𝐹3𝐷𝐷  to replace less 

sampled regions by smoothly transition from this value to some new larger number 

chosen by the maximum in the original 𝑆𝑆𝐹𝐹3𝐷𝐷 . 

Second, the spherical shells normally used in the FSC calculation are further 

subdivided into conical sections, which captures directionally anisotropic SSNR [82]. I 

currently use cones incremented over 30˚ with a half-angle of 36˚, such that they overlap 

substantially, producing a smooth estimate of the directional resolution. The impact of the 

amount of overlap and the sampling increment is not well characterized and should be 

investigated in future work. 

Third, the average sampling over spherical shells (final term in the denominator of eq 

2.4) that is used to scale the SSNR estimate to represent the average SSNR in a single 
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sub-tomogram is replaced with a Gaussian smoothed version of the 3D-sampling function. 

Again, to account for anisotropy in the sampling. 

𝐹𝐹𝑆𝑆𝑆𝑆𝑊𝑊𝑡𝑡(𝒒𝒒ℎ𝑘𝑘𝑘𝑘)

=  
1

|𝑆𝑆𝐹𝐹3𝐷𝐷|2 +
𝛥𝛥𝑝𝑝𝑎𝑎𝑊𝑊𝑒𝑒𝑒𝑒𝑎𝑎𝑘𝑘𝑒𝑒
𝛥𝛥𝑚𝑚𝑎𝑎𝑠𝑠𝑘𝑘

�
1 − 𝐹𝐹𝑆𝑆𝐶𝐶𝑎𝑎𝑖𝑖𝑒𝑒𝑠𝑠𝑜𝑜,𝑚𝑚𝑎𝑎𝑠𝑠𝑘𝑘(𝒒𝒒ℎ𝑘𝑘𝑘𝑘)

2𝐹𝐹𝑆𝑆𝐶𝐶𝑎𝑎𝑖𝑖𝑒𝑒𝑠𝑠𝑜𝑜,𝑚𝑚𝑎𝑎𝑠𝑠𝑘𝑘(𝒒𝒒ℎ𝑘𝑘𝑘𝑘)
� (𝐺𝐺  ⨂ |𝑆𝑆𝐹𝐹3𝐷𝐷|2)

 𝐹𝐹𝐿𝐿𝑆𝑆𝐿𝐿(𝒒𝒒ℎ𝑘𝑘𝑘𝑘)  𝑒𝑒𝑒𝑒 2.6 

2.2.6 3D-SF-compensated classification 

I use multivariate statistical analysis (MSA) for classification. This involves first defining a 

set of descriptors or features which are then searched for patterns common to a sub-

group called a pattern-class, or simply a class. Grouping inputs by these patterns is 

accomplished with a clustering algorithm; commonly k-means, hierarchical ascendant 

classification (HAC) or a neural networks approach via a self-organizing map (nn-SOM), 

all three are implemented in emClarity via MATLAB’s statistics and machine learning 

toolbox, incorporated in the (free) MATLAB compiled runtime. Since the “missing wedge” 

produces significant artifacts that are specific to the orientation of each particle in the 

sample, but not necessarily to its identity or conformation, it has been challenging to 

resolve meaningful patterns in cryoSTAC data. Estimating the effect of the missing-wedge 

by using a binary mask has shown a good first order correction called wedge masked 

differences (WMDs) [83]. I replace this mask with our 3D-SF, which results in a more 

accurate estimate of the artifacts introduced by the MWE and allows higher resolution 

information to be considered in the clustering. The creation of these feature vectors is 

outlined in Figure 2.4. 
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Figure 2.4 Formation of feature vectors 

Initialize 𝐷𝐷𝑒𝑒 matrices in main memory, with M X N pixels, where d is the number of 
resolution bands, M is the number of pixels in the real space mask, N is the number 
of sub-tomograms in the data-set (or random-subset) 

FOR each resolution band 
FOR each sub-tomogram 

← Rotate sub-tomogram into microscope reference frame, for even half-set 
include the transformation found in FSC calculation at the outset of the cycle. 

← Rotate the 3D-sampling function by the particles orientation matrix and apply 
to the Fourier transform of the global average.  

← Form the difference of the masked average and the rotated particle 
← Place the values under the mask into the storage matrix 

End Loop 
End Loop 

← Center each row, by subtracting the mean. (This is the mean of all sub-
Tomograms at this particular voxel) 

← Determine the partial Singular value decomposition for the selected number of 
coefficients (usually ~ 30)  𝑈𝑈𝑒𝑒 𝑆𝑆𝑒𝑒 𝑉𝑉𝑇𝑇𝑒𝑒 =   𝐷𝐷𝑒𝑒   

← IF running on a partial data set, save each matrix 𝑈𝑈𝑒𝑒  
o Load full data set,

 FOR each resolution band
 FOR each sub-tomogram

• Rotate sub-tomogram into microscope reference frame,
for even half-set include the transformation found in FSC
calculation at the outset of the cycle.

• Project the data onto the highest variance directions 𝑈𝑈𝑒𝑒𝑇𝑇𝐷𝐷𝑒𝑒 
= 𝑃𝑃𝑒𝑒 

• Concatenate each of these 𝑃𝑃𝑒𝑒 matrices along the rows
← ELSE 
← Concatenate each of the  𝑆𝑆𝑒𝑒 𝑉𝑉𝑇𝑇𝑒𝑒  matrices along the rows, such that each 

column is a feature vector with projections from each resolution band along its 
rows 
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2.2.7 Multi-scale clustering 

In a naïve approach, a clustering algorithm will interpret every individual voxel as an 

independent measurement along one dimension of an N-dimensional space, where N is 

the number of voxels in each sub-tomogram at the time of analysis. To reduce the impact 

of the “missing wedge” and to introduce a correlation between pixels, a smoothing filter 

is typically applied to the data before clustering. In effect, this tells the clustering algorithm 

that neighboring pixels are measurements of related features in the full sample space. 

Because our 3D-SF WMD feature vectors are robust to the “missing wedge” at higher 

resolutions, this idea may be used to introduce inter-voxel correlations at biologically 

relevant length scales. I do this by forming multiple feature vectors for each sub-

tomogram, each being differentially bandpass-filtered, for example, ~ 10 Å to emphasize 

alpha-helical density, 18-20 Å for RNA helices or small protein domains, and ~ 40 Å for 

larger protein domains. This approach is similar to existing ideas that use the discrete 

wavelet transform with a limited set of coefficients, followed by clustering of the data 

reconstructed independently using a limited subset of wavelet basis [84]. In our case, 

each Gaussian kernel can be viewed as a simple wavelet, localized at the origin and 

defined in frequency by the biological length-scales mentioned above. The primary 

difference is that the coefficients are concatenated into a single matrix, allowing 

consideration of each length-scale simultaneously, providing a more comprehensive 

description of the feature space. In effect, this teaches the clustering algorithm to “see the 

forest for the trees.” 
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2.3 RESULTS 

2.3.1 emClarity improves resolution in sub-tomogram averaging 

Given the inherent difficulty in working with extremely low SNR cryo-EM data, and 

the sensitivity of the results to optimal selection of parameters14, I have elected to test 

and demonstrate our software using two publicly available data sets from the 

Electron Microscopy Pilot Image Archive [85] (EMPIAR). I show these published/

deposited maps, juxtaposed with the maps obtained with emClarity in Figure 2.5. A 

total improvement in the yeast 80S ribosome from EMPIAR-10045 using RELION 

version 1.4 (EMD-3228 [43]) from 12.9Å to 7Å is achieved using emClarity (Figure 2.5 

A). For the mammalian 80S ribosome from EMPIAR-10064 using pyTOM 

(EMD-3420 [51]), I obtained an improvement from 11.2Å to 8.6Å (Figure 2.5 B)15.  

To evaluate the relative impact of each of the individual features implemented in 

emClarity, I incrementally included them into several reconstructions of the yeast 80S 

ribosome. To control for errors in alignment and to have a one-to-one comparison with 

EMD-3228, I used precisely the same particles and orientation parameters from the star 

files that accompany the raw data EMPIAR-10045. I compare each map to an external 

reference map derived from SPA (EMD-2275 [86]), via a cross-Fourier Shell Correlation 

14 It is worth noting that the authors for the maps we use for comparison are also authors on the primary 
publications for their respective software packages, which helps to ensure the resolutions reported are likely 
optimal for the given data. 
15 This resolution is likely an underestimate. During revision, bugs were found that improved the yeast 80S 
resolution from 8.2 Å to 7Å, but due to time restraints, the mammalian 80S data could not be re-processed. 
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(cross-FSC), starting from the RELION reconstruction as a control (Figure 2.5 C). The 

accuracy of our combined CTF correction approach, phases on oversampled 2D-tiles 

combined with optimal-exposure filtering and 3D-CTF based Wiener filtering is reflected 

in the magenta curve in Figure 2.5 C, which shows a significant improvement over the 

cross-FSC of the control, even though they are reconstructions using the same particles 

and orientations. The most substantial improvement comes from the tomo-CPR which is 

shown in green (and obviously includes the features in the magenta curve as well.) A 

more modest improvement is measured when I add in a per-tilt defocus estimation using 

our novel approach to resample periodograms from tilted images, as reflected in the cyan 

cross-FSC.  

In addition to improved resolution, as noted in Figure 2.5 B, there is a density 

(possibly sec-61) outside the peptide-exit tunnel of the ribosome (white arrow) that is 

present in the map derived with emClarity, but not in the map derived with pyTOM. Finally, 

in Figure 2.5 D, I show the density from a peripheral region with a rigidly docked model 

of the yeast 80S ribosome (PDB-4V7R) that underscores the difference in interpretability 

between the maps derived from the current state-of-the-art and emClarity. There is a 

definite improvement in both RNA and protein structures. 
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A) Comparison of the sub-tomogram average of yeast 80S ribosome by RELION (EMD-3228) (left, at

12.9 Å resolution) and by emClarity (right, at 7.0 Å resolution), using the same raw data from the electron 

microscopy public image archive (3,233 Yeast 80S ribosomes, EMPIAR-10045). (B) Comparison of sub-

tomogram averages of rabbit 80S ribosome by pyTOM (EMD-3420) (left, at 11.2 Å resolution) and 

emClarity (right, at 8.2 Å resolution), using the same raw data (1,400 Rabbit 80S ribosomes, EMPIAR-

10064). Arrow points to an additional feature outside peptide exit tunnel only revealed with the more 

conservative masking procedure in emClarity. (c) Cross-FSC between the sub-tomogram averages by 

emClarity and the SPR cryo-EM map (EMD-2275) of yeast 80S ribosome. The first five curves use 

orientation parameters from the Relion 1.4 alignment, cumulatively including additional features from 

emClarity: magenta, improved CTF estimation and correction with the optimal exposure filter; green, one 

round of tomo-CPR; cyan, adding in the per-tilt defocus estimation; red, adding in explicit consideration of 

resolution anisotropy in the adapted single particle wiener filter. The final dark blue curve incorporates all 

these features plus the alignment parameters determined from scratch in emClarity. Representative views 

of sub-tomogram averages, with a rigid body docking of the yeast 80S atomic model (PDB-47VR) for 

visualization. Arrow and chevron highlight the resolved alpha helices and RNA structures, respectively. 

Figure 2.5 Feature-wise improvement in resolution 
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The yeast 80S sample that was used has a strong preferential orientation which is 

reflected in the plot of the FSC as calculated over conical sections Figure 2.6 A, and a 

plot of the angular distribution in Figure 2.6 B, C. When the anisotropy in the SSNR that 

results from this preferred orientation is included in our adaptation of the single particle 

Wiener filter, another substantial improvement in the cross-FSC is made, shown in the 

red curve. The final and highest resolution curve represents an alignment carried out in 

emClarity with all features added, illustrating the additional impact these advances have 

on the accuracy in the orientation determination.  

Figure 2.6 Measuring anisotropic resolution 

(A) the plot of the FSC calculated over 38 conical shells (dashed lines) which range from 6.6 Å -

9.6 Å at the 0.143 cutoff, while the normal spherical shells (bold line) show the average

directional resolution 7.0 Å. (B) Angular distribution from the alignment in emClarity shows a 

very similar distribution to that published for the yeast 80S EMD-3228. 



2.3.2 Classification in emClarity reveals multiple functional states 

Using multi-scale clustering combined with 3D-SF compensated Principal Component 

Analysis (PCA), emClarity reveals subtle conformational differences and distinguishes 

minor populations from noisy and distorted images, as demonstrated with yeast 80S 

ribosome data from EMPIAR-10045, and mammalian 80S ribosome data from EMPIAR-

10064. Such results were not previously obtainable using existing software [43,51].  

2.3.2.1 Classification of non-translating Yeast 80S ribosomes 

The ribosome is a complex molecular machine composed of RNA and protein which 

exists in many functional states and interacts with an array of co-factors. The major 

domains are named by their sedimentation coefficients (S, Svedberg) where the 

eukaryotic ribosome is composed of two major domains dubbed the large subunit (60S) 

and small subunit (40S). While the ribosome has a well-conserved catalytic core which 

mediates the peptidyl transferase reaction [87], it is increasingly subject to more 

complex regulation in higher organisms resulting in an expanded set of both RNA and 

protein components. RNA expansion segments are found primarily at the periphery of 

the ribosome and are typically highly dynamic and challenging to resolve in structural 

analysis. One particularly good example is es27, an approximately 150 Å RNA helix 

which predominantly adopts one of two conformations separated by about 90⁰, shown in 

orange in Figure 2.7. The first situates the end of the RNA helix just outside the 

peptide exit tunnel on the 60S subunit (es27pet, Figure 2.7 A, B, D, E) and the second 

points toward the tRNA exit site (es27L1, Figure 2.7 C). This dynamic domain is 

generally observed in 
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cryo-EM maps as a superposition of these two states, as is the case with the currently 

published results by Maximum likelihood (ML) classification in RELION [43]. A notable 

exception being ribosomes with accessory complexes bound at the peptide exit tunnel, 

e.g., Sec61, are known to bias the conformation to the es27L1 [88].

Another example of a highly dynamic ribosome domain is the L1 stalk – comprised 

of protein L1, and RNA helices h75, h76 and h79 from the 25s portion of the 60S subunit 

[89]. The motions of L1 are well correlated with several defined functional translocational 

states as observed using single-molecule FRET and SPA [90]. Using emClarity, three 

oL1 conformational states are discerned as isolated from the thermal (stochastic) 

fluctuations of the non-translating yeast 80S ribosome: L1open, L1int, and L1closed shown in 

green with variable occupancy in the five classes in Figure 2.7. In addition to isolating 

dynamic states, identifying very sparsely populated classes is a particularly important and 

challenging task for classification of cryo-EM data. In Figure 2.7 E the dissociated 60S 

subunit occupying a minor class, only ~4% of the data set or roughly ~140 sub-tomograms. 

In contrast, the ML approach implemented in RELION found three classes, one 

designated as a junk class and two relatively indistinguishable classes [43]. This minor 

population could only be isolated in the case where feature vectors built from the 

projection on the principal components from at least three length-scales were 

simultaneously clustered.  
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Figure 2.7 Classification of stochastically fluctuating yeast 80S domains 

Classification of yeast 80S ribosome (EMPIAR-10045) with full 3dCTF compensated missing-

Wedge and multi-scale PCA in emClarity. (A-E) Four major classes and a minor class 

contributing 96.9% of sub-tomograms are shown with number and percentage of contributing 

units and resolution indicated below. The remaining 3.1% comprised a 6th minor class with no 

significant structural features which were removed from the analysis. The highly dynamic L1 

protuberance (green) and RNA expansion-segment 27 (orange) are captured in distinct 

conformations in these classes. Lower row, enlarged views of the L1 protuberance in an (F) 

intermediate position bound to P/E tRNA shown in orange (class a), (G) fully closed interacting 

with the 60S central protuberance (class b), and (H) fully open (class c,d,e) respectively. L1 

protuberance from PDB 3J78 colored magenta (rpL1,h76,h79) docked for visual aid.  
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2.3.3 Improved estimation of MWE shown in 3D variance maps 

Regions of significant variance across a data set may be visualized by overlaying a 3D 

“variance map” with the average structure. The “missing wedge” produces significant 

artifacts that are specific to the orientation of each particle in the sample, but not 

necessarily its identity or conformation. Left uncorrected these artifacts obscure 

meaningful differences among particles, reflected in a diffuse variance across the dataset 

which can be seen in Figure 2.8 H-J. A previously demonstrated technique for estimating 

the effect of the “missing wedge” by using a binary mask, called “wedge masked 

differences (WMDs)”, was shown to be a good first-order correction [83]; however, the 

accuracy of this model breaks down when higher-resolution features are considered 

(Figure 2.8 D-F). To allow higher-resolution information in the classification, I replace this 

binary wedge mask with our 3D-SF, resulting in a more accurate estimate of the artifacts 

introduced by the “missing wedge” as shown in Figure 2.8 A-C. It is worth noting that this 

does not “fill in” any missing data. Instead it estimates what a given particle should look 

like by distorting the current sub-tomogram average by that particle’s 3D-SF, and clusters 

based on the difference between this expected value and the observed particle. 
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Figure 2.8 missing wedge compensated 3D variance maps improve significantly with accurate 
Fourier sampling consideration via 3D-SF 

Illustration of the impact and compensation of the missing-wedge at multiple length scales. Far 

left column, the total average filtered by Gaussian kernels of variable width to correlate voxels 

over the given length scales. Center column, eigen-images composed of the average plus the 

eigenvector, sorted from the most variance explained (1) to least (21). Black and white arrows 

show an example where es27 density is absent or present in the L1 position. Right three 

columns show 3D-variance maps in red over-laid with the average as a visual guide. (A-C) 

Variance is concentrated on L1 (green arrow), es27 (orange arrow), E-site tRNA, and the mRNA 

channel entrance (blue arrow) at all resolutions.  (D-F) Regular WMDs are dominated by noise 

at all but the lowest resolution. (H-J) Negative control shows no meaningful concentration of the 

variance due to severe missing wedge bias. Black scale bars represent 100 Å. White scale bars 

represent 300 Å. 



2.3.3.1 Mammalian 80S ribosome 

In contrast to the non-translating yeast specimen, the mammalian ribosomes imaged in 

EMPIAR-10064 were prepared from clarified rabbit reticulocyte lysate using a buffer 

low in Mg2+ but lacking polyamines, such that cofactors should co-purify excepting 

perhaps some loss of E-site tRNA [91]. I extracted 3,090 ribosomes from the four tilt-

series deposited as the “mixed-CTEM” data set on EMPIAR.  emClarity identified five 

predominant classes as shown in Figure 2.9 A-E. Three of these classes show 

ribosomes adopting a non-rotated 40S conformation with variable tRNA, eEF1A 

occupancy (class I-III), while two very similar classes adopted a mid-rotated (~5-6⁰) 40S 

conformation with eEF2 present (class IV-V).  

A rigid body docking of the full 80S mammalian ribosome in the non-rotated 

POST state from PDB-4UJE [92] showed very clear agreement with the conformation of 

the 40S subunit, which combined with the co-factors observed suggest classes II and III 

are POST trans-locational ribosomes differing in retention of E site tRNA while class I 

is most similar to the “sampling” state. Classes IV and V both have eEF2 bound and 

differ in rotation of the 40S subunit of 5.9⁰ and 5.0⁰, respectively. A rigid body docking 

of the yeast 80S structure of eEF2 from PDB-4UJO [93] into classes IV and V show 

overall good agreement with their eEF2•sordarin•GDP position and our density. There 

are, however, noticeable differences, particularly in domain IV of eEF2 which is known 

to be dynamic and plays a key role in translocation [90,94]. I analyzed these differences 

qualitatively by comparing the rigidly docked model solved with Sordarin present 

(Figure 2.9  J-K) with the same model after running a short (1ns) Molecular Dynamics 

Flexible Fitting (MDFF) 
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(Figure 2.9  H-I). The antibiotic Sordarin is highly specific for binding to fungal eEF2 and 

permits GTP hydrolysis, yet prevents conformational changes that result in the 

subsequent release of eEF2 after translocation [95]. Although Sordarin is not present in 

the sample under study here, there is a pronounced difference in electron density 

between domains III-V of eEF2 in class V (Figure 2.9 I black arrow) that coincides with 

the Sordarin binding pocket. This density is not present in class IV which also exhibits a 

rotation of eEF2-domain IV (Figure 2.9  J).  
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Figure 2.9 Classification using multi-scale PCA with fully compensated CTF estimators reveal five 
distinct translocational species from only 3,090 particles.  

Multi-scale Clustering with 3D-SF compensated feature vectors reveals five distinct 

translocational classes from 3,090 particles. (A-C)  Classes I-III represent a post-translocational 

state with the co-factors shown in the lower row from the inter-subunit surface with the 60S 

subunit removed for clarity. (D-E) Classes IV-V have a mid-rotated 40S and a swiveled head 

corresponding to a pre-translocational intermediate. (F) Class IV is shown in the dark blue 

overlaid with class III in gold, showing the mid-rotated 40S state. (G) Outline from a low-pass 

filtered overlay as in (F). (H) MDFF of eEF2 (orange) with the density from class-IV starting from 

PDB-4ujo (cyan ribbon) shows similar conformation in eEF2 domains II, III, and V, while eEF2 
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domain IV deviates the most. (I) Same as (H), but with class V showing smaller deviations. (J-K) 

The rigid body docking of PDB-4ujo into the density from class IV/V respectively shows overall 

close agreement, except the stronger density between eEF2 domains III & V in (K). Arrows point 

to this density which is occupied by the antibiotic Sordarin in PDB-4ujo but is not present in the 

sample used in this study. 

2.4 DISCUSSION 

With the rapid expansion of cryo-EM resources available at major universities and with 

the development of shared use models like eBIC at Diamond Light Source, the ability to 

collect high-quality cryo-EM and cryo-ET data is now arguably less limiting than the ability 

to effectively process the data. I have created a set of image processing routines 

incorporated into the program emClarity, which have demonstrated much greater 

accuracy in alignment and image restoration compared to current state-of-the-art 

approaches as demonstrated by using the same raw data sets which are publicly 

available.  

While the improvement in resolution can be analyzed feature by feature, showing 

the largest impact is from the refinement of the tilt-series alignment using tomo-CPR, 

taken together they are greater than the sum of their parts. The per-tilt defocus 

determination and adaptation of the single particle wiener filter are robust and need little 

adjustment from default parameters.  
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The parameter space for tomo-CPR is less well explored: the weighting of the 

background tomogram relative to the mapped back sub-tomogram is one such parameter 

which the user may need to adjust if unsuitably large image shifts are found in the solution 

from tiltalign.  

Our approach for image classification in the presence of the “missing-wedge” effect 

by combining the correction for wedge differences with multi-scale clustering which helps 

to encode biologically relevant information for the clustering algorithms gives promising 

results, and some clear improvements would further advance its utility. While the goal is 

to anticipate and remove MWE bias in the analysis, the approach does so by 

concentrating the variance due to the MWE in a few eigenvectors. Currently, the user 

needs to recognize these and remove them from consideration as feature vectors used 

in clustering. While this requires some prior knowledge, the “streaky” appearance has 

been consistent across a wide variety of specimens analyzed. Future work may include 

training a simple convolutional neural network to recognize these streaky features and 

then distributing this pre-trained CNN with emClarity to suggest to the user which 

eigenvectors to consider for subsequent processing.  

The application of these advances to study samples in an environment with relaxed 

biochemical restraints ex vivo shows promise, having isolated functional intermediates of 

translocation from a cell lysate. Looking at classes IV and V of the mammalian ribosome 

suggests that the binding of the antifungal Sordarin, which stabilizes an interaction 

between eEF2-domain III/V, is re-enforcing an on-pathway interaction that exists in 

functional ribosomes. This also hints that nearby intermediates on the energy landscape 



may be found by improving the statistics available via a larger sample. In addition to 

isolating well-resolved class averages with minor populations, and finding nearby minima 

in the energy landscape, our approach also results in the production of accurate 3D-

variance maps which will be beneficial to exploring macromolecular dynamics.  

By highlighting key regions of dynamic behavior, our approach should be useful for 

direct analysis and the design of complementary biophysical experiments. While these 

advances in classification are in the pre-processing and dimensionality reduction stage, 

future work to explore modern approaches in pattern recognition and machine learning 

will likely establish another substantial improvement in the technique. 

Ultimately, I hope that emClarity will advance the study of structural biology in situ, 

as methods used to thin cellular samples, particularly cryo-FIB milling, also remove gold-

fiducial markers, making the alignment of the tilt-series a major limiting factor.  

2.5  CONCLUSION 

I have developed emClarity, an image processing package for GPU-accelerated high 

resolution cryoSTAC. The programs run on Nvidia graphics cards with > 11Gb memory 

and benefit from fast disk storage as do most other cryo-EM software. To demonstrate 

the improvements possible with emClarity, I have shown maps at substantially improved 

resolutions compared to those obtained in the original studies, where the authors are 

experts in their respective programs. I also reveal previously obscured conformational 
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sub-populations from two publicly available data sets. With the release of the HIV-1 data 

from Schur et al. I have demonstrated that emClarity can achieve the highest-resolution 

maps from cryoSTAC to date, reaching 3.1 Å.  

2.6 SOFTWARE AND INSTRUCTIONAL MATERIAL 

Detailed methods aimed at reproducibility for the results in this chapter are included 

in the Appendix.  

The software is freely available from https://www.github.com/bHimes/emClarity 

Tutorial documentation and videos at  https://www.github.com/bHimes/emClarity/wiki 
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Bacteria move in response to their local environment by switching their flagellar motors 

between clockwise and counterclockwise rotation, producing a biased random walk. This 

switching is controlled by a network of transmembrane signaling receptors, enzymes, and 

adaptor proteins, which form extended and dynamic arrays in the inner membrane of E. 

coli. How the organization of these arrays enables the cell to simultaneously integrate 

signals from multiple ligands, while also maintaining sensitivity over large ligand 

concentration gradients is not well understood.  We determined the structure of the core-

signaling unit [96] (CSU) of the E. coli chemotaxis receptor signaling array at 11 Å 

resolution using cryo-Electron Tomography with sub-tomogram averaging and 

classification. We built a pseudo-atomic model of the core-signaling unit using the high-

resolution crystal structures. Extended molecular dynamics simulations of the 64 million 

atom unit-cell, revealed a conformational switch in the histidine kinase CheA related to 

signaling. My contribution to this work was the development of a new computational 

approach to address specimen heterogeneity and preferred orientation and deriving a 

map of a trimer of CSU at 11 Å resolution. 

3.0 FUNCTIONALLY DYNAMIC QUATERNARY STRUCTURE OF BACTERIAL
 CHEMOTAXIS SIGNALING ARRAYS DETERMINED  BY CRYOSTAC 



3.1 INTRODUCTION 

Bacteria have evolved to inhabit practically every environmental extreme to be 

found, from the acidic lumen of the human stomach to the deepest ocean trenches [97]. 

Changes in nutrient availability, pH, temperature, osmolarity, and many other 

conditions require bacteria to constantly monitor external conditions and adjust their 

structure, physiology, and behavior [98]. Chemotaxis is the movement of an organism 

toward or away from a chemical signal [99]. In bacteria, the locomotive force 

necessary for chemotaxis is generated by the rotation of one or more filamentous 

protein structures called flagella [100]. The flagella are under the control of a two-

component signaling regulatory system; a transmembrane receptor/ histidine kinase 

complex serves as the sensor which phosphorylates the diffusible response 

regulator CheY (Figure 3.1 A). The balance of phosphorylated and apo-CheY 

determines either a clockwise or counter-clockwise rotation that creates a pattern 

of tumbling or smooth swimming respectively (Figure 3.1 B). The balance of these 

two states results in a biased random walk [101] along with a concentration gradient 

(Figure 3.1 C).  
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Figure 3.1 Essential components of motility 

(A) The essential components needed to generate a CCW signal overcoming the motors

“default” CW bias. (B) The direction of flagellar rotation determines whether a coherent bundle is 

formed causing the cell to either run forward or not resulting in “tumbling” which serves to 

randomize the orientation of the cell and the direction of the subsequent run. (C) Chemotaxis 

results from a controlled switching between these two states culminating in a biased random 

walk up an attractant gradient or down a repellant gradient. 
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A 
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Histidine kinase (CheA) 
adapter protein (CheW) 
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Early experiments demonstrated the robust nature of the chemotactic behavior in 

E. coli, maintaining responsiveness to changes in ligand concentration over a range of 6

orders of magnitude. For example, the detection threshold and saturating concentrations 

for Aspartate are 30 x 10-9 M  and 100 x 10 -3 M respectively [102,103].  

The cell stores a record of recent environmental conditions in a pattern of 

methylated glutamate residues on the transmembrane receptors name methyl-accepting 

chemotaxis proteins (MCPs)  (black and white dots, Figure 3.2). When a positive stimulus 

is detected (binding attractant) the receptor bound kinase is turned OFF, biasing the cell 

toward a run (Figure 3.2 A) by reducing the pool of phospho-CheY. Reducing the kinase 

activity of CheA also reduces the activity of the methylesterase CheB allowing the 

constitutively active methyltransferase CheR to “catch-up” which slowly returns the 

receptor to the ON state [104,105]. It is the balance of receptors biased ON or OFF that 

determine the actual output signal, but how this balance is affected by the quaternary 

organization of the signaling arrays is not understood.  

A major limitation in interpreting the biochemical and genetic information available 

is the lack of a detailed structural model of the assembled array. The primary goal of this 

study is to derive the cryoEM structure of the signaling array, upon which assemble a 

pseudo-atomic model of the array system using known high-resolution crystal structures 

of the array components (Figure 3.2 B).  
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(A) Cartoon representing the simplest complete signaling pathway from a positive or negative

stimulus. (B) Component crystal structures are available for modeling the full chemotaxis

receptor core signaling unit. (C) Side view of the CSU which is a dimer of trimers of receptor 

homo-dimers, the homodimers within each trimer may respond to different ligands. Each 

domain of the five CheA domains is labeled and placed in the approximate location expected in 

the CSU. (D) Looking down through the membrane, view of the CSU. (E) A trimer of CSUs and 

(F) along with hexamer of CSUs with putative 6-fold CheW ring shown with the question mark.

Except for labels, panel A, B-F reproduced with permission from [106], and B adapted from [30].

Figure 3.2  Overview of chemotaxis signaling and core-unit structure 
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The minimal assembly needed for signaling is a dimer of trimers of MCP dimers, 

along with a dimer of CheA and two copies of the adaptor protein CheW [107,108], 

referred to as the core-signaling-unit or CSU (Figure 3.2 C, D). The CSUs are thought to 

assemble into trimers which fill out into a pseudo p6 lattice [109,110] Figure 3.2 E-F.  

The organization of the structural domains of CheA varies in the published crystal 

structures and is at odds with the available crosslinking, biochemical, and ESR data [111–

113]. Defining the positions of these domains, particularly the CheA-P3 dimerization 

domain, CheA-P5/Receptor interaction (CheA-P5 is structurally homologous to CheW) 

and the CheA-P4 Kinase domain is of particular interest. To better understand how the 

activity of CheA is regulated by the MCPs we have developed an in vitro reconstitution 

system that recapitulates the signaling arrays found in cells, with a minimal functional set 

of well-defined components.  

The reconstitution of heterologously expressed proteins also permits us to 

manipulate the signaling state represented by the in vitro arrays. By knocking out the 

CheR and CheB genes in the expression host, the methylation dependent function of the 

receptors may be controlled and studied in vivo and in vitro by using genetic mutation of 

glutamate to glutamine at these key residues to produce an analog for the methylated 

glutamyl residue [114]. We can then look to the WT pattern as QEQE, a mix of ON/OFF 

signaling, EEEE biased strongly OFF, and QQQQ biased strongly ON [115]. 

While this in vitro system provides a well-defined specimen with abundant signal 

for structure determination by cryoSTAC, it also presents several challenges for existing 

image processing algorithms, including severely anisotropic resolution resulting from the 
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preferred orientation imposed by the lipid monolayer support, as well as substantial 

heterogeneity due to the conformational plasticity of the core signaling complex. Once 

these hurdles have been addressed, it would be desirable to then look at the complexes 

in native cell membranes.  

3.2 EXPERIMENTAL PROCEDURES 

A broad overview of experimental procedures supporting the structural determination 

of the CSUs is provided below. For details on the lipid-monolayer array 

reconstitution, carried out by Dr. Jun Ma; tomographic data collection, carried out by 

Dr. Peijun Zhang and Dr. Gongpu Zhao; biochemical analysis of the key amino acid 

residues suggested by the model, designed and carried out by Dr. Frances 

Alvarez; and aspects of the computational modelling carried out by Dr. C. Keith 

Cassidy the reader is referred to our publication in eLife [30]. 

3.2.1 Protein expression and purification 

Plasmids and cell strains used in the study were gifts from Dr. Sandy Parkinson, 

University of Utah, and Dr. Bob Weis, University of Massachusetts Amherst. Component 

proteins were expressed in E. coli strain RP3098 which is a null mutant for all Che proteins 

as well as the chemoreceptors. Tar, CheA, and CheW were expressed from plasmids 

induced with IPTG. Expression and purification conditions varied slightly, but all proteins 

produced good (~6mg/Liter culture) yield and purified to high homogeneity.  
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3.2.2 Signaling array reconstitution 

A lipid monolayer system containing Ni2+-NTA lipids was used to reconstitute the 

chemotaxis arrays. A mixture of 9:18:18 mM of TarCF:CheA:CheW in a buffer containing 

75 mM Tris- HCl, pH 7.4, 100 mM KCl, 5 mM MgCl2 was applied to a Teflon well, over 

which a lipid monolayer containing 2:1 DOPC:DOGS-NTA-Ni2+ lipid mixture, at 2 mg/ml 

concentration was gently overlaid and incubated overnight to allow the signaling arrays 

to assemble. Following assembly, a holey carbon coated electron microscope specimen 

grid was laid over the monolayer and gently peeled back, transferring the monolayer 

supported array to the specimen grid. 

3.2.3 Cryo-Electron Tomography 

Because the monolayer is delicate, it required special care in blotting from just the non-

sample side of the grid before being plunge-frozen in liquid ethane.  The grids were pre-

coated with gold beads before picking up the monolayer sample. Data were imaged at 

200 KeV in a Tecnai Polara microscope (FEI, OR) at a nominal magnification of 39,000x 

giving a nominal pixel size of 3 Å/pixel as recorded on a Gatan 4k x 4k CCD detector. The 

total accumulated dose was 60 e-/Å2 collected using a bi-directional tilt-scheme starting 

at 0˚ proceeding in 3˚ increments to +70˚, returned to 0˚ in -3˚ increments to -70˚ using a 

target under-focus value of 5-8 µm. 
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3.2.4 Tilt-series alignment and tomogram reconstruction 

Twenty tilt-series with negligible mechanical or physical artifacts were selected for image 

processing and tomographic volume reconstruction. The tilt-series were roughly aligned 

using cross-correlation in IMOD with default parameters [79]. The tilt-series alignments 

were further refined using fiducial-free “area matching with geometry refinement” as 

implemented in the Protomo [38] software package. The resolution of the reference was 

used in template matching was bandpass filtered to 40 Å to suppress noise and include 

information only before the first zero-crossing of the contrast transfer function. Alignments 

were initialized at a binning of 4, with an ~12 Å nominal pixel-size, which was 

incrementally decreased each time the image shifts dropped below 1 Å. Using the refined 

geometry parameters, the raw projections were centered and rotated so that the tilt-axis 

coincided with the Y-axis of the micrographs. The CTF was corrected on the 2D 

projections with phase flipping using tomoCTF [78]. A strip-width of 180 Å was chosen 

based on the thickness of the sample at high tilt.  Tomograms were reconstructed using 

simultaneous-iterative refinement (SIRT) as implemented in IMOD. I observed that at 

least 30 iterations were needed to avoid strong low-pass filtering of the algorithm when it 

is not run until convergence. These were calculated using a GPU, thereby removing an 

additional interpolation in the reconstruction step, by avoiding the use of cosine stretching 

of the input projections. Using the observed threshold of 30 iterations for approximate 

convergence, volumes calculated from 20 SIRT iterations, providing higher contrast, were 

used for the initial cycles of sub-tomogram extraction and alignment, while those from 60 

SIRT iterations were used for the final cycles. 
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3.2.5 Template matching 

To extract sub-tomograms, initial positions of the receptor complexes, respective to a 

Cartesian grid defined by each tomogram, were approximated by using a template 

matching algorithm implemented in MATLAB with a reference that emphasized the 

receptor dimers with little influence from the histidine kinase CheA. Both the template and 

tomograms were low-pass filtered to 40 Å and binned to a 9 Å pixel size. This resolution, 

as well as a coarse angular search, were chosen to limit the potential for model bias at 

the target resolution of 10 Å. Following template matching, the data were randomly split 

into two halves, which were processed independently for all subsequent steps. 

3.2.6 Sub-tomogram alignment and classification 

Sub-tomogram alignment and classification were carried out using custom scripting of the 

image processing utilities from the Protomo i3 package [38]. Alignment and classification 

were carried out simultaneously, where multiple references representing a trimer of CSUs 

and a hexamer of CSUs were selected from class averages. The classification was 

performed using Multivariate Statistical Analysis and Hierarchical Ascendant 

Classification.  

In each cycle, eight class averages were produced from each half data set by 

focusing the analysis on the CheA portion of the complex using a cylindrical mask, offset 

from the center of the volume in Z. Initial references for each half set were selected from 

these class averages by choosing the “best” (visually) trimers and hexamer of CSUs. 
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These references were then used to align class averages chosen to each have ~50 

contributing sub-volumes.  

In the following cycle, the raw sub-tomograms were subject to multi-reference 

alignment, but only a small in-plane and translational adjustment were allowed. This 

alignment by classification was repeated five times while allowing the automatic exclusion 

of high variance outliers after the second cycle. After the final cycle, class averages 

containing either the trimer of CSUs or hexamer of CSUs were manually selected and 

averaged together for each half data set.  

The corresponding gold-standard FSC was calculated to evaluate the reliability of 

the data. Soft cylindrical masks were used, rather than spherical masks, given the 

extended slab like nature of the specimen. The final averages of the trimer of CSUs or 

hexamer of CSUs contained 3,000 sub-tomograms or 300 sub-tomograms respectively, 

and an empirical correction for the CTF envelope was applied for sharpening 

To assess the degree of resolution anisotropy, conical Fourier shell correlations 

from the two independent half data sets were calculated along each of the principal axes, 

as well as the ten axes bisecting them [82]. The averaged density map of a trimer of CSUs 

was then low-pass filtered according to the conical FSCs along three principle axes by 

using cones with a half angle of 30˚. 
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3.3 RESULTS 

Our analysis of the in vitro reconstituted arrays, revealed the domain organization of 

CheA in the CSU, as well as the quaternary structure of the hexamer of CSUs to ~ 18 Å 

and the trimer of CSUs to ~ 11 Å. I also show that CheW does form 6-membered 

rings at the center of the hexamer of CSUs, and by mapping the sub-tomogram 

positions back to the tomograms confirmed the array organization in vitro matched the 

previously observed in vivo pseudo-p6 lattice.  

3.3.1 In Vitro reconstituted array re-capitulates observed in vivo array 

Incubating CheW and CheA with TarCF tethered to a lipid monolayer is sufficient to 

produce extended arrays of signaling complex (Figure 3.3 A), which recapitulate the 

pseudo-p6 order previously observed in vivo [110] (Figure 3.3 B). At the center of each 

6-fold symmetry center, there is a clearly defined ring of protein density at the same height

in the protein interaction region as the CheA-p5/ CheW ring at the 3-fold symmetry center. 

This confirms the presence of a CheW only ring which has been speculated (as alluded 

to in the introductory figure) to add stability to the array (Figure 3.3 C).  
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Figure 3.3 Trimer and Hexamer of CSUs 

A) Mapped back locations of the trimers and hexamers as identified by Multivariate Statistical

Analysis reveal the pseudo p6 lattice, 3-fold centers marked by blue dots, and 6-fold centers

marked by orange dots. Sub-tomogram averages of B) the timer of core-signaling units and C) 

the hexamer of core signaling units, which displays a ring of density that is CheW  [30].  

This approach has also revealed that the degree of methylation correlates with 

how ordered the arrays are, where the un-methylated OFF state produces extended but 

disordered arrays visible at moderate resolution (~3 nm) in cryo-electron tomograms 

(Figure 3.4 A), while the methylated ON state produces extended planar arrays with 

apparent long-range order (Figure 3.4 B ). Note that the contrast appears higher due to 

the extended low-resolution (1 – 5 nm) order in the QQQQ arrays. It is an open question 

in the field to what degree the array disassembles and what role this may play in signaling 

regulation [116]. 
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Figure 3.4 Receptor signaling state determines long range array order 

(A) Tar-CF CheA/CheW ternary complex in 4E (OFF) state form extended but loosely packed

arrays. (B) Tar-CF CheA/CheW ternary complex in 4Q (ON) state form extended and highly

ordered, planar arrays. Scale bars 100 nm. 

3.3.2 Domain architecture revealed 

The arrays in this study should be biased slightly toward the ON state as they have the 

“neutral” QEQE receptor modification. In agreement with cross-linking data from a 

number of studies the CheA-p5/CheW interface I is clearly resolved and the density at 

interface II is weaker as emphasized with the black arrows in Figure 3.5 A. This is in 

keeping with the hypothesis that as arrays are biased to the kinase ON state, the arrays 

become more ordered by strengthening interface II. By extension likely also forming  
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Figure 3.5 Domain architecture of the core-signaling unit and its higher order assemblies 

A) A trimer of CSUs with the backbone atomic model docked in viewed from the membrane

looking into the cytoplasm. The density between the receptor trimer of dimers matches the

expected 4-helix bundle for the CheA-p3 dimerization domain. In this density from WT, I 

observe a strong density at CheA-p5/CheW interface 1, while interface 2 is much weaker. B) 

CSU rotated 90˚ showing the fit of CheA. C) Slices through three different positions of the trimer 

of CSUs shown in A, highlighting the 20A receptor TODs, the interfaces in the protein 

interaction region, and the fitting of the CheA-p4 kinase domain at the most membrane distal 

position. D/E highlight the hexamer of CSUs with the CheW only ring marked as W while the 

CheA-p5/CheW ring is marked as well [30]. 



stronger CheW only rings. We also resolve for the first time the location of the dimerization 

4-helix bundle formed by CheA-P3 domain (Figure 3.5 B) allowing us to establish the 

organization of the CSU to unprecedented resolution. 

3.4 EXAMINING RECEPTOR ARRAYS IN SITU 

To build on these findings further, the arrays need to be studied in a lipid bilayer. We 

previously showed that the membranes left after E. coli cells that are gently lysed by 

expressing the phage “E” gene were thin enough for TEM [117]. While the inner 

membrane does retract from the cell wall (Figure 3.6 A), we show that the chemotaxis 

receptor arrays remain intact (Figure 3.6 B, C). In addition to the array ultrastructure in 

(B), we show the trimer of CSUs averaged in panel C. 
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Figure 3.6 Integrity of the inner-membrane following lysis 

A) The change in osmotic pressure upon cell lysis causes the inner membrane (chevron) to

retract from the peptidoglycan layer (single arrow) and the outer-membrane (double arrow). B) A 

large patch of chemotaxis receptor signaling complexes is shown intact within the retracted 

inner-membrane. Arrows denote the same features as in A. C) Sub-tomogram average of the 

trimer of receptor CSUs from the patch in B at ~ 20A resolution. Each trimer of receptor dimers 

(black circles) is bridged by the soluble kinase CheA (black arrow). Scale bars 100 nm. Figure 

adapted from [117] 
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3.4.1 Reducing false positives in situ template matching 

Compared to the in vitro reconstituted arrays, these lysed cellular specimens provide 

several new challenges. The identity of the of macromolecules present is not well-defined, 

the contrast in the images is substantially worse (Figure 3.7 A), and the membranes 

themselves present an additional obstacle to particle detection as they produce strong 

non-specific correlation peaks with target proteins when searching tomograms of these 

cell ghosts using template matching. 

I show promising initial results that improve the signal to noise ratio of the cross-

correlogram (output of the matched filter) by up to seven-fold. Here the SNR is defined 

as the peak height of the true cross-correlation peak compared to the mean intensity of 

cross-correlation values in a local neighborhood. In Figure 3.7 B. the ratio of the 

SNRdecoy/SNRnormal is plotted as a function of the relative resampling rate. As expected a 

small change in the pixel size ~ 95% sampling, produces the strongest effect. 

I have also tested this approach using purified ribosomes which provide a visual 

conformation of the location of the real peak, and obtain similar results; however, the 

optimal change seems to be larger at ~ 85% sampling rate. It is currently unclear if the 

sample dependence may be calculated, or if a simple optimization routine might be 

included either at the beginning of template matching or as a stand-alone program. 

Further testing is needed, with realistic ground-truth simulated data. 

. 
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Figure 3.7 Improving SNR in template matching using a decoy for noise floor subtraction 

A) central 20 nm from a cellular tomogram of an e-gene lysed E. coli cell, where the dashed box

surrounding a patch of chemotaxis receptors shown in the cross-correlation maps in C-E. Scale 

bar 100 nm. B) Plot illustrating the ratio SNRdecoy/SNRnormal as a function of the percent 

scaling of the decoy. C) CCC map of the patch in A, D) ccc-decoy map of the patch in A, with 

95% scaled decoy, E) same as D with positions used to calculate B marked with green. Scale 

bars C-E 10 nm. 



3.5 DISCUSSION 

The in vitro reconstituted bacterial chemotaxis signaling arrays we developed 

provide images of well-defined components with several advantages for cryoSTAC 

analysis, including large numbers of molecules in a very thin layer of ice. This enabled 

us to solve the structure of the assembled components of the CSU at 

unprecedented resolution, permitting the construction of a pseudo-atomic model for the 

extended array as described in our eLife paper. 

This was possible since we could for the first-time be confident in our placement 

of the kinase CheA-P3 dimerization 4-helix bundle, as well as proving the presence of 

the CheW only ring which we believe serves to stabilize the active form of the receptor 

array. The CheA-P4 domain of the kinase proved to be highly dynamic as suspected 

from EPR and Fluorescence studies; this is consistent with our density map, where 

CheA-P4 has a poorer resolution. Looking forward, we should be able to apply the 

classification approaches we have developed for the in vitro arrays, to these dynamic 

complexes in situ, given that we may achieve an improved SNR with data collected using 

new direct electron detectors as well as imaging conditions more favorable to high-

resolution structure determination, particularly avoiding very far from focus. 

Despite these successes, the monolayer also creates substantial difficulty 

due to the strong preferred orientation the specimen assumes. We were 

able to implement a successful alignment strategy to both prevent this from 

biasing the alignment, as well as accounting for it in the final map reconstruction.
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The ultimate limitation on the resolution, however, was the noise from the CCD 

based detector, combined with the very high defocus used which coupled together 

create a strong envelope function attenuating the structure factor amplitudes. 

3.6 CONCLUSION 

The study of the E. coli chemotaxis receptor signaling arrays using in vitro 

reconstituted lipid monolayers has provided valuable insight into the organization 

of the bacterial chemotaxis core signaling unit, and its higher-order assemblies. 

These findings also suggest how increased large-scale order may play a role in 

signaling regulation. By imaging a restricted set of components in vitro, we can 

assign their location with a high degree of certainty. This should result in the ability to 

carry out more informed biophysical studies of these dynamic assemblies, leading to a 

clearer understanding of cooperativity in array function. 
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4.0 HIGH-RESOLUTION STUDIES OF HIV-1 VIRUS LIKE PARTICLES 

HIV/AIDS is a significant global health concern, and development of new therapeutics 

is central to its effective treatment, as the genetically hypervariable virus rapidly 

evolves resistance. A relatively new class of antiretrovirals termed “Maturation 

inhibitors” have shown initial promise, yet so far have failed to deliver a clinically 

successful drug. Structural study of the viral maturation process is complicated by the 

irregular nature of the immature HIV capsid. Cryo-Electron Tomography with sub-

tomogram averaging and classification (cryoSTAC) is well suited to this problem but 

is limited in the resolution attainable. Using our newly developed software “emClarity,” 

I have pushed the envelope of this technique to 3.1 Å, producing the highest 

resolution map published to date by cryoSTAC, using a dataset of bevirimat stabilized 

immature HIV Gag virus-like particles from John Briggs group [118]. I also use 

emClarity to investigate the structural consequences of a single point mutation in 

the spacer peptide-1 Threonine 8 to Isoleucine in HIV-1 Gag polyprotein. 
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4.1  INTRODUCTION 

HIV/AIDS remains a significant global health concern has resulted in over 35 million 

deaths so far, with roughly 2 million new infections each year [119]. Treatment of HIV is 

complicated by the virus integrating its genome into the host-cell genome which can result 

in a dormant phase of the viral life-cycle. Whether or not the virus lies dormant can be 

cell specific, and depends on whether pro-viral integration occurs in host genes related 

to cell growth [120]. If so, the viral life cycle may exist in a steady state for much of the 

infection; where infection, cell death, and subsequent turnover are in balance, resulting 

in a large number of replication cycles [121]. Each cycle allows for mutations to the viral 

genome, a fact which is exacerbated by the low fidelity of the HIV reverse transcriptase 

(HIV-RT). Taken together, this results in a rapid accumulation of genetic diversity creating 

a range of quasi-species within an infected individual [122], making the development of 

consistently effective therapeutics very challenging. 

While the first anti-retroviral drugs for HIV were approved as early as 1987, it was 

not until the development of protease inhibitors in 1996 that HIV could be effectively 

treated [123]. Not that PR inhibitors were some “magic bullet” by themselves, rather they 

could be combined with existing RT inhibitors to form a potent triple-drug cocktail called 

combination therapy, also known as highly-active antiretroviral therapy (HAART) [124]. 

Since that time additional combination therapies have been formulated based on the 

development of new fusion inhibitors, nucleoside-analog reverse transcriptase inhibitors 

(NRTIs), non–nucleoside reverse transcriptase inhibitors (NNRTIs), integrase inhibitors, 

and protease inhibitors [125]. The efficacy of these cocktails comes at some expense as 
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long-term treatment has revealed several toxicities: myopathy; sensory neuropathies, 

including distal symmetric poly-neuropathy, inflammatory demyelinating polyneuropathy, 

mononeuritis multiplex, progressive polyradiculopathy, and autonomic neuropathy; 

lipoatrophy; mitochondrial toxicity, including hyperlactatemia lactic acidosis, and hepatic 

steatosis [126].  

The primary viral structural protein to initiate its assembly is the gag polyprotein 

which encodes six covalently linked proteins: matrix (MA), capsid (CA), nucleocapsid 

(NC), spacer-peptide 1 (SP1),  spacer-peptide 2 and p6 (Figure 4.1 A) [128].  The 

structures of the isolated MA, CA, and NC proteins are known from a combination of X-

ray crystallographic and NMR studies, shown in connected by flexible linkers in (Figure 

4.1 A).   

Gag polyproteins assemble at the host membrane in a structure having the 

appearance of radial spokes. This initial structure is transformed by well-coordinated 

proteolysis of gag starting with the SP1-NC juncture, followed by MA-CA, and culminating 

the cutting of the CA-SP1 juncture (arrows Figure 4.1 A, B) which is required for the virus 

to mature [129].   

A new class of anti-viral compounds has emerged that prevent new viral particles 

from maturing by blocking this final cleavage by stabilizing the immature capsid lattice 

[127]. I focused my efforts on determining the structural mechanism underlying the 

maturation process in the late stages of the viral life cycle when the virus is preparing to 

infect new cells. 
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Figure 4.1 HIV-I life cycle. 

 Schematic showing the primary structure and domain organization of the HIV-I gag polyprotein. 

(A) Atomic models from x-ray crystallographic and NMR studies arrange in radial spokes from

the membrane proximal MA inward. The relative orientations depicted are only approximate

given the large degree of flexibility in the linkers. (A, B) arrows indicate cleavage sites for PR.

(C) Schematic illustrating the infection cycle of HIV. Figure adapted from [130]
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A maturation inhibitor (MI), 3-O-(3’,3’-dimethylsuccinyl) betulinic acid, a derivative 

of betulinic acid, was isolated from the leaves of Syzygium clavifloru [131]. This 

compound, also called PA-457 or bevirimat (BVM) was subsequently shown to act a late 

stage in gag processing, preventing the proteolytic cleavage from p25p24 (CA) [132]. 

Another MI PF-46396 has been isolated through drug screens of replicating in vitro 

viruses [133]. Initial phase I and II clinical trials of BVM showed that the drug was 

generally well tolerated and produced significantly reduced viral loads in a single-dose 

response [134]. Ultimately the sensitivity of the drug is extensively modulated by high 

baseline polymorphisms in the CA-SP1 region, particularly in clade B genotypes 

[135,136].  

Keller et al. used cryo-ET to compare the ultra-structure of virions where the final 

gag cleavage at the CA-SP1 juncture was blocked by either sterically or allosterically by 

BVM or by genetic changes to the CA-SP1 cleavage site (L364I and M368I, a.k.a. “CA5” 

mutant [137].) They observed a layer of density, attributed to CA-SP1, which remained 

organized in a hexagonal lattice in contrast to the CA5 mutant which did not [138]. This 

finding suggests BVM inhibits HIV-protease by blocking its action allosterically through a 

stabilization of  the immature Gag lattice. It then follows that a high-resolution structure of 

the CA-SP1 helical bundle may permit rational design of other stabilizing interactions that 

act similarly. 

The recently reported cryoSTAC structure of CA-SP1 + BVM at 3.9 Å by Schur et 

al. revealed for the first time a six-helix bundle [48] formed by SP1 and the C-terminal 

residues of CA. The concurrently published crystal structure of isolated CA-CTD/SP1 by 
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Wagner et al. further supports the conclusion [139]. Interestingly, a density appearing 

stronger in the center of that 6-helix bundle was attributed to BVM, though the C6 

symmetry applied precludes any conclusive identification. 

An alternative stabilization of the immature lattice has been identified which is due 

to a single point mutation in Gag, threonine-371 to isoleucine [140]. This is residue 8 in 

SP1, and following the literature, I will refer to it as gag-T8I. Sequence numbers reference 

gag polyprotein (a.k.a. pr55-gag ) UniProtKB/Swiss-Prot: P03347.3.  

4.2 EXPERIMENTAL PROCEDURES 

Our lab has expressed the Gag protein containing the T8I point mutation in E. coli cells, 

leading to self-assembly in a crowded cellular environment. Assembled Gag virus-like 

particles (VLPs) were purified from the cell lysate via ultra-centrifugation through a 

sucrose gradient.  

4.2.1 Cryo-ET and Image processing of HIV-1 gag + BVM 

Schur et al collected these data. under very similar conditions [48], including the use of a 

newly developed tilt-scheme, the “Hagen” or “Dose-symmetric” scheme, designed to 

concentrate the electron dose in the low angle tilt [141]. I used the same movie alignment 

strategy as with the Gag T8I data. However, the aligned sums were Fourier cropped to 

1.0 Å rather than the physical Nyquist of 1.35 Å. Cropping to physical Nyquist is typically 
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done to remove aliasing of high-resolution imaging artifacts. However there is useful 

information beyond physical Nyquist [142], and I reasoned that the higher sampling rate 

might help to suppress signal degradation at high resolution from the multiple 

interpolations in the cryoSTAC pipeline. 

Rather than selecting individual VLPs to reconstruct (as a matter of convenience) 

each tilt-series was divided into four quadrants, and the template matching results were 

cleaned automatically using a new feature in emClarity that uses constraints based on 

neighboring peaks to decide if a hit is likely a false positive or not. For this, I enforced any 

retained peaks to have at least 5 (of the expected 6) neighboring peaks within 100 Å and 

± 20˚.  

4.2.2 Cryo-ET and Image processing of Gag T8I 

Dr. Jiying Ning prepared gag T8I particles, Dr. Xiaofeng Fu froze cryoEM grids with 10 

nm gold beads, and Dr. Alistair Seibert collected tilt-series at the electron bioimaging 

center (eBIC) at the Diamond Light Source, UK. Eight dose fractionated frames were 

recorded for each tilt angle, in super-resolution mode with a Gatan K2 direct electron 

detector on a bioquantum energy filter, with a physical Nyquist sampling rate of 1.35 Å 

per pixel. Data were collected using a bi-directional tilt scheme starting from 0˚, 

proceeding to -51˚ then 0 to +51˚ in 3˚ increments accumulating a total electron dose of 

120 electrons/Å2. 



I aligned dose-fractionated movie frames using the full field of view with the 

program unblur [73], without applying an exposure filter, which was done later in 

emClarity. The summed movie frames were concatenated into an image stack and 

aligned using the 10 nm gold-fiducial markers in IMOD [79]. I note that at this 

magnification, 5 nm beads would have provided sufficient signal for tracking while 

obscuring less of the sample. 

These tilt series were transformed and aligned according to their tilt geometry 

(rotation, mag, shift) and then cropped in Fourier space to the physical Nyquist of 1.35 Å. 

Individual virus-like particles were selected for further analysis from bin ten tomograms 

using scripts provided with the emClarity software. Estimation of the defocus including 

astigmatism was carried out for each tilted projection, and this information was used for 

3D-CTF correction in emClarity. 

4.3  RESULTS 

Using emClarity and the excellent data of Schur et al. from the EMPIAR 

database (EMPIAR-10164) I have reached the highest resolution using cryoSTAC to 

date, at 3.1 Å. I additionally present an initial map for gag-T8I at 5 Å that suggest the 

density attributed to the maturation inhibitor BVM may indeed be correct. These 

preliminary findings also suggest that on improvements in data collection, the gag-T8I 

sample should reveal new insights into any structured interactions between CA-SP1-

NC/RNA. Specific changes to imaging include selecting areas with a higher 

particle density to improve defocus 
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estimation and a total number of asymmetric units available for averaging, as well as 

collecting data closer to focus to improve the coherence of high-frequency information by 

reducing the impact of small errors in CTF correction. 

4.3.1 Near-atomic resolution using cryoSTAC and emClarity 

The HIV-1+BVM tilt-series that resulted in the publication of the 3.9 Å map from cryoSTAC 

[48] have been released during the final stages of the writing of this thesis, EMPIAR-

10164. A second publication by the same group showed they could reach a nominally 

identical resolution (but noisier map) with only 5-tilt series (~10% of the total) by 

additionally correcting for the curvature of the Ewald sphere (“3D-CTF”). The full data set 

then reached to 3.4 Å and was the highest resolution map from cryoSTAC published 

before this work [143]. On a first pass at the data using emClarity, I reached a resolution 

of 3.6 Å using the same 5-tilt series subset of the data.  

In Figure 4.2 A I compare the density for a single CA monomer from 10% of the 

data using emClarity (left) to that from the full data from EMD-3728. The backbone from 

model PDB-5l93 is overlaid. Our density on the left compares favorably with the published 

map from the full data-set on the right, clearly showing the pitch of the backbone helices 

and several side chain densities. The densities themselves are somewhat “clunky” which 

is consistent with the resolution measured. 
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Figure 4.2 HIV-1 + BVM at 3.6 Å from 10% of EMPIAR-10164 

A) Partial dataset map of CA monomer using emClarity (left) compared to that from the

published 3.4 Å structure EMD-3728. B) Representative alpha helix from CA-NTD showing side-

chain densities from the respective maps in (A)  

The full data set reaches 3.1 Å in emClarity and is clearly better resolved than the 

published 3.4 Å map juxtaposed in Figure 4.3 A. The gag hexamer has large pockets of 

solvent that would be included in a simple geometric mask (a cylinder for example) and 

failure to consider this would substantially underestimate the resolution [28]. One popular 

method to reduce the impact of the solvent on the resolution estimation is to calculate a 

very tight mask and then to correct the FSC for any effects that mask may have had on 

the resolution estimation [72].  
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Briefly, this is accomplished by calculating the uncorrected FSC of the data under 

the mask (𝐹𝐹𝑆𝑆𝐶𝐶𝑈𝑈), as well as the data under the mask with high resolution noise replacing 

the signal (𝐹𝐹𝑆𝑆𝐶𝐶𝑖𝑖 ), and removing any spurious correlation found only in 𝐹𝐹𝑆𝑆𝐶𝐶𝑖𝑖 , as in 

equation 4.1 . 

𝐹𝐹𝑆𝑆𝐶𝐶𝑒𝑒𝑊𝑊𝑡𝑡𝑒𝑒 =  
(𝐹𝐹𝑆𝑆𝐶𝐶𝑈𝑈 −  𝐹𝐹𝑆𝑆𝐶𝐶𝑖𝑖)

1 − 𝐹𝐹𝑆𝑆𝐶𝐶𝑖𝑖
 𝑒𝑒𝑒𝑒 4.1 

This approach is susceptible to masking out real density, particularly for flexible 

specimen, which would lead to an overestimation of the resolution if care is not taken to 

prevent this. An alternative is approach is to compensate the FSC curve by estimating 

the fractional volume of the sample that may be contributed to the solvent.  

𝐹𝐹𝑆𝑆𝐶𝐶𝑒𝑒𝑊𝑊𝑡𝑡𝑒𝑒 =  
 𝛥𝛥𝑝𝑝𝑎𝑎𝑊𝑊𝑒𝑒𝐹𝐹𝑆𝑆𝐶𝐶𝑈𝑈

1 +  (1 − 𝛥𝛥𝑝𝑝𝑎𝑎𝑊𝑊𝑒𝑒)𝐹𝐹𝑆𝑆𝐶𝐶𝑈𝑈
 𝑒𝑒𝑒𝑒 4.2 

Here 𝛥𝛥𝑝𝑝𝑎𝑎𝑊𝑊𝑒𝑒 is estimated by using the ratio of the volume under the mask to the 

volume occupied by protein, which is in turn estimated from the molecular weight [144]. 

This density estimation approach is convenient for purified and well isolated samples, 

however it i,s not, suitable for heterogeneous assemblies where the mass may not be 

accurately known. As an alternative, I use our iterative mask dilation to estimate the non-

solvent fraction as all positive density in the connected region determined in the masking. 

Given that the procedure is designed to err on the side of including more features, any 

systematic error in this approach would tend to over-estimate the solvent content and 

thereby err on the side of under-estimating the resolution. In this case, I show that the 

results from both approaches give the same resolution at the 0.143 cutoff, and very similar 
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overall FSC curves, with the tight mask compensated FSC shown in red and the solvent 

compensated FSC shown in dark blue in Figure 4.3 B. Further support for the measured 

resolution is shown in the clear improvement amino acids with small side chains like 

alanine (Figure 4.3 C). One region of particular interest is highlighted with the orange 

callout box in panel A which is expanded in Figure 4.3 D. Schur et al., interpreted this 

density as a stacking interaction between Y277-P279, which they hypothesized may help 

to stabilize the interdomain linker. I show that this density was likely an artifact, and that 

Y277 appears to form a hydrogen bond with neighboring H194. The SP1 helix, which was 

the primary focus of the original paper is shown side by side in Figure 4.3 E (callout from 

blue oval the in A). 
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Figure 4.3 emClarity achieves the highest resolution sub-tomogram average to date 

(A) EMD-3782 CA-monomer at 3.4 Å resolution (left) and emClarity at 3.1 Å (right). (B) “gold-

standard” FSC between half sets of HIV-1 Gag (EMPIAR-10164). Red, fsc “true” tight mask with 

correction via phase randomization. Blue,  soft mask with solvent corrected fsc. Both 

approaches indicated a resolution of 3.1 Å at the 0.143 cutoff (dashed line). (C) Iso-surface view 

scaled to match the leucine residue shows cleaner backbone, andresolution of even small side-

chains like alanine (blue arrow). (D) Expanded view the CA-NTD/CTD linker (orange box in 

panel a) rotated by 180˚. The putative Y277-P279 stacking interaction does not appear in our 

map, however, emClarity shows a strong density bridging Y227-H194 which are ~ 3 Å apart 

indicating a hydrogen bond. (E) the CA-SP1 helix (blue dashed oval in panel a) as another 

example of the improved resolution of important regions in the map.  

Y277 
 H194 

P279 
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4.4 GAG-T8I MUTATION STABILIZES THE IMMATURE LATTICE 

I show that the T8I mutation stabilizes the immature lattice particularly well in the very 

C-terminus of CA where continuous density with CA-NC and RNA density are 

shown in Figure 4.4 A. I additionally find that the density that is coordinated by two 

rows of lysines in the Schur et al. structure is also present in our map, indicating it is 

likely the common small molecule inositol-hexaphosphate (IP6) as previously 

hypothesized, and recently confirmed [145]. Despite a well resolved 6-helix bundle in 

the CA-SP1 region, our map lacks any density in the region that Schur et al. 

hypothesized to be BVM (black arrow Figure 4.4) This seems to confirm that the 

density they attribute to BVM is correct. I also observe an additional coordinated 

density (this time by methionines) at the very end of the CA-SP1 region in the HIV-1 + 

BVM data set.  
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Figure 4.4 Comparison of T8I vs. BVM stabilized VLPs 

(A) Cross-section through the CA-lattice as stabilized by the T8I mutation. The mutation

is at the very c-terminus of the CA-SP1 helix, marked by the red-dashed line in all panels. (B) 

Cross-section through the CA-lattice as stabilized by the MI BVM. Blue box highlights the CA-

SP1 6-helix bundle as magnified in C and D. The red oval in C/D highlights the region 

coordinated by two rows of lysines, which are seen more clearly in the T8I map. The red dashed 

line marks the location of T8(I) and the end of the CA-SP1 helix. Clear continuous density is 

seen in the T8I stabilized lattice in panel C, which should be CA-NC. D) The black arrow 

indicates additional density in the center of the 6-helix bundle that is attributed to BVM. The 

absence of this density in the T8I map further supports this hypothesis.  



4.5 DISCUSSION 

Using emClarity, I have extended the resolution achievable by cryoSTAC to 3.1 Å. This 

required a very large data set, of ~ 960,000 asymmetric units. The B-factor applied was 

150 Å2 which is substantially worse than that obtained using SPA. I suspect the following 

issues: First, every time the electron beam applied to the specimen (each tilt acquisition) 

there is a sizeable unresolved motion in the early milliseconds of exposure. This means 

data collection with multiple exposures will necessarily have more blurring per 

accumulated dose than a single exposure. Second, the exposure per movie frame is 

between 0.3 and 0.5 electrons/ Å2, which leads to an additional b-factor due to further 

motional blurring by limiting the accuracy of the frame alignment. Third, multiple 

interpolations are currently required to align the tilt-series, reconstruct the tomograms and 

finally average the sub-tomograms.  

The latter could be rather easily addressed by writing a program to reconstruct the 

sub-tomogram average directly from the tilt-series. The first two might be addressed by 

increasing the tilt-increment thereby reducing the number of “initial” exposures, while also 

increasing the total dose in each frame. Not only should this improve the movie frame 

alignment, but it should also improve the accuracy of the tomogram-constrained 

projection refinement in emClarity. 
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4.6 CONCLUSION 

The HIV Gag T8I mutation provides a valuable specimen for studying the stabilization of 

the immature HIV gag lattice, which is a promising target for anti-retroviral maturation 

inhibitors. This mutant produces a more stable CA-SP1 bundle as compared to HIV 

gag+BVM, as evidenced by the extended region resolved in the gag-T8I map. Using the 

advances in emClarity, the highest resolution achievable with cryoSTAC has been 

pushed to 3.1 Å revealing noticeably cleaner side-chain densities. This is an important 

step for the field as well as the advance in our understanding of HIV biology. 

4.7 ACKNOWLEDGMENTS 

Dr. Jiying Ning and Dr. Xiaofeng Fu for their work with expression, purification, cryoEM 

sample preparation and imaging the Gag T8I particles. Dr. Alistair Siebert for cryoET data 

collection of Gag T8I. Dr. John Briggs and the members of his group for sharing their HIV 

+ BVM data with me before its full public release on EMPIAR.

 91 



5.0 SUMMARY OF PROJECTS AND FUTURE PROSPECTS 

Cryo-ET can resolve a broad range of length scales critical for connecting the structural 

details of molecules and their assemblies, to their broader cellular function. I have created 

a library of software called “emClarity” which extends the resolution attainable by 

cryoSTAC to 3.1 Å. While spatial resolution in cryo-EM/ET is assesed by the FSC which 

measures the self-consistency of the data, it is also relevant to consider the 

conformational resolution of different sub-populations of the data into homogeneous 

groups or classes. I demonstrate considerable improvements in the classification of 

compositional and conformational heterogeneity as compared to current state-of-the-art 

software.  

Classification in cryoSTAC is complicated by the missing-wedge effect, which 

distorts each particle according to its orientation in the microscope. This creates strong 

features in the resulting image that are unrelated to the specimen. The missing-wedge 

effect is usually modeled by a simple binary wedge mask, which I have demonstrated is 

inadequate at spatial resolutions better than 2 nm. Accordingly, I have developed 

methods for a more accurate estimation of what information is present in a given sub-

tomogram via the “3D-sampling function,” integrating established ideas from SPA. 
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In chapter 2 I detail an approach accounting for spatially anisotropic resolution and 

its impact on both the alignment process and the interpretation of the final structure. This 

sort of anisotropic resolution is the result of preferred specimen orientation, which is a 

common problem in cryo-EM. I also discuss extensions to improve the correction for the 

aberrations of the contrast transfer function. I have tried to make the tools as easy to use 

as possible while also remaining flexible enough to be useful for the informed 

computational experimentalist. I expect that it would be of great utility to have a simple 

graphical user interface to simplify further the use of emClarity such that it may enjoy a 

broader impact on the community. 

The first routine developed in the library that became emClarity was the template 

matching program, aimed at one of the most significant hurdles in cryoSTAC – locating 

particles of interest in the 3D tomogram. This development of a fast template matching 

algorithm using GPUs, able to locate molecules in crowded environments was brought 

about in our studies regarding novel sample preparation of intact cell membranes, 

discussed in chapter 3. It has proven to be very useful in other areas, like isolate HIV-gag 

particles which provide too large some sub-tomograms to pick by eye. Key ideas 

advanced include efficient means of calculating local image statistics, challenges 

regarding computational expediency, and the means to reduce the impact of challenging 

sources of structural noise that result in many false positives, e.g., carbon film and 

biological membranes. This is of critical importance if the technique is to be useful in 

samples obtained from in situ specimens, particularly of FIB milled lamella. 
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Finally, in chapter 4 I have presented exciting results demonstrating cryoSTAC at 

resolutions where even small side chains are discerned. I also present preliminary 

findings that suggest the single-point mutation at CA-SP1, T8I may be very useful for 

high-resolution studies of immature HIV capsid stability. These results also seem to 

confirm the binding of the maturation inhibitor Bevirimat at the center of the CA-SP1 6-

helix bundle. 

In addition to new algorithmic approaches, new data-collection schemes could also 

be investigated. In particular, it would seem that collecting fewer exposures, each with 

more total electron dose, would be beneficial for a couple of reasons. First, the large 

beam-induced motion that occurs each time the specimen is exposed to the electron 

beam occurs for each tilted image. This means the first few frames of each movie contain 

little high-resolution information and ultimately that a tilt-series contains less useful high-

resolution information than a single exposure micrograph. Second, all of the tools 

developed here, particularly the CTF refinement and tomoCPR would benefit from the 

stronger signal in the individual projections.  

Looking forward, the newest generation of GPUs to be released are supposed to 

have 32 Gb of memory compared to the 12 Gb emClarity has been designed to run with. 

This, combined with the wealth of resources being invested in machine learning 

approaches promise to provide a fertile ground for the future development of high 

resolution in situ cryoSTAC.  
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APPENDIX 

Datasets 

The datasets used in emClarity processing are from Electron Microscopy Public Image 

Archive (EMPIAR), including the yeast 80S ribosome (EMPIAR-10045), the mammalian 

80S ribosome (EMPIAR-10064), and the HIV-1 immature Gag (EMPIAR-10164).   

emClarity programs 

emClarity is run from the command line and is easily scripted to run in a manner most 

suited to a user’s particular project. A text parameter file is used to input project specific 

details, like microscope parameters, mask dimensions, and angular search ranges. I 

typically make a copy of the parameter file for each cycle of averaging and alignment, 

which I refer to as paramC.m, where C refers to the cycle number. The meta-data of each 

project is tracked in a binary database which is named using the “subTomoMeta” 

parameter. Each tilt-series may have multiple areas slated for reconstruction, tiltN M 

refers to tilt-series “N” and reconstruction area “M.” A brief description of the major 

functions (in italic) in emClarity is below: 

emClarity init paramC.m 
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Read in the desired dimensions for each sub-region of each tilt-series to 

reconstruct, initialize the subTomoMeta (metadata binary.) 

emClarity ctf estimate paramC.m tiltN 

estimate the ctf for a given tilt-series N 

emClarity reScale mapNameIN mapNameOUT AngPixIN AngPixOUT CPU/GPU 

resample a map to a new pixel size, particularly for template matching. 

emClarity templateSearch paramC.m tiltN M reference.mrc symmetry gpuIDX 

Reconstruct tomogram M from tilt-series N without ctf correction, run template 

matching on GPU # gpuIDX, randomize results at symmetry-related positions. 

emClarity ctf 3d paramC.m 

Run 3d-CTF corrected weighted-back projection. 

emClarity avg paramC.m N RawAlignment 

Every cycle begins by creating a sub-tomogram average, calculating the “gold-

standard” FSC, and weighting the average accordingly while compensating for 

amplitude attenuation by the CTF to produce references for the alignment. 

emClarity alignRaw paramC.m N 

Run the alignment 
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emClarity removeDuplicates paramC.m N 

cleans out any sub-tomograms that have drifted to the same position. Not needed 

every cycle. 

emClarity tomo-CPR paramC.m N 

Run tomogram constrained particle refinement; this is generally done before a step 

down in binning, e.g., bin4  bin3. 

emClarity ctf update paramC.m N 

Only needed after a run of tomo-CPR, this updates the tilt-series geometry in the 

subTomoMeta, and also resamples the raw tilt-series applying rotation, shift, and 

magnification scaling all in Fourier space to reduce interpolation losses of high-

resolution information. 

Since the tilt-series alignments are updated, and usually also the binning is reduced, a 

new round of 3D-CTF reconstructions need to be made. 

If the classification is to be run, the cycle starts the same, but with the “flgClassification” 

parameter enabled. 

emClarity avg paramC.m N 

emClarity pca paramC.m N previousPCA 



 99 

Run 3D-sampling function compensated PCA at each length scale specified in the 

“pcaScaleSpace” parameter. The command line argument previousPCA is always 

zero in the first run.  If a random subset (25% or ~3000, whichever is larger) is to 

be analyzed by setting “Pca_randSubset”, then a subsequent round of pca must 

be run with “previousPCA” set to one to project all of the sub-tomograms along the 

principal component axes. 

emClarity cluster paramC.m N 

Cluster the data based on selected eigenvectors from the pca step. 

emClarity avg paramC.m N Cluster_cls 

Notice the last argument (a string) which creates a montage of the class averages 

selected in the parameter file. Classes with different memberships may be selected. 

At the end of processing, the half-sets may be aligned and combined by running: 

emClarity avg paramC.m N FinalAlignment 

Align and combine half-sets, optionally creating multiple, differently sharpened 

maps. 



Image processing

For each specimen, I make a project directory, which I will refer to generically asThe 

alignment and classification procedures are generally identical for all the samples, 

except for the HIV-1 Gag data, which were not classified and had C6 symmetry 

applied. All parameters are unique to each dataset, including the angular search 

range and iterations used. emClarity is only tested on Linux operating systems, and 

all references to command line operations are to be understood in that manner. 

Project set-up and coarse tilt-series alignment 

For each specimen, I make a project directory, referred to generically as 

“projectDir.” The HIV-1 Gag data consist of dose fractionated frames, which I 

aligned using the program “unblur” version 1.0 included in the cisTEM package. The 

aligned frames were summed and saved without any exposure-based filtering 

because this is handled later inside emClarity. All tilt-series were aligned using the 

default parameters in IMOD version 4.10.12 using the eTomo interface, with the 

available gold-fiducial markers. For the ribosome datasets, all gold fiducials were 

selected, while for the HIV-1 Gag data ~20-30 closest to the protein and distributed on 

both surfaces of the ice were selected. Local alignments with fixed XYZ global 

coordinates were run for the HIV-1 Gag data only. After generating the final aligned 

stack, the gold beads were located using find beads3d. Only the fiducial model 

describing the location of the beads is needed, so they were not erased.   
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Note that for EMPIAR 10045 the pixel size in the header must be corrected to 2.17 Å 

before beginning. This may be done with the IMOD program alterheader from the 

command line. 

The files describing the projection transformations, any local alignments, and fitted 

tilt-angles are copied to the fixedStacks directory and renamed. 
>$ mv specimen_name_1_fid.xf projectDir/fixedStacks/tilt1.xf 

>$ mv specimen_name_1_fid.tlt projectDir/fixedStacks/tilt1.tlt 

>$ mv specimen_name_1_local.xf projectDir/fixedStacks/tilt1.local 

>$ mv specimen_name_1_erase.fid projectDir/fixedStacks/tilt1.erase 

If outlier pixels are removed in IMOD, this “fixed” stack may be moved to 

projectDir/fixedStacks/tilt1.fixed, otherwise you may just link the raw data. 

>$ cd projectDir/fixedStacks 

>$ ln -s ../rawData/specimen_name_1.st tilt1.fixed 

This is repeated for all tilts-series, of which there are 7, 4, and 41 in the yeast, mammalian, 

and HIV-1 Gag data sets respectively. 

 101 



Ctf estimation

The mean defocus at the tilt-axis was then estimated in emClarity for each tilt-series 

using a 3.5 ± 2.5 µm window covering the range of expected defocus values for all 

three data sets. For the HIV-1 Gag data, the per-tilt defocus was determined using 

“emClarity ctf refine” to produce the power-spectra, which were subsequently fit 

using ctffind4 with the –amplitude-spectrum input flag and default parameters. For the 

yeast ribosome data which have a thin layer of carbon providing an extra signal in the 

power spectrum, the per-tilt defocus values were refined during tomo-CPR. To do so, 

the height of the cross-correlation peak is maximized by scanning through a small 

range of defocus values as applied to each reference tile [146].  

Selecting sub-regions for further analysis 

The selection of sub-regions of each tilt-series for reconstruction is defined by a text file 

with the minimum and maximum values in x, y, z for each region. The script 

“recScript2.sh” provided with emClarity was used to first create reconstructions of 

each tilt-series at a binning of 10 and thickness of 300 covering the full X, Y dimension 

of the images. Each region is then defined in IMOD by making an IMOD model with 

six points per region, xmin, xmax, ymin, ymax, zmin, zmax, in that order. A second run of 

“recScript2.sh” creates a projectDir/recon directory and converts these model files into 

the text files read in by emClarity to be used for the rest of the procedure. These are 

called tilt1_recon.coords and list the tilt-series base name, number of regions 
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to reconstruct, and for each region the width, first and the last slice in y, thickness, x-origin 

offset, and z-origin offset. 

The ribosome data were divided on the x-axis into two regions per tilt-series. The HIV-1 

Gag data were divided into quadrants. Additionally, the flag “fscGoldSplitOnTomos=1” is 

set in the parameter file for the HIV-1 Gag data, so that the even/odd half sets are divided 

based on tomogram, not randomly on sub-tomograms. This is necessary to avoid mixing 

neighboring particles which would violate the gold-standard hypothesis. 

Template matching 

References were derived from SPA EMD-3228 [48] (yeast 80S ribosome), EMD-5592 

[147] (human 80S ribosome) and EMD-8403 (HIV-1 Gag) [148] and rescaled to the full 

pixel size of each data set using “emClarity reScale.” These references were then passed 

to “emClarity templateSearch” binned to achieve a nominal pixel size ~ 8-12 Å depending 

on the size of the specimen. All maps and tomograms are automatically low-pass filtered 

to 40 Å resolution by default in emClarity. Non-CTF corrected tomograms are 

reconstructed by the templateSearch program as needed for template matching.  

The results for the ribosome dataset were cleaned manually by comparing the maximum 

intensity projection maps and the binned tomograms overlaid with an IMOD model 

showing the x,y,z coordinates of each peak detected.  

For the HIV-1 Gag data, emClarity removeNeighbors was used to automatically clean the 

results based on geometrical restraints. Only peaks that had five neighbors within 100 Å 
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and also oriented within 20˚ were retained, resulting in 179,168 sub-tomograms to start. 

(This number dropped to 162,213 in the first round of averaging as particles too close to 

the edge to allow padding by 1.5 x particleRadius were excluded. 

Particles with symmetry pose a special challenge to all missing-wedge compensation 

approaches as any error in the compensation will result in the particle looking different at 

its symmetry-related orientations. To help with this, I set the orientation found in template 

matching to any of the equivalent symmetry-related positions, and subsequently only 

search an angular range small enough to not reach the neighboring positions. 

Iterative alignment 

Each cycle of alignment is initiated by calculating averages of the two half sets, calculating 

the gold-standard FSC, and then applying re-weighting each average to generate a FOM 

weighted reference. 

I alternate searching over just the azimuthal and polar angles, and an in-plane search. 

For each specimen, I started at a binning of chosen to produce a pixel size of ~7-8 Å. I 

then go through three rounds of averaging and alignment, followed by removing any 

positions that may have drifted to overlap using “emClarity removeDuplicates.” I then run 

a round of tomo-CPR, which requires updating the aligned tilt-series and the 3d CTF 

corrected tomograms.  

>$ emClarity ctf update paramX.m 
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>$ emClarity ctf 3d paramX.m 

This reconstruction is generated at a binning one finer than the previous, and the same 

pattern was repeated until reaching full sampling.  

Classification 

The ribosome data for the yeast 80S were classified in a single pass, using three 

resolution bands 10,18, and 28Å, 36 of the top eigenvalues were saved, and five from 

each band were selected ( parameter Pca_coefficients=[7:11;7:11;1:11] )] for clustering 

via kmeans the class averages were then generated by running  

>$  emClarity avg paramX.m X cluster_cls 

The ribosome data for the mammalian 80S were classified in two passes. First, they were 

split into groups displaying either a rotated or un-rotated 40S small subunit. To do this, 

the subTomoMeta file (projectName.mat) was copied to two new files: 

project_smallSU.mat and project_largeSU.mat. The classes are selected for removal by 

viewing the class average montage in IMOD and selecting any point in the region of a 

given class. These models are then used to remove their contributing members in the 

subTomoMeta. 

>$  emClarity geometry paramX.m X RemoveClasses [X,0,0] STD. 



Since both branches of the project access the same raw data, it is convenient to remain 

in the same project directory, and all subsequent output will be identified by the new 

subTomoMeta base name. 

A subsequent round of classification was run using 12,22,32 Å resolutions. Unlike the 

yeast 80S which had some Eigen images with clear missing wedge bias, revealed as 

“streakiness” in the density, the mammalian displayed sufficient true variability to 

overpower the noise from the missing-wedge bias, and all 36 eigenvectors from each 

resolution band were used in clustering. 

Analysis 

Models PDB-3J78 for yeast were rigid body docked in using Chimera. 

Models PDB-4UJO for mammalian were docked in using Chimera, in combination with 

the “Segger” plugin. 

Models PDB-5l93 were docked in using Chimera, refined in real-space using Phenix 

version 1.13-2998-000, and manually edited in COOT version 0.8.9. 
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The central dogma of molecular biology describes a strictly linear flow of genetic information stored in DNA transferred through RNA and translated into protein products. In the “post-genomic era” however, it is evident that abundant information flows from protein to protein and even protein back to DNA. The field of Structural Biology seeks to understand how the spatial and temporal organization of that information is stored and transmitted via the three-dimensional structure and dynamics of biological macromolecules. X-ray crystallography, nuclear magnetic resonance, and single particle cryo-electron microscopy (cryo-EM) are the primary techniques available to the structural biologist to deduce structure and dynamics at or near atomic resolutions. These tools are generally limited to the study of stable molecules that can be purified biochemically. Other approaches, like super-resolution light microscopy and cryo-electron tomography (cryo-ET), are amenable to the study of more labile macromolecular complexes or those found in situ; however, they are limited to resolutions of tens of nanometers. Improving the resolving capability of cryo-ET with sub-tomogram averaging to routinely reach beyond 10 Å is the primary goal of this work. My unique contribution to the field of structural biology is a suite of software tools called emClarity (enhanced macromolecular classification and alignment for high-resolution in situ tomography) which allows scientists with minimal computational background to probe the structural states of conformationally variable molecules present in complex and crowded environments.
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[bookmark: _Toc502211008][bookmark: _Toc502212870][bookmark: _Toc510187178][bookmark: _Toc533776843]INTRODUCTION

Structural Biology is a discipline that seeks to find a functional and mechanistic understanding of the molecular interactions governing the life of the cell, and ultimately the organism, by determining the three-dimensional (3D) distribution of atoms in macromolecular complexes. These macromolecules are commonly referred to as “particles,” a convention I adopt here. Structural “snapshots” of particles in a given conformation, which may or may not correspond to a functional state, can be obtained from purified specimens in vitro. These snapshots sample a conformational landscape that is often dynamic and thereby require additional information from biochemical and biophysical experiments to build a functional model. 

The techniques traditionally used to probe biomolecules on the length scale of hydrogen bonds, Nuclear Magnetic Resonance (NMR) and Macromolecular X-ray crystallography (MX), measure the characteristics of an ensemble of molecules. Cryo-electron microscopy (cryo-EM) on the other hand, can measure information from individual particles, and so is particularly well suited to the study of heterogeneous samples of large biological macromolecules and their complexes. 

Cryo-EM records images formed in a transmission electron microscope (TEM) that are, to close approximation, projections of the 3D-Coulomb potential of the specimen as described further in section 1.1. A simple mathematic relationship referred to as the central section theorem[footnoteRef:1] shows that the Fourier transform of a 2D projection is equal to a central section of the 3D Fourier transform of the object. Strictly speaking, this theorem only applies where the curvature of the Ewald Sphere is negligible [1,2], i.e., where the “projection approximation” holds. In this regime, the Fourier transforms of many projections from different angles are resampled onto their respective central sections in 3D, and upon filling up Fourier space, the inverse Fourier transform returns the 3D-Coulomb potential of the object (a so-called EM map[footnoteRef:2]). This relationship is shown schematically in Figure 1.1. [1:  Sometimes the Fourier slice theorem]  [2:  This is not quite the same as the result from X-ray crystallography, which is a 3D electron density map.] 


There are two primary varieties of cryo-EM used to obtain the angular distribution of projections needed to perform this 3D reconstruction, single particle analysis (SPA) and cryo-electron tomography (cryo-ET).
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[bookmark: _Ref527832693][bookmark: _Toc532758052][bookmark: _Toc533868916]Figure 1.1 Schematic illustrating Fourier Reconstruction



The Fourier slice theorem is invoked to reconstruct the 3D electrostatic potential of the specimen by filling in central sections of its 3D Fourier transform with the Fourier transform of 2D projections from many angles. Reproduced from [3] with permission.







Cryo-ET is an alternative technique that provides 3D reconstructions for individual instances of macromolecules, even in a crowded environment where particles overlap in projection [7]. The additional information about each particle is made available by collecting many projections of the same sample as it is rotated relative to the optical axis in the TEM [8]. These tilted images provide a modest resolution along the optical-axis at the expense of the attainable global resolution, which is usually in the tens of nanometers [9]. 

This resolution may be improved using a hybrid of SPA and cryo-ET called cryo-electron tomography with sub-tomogram averaging and classification (cryoSTAC[footnoteRef:3]) [10]. The input for cryoSTAC is many 3D sub-tomograms that are cut out in silico from the full tomogram, although in principle, nothing is preventing the use of projection data directly as in SPA. The main distinction between SPA and cryoSTAC is that the latter produces a 3D reconstruction for every individual particle.  [3:  For an in-depth treatment of cryoSTAC and background on cryo-ET the reader is referred to [41].] 


[bookmark: Introduction_1_1]Another more practical difference is that cryoSTAC lags significantly behind SPA in the resolutions routinely obtained [11], owing to a number of obstacles to reaching a sub-nanometer resolution in situ using cryoSTAC. In this dissertation, I focus on new methods in image processing address these challenges, in particular, correction for Ewald sphere curvature, spatially variable sample distortions and displacements, and reduction of the computational cost of working with the thousands of 3D volumes required. All of these are shown to contribute to making resolutions better than one nanometer routinely accessible in cryoSTAC. In the remainder of this chapter, I introduce the essential background needed to understand the results of this dissertation. References to comprehensive treatments of specific topics are made where needed; for a history of the development of the field of cryo-EM with an emphasis on cryo-ET the reader is referred to the introduction in [12].

[bookmark: _Toc510187185][bookmark: _Toc533776844]Image formation in the transmission electron microscope

The transmission electron microscope (TEM) has the same essential components as an optical light microscope operating in transmission mode: a radiation source, a condenser lens system that focuses the radiation onto the sample, a transparent sample, an objective lens that focuses the scattered radiation, a magnifying lens system, and a detector. Compared to light, electrons interact very strongly with matter, and many specialized forms of electron microscopy have been developed to take advantage of this fact (chapters 2-9, Hawkes and Spence) [14]. This strong interaction requires the TEM column to be maintained at a high-vacuum to prevent spurious scattering of electrons outside of the specimen. This high-vacuum in turn causes a liquid sample to rapidly evaporate; one solution to this problem that also preserves high-resolution details, is to freeze the specimen and maintain it at temperatures around 80 K using liquid nitrogen[footnoteRef:4]. To avoid the formation of crystalline ice and instead produce a vitrified ice, preserving a nearly native hydrated state, the freezing may be accelerating by using a cryogen with a larger heat capacity than liquid nitrogen, such as liquid ethane or liquid propane [13].  [4:  It is thought that using even lower temperatures via liquid helium would help to provide further protection against radiation damage, however, there is a poorly understood loss of contrast and apparently increased specimen motion [149,150].] 


For our purposes, we are concerned with the high-resolution TEM also known as phase-contrast TEM. The three primary events are shown schematically in Figure 1.2: the electrons scatter from the specimen, they are focused into a diffraction pattern in the back focal plane of the objective lens, and finally, they form an image in the conjugate image plane. 

“Real” and “reciprocal” spaces referred to in Figure 1.2 are synonymous with “position” and “momentum” space[footnoteRef:5]. These are dual spaces mathematically related to one another by the Fourier transform, a fact that is used extensively in image formation theory and image processing in TEM [14]. [5: ] 


[image: ][bookmark: _Ref527886334][bookmark: _Toc532758053][bookmark: _Toc533868917]Figure 1.2 three central aspects of image formation





[bookmark: _Toc533776846]Imaging aberrations 

Due to the imperfect nature of magnetic lenses, several wave aberrations distort the exit wave. The strongest of these are the third-order[footnoteRef:6] aberrations, also called the primary Seidel aberrations, of which the spherical aberration, coma, and astigmatism are most pertinent to cryo-EM of biological macromolecules [15].   [6:  The ideal gaussian wave front is quadratic. ] 


[bookmark: ref20][bookmark: _Hlk512242201][bookmark: _Hlk512242522]The coefficient of spherical aberration is fixed for a given objective lens [20]. The other aberrations may be corrected through microscope alignment [21,22], and residual errors in microscope alignment may be corrected computationally in later computer processing of the images. Correction of residual astigmatism becomes increasingly relevant beyond 8 Å resolution and so has been routinely done in SPA [23]. Correcting residual axial coma (beam tilt) was discussed early on [24], and first demonstrated in 1986 by Henderson and colleagues [25]. These image processing corrections are rooted in contrast transfer theory.

[bookmark: _Toc533776845][bookmark: _Toc533776847]Electron scattering

When speaking of scattering, it is perhaps intuitive to envision electrons as individual particles, however, considering the wave nature of electrons makes many aspects of the theory of image formation easier to discuss. The incoming high-energy electrons may be represented by a wave function, and if the object is thin enough[footnoteRef:7] to be treated as if it were at a single distance from the focal plane of the objective lens, then the “projection approximation” simplifies the expression for the exit wave function to: [7:  “Thin enough” depends on the atoms present, the imaging parameters, and the resolution of a particular experiment as discussed in detail in  [16].] 




Where  is the object’s Coulomb potential and  = , with the relativistic electron wavelength (mass () and charge () and the Planck constant . 

For a derivation of the transmission function (the exponential on the right in  eq 1.1) the interested reader is referred to the treatment by De Graef [15]. 

If, in addition to being thin, the specimen is composed primarily of light atoms, as is the case in biological specimens, the resulting projected potential will be << 1. In this case, equation 1.1 may be  expanded into a Taylor series and truncated after the first two terms, giving the approximate exit wave function under the weak phase object approximation (WPOA) in equation 1.2 [17]: 	



The exit wave function then propagates through the vacuum in the TEM column and is focused using electromagnetic lenses, as first practically demonstrated in 1931 through the efforts of Knoll and Ruska [18]. These lenses are quite imperfect and modify the exit wave as it is focused. The resulting wave aberrations (section 1.1.2) were quantified by Scherzer in the late 1940s [19], and their impact on image formation is described by contrast transfer theory (section 1.1.3). 

Contrast transfer theory

The collective effect of spherical aberration, imaging out of focus, and axial astigmatism is a spatial frequency dependent phase shift [76]

          

The relativistic wavelength () is calculated from the accelerating voltage[footnoteRef:8], and the spherical aberration () is constant for a given microscope[footnoteRef:9]. Spatial frequency () is the independent variable leaving the astigmatism angle () which is defined as the angle between the major axis and the image X-axis, and under focus[footnoteRef:10] (). [8:  2.51 pm for 200 KeV and 1.97 pm for 300 KeV radiation.]  [9:  For the instruments currently used for biological specimens this is usually around 2 mm, while for those used in material science the value is often closer to 0.5 mm. The worse aberration in biological TEM is a compromise on the size of the lens pole piece gap [20].]  [10:  Note that in biological TEM, the convention is to define under focus > 0, such that the origin of the microscope is set to the back-focal plane of the objective lens. 
] 


How this phase shift affects the transfer of information from object to image is the subject of contrast transfer theory, and the reader is referred to chapter 3.3 in [27] for an accessible treatment. A more detailed discussion relating contrast transfer theory to image reconstruction can be found in [151]. Mathematically speaking, for a weakly scattering object, the Fourier transform of the bright field image is obtained by multiplying the Fourier transform of the projected object with the contrast transfer function (CTF).



In equation 1.4 “A” refers to the percentage of amplitude contrast, which can be approximated as constant with respect to spatial frequency and is typically assumed to lie between 0.07-0.14 [26]. As the sinusoidal form of equation 1.4 suggests, the CTF produces characteristic oscillations in the power spectrum of the object, which may be estimated from the periodogram[footnoteRef:11] as described in more detail in chapter 2.2.4. [11:  The Fourier transform of the image auto-correlation function.] 


[bookmark: _Hlk532758390]A qualitative understanding of the effect of the CTF is useful and is illustrated in Figure 1.3 Using the atomic coordinates for the enzyme Beta-galactosidase (PDB 6CVM), the projected object potential[footnoteRef:12] as calculated using the multi-slice approach [152] is shown in Figure 1.3 A. The CTFs for three under-focus values are plotted in Figure 1.3 B. Including these in the wave propagation shows that the signal is increasingly delocalized as the lens is set farther from focus (Figure 1.3  C-E). Also, the spread is frequency dependent; the low-resolution contrast is enhanced while the high-resolution details are now primarily outside the particle envelope. This increase in low-resolution contrast far from focus is commonly exploited to facilitate later image processing steps in both SPA and cryoSTAC. Figure 1.3  F-H shows images simulated with the same defocus values but with explicit water molecules, 1.5x the particle thickness, and shot noise following a Poisson distribution.  [12:  the integral inside the exponential term in equation 1.1.] 


[image: ][bookmark: _Ref532758339][bookmark: _Toc532758054][bookmark: _Toc533868918]Figure 1.3 Visualizing the CTF as a function of under-focus



(A) Projected electrostatic potential using atomic coordinates from PDB-6CVM. (B) The plot of the CTF for 70 nm (black), 350 nm (blue), and 1750 nm (green) under-focus. (C-E) Multi-slice propagation of assuming the increasing defocus plotted in (C). (F-H) the same simulation now including explicit water molecules to give a realistic image.

[bookmark: _Toc533776848]Image restoration

Fortunately, the effects of the CTF, within the approximations of linear imaging theory, are relatively straightforward to correct. Because there are regions where the CTF does not transmit any information to be recorded, a range of imaging parameters must be used on different images, which are then combined into the final result. The modulation by the CTF is commonly restored by a Wiener filter, which has been described succinctly as a “careful division” by the CTF [27]. The care that is referred to here is the inclusion of an estimate of the spectral signal to noise ratio in the denominator, which prevents overamplification of noise.



The estimate of the SSNR is strongly impacted by the solvent surrounding the particles in the sample [28], and in Chapter 2 I present a solution to this problem tailored to cryoSTAC. In this chapter, I also discuss solutions that help to alleviate deviations from linear imaging theory that are particularly relevant to thicker samples often used in cryoSTAC, in particular, the breakdown of the projection approximation. 

One additional assumption in image restoration is that the 3D Fourier transform of the object is adequately sampled to permit interpretation up to some resolution. A simple condition was given by Crowther that reveals a linear relationship between the resolution attainable and the diameter of the specimen in real space divided by the angular sampling [29].

[bookmark: _Toc510187187][bookmark: _Toc533776849]The missing wedge-effect

While I have stated that there is a 3D reconstruction for each particle in a tomogram, it is vital to note that this reconstruction is distorted due to an incomplete angular sampling of Fourier space. The angular range the specimen is tilted to is limited in practice to ~+/- 60˚ although for samples that are very thin, especially 2D crystals, closer to 70˚ may be reached [30]. This sampling is limited primarily by the increased probability of scattering due to the additional thickness of the specimen, inversely proportional to the cosine of the tilt angle, which results in fewer electrons reaching the detector in total, while a higher percentage of those that do are due to inelastic scattering such that the higher tilts have lower SNR. Figure 1.4 A, B show the 3D sampling function which represents the achievable sampling in Fourier space. The oscillations are due to the CTF, while the color runs from low-resolution (blue) to high-resolution (orange).

Not only does the high-resolution information fade at high tilts, but it also progressively degrades as the specimen accumulates radiation damage. The region of lowest SSNR is the wedge-shaped region perpendicular to the tilt axis in Figure 1.4 A. 
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[bookmark: _Ref520375455][bookmark: _Toc521143966][bookmark: _Toc533868919]Figure 1.4 The missing-wedge effect

A) 3D sampling function in Fourier space for a typical tomogram, acquired with a bi-directional tilt-scheme starting from 30˚. The colors indicate spatial frequency (1/resolution) running from low (blue) to high (red). (B) looking down along the beam direction, the oscillations of the CTF are apparent. (D-E) applying a 2D missing-wedge to the same image illustrate the two primary effects: elongation along the missing-wedge direction, and removal of linear/planar features perpendicular to the wedge. (F-G) magnified view of Einstein’s eyes from D and E.





The “missing-wedge effect” refers to the distortions in the 3D reconstruction due to this under-sampling. In Figure 1.5 D an image of Einstein with a horizontal missing-wedge (inset) and zoomed in portion of his eye in Figure 1.5 F shows the characteristic drop in resolution and elongation of density parallel to the missing-wedge, especially evident in the normally circular pupil. A second significant effect is that linear or planar features perpendicular to the wedge are not well represented, as illustrated in Figure 1.5 F, G where Einstein’s eyelid is no longer visible.

[bookmark: _Toc502211009][bookmark: _Toc502212871][bookmark: _Toc510187179][bookmark: _Toc533776850]Challenges in Structural Study of Heterogeneous Samples

Arguably, the greatest strength of cryo-EM as a technique, compared with NMR and MX, is the ability to record and analyze measurements from individual instances of biological macromolecules. Although averaging is necessary to reach SNR levels high enough to reconstruct interpretable density maps, the ability to use pattern recognition and machine learning algorithms permits the analysis of individual particles. In the case of cryoSTAC where each particle is represented by a unique 3D-density map, the analysis of individual particles is particularly promising granted the image features due to the missing-wedge can be accounted for.

[bookmark: Introduction_1_1_1][bookmark: _Toc502211010][bookmark: _Toc502212872]The missing-wedge effect distorts the sub-tomograms strongly and impacts all aspects of image processing in cryoSTAC. Current state-of-the-art software makes compromises in accurately compensating this effect in exchange for computational tractability. In addition to the well-known missing-wedge effect, local specimen distortions and the accuracy of CTF correction considering the breakdown of the projection approximation in thick specimens also need to be addressed if cryoSTAC is to reach a higher resolution routinely. The primary focus of my research has been developing methods for the determination of these maps from variable and heterogeneous specimens, at resolutions better than 10 Å as demonstrated for the icosahedral hepatitis B virus capsid using SPA some 20 years ago [31]. These methods have been developed and tested on three primary biological samples: ribosomes, bacterial chemotaxis receptor signaling arrays, and purified HIV-1 virus-like particles. 

[bookmark: _Toc510187189][bookmark: _Toc533776851]High-resolution structural determination of heterogeneous specimens using cryoSTAC

Macromolecular complexes are intrinsically flexible and often challenging to purify for structure determination by single particle cryo-EM. Such complexes may be studied using cryoSTAC, which in exceptional cases reaches a sub-nanometer resolution, yielding insight into structure-function relationships. All maps from cryoSTAC currently deposited in the EMDB with resolution < 9 Å are from macromolecules that form ordered structural arrays, like viral capsids, which dramatically simplifies structural determination. Extending this approach to more common specimens that exhibit conformational or compositional heterogeneity and may be available in limited numbers remains challenging. To this end, I developed emClarity, a GPU-accelerated image processing package, and demonstrate significant improvements in the resolution of maps compared to those generated using the current state-of-the-art software. Furthermore, I devised a novel approach to sub-tomogram classification that reveals conformational states not previously observed with the same data.



[bookmark: _Toc510187190][bookmark: _Toc533776852]Introduction



Recent advances in the capabilities of cryo-EM are changing how we think about the structural determination of complex biological assemblies. In addition to reaching a near-atomic resolution, the development of advanced classification techniques, such as maximum-likelihood classification as implemented in FREALIGN [32] or RELION [33], has enabled possibilities for probing macromolecular functional dynamics using an SPA approach. For a sample to be suitable for SPA, it must yield tens to hundreds of thousands of individual instances of biological macromolecules [34]. Commonly called “particles,” they must first be purified to relatively high compositional and conformational homogeneity [35] and subsequently imaged in many different orientations.  These two conditions are often difficult to achieve, especially as the size and number of components increases, and are features common to the assemblies of biological complexes often found at the heart of cellular activities [9]. When this is the case, cryo-ET is capable of generating 3D reconstructions of pleomorphic samples in situ is the preferred approach

These reconstructions (tomograms) are generally limited to 3-4 nm resolution. This limit on the resolution of a tomogram is largely due to the extremely limited electron dose (1-2 electrons/Å2 per projection, ~60-120 electrons/Å2 in total) chosen to minimize radiation damage to samples during the collection of many projection images. Additionally, the signal in these noisy images is not distributed evenly in the tomogram, a consequence of primarily the increasing specimen thickness at high tilt angles which limit the angular sampling to about +/- 60° in practice. This uneven sampling of the 3D specimen in 2D projections results in anisotropic resolution, and the resulting distortion is colloquially referred to as the “missing-wedge effect” (MWE) named for the shape of the sub-sampled region in Fourier space of a single-tilt-axis tomogram. 

These resolution-limiting issues can be overcome when many copies of a macromolecule are present in a tomogram, extracted in silico, aligned to a common reference frame, and averaged using cryoSTAC procedures that share many similarities to SPA. Such averaging can increase the signal to noise ratio (SNR) in the final map and also complete the angular sampling in the average, alleviating the MWE. Classification refers broadly to the use of statistical analysis to sort out heterogeneity as described later.

For cryoSTAC to work, the bias due to the MWE during image processing must be mitigated. This is accomplished by explicitly considering the contribution of each sub-tomogram to the final average as a function of spatial frequency in Fourier space. In practice, this means the (dis)similarity metric used for alignment and classification must be modified to consider only the sampled regions of each volume. The two most common metrics are the constrained cross-correlation [36–38] and the constrained-Euclidean distance [39,40]) 

The function used to constrain these distance metrics depends on the sampling of the specimen and describes the extent of information transfer during the imaging process. This 3D-sampling function (3D-SF) defines the information transfer based on all contributing projection’s CTFs, the exposure in each projection, the sample thickness as a function of the tilt angle, and the weights applied in the reconstruction of the tomogram (Figure 1.4). The 3D-SF has also been referred to as the 3D Contrast Transfer Function (3D-CTF) [40]. However, this creates some confusion with an unrelated process called 3D-CTF correction. To avoid ambiguity, I avoid the term “3D-CTF” altogether as it is a bit of a misnomer given the CTF is inherently 2D. Instead, I refer to “3D-CTF correction” as Ewald sphere correction since the variation of focus with depth is equivalent to the curvature of the Ewald sphere [1]. The reader is referred to recent reviews which cover both the general principles [41] and computational approaches [42,43] in greater depth.

Even a rough estimate of the 3D-SF using a binary missing-wedge mask makes it possible to obtain sub-tomograms averages at low resolutions, 15-20 Å. With the particles aligned to a common reference frame, any conformational differences that exist should be identified and the resulting subgroups separated into different averages. This characterization is commonly referred to as “classification” and allows for separation of multiple biological states from the same sample, in turn permitting in situ structural determination of functional conformations [30,44]. 

The ability to perform 3D-classification of unknown states semi-independently from the alignment procedure is arguably the greatest strength of cryoSTAC relative to SPA because each particle is reconstructed as a unique, albeit distorted, 3D volume. With these per-particle 3D reconstructions, it is possible to directly analyze the 3D-variance without any bootstrapping techniques, an approach useful for focusing in on dynamic portions of the specimen, the value of which has been discussed extensively [45–47]. 



To date, few structures have been solved at resolutions better than 10 Å using cryoSTAC [40,48–53]. This resolution is a critical threshold beyond which flexible molecular fitting approaches are more reliable [54]; an avenue for integrating high-resolution data into medium resolution maps and investigating dynamic or transient complexes [30,49,55].

I present here a complete set of GPU-accelerated programs called emClarity for enhanced macromolecular classification and alignment for high-resolution in situ tomography, designed to make the sub-nanometer resolution the norm rather than the exception for cryoSTAC. I have focused my efforts on the steps in cryoSTAC image processing that are likely to yield the greatest improvements, as suggested by empirical observation and theoretical calculations [50,56–58]: accuracy of tilt-series alignment, improved defocus determination and CTF correction, explicit treatment of anisotropic resolution, and more robust classification. A typical cryoSTAC workflow is illustrated in Figure 2.1 with areas of significant improvement in emClarity highlighted in red, while novel additions to the pipeline are in orange boxes.

[image: ]

[bookmark: _Ref520377486][bookmark: _Toc521143967][bookmark: _Toc533868920]Figure 2.1 Typical cryoSTAC workflow

Blue background indicates steps in a typical cryoSTAC workflow, where red text denotes routines substantially improved in emClarity. Orange background indicates novel algorithms not available in other published software. Double-headed, dashed arrows indicate optional branch points that may be included during any given cycle of refinement. 

[bookmark: _Toc510187191][bookmark: _Toc533776853]Methods and algorithmic developments 

All cryo-EM methods seek to refine the orientation of each particle with respect to the microscope reference frame. In SPA this is a 5-parameter search space, while in cryoSTAC it is a 6-parameter search space, three Euler angles, and three spatial coordinates. This search is carried out by comparing a reference structure to each particle at different orientations and scoring each using constrained-cross-correlation (least squares minimization) or Euclidean l2-norm (likelihood maximization.)

Caution must be taken to avoid fitting to the noise in cryo-EM data [59]. A modification to the iterative methods used, deemed the gold-standard approach [60], robust to this problem and independent of the alignment algorithm, has been demonstrated to produce satisfying results [61]. Care must be taken in cryoSTAC where a reference-based search (template matching) is often needed to pick out the particles of interest from the tomograms before entering the sub-tomogram workflow. The information used in the template matching program is generally restricted to 40Å as is common in the field [36,53]. This resolution has been sufficient to locate and roughly orient particles of various shape and dimension while also limiting any correlation between half-sets to at most ~ 26Å[footnoteRef:13], a resolution beyond which the data are considered independent [62].  [13:  The real-space masking of the particle introduces an extra correlation in Fourier space equal to , where D is the diameter of the mask [144]. For a globular protein of molecular weight 250 KDa, the diameter is ~ 75 Å, and so an upper bound on the correlation introduced is.] 


[bookmark: _Toc510187192][bookmark: _Hlk498864120]During alignment, a low-pass filter shaped according to a modified version of the figure-of-merit [63] which is based on the gold-standard Fourier Shell Correlation (FSC) is applied to the data. The modification I make forces the Fourier amplitudes to zero after the point where the 1-bit criterion [64] interests the FSC curve. This point is often near an FSC of 0.33 and seems to provide a reasonable balance between reducing over-fitting while also permitting convergence, which may be very slow if too little detail is available in the reference used for refinement.

[bookmark: _Toc533776854]Refinement of tilt-series alignment

A prerequisite for 3D reconstruction of a tomogram is the refinement of the projection geometry, including tilt-axis angle, in-plane shifts and rotations, magnification, tilt angle, and possibly other distortions like non-perpendicularity of the electron beam or skew between the x & y-axes [65]. This process (tilt-series alignment) is most commonly accomplished by using gold beads as high-contrast fiducial markers. Additional approaches, based on locating and tracking image features [66–68] or on projection matching using an intermediate tomogram as a 3D model [38] are available, but their success is generally sample-dependent [41], and these require significant user input, which has been somewhat ameliorated by automation with the recently released Appion package [69]. 

I have integrated into emClarity a novel algorithm called tomo-CPR (tomogram constrained particle refinement) for the iterative refinement of the tilt-series alignment using an approach that shares some similarity with the “particle polishing [70]” implemented for SPA in RELION. The most important difference is that the reference projections used for orientation determination include information from neighboring particles as well as non-particle information from the tomogram. Adding this signal to the reference accomplishes essentially the same thing as subtracting it from the data. Another smaller difference is in how tomo-CPR constrains neighboring particles to behave similarly. As in SPA they are constrained within a given projection but are additionally required to vary smoothly as a group from projection to projection through the tilt-series. 

Tomo-CPR is illustrated in Figure 2.2. First, I replace the density corresponding to our particles of interest in the original tomogram with a copy of the high SNR reconstruction and then re-project that synthetic tomogram along with a 3d model of the sub-tomogram origins using the IMOD program tilt. This also includes any local alignments previously determined and allows us to create a reference tilt-series along with a model for each sub-tomograms position in the 2d-projections. Tiles around each projected sub-tomogram origin are masked out and convolved with the CTF of the data projection at that point, using a defocus calculated from geometric considerations of the offset to the tilt-axis and the tilt-angle. The sub-tomogram fiducial positions in the data projections are then refined via cross-correlation, and these refined positions are then fed into IMOD’s tiltalign as if they were derived from gold-fiducial, allowing us to take advantage of local refinements and robust fitting as described previously [71]. 



[image: ]

[bookmark: _Ref520378024][bookmark: _Toc533868921][bookmark: _Toc521143968]Figure 2.2 Tomogram constrained projection refinement (tomo-CPR) 

 (A) Schematic overview for reference generation in the Tomo-CPR. The instances of structural noise resulting from the complex 3D environment of the sample are captured by projecting the full tomogram with the particle of interest replaced by the high SNR average.  (B-C) Cartoon illustrating overlapping information in the projections arising from other particles, other components in the specimen, and variable defocus as a function of tilt. Examples of non-tilted (D) and tilted (E) projections used to generate references for the yeast 80S tomo-CPR. Tiles centered on the projection origin of each sub-tomogram are convolved with the CTF considering the individual sub-tomograms defocus, which varies with tilt angle and location in the tomogram. Particles are observed to overlap, even without tilting, while features due to contaminants (white arrows) and the carbon edge (white chevron) would affect the accurate determination of local particle drift using a simple projection of the average for cross-correlation.

[bookmark: _Toc510187193][bookmark: _Toc533776855][bookmark: _Hlk498864886]Maximizing weak signal in the reconstructions

[bookmark: _Toc533776856]Real space masking

Real space masks that follow the particle envelope are useful in the maximization of the SSNR as they exclude solvent. However, care must be taken to avoid inadvertently introducing spurious correlations by application of the same real space masks to data from each half-set [72]. For each half set, I apply a simple but effective iterative dilation algorithm to derive a soft-edged mask that loosely follows the particle’s envelope. I start from the highest intensity pixels found within an envelope defined by a smoothed version of the current map, and gradually relax the threshold for neighboring pixels of those included in the previous iteration, thereby enforcing connectedness while allowing weak density to contribute Figure 3.3. Including weak density based on spatial constraints means that flexible regions of macromolecules or complexes that have variable occupancy are retained by using such a masking approach that is based on connectivity. 













Fourier space masking[bookmark: _Ref520378291][bookmark: _Toc521143969][bookmark: _Toc533868922]Figure 2.3 Iterative real-space masking algorithm

· Median filter a copy of input map 

· Select pixels > 4 above the mean as seeds to exclude dust

· Dilate the binary mask progressively adding connected pixels above a gradually relaxed threshold

· Calculate the Euclidean distance from all zero pixels to the nearest non-zero, adding those that are < 10 Å.

· Smooth the binary mask three times and normalize to a max value of one.

· 



[bookmark: _Toc510187194][bookmark: _Hlk498865824]Image features of a given size distributed across the map in real space are co-localized in reciprocal space by spatial frequency, such that masks can be applied to specific resolution bands. High-resolution features degrade at a faster rate as a function of electron exposure, and so I have adapted for projections of tilted specimens the optimal exposure filter [73] described initially for SPA. Briefly, I apply the exposure-based filter to each projection during correction of the CTF phase inversions before reconstruction. Based on some anecdotal observations, this filter may be too severe, and future investigation into sample dependent filtering may prove fruitful in further extending the resolution.

[bookmark: _Toc533776858]3D-SF Calculation



The first term in the summation is the combined transformation of projection (i) into the tomogram and sub-tomogram (j) into the final average. The second term is the standard expression for the CTF limited to third-order Seidel aberrations [74], the third is the Radial weighting used for single-axis tilt geometry, and the fourth is the optimal-exposure filter as defined [73], Z is the number of projections in each tilt-series, and S the number of sub-tomograms.

[bookmark: _Toc533776859]Improved defocus determination 

Even with the advent of direct electron detectors, estimating the defocus in an image with a dose of only 1-2 e-/Å2 requires precise microscope alignment, optimized data collection schemes and a sample that provides abundant signal [48]. For cases where these conditions are not met, I have devised a new algorithm to maximize the information available for estimating the defocus value. For the initial defocus determination, I apply rotational averaging to the power spectrum as estimated from periodogram averaging, as described previously [75]. After obtaining this primary estimate of the mean defocus at the height of the tilt-axis, I then fit a 2D astigmatic function to the average power spectrum without rotational averaging, as is routine in SPA [76] using a low pass version of the power spectrum for background subtraction [77].

The number of periodograms available for coherent averaging is substantially fewer in tilted images due to the defocus gradient perpendicular to the tilt-axis. To increase the number of periodograms available for coherent averaging, the known defocus gradient may be used to resample the portion of the power spectrum between the first two zeros of the CTF [78], an approach currently used in IMOD to enhance the accuracy of the global defocus determination. This factor is determined to be the ratio of the given tile to the defocus at the tilt-axis (personal communication, David Mastronarde). I derived a more accurate scaling factor which extends this concept to resample all the CTF information. 

[bookmark: OLE_LINK12][bookmark: OLE_LINK13]The approach takes advantage of the discrete Fourier transform’s implicit dependence on the sampling rate (S) and image size (N) in a way that effectively maps an image with defocus  by changing where the spatial frequency is sampled in the image of the transform.

First, I note that the phase aberration of the CTF is dominated by the defocus term:

[bookmark: EQ2_2]          eq 2.2

From there it is simple to show that:













Any error due to the approximations made in Eq. 2.2 will become increasingly significant as , i.e., for images recorded closer to focus. To address this shortcoming, I use eq. 2.3 only as an initial estimate for the scaling factor, which is then refined for each row of tiles by maximizing the correlation measured between calculated 1D CTFs with defocus  at frequencies beyond the first zero crossing.

[bookmark: _Toc533776860]Improved CTF correction 

The two predominant software packages for tilt-series CTF correction are CTFPLOTTER and CTFPHASEFLIP [78] included in the IMOD package [79], and TOMOPS and TOMOCTF [75]. They differ mainly in their approach to background subtraction and amplitude restoration, the former relying on an estimate of the detector’s MTF, and the latter implementing a novel filter that acts similarly to a Wiener filter while tuning the strength of signal dampening in three different regions. Both approaches are sub-optimal as they rely on amplification of intensity in individual projections which are particularly noisy, and thereby reduce the fidelity with which the CTF amplitude modulations may be restored [27].

A more attractive approach is to correct the phases on the projections, and then to address the amplitudes after reconstructing the 3D map. One such approach uses a Wiener-like filter which takes an estimate of the SSNR(q) as an integral part of the statistical model underlying the adaptation of RELION for sub-tomogram averaging [40]. The 3D sampling model used in this case is also responsible for the phase correction of the individual particles, which I suggest is a poor choice given the high defocus (2-4μm) used in tomography as it inevitably leads to significant aliasing of the CTF unless images too large to be practical are used [80]. 

[bookmark: _Toc533776861]CTF phase correction 

Rather than extracting and correcting the phases on tiles, I compute the forward Fourier transform once for each projection and then multiply by the CTF for a given defocus, inverse transform and cut out the valid region. This helps to prevent aliasing as the projection images are typically 3-5K pixels square

[bookmark: _Toc533776862]CTF amplitude correction 

[bookmark: _Toc510187196][bookmark: _Hlk498866676]I have adapted a version of the “volume normalized Single-particle Wiener Filter,” and as our filter is necessarily a post-reconstruction filter, I start with equation eight from the original paper [81]. Note that equation 2.4 assumes the ad-hoc Wiener constant in equation 2.5 to be negligible.



The least squares estimate, which is a Wiener filtered reconstruction with an ad-hoc Wiener constant is defined below in Eq 2.5. I have made three major changes to the filter:



First, the 3D-SF is weighted for critically under-sampled regions, where the SSNR estimated by the FSC is less reliable. This is done by choosing a minimum acceptable sampling threshold, 0.2 * median( > 0 ), and then scaling  to replace less sampled regions by smoothly transition from this value to some new larger number chosen by the maximum in the original

Second, the spherical shells normally used in the FSC calculation are further subdivided into conical sections, which captures directionally anisotropic SSNR [82]. I currently use cones incremented over 30˚ with a half-angle of 36˚, such that they overlap substantially, producing a smooth estimate of the directional resolution. The impact of the amount of overlap and the sampling increment is not well characterized and should be investigated in future work.

Third, the average sampling over spherical shells (final term in the denominator of eq 2.4) that is used to scale the SSNR estimate to represent the average SSNR in a single sub-tomogram is replaced with a Gaussian smoothed version of the 3D-sampling function. Again, to account for anisotropy in the sampling.



[bookmark: _Toc533776863]3D-SF-compensated classification

[bookmark: _Hlk512256130]I use multivariate statistical analysis (MSA) for classification. This involves first defining a set of descriptors or features which are then searched for patterns common to a sub-group called a pattern-class, or simply a class. Grouping inputs by these patterns is accomplished with a clustering algorithm; commonly k-means, hierarchical ascendant classification (HAC) or a neural networks approach via a self-organizing map (nn-SOM), all three are implemented in emClarity via MATLAB’s statistics and machine learning toolbox, incorporated in the (free) MATLAB compiled runtime. Since the “missing wedge” produces significant artifacts that are specific to the orientation of each particle in the sample, but not necessarily to its identity or conformation, it has been challenging to resolve meaningful patterns in cryoSTAC data. Estimating the effect of the missing-wedge by using a binary mask has shown a good first order correction called wedge masked differences (WMDs) [83]. I replace this mask with our 3D-SF, which results in a more accurate estimate of the artifacts introduced by the MWE and allows higher resolution information to be considered in the clustering. The creation of these feature vectors is outlined in Figure 2.4.

Initialize  matrices in main memory, with M X N pixels, where d is the number of resolution bands, M is the number of pixels in the real space mask, N is the number of sub-tomograms in the data-set (or random-subset)

FOR each resolution band

FOR each sub-tomogram

· Rotate sub-tomogram into microscope reference frame, for even half-set include the transformation found in FSC calculation at the outset of the cycle.

· Rotate the 3D-sampling function by the particles orientation matrix and apply to the Fourier transform of the global average. 

· Form the difference of the masked average and the rotated particle

· Place the values under the mask into the storage matrix

End Loop

End Loop

· Center each row, by subtracting the mean. (This is the mean of all sub-Tomograms at this particular voxel)

· Determine the partial Singular value decomposition for the selected number of coefficients (usually ~ 30)  

· IF running on a partial data set, save each matrix  

· Load full data set, 

· FOR each resolution band

· FOR each sub-tomogram

· Rotate sub-tomogram into microscope reference frame, for even half-set include the transformation found in FSC calculation at the outset of the cycle.

· Project the data onto the highest variance directions  = 

· Concatenate each of these  matrices along the rows

· ELSE

· Concatenate each of the  matrices along the rows, such that each column is a feature vector with projections from each resolution band along its rows





[bookmark: _Ref520972882][bookmark: _Toc521143970][bookmark: _Toc533868923]Figure 2.4 Formation of feature vectors



[bookmark: _Toc510187197][bookmark: _Toc533776864]Multi-scale clustering

In a naïve approach, a clustering algorithm will interpret every individual voxel as an independent measurement along one dimension of an N-dimensional space, where N is the number of voxels in each sub-tomogram at the time of analysis. To reduce the impact of the “missing wedge” and to introduce a correlation between pixels, a smoothing filter is typically applied to the data before clustering. In effect, this tells the clustering algorithm that neighboring pixels are measurements of related features in the full sample space. Because our 3D-SF WMD feature vectors are robust to the “missing wedge” at higher resolutions, this idea may be used to introduce inter-voxel correlations at biologically relevant length scales. I do this by forming multiple feature vectors for each sub-tomogram, each being differentially bandpass-filtered, for example, ~ 10 Å to emphasize alpha-helical density, 18-20 Å for RNA helices or small protein domains, and ~ 40 Å for larger protein domains. This approach is similar to existing ideas that use the discrete wavelet transform with a limited set of coefficients, followed by clustering of the data reconstructed independently using a limited subset of wavelet basis [84]. In our case, each Gaussian kernel can be viewed as a simple wavelet, localized at the origin and defined in frequency by the biological length-scales mentioned above. The primary difference is that the coefficients are concatenated into a single matrix, allowing consideration of each length-scale simultaneously, providing a more comprehensive description of the feature space. In effect, this teaches the clustering algorithm to “see the forest for the trees.”

[bookmark: _Toc510187198][bookmark: _Toc533776865]Results

[bookmark: _Toc510187199][bookmark: _Toc533776866]emClarity improves resolution in sub-tomogram averaging

[bookmark: _Hlk510380100]Given the inherent difficulty in working with extremely low SNR cryo-EM data, and the sensitivity of the results to optimal selection of parameters[footnoteRef:14], I have elected to test and demonstrate our software using two publicly available data sets from the Electron Microscopy Pilot Image Archive [85] (EMPIAR). I show these published/deposited maps, juxtaposed with the maps obtained with emClarity in Figure 2.5. A total improvement in the yeast 80S ribosome from EMPIAR-10045 using RELION version 1.4 (EMD-3228 [43]) from 12.9Å to 7Å is achieved using emClarity (Figure 2.5 A). For the mammalian 80S ribosome from EMPIAR-10064 using pyTOM (EMD-3420 [51]), I obtained an improvement from 11.2Å to 8.6Å (Figure 2.5 B)[footnoteRef:15].  [14:  It is worth noting that the authors for the maps we use for comparison are also authors on the primary publications for their respective software packages, which helps to ensure the resolutions reported are likely optimal for the given data.]  [15:  This resolution is likely an underestimate. During revision, bugs were found that improved the yeast 80S resolution from 8.2 Å to 7Å, but due to time restraints, the mammalian 80S data could not be re-processed.] 


To evaluate the relative impact of each of the individual features implemented in emClarity, I incrementally included them into several reconstructions of the yeast 80S ribosome. To control for errors in alignment and to have a one-to-one comparison with EMD-3228, I used precisely the same particles and orientation parameters from the star files that accompany the raw data EMPIAR-10045. I compare each map to an external reference map derived from SPA (EMD-2275 [86]), via a cross-Fourier Shell Correlation (cross-FSC), starting from the RELION reconstruction as a control (Figure 2.5 C). The accuracy of our combined CTF correction approach, phases on oversampled 2D-tiles combined with optimal-exposure filtering and 3D-CTF based Wiener filtering is reflected in the magenta curve in Figure 2.5 C, which shows a significant improvement over the cross-FSC of the control, even though they are reconstructions using the same particles and orientations. The most substantial improvement comes from the tomo-CPR which is shown in green (and obviously includes the features in the magenta curve as well.) A more modest improvement is measured when I add in a per-tilt defocus estimation using our novel approach to resample periodograms from tilted images, as reflected in the cyan cross-FSC. 

In addition to improved resolution, as noted in Figure 2.5 B, there is a density (possibly sec-61) outside the peptide-exit tunnel of the ribosome (white arrow) that is present in the map derived with emClarity, but not in the map derived with pyTOM. Finally, in Figure 2.5 D, I show the density from a peripheral region with a rigidly docked model of the yeast 80S ribosome (PDB-4V7R) that underscores the difference in interpretability between the maps derived from the current state-of-the-art and emClarity. There is a definite improvement in both RNA and protein structures.



[image: ] A) Comparison of the sub-tomogram average of yeast 80S ribosome by RELION (EMD-3228) (left, at 12.9 Å resolution) and by emClarity (right, at 7.0 Å resolution), using the same raw data from the electron microscopy public image archive (3,233 Yeast 80S ribosomes, EMPIAR-10045). (B) Comparison of sub-tomogram averages of rabbit 80S ribosome by pyTOM (EMD-3420) (left, at 11.2 Å resolution) and emClarity (right, at 8.2 Å resolution), using the same raw data (1,400 Rabbit 80S ribosomes, EMPIAR-10064). Arrow points to an additional feature outside peptide exit tunnel only revealed with the more conservative masking procedure in emClarity. (c) Cross-FSC between the sub-tomogram averages by emClarity and the SPR cryo-EM map (EMD-2275) of yeast 80S ribosome. The first five curves use orientation parameters from the Relion 1.4 alignment, cumulatively including additional features from emClarity: magenta, improved CTF estimation and correction with the optimal exposure filter; green, one round of tomo-CPR; cyan, adding in the per-tilt defocus estimation; red, adding in explicit consideration of resolution anisotropy in the adapted single particle wiener filter. The final dark blue curve incorporates all these features plus the alignment parameters determined from scratch in emClarity. Representative views of sub-tomogram averages, with a rigid body docking of the yeast 80S atomic model (PDB-47VR) for visualization. Arrow and chevron highlight the resolved alpha helices and RNA structures, respectively.[bookmark: _Ref533867935][bookmark: _Toc533868924]Figure 2.5 Feature-wise improvement in resolution



The yeast 80S sample that was used has a strong preferential orientation which is reflected in the plot of the FSC as calculated over conical sections Figure 2.6 A, and a plot of the angular distribution in Figure 2.6 B, C. When the anisotropy in the SSNR that results from this preferred orientation is included in our adaptation of the single particle Wiener filter, another substantial improvement in the cross-FSC is made, shown in the red curve. The final and highest resolution curve represents an alignment carried out in emClarity with all features added, illustrating the additional impact these advances have on the accuracy in the orientation determination. 

[image: ]

[bookmark: _Ref520378578][bookmark: _Toc521143972][bookmark: _Toc533868925]Figure 2.6 Measuring anisotropic resolution 

(A) the plot of the FSC calculated over 38 conical shells (dashed lines) which range from 6.6 Å - 9.6 Å at the 0.143 cutoff, while the normal spherical shells (bold line) show the average directional resolution 7.0 Å. (B) Angular distribution from the alignment in emClarity shows a very similar distribution to that published for the yeast 80S EMD-3228.

[bookmark: _Toc510187200][bookmark: _Toc533776867]Classification in emClarity reveals multiple functional states

Using multi-scale clustering combined with 3D-SF compensated Principal Component Analysis (PCA), emClarity reveals subtle conformational differences and distinguishes minor populations from noisy and distorted images, as demonstrated with yeast 80S ribosome data from EMPIAR-10045, and mammalian 80S ribosome data from EMPIAR-10064. Such results were not previously obtainable using existing software [43,51]. 

[bookmark: _Toc533776868]Classification of non-translating Yeast 80S ribosomes

The ribosome is a complex molecular machine composed of RNA and protein which exists in many functional states and interacts with an array of co-factors. The major domains are named by their sedimentation coefficients (S, Svedberg) where the eukaryotic ribosome is composed of two major domains dubbed the large subunit (60S) and small subunit (40S). While the ribosome has a well-conserved catalytic core which mediates the peptidyl transferase reaction [87], it is increasingly subject to more complex regulation in higher organisms resulting in an expanded set of both RNA and protein components. RNA expansion segments are found primarily at the periphery of the ribosome and are typically highly dynamic and challenging to resolve in structural analysis. One particularly good example is es27, an approximately 150 Å RNA helix which predominantly adopts one of two conformations separated by about 90⁰, shown in orange in Figure 2.7. The first situates the end of the RNA helix just outside the peptide exit tunnel on the 60S subunit (es27pet, Figure 2.7 A, B, D, E) and the second points toward the tRNA exit site (es27L1, Figure 2.7 C). This dynamic domain is generally observed in cryo-EM maps as a superposition of these two states, as is the case with the currently published results by Maximum likelihood (ML) classification in RELION [43]. A notable exception being ribosomes with accessory complexes bound at the peptide exit tunnel, e.g., Sec61, are known to bias the conformation to the es27L1 [88]. 

Another example of a highly dynamic ribosome domain is the L1 stalk – comprised of protein L1, and RNA helices h75, h76 and h79 from the 25s portion of the 60S subunit [89]. The motions of L1 are well correlated with several defined functional translocational states as observed using single-molecule FRET and SPA [90]. Using emClarity, three oL1 conformational states are discerned as isolated from the thermal (stochastic) fluctuations of the non-translating yeast 80S ribosome: L1open, L1int, and L1closed shown in green with variable occupancy in the five classes in Figure 2.7. In addition to isolating dynamic states, identifying very sparsely populated classes is a particularly important and challenging task for classification of cryo-EM data. In Figure 2.7 E the dissociated 60S subunit occupying a minor class, only ~4% of the data set or roughly ~140 sub-tomograms. In contrast, the ML approach implemented in RELION found three classes, one designated as a junk class and two relatively indistinguishable classes [43]. This minor population could only be isolated in the case where feature vectors built from the projection on the principal components from at least three length-scales were simultaneously clustered. 





[image: ]

[bookmark: _Ref520378806][bookmark: _Toc521143973][bookmark: _Toc533868926]Figure 2.7 Classification of stochastically fluctuating yeast 80S domains

Classification of yeast 80S ribosome (EMPIAR-10045) with full 3dCTF compensated missing-Wedge and multi-scale PCA in emClarity. (A-E) Four major classes and a minor class contributing 96.9% of sub-tomograms are shown with number and percentage of contributing units and resolution indicated below. The remaining 3.1% comprised a 6th minor class with no significant structural features which were removed from the analysis. The highly dynamic L1 protuberance (green) and RNA expansion-segment 27 (orange) are captured in distinct conformations in these classes. Lower row, enlarged views of the L1 protuberance in an (F) intermediate position bound to P/E tRNA shown in orange (class a), (G) fully closed interacting with the 60S central protuberance (class b), and (H) fully open (class c,d,e) respectively. L1 protuberance from PDB 3J78 colored magenta (rpL1,h76,h79) docked for visual aid. 







[bookmark: _Toc533776869]Improved estimation of MWE shown in 3D variance maps

[bookmark: _Hlk515536721]Regions of significant variance across a data set may be visualized by overlaying a 3D “variance map” with the average structure. The “missing wedge” produces significant artifacts that are specific to the orientation of each particle in the sample, but not necessarily its identity or conformation. Left uncorrected these artifacts obscure meaningful differences among particles, reflected in a diffuse variance across the dataset which can be seen in Figure 2.8 H-J. A previously demonstrated technique for estimating the effect of the “missing wedge” by using a binary mask, called “wedge masked differences (WMDs)”, was shown to be a good first-order correction [83]; however, the accuracy of this model breaks down when higher-resolution features are considered (Figure 2.8 D-F). To allow higher-resolution information in the classification, I replace this binary wedge mask with our 3D-SF, resulting in a more accurate estimate of the artifacts introduced by the “missing wedge” as shown in Figure 2.8 A-C. It is worth noting that this does not “fill in” any missing data. Instead it estimates what a given particle should look like by distorting the current sub-tomogram average by that particle’s 3D-SF, and clusters based on the difference between this expected value and the observed particle.
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[bookmark: _Ref520378911][bookmark: _Toc521143974][bookmark: _Toc533868927]Figure 2.8 missing wedge compensated 3D variance maps improve significantly with accurate Fourier sampling consideration via 3D-SF

Illustration of the impact and compensation of the missing-wedge at multiple length scales. Far left column, the total average filtered by Gaussian kernels of variable width to correlate voxels over the given length scales. Center column, eigen-images composed of the average plus the eigenvector, sorted from the most variance explained (1) to least (21). Black and white arrows show an example where es27 density is absent or present in the L1 position. Right three columns show 3D-variance maps in red over-laid with the average as a visual guide. (A-C) Variance is concentrated on L1 (green arrow), es27 (orange arrow), E-site tRNA, and the mRNA channel entrance (blue arrow) at all resolutions.  (D-F) Regular WMDs are dominated by noise at all but the lowest resolution. (H-J) Negative control shows no meaningful concentration of the variance due to severe missing wedge bias. Black scale bars represent 100 Å. White scale bars represent 300 Å.



[bookmark: _Toc533776870]Mammalian 80S ribosome

In contrast to the non-translating yeast specimen, the mammalian ribosomes imaged in EMPIAR-10064 were prepared from clarified rabbit reticulocyte lysate using a buffer low in Mg2+ but lacking polyamines, such that cofactors should co-purify excepting perhaps some loss of E-site tRNA [91]. I extracted 3,090 ribosomes from the four tilt-series deposited as the “mixed-CTEM” data set on EMPIAR.  emClarity identified five predominant classes as shown in Figure 2.9 A-E. Three of these classes show ribosomes adopting a non-rotated 40S conformation with variable tRNA, eEF1A occupancy (class I-III), while two very similar classes adopted a mid-rotated (~5-6⁰) 40S conformation with eEF2 present (class IV-V). 

A rigid body docking of the full 80S mammalian ribosome in the non-rotated POST state from PDB-4UJE [92] showed very clear agreement with the conformation of the 40S subunit, which combined with the co-factors observed suggest classes II and III are POST trans-locational ribosomes differing in retention of E site tRNA while class I is most similar to the “sampling” state. Classes IV and V both have eEF2 bound and differ in rotation of the 40S subunit of 5.9⁰ and 5.0⁰, respectively. A rigid body docking of the yeast 80S structure of eEF2 from PDB-4UJO [93] into classes IV and V show overall good agreement with their eEF2•sordarin•GDP position and our density. There are, however, noticeable differences, particularly in domain IV of eEF2 which is known to be dynamic and plays a key role in translocation [90,94]. I analyzed these differences qualitatively by comparing the rigidly docked model solved with Sordarin present (Figure 2.9  J-K) with the same model after running a short (1ns) Molecular Dynamics Flexible Fitting (MDFF) (Figure 2.9  H-I). The antibiotic Sordarin is highly specific for binding to fungal eEF2 and permits GTP hydrolysis, yet prevents conformational changes that result in the subsequent release of eEF2 after translocation [95]. Although Sordarin is not present in the sample under study here, there is a pronounced difference in electron density between domains III-V of eEF2 in class V (Figure 2.9 I black arrow) that coincides with the Sordarin binding pocket. This density is not present in class IV which also exhibits a rotation of eEF2-domain IV (Figure 2.9  J). 

[image: ]

[bookmark: _Ref520378986][bookmark: _Toc521143975][bookmark: _Toc533868928]Figure 2.9 Classification using multi-scale PCA with fully compensated CTF estimators reveal five distinct translocational species from only 3,090 particles. 

Multi-scale Clustering with 3D-SF compensated feature vectors reveals five distinct translocational classes from 3,090 particles. (A-C)  Classes I-III represent a post-translocational state with the co-factors shown in the lower row from the inter-subunit surface with the 60S subunit removed for clarity. (D-E) Classes IV-V have a mid-rotated 40S and a swiveled head corresponding to a pre-translocational intermediate. (F) Class IV is shown in the dark blue overlaid with class III in gold, showing the mid-rotated 40S state. (G) Outline from a low-pass filtered overlay as in (F). (H) MDFF of eEF2 (orange) with the density from class-IV starting from PDB-4ujo (cyan ribbon) shows similar conformation in eEF2 domains II, III, and V, while eEF2 domain IV deviates the most. (I) Same as (H), but with class V showing smaller deviations. (J-K) The rigid body docking of PDB-4ujo into the density from class IV/V respectively shows overall close agreement, except the stronger density between eEF2 domains III & V in (K). Arrows point to this density which is occupied by the antibiotic Sordarin in PDB-4ujo but is not present in the sample used in this study.

[bookmark: _Toc510187201][bookmark: _Toc533776871]Discussion

With the rapid expansion of cryo-EM resources available at major universities and with the development of shared use models like eBIC at Diamond Light Source, the ability to collect high-quality cryo-EM and cryo-ET data is now arguably less limiting than the ability to effectively process the data. I have created a set of image processing routines incorporated into the program emClarity, which have demonstrated much greater accuracy in alignment and image restoration compared to current state-of-the-art approaches as demonstrated by using the same raw data sets which are publicly available. 

While the improvement in resolution can be analyzed feature by feature, showing the largest impact is from the refinement of the tilt-series alignment using tomo-CPR, taken together they are greater than the sum of their parts. The per-tilt defocus determination and adaptation of the single particle wiener filter are robust and need little adjustment from default parameters. 

The parameter space for tomo-CPR is less well explored: the weighting of the background tomogram relative to the mapped back sub-tomogram is one such parameter which the user may need to adjust if unsuitably large image shifts are found in the solution from tiltalign. 

Our approach for image classification in the presence of the “missing-wedge” effect by combining the correction for wedge differences with multi-scale clustering which helps to encode biologically relevant information for the clustering algorithms gives promising results, and some clear improvements would further advance its utility. While the goal is to anticipate and remove MWE bias in the analysis, the approach does so by concentrating the variance due to the MWE in a few eigenvectors. Currently, the user needs to recognize these and remove them from consideration as feature vectors used in clustering. While this requires some prior knowledge, the “streaky” appearance has been consistent across a wide variety of specimens analyzed. Future work may include training a simple convolutional neural network to recognize these streaky features and then distributing this pre-trained CNN with emClarity to suggest to the user which eigenvectors to consider for subsequent processing. 

The application of these advances to study samples in an environment with relaxed biochemical restraints ex vivo shows promise, having isolated functional intermediates of translocation from a cell lysate. Looking at classes IV and V of the mammalian ribosome suggests that the binding of the antifungal Sordarin, which stabilizes an interaction between eEF2-domain III/V, is re-enforcing an on-pathway interaction that exists in functional ribosomes. This also hints that nearby intermediates on the energy landscape may be found by improving the statistics available via a larger sample. In addition to isolating well-resolved class averages with minor populations, and finding nearby minima in the energy landscape, our approach also results in the production of accurate 3D-variance maps which will be beneficial to exploring macromolecular dynamics. 

By highlighting key regions of dynamic behavior, our approach should be useful for direct analysis and the design of complementary biophysical experiments. While these advances in classification are in the pre-processing and dimensionality reduction stage, future work to explore modern approaches in pattern recognition and machine learning will likely establish another substantial improvement in the technique.

Ultimately, I hope that emClarity will advance the study of structural biology in situ, as methods used to thin cellular samples, particularly cryo-FIB milling, also remove gold-fiducial markers, making the alignment of the tilt-series a major limiting factor. 

[bookmark: _Toc510187202][bookmark: _Toc533776872]	Conclusion

I have developed emClarity, an image processing package for GPU-accelerated high resolution cryoSTAC. The programs run on Nvidia graphics cards with > 11Gb memory and benefit from fast disk storage as do most other cryo-EM software. To demonstrate the improvements possible with emClarity, I have shown maps at substantially improved resolutions compared to those obtained in the original studies, where the authors are experts in their respective programs. I also reveal previously obscured conformational sub-populations from two publicly available data sets. With the release of the HIV-1 data from Schur et al. I have demonstrated that emClarity can achieve the highest-resolution maps from cryoSTAC to date, reaching 3.1 Å. 

[bookmark: _Toc533776873]Software and Instructional Material

Detailed methods aimed at reproducibility for the results in this chapter are included in the Appendix. 

The software is freely available from https://www.github.com/bHimes/emClarity

Tutorial documentation and videos at  https://www.github.com/bHimes/emClarity/wiki
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[bookmark: _Toc533776875]Functionally Dynamic Quaternary Structure of Bacterial Chemotaxis Signaling Arrays Determined  by cryoSTAC.

Bacteria move in response to their local environment by switching their flagellar motors between clockwise and counterclockwise rotation, producing a biased random walk. This switching is controlled by a network of transmembrane signaling receptors, enzymes, and adaptor proteins, which form extended and dynamic arrays in the inner membrane of E. coli. How the organization of these arrays enables the cell to simultaneously integrate signals from multiple ligands, while also maintaining sensitivity over large ligand concentration gradients is not well understood.  We determined the structure of the core-signaling unit [96] (CSU) of the E. coli chemotaxis receptor signaling array at 11 Å resolution using cryo-Electron Tomography with sub-tomogram averaging and classification. We built a pseudo-atomic model of the core-signaling unit using the high-resolution crystal structures. Extended molecular dynamics simulations of the 64 million atom unit-cell, revealed a conformational switch in the histidine kinase CheA related to signaling. My contribution to this work was the development of a new computational approach to address specimen heterogeneity and preferred orientation and deriving a map of a trimer of CSU at 11 Å resolution.

[bookmark: _Toc510187218][bookmark: _Toc533776876]Introduction

Bacteria have evolved to inhabit practically every environmental extreme to be found, from the acidic lumen of the human stomach to the deepest ocean trenches [97]. Changes in nutrient availability, pH, temperature, osmolarity, and many other conditions require bacteria to constantly monitor external conditions and adjust their structure, physiology, and behavior [98]. Chemotaxis is the movement of an organism toward or away from a chemical signal [99]. In bacteria, the locomotive force necessary for chemotaxis is generated by the rotation of one or more filamentous protein structures called flagella [100]. The flagella are under the control of a two-component signaling regulatory system; a transmembrane receptor/ histidine kinase complex serves as the sensor which phosphorylates the diffusible response regulator CheY (Figure 3.1 A). The balance of phosphorylated and apo-CheY determines either a clockwise or counter-clockwise rotation that creates a pattern of tumbling or smooth swimming respectively (Figure 3.1 B). The balance of these two states results in a biased random walk [101] along with a concentration gradient (Figure 3.1 C). 
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(A) The essential components needed to generate a CCW signal overcoming the motors “default” CW bias. (B) The direction of flagellar rotation determines whether a coherent bundle is formed causing the cell to either run forward or not resulting in “tumbling” which serves to randomize the orientation of the cell and the direction of the subsequent run. (C) Chemotaxis results from a controlled switching between these two states culminating in a biased random walk up an attractant gradient or down a repellant gradient.





Early experiments demonstrated the robust nature of the chemotactic behavior in E. coli, maintaining responsiveness to changes in ligand concentration over a range of 6 orders of magnitude. For example, the detection threshold and saturating concentrations for Aspartate are 30 x 10-9 M  and 100 x 10 -3 M respectively [102,103]. 

The cell stores a record of recent environmental conditions in a pattern of methylated glutamate residues on the transmembrane receptors name methyl-accepting chemotaxis proteins (MCPs)  (black and white dots, Figure 3.2). When a positive stimulus is detected (binding attractant) the receptor bound kinase is turned OFF, biasing the cell toward a run (Figure 3.2 A) by reducing the pool of phospho-CheY. Reducing the kinase activity of CheA also reduces the activity of the methylesterase CheB allowing the constitutively active methyltransferase CheR to “catch-up” which slowly returns the receptor to the ON state [104,105]. It is the balance of receptors biased ON or OFF that determine the actual output signal, but how this balance is affected by the quaternary organization of the signaling arrays is not understood. 

A major limitation in interpreting the biochemical and genetic information available is the lack of a detailed structural model of the assembled array. The primary goal of this study is to derive the cryoEM structure of the signaling array, upon which assemble a pseudo-atomic model of the array system using known high-resolution crystal structures of the array components (Figure 3.2 B). 

[image: ] (A) Cartoon representing the simplest complete signaling pathway from a positive or negative stimulus. (B) Component crystal structures are available for modeling the full chemotaxis receptor core signaling unit. (C) Side view of the CSU which is a dimer of trimers of receptor homo-dimers, the homodimers within each trimer may respond to different ligands. Each domain of the five CheA domains is labeled and placed in the approximate location expected in the CSU. (D) Looking down through the membrane, view of the CSU. (E) A trimer of CSUs and (F) along with hexamer of CSUs with putative 6-fold CheW ring shown with the question mark. Except for labels, panel A, B-F reproduced with permission from [106], and B adapted from [30].[bookmark: _Ref526337823][bookmark: _Toc532758066][bookmark: _Toc533868930]Figure 3.2  Overview of chemotaxis signaling and core-unit structure





The minimal assembly needed for signaling is a dimer of trimers of MCP dimers, along with a dimer of CheA and two copies of the adaptor protein CheW [107,108], referred to as the core-signaling-unit or CSU (Figure 3.2 C, D). The CSUs are thought to assemble into trimers which fill out into a pseudo p6 lattice [109,110] Figure 3.2 E-F. 

The organization of the structural domains of CheA varies in the published crystal structures and is at odds with the available crosslinking, biochemical, and ESR data [111–113]. Defining the positions of these domains, particularly the CheA-P3 dimerization domain, CheA-P5/Receptor interaction (CheA-P5 is structurally homologous to CheW) and the CheA-P4 Kinase domain is of particular interest. To better understand how the activity of CheA is regulated by the MCPs we have developed an in vitro reconstitution system that recapitulates the signaling arrays found in cells, with a minimal functional set of well-defined components. 

The reconstitution of heterologously expressed proteins also permits us to manipulate the signaling state represented by the in vitro arrays. By knocking out the CheR and CheB genes in the expression host, the methylation dependent function of the receptors may be controlled and studied in vivo and in vitro by using genetic mutation of glutamate to glutamine at these key residues to produce an analog for the methylated glutamyl residue [114]. We can then look to the WT pattern as QEQE, a mix of ON/OFF signaling, EEEE biased strongly OFF, and QQQQ biased strongly ON [115].

While this in vitro system provides a well-defined specimen with abundant signal for structure determination by cryoSTAC, it also presents several challenges for existing image processing algorithms, including severely anisotropic resolution resulting from the preferred orientation imposed by the lipid monolayer support, as well as substantial heterogeneity due to the conformational plasticity of the core signaling complex. Once these hurdles have been addressed, it would be desirable to then look at the complexes in native cell membranes. 

[bookmark: _Toc510187219][bookmark: _Toc533776877]Experimental Procedures

A broad overview of experimental procedures supporting the structural determination of the CSUs is provided below. For details on the lipid-monolayer array reconstitution, carried out by Dr. Jun Ma; tomographic data collection, carried out by Dr. Peijun Zhang and Dr. Gongpu Zhao; biochemical analysis of the key amino acid residues suggested by the model, designed and carried out by Dr. Frances Alvarez; and aspects of the computational modelling carried out by Dr. C. Keith Cassidy the reader is referred to our publication in eLife [30].

[bookmark: _Toc510187220][bookmark: _Toc533776878]Protein expression and purification

Plasmids and cell strains used in the study were gifts from Dr. Sandy Parkinson, University of Utah, and Dr. Bob Weis, University of Massachusetts Amherst. Component proteins were expressed in E. coli strain RP3098 which is a null mutant for all Che proteins as well as the chemoreceptors. Tar, CheA, and CheW were expressed from plasmids induced with IPTG. Expression and purification conditions varied slightly, but all proteins produced good (~6mg/Liter culture) yield and purified to high homogeneity. 

[bookmark: _Toc510187221][bookmark: _Toc533776879]Signaling array reconstitution

A lipid monolayer system containing Ni2+-NTA lipids was used to reconstitute the chemotaxis arrays. A mixture of 9:18:18 mM of TarCF:CheA:CheW in a buffer containing 75 mM Tris- HCl, pH 7.4, 100 mM KCl, 5 mM MgCl2 was applied to a Teflon well, over which a lipid monolayer containing 2:1 DOPC:DOGS-NTA-Ni2+ lipid mixture, at 2 mg/ml concentration was gently overlaid and incubated overnight to allow the signaling arrays to assemble. Following assembly, a holey carbon coated electron microscope specimen grid was laid over the monolayer and gently peeled back, transferring the monolayer supported array to the specimen grid.

[bookmark: _Toc510187222][bookmark: _Toc533776880]Cryo-Electron Tomography

Because the monolayer is delicate, it required special care in blotting from just the non-sample side of the grid before being plunge-frozen in liquid ethane.  The grids were pre-coated with gold beads before picking up the monolayer sample. Data were imaged at 200 KeV in a Tecnai Polara microscope (FEI, OR) at a nominal magnification of 39,000x giving a nominal pixel size of 3 Å/pixel as recorded on a Gatan 4k x 4k CCD detector. The total accumulated dose was 60 e-/Å2 collected using a bi-directional tilt-scheme starting at 0˚ proceeding in 3˚ increments to +70˚, returned to 0˚ in -3˚ increments to -70˚ using a target under-focus value of 5-8 µm.

[bookmark: _Toc510187223][bookmark: _Toc533776881]Tilt-series alignment and tomogram reconstruction

Twenty tilt-series with negligible mechanical or physical artifacts were selected for image processing and tomographic volume reconstruction. The tilt-series were roughly aligned using cross-correlation in IMOD with default parameters [79]. The tilt-series alignments were further refined using fiducial-free “area matching with geometry refinement” as implemented in the Protomo [38] software package. The resolution of the reference was used in template matching was bandpass filtered to 40 Å to suppress noise and include information only before the first zero-crossing of the contrast transfer function. Alignments were initialized at a binning of 4, with an ~12 Å nominal pixel-size, which was incrementally decreased each time the image shifts dropped below 1 Å. Using the refined geometry parameters, the raw projections were centered and rotated so that the tilt-axis coincided with the Y-axis of the micrographs. The CTF was corrected on the 2D projections with phase flipping using tomoCTF [78]. A strip-width of 180 Å was chosen based on the thickness of the sample at high tilt.  Tomograms were reconstructed using simultaneous-iterative refinement (SIRT) as implemented in IMOD. I observed that at least 30 iterations were needed to avoid strong low-pass filtering of the algorithm when it is not run until convergence. These were calculated using a GPU, thereby removing an additional interpolation in the reconstruction step, by avoiding the use of cosine stretching of the input projections. Using the observed threshold of 30 iterations for approximate convergence, volumes calculated from 20 SIRT iterations, providing higher contrast, were used for the initial cycles of sub-tomogram extraction and alignment, while those from 60 SIRT iterations were used for the final cycles.

[bookmark: _Toc533776882]Template matching

To extract sub-tomograms, initial positions of the receptor complexes, respective to a Cartesian grid defined by each tomogram, were approximated by using a template matching algorithm implemented in MATLAB with a reference that emphasized the receptor dimers with little influence from the histidine kinase CheA. Both the template and tomograms were low-pass filtered to 40 Å and binned to a 9 Å pixel size. This resolution, as well as a coarse angular search, were chosen to limit the potential for model bias at the target resolution of 10 Å. Following template matching, the data were randomly split into two halves, which were processed independently for all subsequent steps.

[bookmark: _Toc533776883]Sub-tomogram alignment and classification

Sub-tomogram alignment and classification were carried out using custom scripting of the image processing utilities from the Protomo i3 package [38]. Alignment and classification were carried out simultaneously, where multiple references representing a trimer of CSUs and a hexamer of CSUs were selected from class averages. The classification was performed using Multivariate Statistical Analysis and Hierarchical Ascendant Classification. 

In each cycle, eight class averages were produced from each half data set by focusing the analysis on the CheA portion of the complex using a cylindrical mask, offset from the center of the volume in Z. Initial references for each half set were selected from these class averages by choosing the “best” (visually) trimers and hexamer of CSUs. These references were then used to align class averages chosen to each have ~50 contributing sub-volumes. 

In the following cycle, the raw sub-tomograms were subject to multi-reference alignment, but only a small in-plane and translational adjustment were allowed. This alignment by classification was repeated five times while allowing the automatic exclusion of high variance outliers after the second cycle. After the final cycle, class averages containing either the trimer of CSUs or hexamer of CSUs were manually selected and averaged together for each half data set. 

The corresponding gold-standard FSC was calculated to evaluate the reliability of the data. Soft cylindrical masks were used, rather than spherical masks, given the extended slab like nature of the specimen. The final averages of the trimer of CSUs or hexamer of CSUs contained 3,000 sub-tomograms or 300 sub-tomograms respectively, and an empirical correction for the CTF envelope was applied for sharpening

To assess the degree of resolution anisotropy, conical Fourier shell correlations from the two independent half data sets were calculated along each of the principal axes, as well as the ten axes bisecting them [82]. The averaged density map of a trimer of CSUs was then low-pass filtered according to the conical FSCs along three principle axes by using cones with a half angle of 30˚.

[bookmark: _Toc510187224][bookmark: _Toc533776884]Results

Our analysis of the in vitro reconstituted arrays, revealed the domain organization of CheA in the CSU, as well as the quaternary structure of the hexamer of CSUs to ~ 18 Å and the trimer of CSUs to ~ 11 Å. I also show that CheW does form 6-membered rings at the center of the hexamer of CSUs, and by mapping the sub-tomogram positions back to the tomograms confirmed the array organization in vitro matched the previously observed in vivo pseudo-p6 lattice. 

[bookmark: _Toc510187225][bookmark: _Toc533776885]In Vitro reconstituted array re-capitulates observed in vivo array 

[bookmark: _Hlk520380567]Incubating CheW and CheA with TarCF tethered to a lipid monolayer is sufficient to produce extended arrays of signaling complex (Figure 3.3 A), which recapitulate the pseudo-p6 order previously observed in vivo [110] (Figure 3.3 B). At the center of each 6-fold symmetry center, there is a clearly defined ring of protein density at the same height in the protein interaction region as the CheA-p5/ CheW ring at the 3-fold symmetry center. This confirms the presence of a CheW only ring which has been speculated (as alluded to in the introductory figure) to add stability to the array (Figure 3.3 C). 



[image: ]

[bookmark: _Ref526586819][bookmark: _Toc533868931]Figure 3.3 Trimer and Hexamer of CSUs

A) Mapped back locations of the trimers and hexamers as identified by Multivariate Statistical Analysis reveal the pseudo p6 lattice, 3-fold centers marked by blue dots, and 6-fold centers marked by orange dots. Sub-tomogram averages of B) the timer of core-signaling units and C) the hexamer of core signaling units, which displays a ring of density that is CheW  [30]. 



This approach has also revealed that the degree of methylation correlates with how ordered the arrays are, where the un-methylated OFF state produces extended but disordered arrays visible at moderate resolution (~3 nm) in cryo-electron tomograms (Figure 3.4 A), while the methylated ON state produces extended planar arrays with apparent long-range order (Figure 3.4 B ). Note that the contrast appears higher due to the extended low-resolution (1 – 5 nm) order in the QQQQ arrays. It is an open question in the field to what degree the array disassembles and what role this may play in signaling regulation [116].

[image: ]

[bookmark: _Ref526586858][bookmark: _Toc533868932]Figure 3.4 Receptor signaling state determines long range array order

(A) Tar-CF CheA/CheW ternary complex in 4E (OFF) state form extended but loosely packed arrays. (B) Tar-CF CheA/CheW ternary complex in 4Q (ON) state form extended and highly ordered, planar arrays. Scale bars 100 nm.



[bookmark: _Toc510187226][bookmark: _Toc533776886]Domain architecture revealed

The arrays in this study should be biased slightly toward the ON state as they have the “neutral” QEQE receptor modification. In agreement with cross-linking data from a number of studies the CheA-p5/CheW interface I is clearly resolved and the density at interface II is weaker as emphasized with the black arrows in Figure 3.5 A. This is in keeping with the hypothesis that as arrays are biased to the kinase ON state, the arrays become more ordered by strengthening interface II. By extension likely also forming 

[image: ]

[bookmark: _Ref520380414][bookmark: _Toc521143980][bookmark: _Toc533868933]Figure 3.5 Domain architecture of the core-signaling unit and its higher order assemblies 

A) A trimer of CSUs with the backbone atomic model docked in viewed from the membrane looking into the cytoplasm. The density between the receptor trimer of dimers matches the expected 4-helix bundle for the CheA-p3 dimerization domain. In this density from WT, I observe a strong density at CheA-p5/CheW interface 1, while interface 2 is much weaker. B) CSU rotated 90˚ showing the fit of CheA. C) Slices through three different positions of the trimer of CSUs shown in A, highlighting the 20A receptor TODs, the interfaces in the protein interaction region, and the fitting of the CheA-p4 kinase domain at the most membrane distal position. D/E highlight the hexamer of CSUs with the CheW only ring marked as W while the CheA-p5/CheW ring is marked as well [30].

stronger CheW only rings. We also resolve for the first time the location of the dimerization 4-helix bundle formed by CheA-P3 domain (Figure 3.5 B) allowing us to establish the organization of the CSU to unprecedented resolution.

[bookmark: _Toc533776887][bookmark: _Toc510187229]Examining receptor arrays in situ

To build on these findings further, the arrays need to be studied in a lipid bilayer. We previously showed that the membranes left after E. coli cells that are gently lysed by expressing the phage “E” gene were thin enough for TEM [117]. While the inner membrane does retract from the cell wall (Figure 3.6 A), we show that the chemotaxis receptor arrays remain intact (Figure 3.6 B, C). In addition to the array ultrastructure in (B), we show the trimer of CSUs averaged in panel C.





[image: ]

[bookmark: _Ref526586913][bookmark: _Toc533868934]Figure 3.6 Integrity of the inner-membrane following lysis

A) The change in osmotic pressure upon cell lysis causes the inner membrane (chevron) to retract from the peptidoglycan layer (single arrow) and the outer-membrane (double arrow). B) A large patch of chemotaxis receptor signaling complexes is shown intact within the retracted inner-membrane. Arrows denote the same features as in A. C) Sub-tomogram average of the trimer of receptor CSUs from the patch in B at ~ 20A resolution. Each trimer of receptor dimers (black circles) is bridged by the soluble kinase CheA (black arrow). Scale bars 100 nm. Figure adapted from [117]









[bookmark: _Toc533776888]Reducing false positives in situ template matching

Compared to the in vitro reconstituted arrays, these lysed cellular specimens provide several new challenges. The identity of the of macromolecules present is not well-defined, the contrast in the images is substantially worse (Figure 3.7 A), and the membranes themselves present an additional obstacle to particle detection as they produce strong non-specific correlation peaks with target proteins when searching tomograms of these cell ghosts using template matching.

 	I show promising initial results that improve the signal to noise ratio of the cross-correlogram (output of the matched filter) by up to seven-fold. Here the SNR is defined as the peak height of the true cross-correlation peak compared to the mean intensity of cross-correlation values in a local neighborhood. In Figure 3.7 B. the ratio of the SNRdecoy/SNRnormal is plotted as a function of the relative resampling rate. As expected a small change in the pixel size ~ 95% sampling, produces the strongest effect.

I have also tested this approach using purified ribosomes which provide a visual conformation of the location of the real peak, and obtain similar results; however, the optimal change seems to be larger at ~ 85% sampling rate. It is currently unclear if the sample dependence may be calculated, or if a simple optimization routine might be included either at the beginning of template matching or as a stand-alone program. Further testing is needed, with realistic ground-truth simulated data.

.

[image: ]

[bookmark: _Ref526586943][bookmark: _Ref520654252][bookmark: _Toc521143983][bookmark: _Toc533868935]Figure 3.7 Improving SNR in template matching using a decoy for noise floor subtraction

A) central 20 nm from a cellular tomogram of an e-gene lysed E. coli cell, where the dashed box surrounding a patch of chemotaxis receptors shown in the cross-correlation maps in C-E. Scale bar 100 nm. B) Plot illustrating the ratio SNRdecoy/SNRnormal as a function of the percent scaling of the decoy. C) CCC map of the patch in A, D) ccc-decoy map of the patch in A, with 95% scaled decoy, E) same as D with positions used to calculate B marked with green. Scale bars C-E 10 nm.

Discussion

The in vitro reconstituted bacterial chemotaxis signaling arrays we developed provide images of well-defined components with several advantages for cryoSTAC analysis, including large numbers of molecules in a very thin layer of ice. This enabled us to solve the structure of the assembled components of the CSU at unprecedented resolution, permitting the construction of a pseudo-atomic model for the extended array as described in our eLife paper. 

This was possible since we could for the first-time be confident in our placement of the kinase CheA-P3 dimerization 4-helix bundle, as well as proving the presence of the CheW only ring which we believe serves to stabilize the active form of the receptor array. 

The CheA-P4 domain of the kinase proved to be highly dynamic as suspected from EPR and Fluorescence studies; this is consistent with our density map, where CheA-P4 has a poorer resolution. Looking forward, we should be able to apply the classification approaches we have developed for the in vitro arrays, to these dynamic complexes in situ, given that we may achieve an improved SNR with data collected using new direct electron detectors as well as imaging conditions more favorable to high-resolution structure determination, particularly avoiding very far from focus.

Despite these successes, the monolayer also creates substantial difficulty due to the strong preferred orientation the specimen assumes. We were able to implement a successful alignment strategy to both prevent this from biasing the alignment, as well as accounting for it in the final map reconstruction. The ultimate limitation on the resolution, however, was the noise from the CCD based detector, combined with the very high defocus used which coupled together create a strong envelope function attenuating the structure factor amplitudes.

[bookmark: _Toc510187230][bookmark: _Toc533776890]Conclusion

The study of the E. coli chemotaxis receptor signaling arrays using in vitro reconstituted lipid monolayers has provided valuable insight into the organization of the bacterial chemotaxis core signaling unit, and its higher-order assemblies. These findings also suggest how increased large-scale order may play a role in signaling regulation. By imaging a restricted set of components in vitro, we can assign their location with a high degree of certainty. This should result in the ability to carry out more informed biophysical studies of these dynamic assemblies, leading to a clearer understanding of cooperativity in array function.
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[bookmark: _Toc533776892]High-Resolution Studies of HIV-1 Virus Like Particles

HIV/AIDS is a significant global health concern, and development of new therapeutics is central to its effective treatment, as the genetically hypervariable virus rapidly evolves resistance. A relatively new class of antiretrovirals termed “Maturation inhibitors” have shown initial promise, yet so far have failed to deliver a clinically successful drug. Structural study of the viral maturation process is complicated by the irregular nature of the immature HIV capsid. Cryo-Electron Tomography with sub-tomogram averaging and classification (cryoSTAC) is well suited to this problem but is limited in the resolution attainable. Using our newly developed software “emClarity,” I have pushed the envelope of this technique to 3.1 Å, producing the highest resolution map published to date by cryoSTAC, using a dataset of bevirimat stabilized immature HIV Gag virus-like particles from John Briggs group [118]. I also use emClarity to investigate the structural consequences of a single point mutation in the spacer peptide-1 Threonine 8 to Isoleucine in HIV-1 Gag polyprotein.

[bookmark: _Toc533776893]	Introduction

HIV/AIDS remains a significant global health concern has resulted in over 35 million deaths so far, with roughly 2 million new infections each year [119]. Treatment of HIV is complicated by the virus integrating its genome into the host-cell genome which can result in a dormant phase of the viral life-cycle. Whether or not the virus lies dormant can be cell specific, and depends on whether pro-viral integration occurs in host genes related to cell growth [120]. If so, the viral life cycle may exist in a steady state for much of the infection; where infection, cell death, and subsequent turnover are in balance, resulting in a large number of replication cycles [121]. Each cycle allows for mutations to the viral genome, a fact which is exacerbated by the low fidelity of the HIV reverse transcriptase (HIV-RT). Taken together, this results in a rapid accumulation of genetic diversity creating a range of quasi-species within an infected individual [122], making the development of consistently effective therapeutics very challenging.

	While the first anti-retroviral drugs for HIV were approved as early as 1987, it was not until the development of protease inhibitors in 1996 that HIV could be effectively treated [123]. Not that PR inhibitors were some “magic bullet” by themselves, rather they could be combined with existing RT inhibitors to form a potent triple-drug cocktail called combination therapy, also known as highly-active antiretroviral therapy (HAART) [124]. Since that time additional combination therapies have been formulated based on the development of new fusion inhibitors, nucleoside-analog reverse transcriptase inhibitors (NRTIs), non–nucleoside reverse transcriptase inhibitors (NNRTIs), integrase inhibitors, and protease inhibitors [125]. The efficacy of these cocktails comes at some expense as long-term treatment has revealed several toxicities: myopathy; sensory neuropathies, including distal symmetric poly-neuropathy, inflammatory demyelinating polyneuropathy, mononeuritis multiplex, progressive polyradiculopathy, and autonomic neuropathy; lipoatrophy; mitochondrial toxicity, including hyperlactatemia lactic acidosis, and hepatic steatosis [126]. 

The primary viral structural protein to initiate its assembly is the gag polyprotein which encodes six covalently linked proteins: matrix (MA), capsid (CA), nucleocapsid (NC), spacer-peptide 1 (SP1),  spacer-peptide 2 and p6 (Figure 4.1 A) [128].  The structures of the isolated MA, CA, and NC proteins are known from a combination of X-ray crystallographic and NMR studies, shown in connected by flexible linkers in (Figure 4.1 A).  

Gag polyproteins assemble at the host membrane in a structure having the appearance of radial spokes. This initial structure is transformed by well-coordinated proteolysis of gag starting with the SP1-NC juncture, followed by MA-CA, and culminating the cutting of the CA-SP1 juncture (arrows Figure 4.1 A, B) which is required for the virus to mature [129].  

A new class of anti-viral compounds has emerged that prevent new viral particles from maturing by blocking this final cleavage by stabilizing the immature capsid lattice [127]. I focused my efforts on determining the structural mechanism underlying the maturation process in the late stages of the viral life cycle when the virus is preparing to infect new cells.
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[bookmark: _Ref520372596][bookmark: _Toc521143984][bookmark: _Toc533868936]Figure 4.1 HIV-I life cycle.

 Schematic showing the primary structure and domain organization of the HIV-I gag polyprotein. (A) Atomic models from x-ray crystallographic and NMR studies arrange in radial spokes from the membrane proximal MA inward. The relative orientations depicted are only approximate given the large degree of flexibility in the linkers. (A, B) arrows indicate cleavage sites for PR. (C) Schematic illustrating the infection cycle of HIV. Figure adapted from [130]





A maturation inhibitor (MI), 3-O-(3’,3’-dimethylsuccinyl) betulinic acid, a derivative of betulinic acid, was isolated from the leaves of Syzygium clavifloru [131]. This compound, also called PA-457 or bevirimat (BVM) was subsequently shown to act a late stage in gag processing, preventing the proteolytic cleavage from p25p24 (CA) [132]. Another MI PF-46396 has been isolated through drug screens of replicating in vitro viruses [133]. Initial phase I and II clinical trials of BVM showed that the drug was generally well tolerated and produced significantly reduced viral loads in a single-dose response [134]. Ultimately the sensitivity of the drug is extensively modulated by high baseline polymorphisms in the CA-SP1 region, particularly in clade B genotypes [135,136]. 

	Keller et al. used cryo-ET to compare the ultra-structure of virions where the final gag cleavage at the CA-SP1 juncture was blocked by either sterically or allosterically by BVM or by genetic changes to the CA-SP1 cleavage site (L364I and M368I, a.k.a. “CA5” mutant [137].) They observed a layer of density, attributed to CA-SP1, which remained organized in a hexagonal lattice in contrast to the CA5 mutant which did not [138]. This finding suggests BVM inhibits HIV-protease by blocking its action allosterically through a stabilization of  the immature Gag lattice. It then follows that a high-resolution structure of the CA-SP1 helical bundle may permit rational design of other stabilizing interactions that act similarly.

The recently reported cryoSTAC structure of CA-SP1 + BVM at 3.9 Å by Schur et al. revealed for the first time a six-helix bundle [48] formed by SP1 and the C-terminal residues of CA. The concurrently published crystal structure of isolated CA-CTD/SP1 by Wagner et al. further supports the conclusion [139]. Interestingly, a density appearing stronger in the center of that 6-helix bundle was attributed to BVM, though the C6 symmetry applied precludes any conclusive identification.

 	An alternative stabilization of the immature lattice has been identified which is due to a single point mutation in Gag, threonine-371 to isoleucine [140]. This is residue 8 in SP1, and following the literature, I will refer to it as gag-T8I. Sequence numbers reference gag polyprotein (a.k.a. pr55-gag ) UniProtKB/Swiss-Prot: P03347.3. 

[bookmark: _Toc533776894]EXperimental Procedures

Our lab has expressed the Gag protein containing the T8I point mutation in E. coli cells, leading to self-assembly in a crowded cellular environment. Assembled Gag virus-like particles (VLPs) were purified from the cell lysate via ultra-centrifugation through a sucrose gradient. 

[bookmark: _Toc533776895]Cryo-ET and Image processing of HIV-1 gag + BVM

Schur et al collected these data. under very similar conditions [48], including the use of a newly developed tilt-scheme, the “Hagen” or “Dose-symmetric” scheme, designed to concentrate the electron dose in the low angle tilt [141]. I used the same movie alignment strategy as with the Gag T8I data. However, the aligned sums were Fourier cropped to 1.0 Å rather than the physical Nyquist of 1.35 Å. Cropping to physical Nyquist is typically done to remove aliasing of high-resolution imaging artifacts. However there is useful information beyond physical Nyquist [142], and I reasoned that the higher sampling rate might help to suppress signal degradation at high resolution from the multiple interpolations in the cryoSTAC pipeline.

Rather than selecting individual VLPs to reconstruct (as a matter of convenience) each tilt-series was divided into four quadrants, and the template matching results were cleaned automatically using a new feature in emClarity that uses constraints based on neighboring peaks to decide if a hit is likely a false positive or not. For this, I enforced any retained peaks to have at least 5 (of the expected 6) neighboring peaks within 100 Å and ± 20˚. 

[bookmark: _Toc533776896]Cryo-ET and Image processing of Gag T8I

Dr. Jiying Ning prepared gag T8I particles, Dr. Xiaofeng Fu froze cryoEM grids with 10 nm gold beads, and Dr. Alistair Seibert collected tilt-series at the electron bioimaging center (eBIC) at the Diamond Light Source, UK. Eight dose fractionated frames were recorded for each tilt angle, in super-resolution mode with a Gatan K2 direct electron detector on a bioquantum energy filter, with a physical Nyquist sampling rate of 1.35 Å per pixel. Data were collected using a bi-directional tilt scheme starting from 0˚, proceeding to -51˚ then 0 to +51˚ in 3˚ increments accumulating a total electron dose of 120 electrons/Å2.

I aligned dose-fractionated movie frames using the full field of view with the program unblur [73], without applying an exposure filter, which was done later in emClarity. The summed movie frames were concatenated into an image stack and aligned using the 10 nm gold-fiducial markers in IMOD [79]. I note that at this magnification, 5 nm beads would have provided sufficient signal for tracking while obscuring less of the sample.

These tilt series were transformed and aligned according to their tilt geometry (rotation, mag, shift) and then cropped in Fourier space to the physical Nyquist of 1.35 Å. Individual virus-like particles were selected for further analysis from bin ten tomograms using scripts provided with the emClarity software. Estimation of the defocus including astigmatism was carried out for each tilted projection, and this information was used for 3D-CTF correction in emClarity.

[bookmark: _Toc533776897] Results

Using emClarity and the excellent data of Schur et al. from the EMPIAR database (EMPIAR-10164) I have reached the highest resolution using cryoSTAC to date, at 3.1 Å. I additionally present an initial map for gag-T8I at 5 Å that suggest the density attributed to the maturation inhibitor BVM may indeed be correct. These preliminary findings also suggest that on improvements in data collection, the gag-T8I sample should reveal new insights into any structured interactions between CA-SP1-NC/RNA. Specific changes to imaging include selecting areas with a higher particle density to improve defocus estimation and a total number of asymmetric units available for averaging, as well as collecting data closer to focus to improve the coherence of high-frequency information by reducing the impact of small errors in CTF correction.

[bookmark: _Toc533776898]Near-atomic resolution using cryoSTAC and emClarity

The HIV-1+BVM tilt-series that resulted in the publication of the 3.9 Å map from cryoSTAC [48] have been released during the final stages of the writing of this thesis, EMPIAR-10164. A second publication by the same group showed they could reach a nominally identical resolution (but noisier map) with only 5-tilt series (~10% of the total) by additionally correcting for the curvature of the Ewald sphere (“3D-CTF”). The full data set then reached to 3.4 Å and was the highest resolution map from cryoSTAC published before this work [143]. On a first pass at the data using emClarity, I reached a resolution of 3.6 Å using the same 5-tilt series subset of the data. 

In Figure 4.2 A I compare the density for a single CA monomer from 10% of the data using emClarity (left) to that from the full data from EMD-3728. The backbone from model PDB-5l93 is overlaid. Our density on the left compares favorably with the published map from the full data-set on the right, clearly showing the pitch of the backbone helices and several side chain densities. The densities themselves are somewhat “clunky” which is consistent with the resolution measured.
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[bookmark: _Ref520372429][bookmark: _Toc521143985][bookmark: _Toc533868937]Figure 4.2 HIV-1 + BVM at 3.6 Å from 10% of EMPIAR-10164

A) Partial dataset map of CA monomer using emClarity (left) compared to that from the published 3.4 Å structure EMD-3728. B) Representative alpha helix from CA-NTD showing side-chain densities from the respective maps in (A) 



The full data set reaches 3.1 Å in emClarity and is clearly better resolved than the published 3.4 Å map juxtaposed in Figure 4.3 A. The gag hexamer has large pockets of solvent that would be included in a simple geometric mask (a cylinder for example) and failure to consider this would substantially underestimate the resolution [28]. One popular method to reduce the impact of the solvent on the resolution estimation is to calculate a very tight mask and then to correct the FSC for any effects that mask may have had on the resolution estimation [72]. 



Briefly, this is accomplished by calculating the uncorrected FSC of the data under the mask (), as well as the data under the mask with high resolution noise replacing the signal ), and removing any spurious correlation found only in , as in equation 4.1 .



This approach is susceptible to masking out real density, particularly for flexible specimen, which would lead to an overestimation of the resolution if care is not taken to prevent this. An alternative is approach is to compensate the FSC curve by estimating the fractional volume of the sample that may be contributed to the solvent. 



Here  is estimated by using the ratio of the volume under the mask to the volume occupied by protein, which is in turn estimated from the molecular weight [144]. This density estimation approach is convenient for purified and well isolated samples, however it i,s not, suitable for heterogeneous assemblies where the mass may not be accurately known. As an alternative, I use our iterative mask dilation to estimate the non-solvent fraction as all positive density in the connected region determined in the masking. Given that the procedure is designed to err on the side of including more features, any systematic error in this approach would tend to over-estimate the solvent content and thereby err on the side of under-estimating the resolution. In this case, I show that the results from both approaches give the same resolution at the 0.143 cutoff, and very similar overall FSC curves, with the tight mask compensated FSC shown in red and the solvent compensated FSC shown in dark blue in Figure 4.3 B. Further support for the measured resolution is shown in the clear improvement amino acids with small side chains like alanine (Figure 4.3 C). One region of particular interest is highlighted with the orange callout box in panel A which is expanded in Figure 4.3 D. Schur et al., interpreted this density as a stacking interaction between Y277-P279, which they hypothesized may help to stabilize the interdomain linker. I show that this density was likely an artifact, and that Y277 appears to form a hydrogen bond with neighboring H194. The SP1 helix, which was the primary focus of the original paper is shown side by side in Figure 4.3 E (callout from blue oval the in A).
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[bookmark: _Ref520373147][bookmark: _Toc521143986][bookmark: _Toc533868938]Figure 4.3 emClarity achieves the highest resolution sub-tomogram average to date

 (A) EMD-3782 CA-monomer at 3.4 Å resolution (left) and emClarity at 3.1 Å (right). (B) “gold-standard” FSC between half sets of HIV-1 Gag (EMPIAR-10164). Red, fsc “true” tight mask with correction via phase randomization. Blue,  soft mask with solvent corrected fsc. Both approaches indicated a resolution of 3.1 Å at the 0.143 cutoff (dashed line). (C) Iso-surface view scaled to match the leucine residue shows cleaner backbone, andresolution of even small side-chains like alanine (blue arrow). (D) Expanded view the CA-NTD/CTD linker (orange box in panel a) rotated by 180˚. The putative Y277-P279 stacking interaction does not appear in our map, however, emClarity shows a strong density bridging Y227-H194 which are ~ 3 Å apart indicating a hydrogen bond. (E) the CA-SP1 helix (blue dashed oval in panel a) as another example of the improved resolution of important regions in the map. 

[bookmark: _Toc533776899]Gag-T8I mutation stabilizes the immature lattice

I show that the T8I mutation stabilizes the immature lattice particularly well in the very C-terminus of CA where continuous density with CA-NC and RNA density are shown in Figure 4.4 A. I additionally find that the density that is coordinated by two rows of lysines in the Schur et al. structure is also present in our map, indicating it is likely the common small molecule inositol-hexaphosphate (IP6) as previously hypothesized, and recently confirmed [145]. Despite a well resolved 6-helix bundle in the CA-SP1 region, our map lacks any density in the region that Schur et al. hypothesized to be BVM (black arrow Figure 4.4) This seems to confirm that the density they attribute to BVM is correct. I also observe an additional coordinated density (this time by methionines) at the very end of the CA-SP1 region in the HIV-1 + BVM data set. 
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[bookmark: _Ref520655044][bookmark: _Toc510186560][bookmark: _Toc521143987][bookmark: _Toc533868939]Figure 4.4 Comparison of T8I vs. BVM stabilized VLPs

	(A) Cross-section through the CA-lattice as stabilized by the T8I mutation. The mutation is at the very c-terminus of the CA-SP1 helix, marked by the red-dashed line in all panels. (B) Cross-section through the CA-lattice as stabilized by the MI BVM. Blue box highlights the CA-SP1 6-helix bundle as magnified in C and D. The red oval in C/D highlights the region coordinated by two rows of lysines, which are seen more clearly in the T8I map. The red dashed line marks the location of T8(I) and the end of the CA-SP1 helix. Clear continuous density is seen in the T8I stabilized lattice in panel C, which should be CA-NC. D) The black arrow indicates additional density in the center of the 6-helix bundle that is attributed to BVM. The absence of this density in the T8I map further supports this hypothesis. 

[bookmark: _Toc533776900]Discussion

Using emClarity, I have extended the resolution achievable by cryoSTAC to 3.1 Å. This required a very large data set, of ~ 960,000 asymmetric units. The B-factor applied was 150 Å2 which is substantially worse than that obtained using SPA. I suspect the following issues: First, every time the electron beam applied to the specimen (each tilt acquisition) there is a sizeable unresolved motion in the early milliseconds of exposure. This means data collection with multiple exposures will necessarily have more blurring per accumulated dose than a single exposure. Second, the exposure per movie frame is between 0.3 and 0.5 electrons/ Å2, which leads to an additional b-factor due to further motional blurring by limiting the accuracy of the frame alignment. Third, multiple interpolations are currently required to align the tilt-series, reconstruct the tomograms and finally average the sub-tomograms. 

The latter could be rather easily addressed by writing a program to reconstruct the sub-tomogram average directly from the tilt-series. The first two might be addressed by increasing the tilt-increment thereby reducing the number of “initial” exposures, while also increasing the total dose in each frame. Not only should this improve the movie frame alignment, but it should also improve the accuracy of the tomogram-constrained projection refinement in emClarity.

[bookmark: _Toc533776901]Conclusion

The HIV Gag T8I mutation provides a valuable specimen for studying the stabilization of the immature HIV gag lattice, which is a promising target for anti-retroviral maturation inhibitors. This mutant produces a more stable CA-SP1 bundle as compared to HIV gag+BVM, as evidenced by the extended region resolved in the gag-T8I map. Using the advances in emClarity, the highest resolution achievable with cryoSTAC has been pushed to 3.1 Å revealing noticeably cleaner side-chain densities. This is an important step for the field as well as the advance in our understanding of HIV biology.
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[bookmark: _Toc520659085][bookmark: _Toc533776903]Summary of projects and future prospects

Cryo-ET can resolve a broad range of length scales critical for connecting the structural details of molecules and their assemblies, to their broader cellular function. I have created a library of software called “emClarity” which extends the resolution attainable by cryoSTAC to 3.1 Å. While spatial resolution in cryo-EM/ET is assesed by the FSC which measures the self-consistency of the data, it is also relevant to consider the conformational resolution of different sub-populations of the data into homogeneous groups or classes. I demonstrate considerable improvements in the classification of compositional and conformational heterogeneity as compared to current state-of-the-art software. 

	Classification in cryoSTAC is complicated by the missing-wedge effect, which distorts each particle according to its orientation in the microscope. This creates strong features in the resulting image that are unrelated to the specimen. The missing-wedge effect is usually modeled by a simple binary wedge mask, which I have demonstrated is inadequate at spatial resolutions better than 2 nm. Accordingly, I have developed methods for a more accurate estimation of what information is present in a given sub-tomogram via the “3D-sampling function,” integrating established ideas from SPA.



In chapter 2 I detail an approach accounting for spatially anisotropic resolution and its impact on both the alignment process and the interpretation of the final structure. This sort of anisotropic resolution is the result of preferred specimen orientation, which is a common problem in cryo-EM. I also discuss extensions to improve the correction for the aberrations of the contrast transfer function. I have tried to make the tools as easy to use as possible while also remaining flexible enough to be useful for the informed computational experimentalist. I expect that it would be of great utility to have a simple graphical user interface to simplify further the use of emClarity such that it may enjoy a broader impact on the community.



	The first routine developed in the library that became emClarity was the template matching program, aimed at one of the most significant hurdles in cryoSTAC – locating particles of interest in the 3D tomogram. This development of a fast template matching algorithm using GPUs, able to locate molecules in crowded environments was brought about in our studies regarding novel sample preparation of intact cell membranes, discussed in chapter 3. It has proven to be very useful in other areas, like isolate HIV-gag particles which provide too large some sub-tomograms to pick by eye. Key ideas advanced include efficient means of calculating local image statistics, challenges regarding computational expediency, and the means to reduce the impact of challenging sources of structural noise that result in many false positives, e.g., carbon film and biological membranes. This is of critical importance if the technique is to be useful in samples obtained from in situ specimens, particularly of FIB milled lamella.

 

Finally, in chapter 4 I have presented exciting results demonstrating cryoSTAC at resolutions where even small side chains are discerned. I also present preliminary findings that suggest the single-point mutation at CA-SP1, T8I may be very useful for high-resolution studies of immature HIV capsid stability. These results also seem to confirm the binding of the maturation inhibitor Bevirimat at the center of the CA-SP1 6-helix bundle.



In addition to new algorithmic approaches, new data-collection schemes could also be investigated. In particular, it would seem that collecting fewer exposures, each with more total electron dose, would be beneficial for a couple of reasons. First, the large beam-induced motion that occurs each time the specimen is exposed to the electron beam occurs for each tilted image. This means the first few frames of each movie contain little high-resolution information and ultimately that a tilt-series contains less useful high-resolution information than a single exposure micrograph. Second, all of the tools developed here, particularly the CTF refinement and tomoCPR would benefit from the stronger signal in the individual projections. 

Looking forward, the newest generation of GPUs to be released are supposed to have 32 Gb of memory compared to the 12 Gb emClarity has been designed to run with. This, combined with the wealth of resources being invested in machine learning approaches promise to provide a fertile ground for the future development of high resolution in situ cryoSTAC. 
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[bookmark: _Toc520659043][bookmark: _Toc510187204]Datasets 

The datasets used in emClarity processing are from Electron Microscopy Public Image Archive (EMPIAR), including the yeast 80S ribosome (EMPIAR-10045), the mammalian 80S ribosome (EMPIAR-10064), and the HIV-1 immature Gag (EMPIAR-10164).  

[bookmark: _Toc520659044]emClarity programs

emClarity is run from the command line and is easily scripted to run in a manner most suited to a user’s particular project. A text parameter file is used to input project specific details, like microscope parameters, mask dimensions, and angular search ranges. I typically make a copy of the parameter file for each cycle of averaging and alignment, which I refer to as paramC.m, where C refers to the cycle number. The meta-data of each project is tracked in a binary database which is named using the “subTomoMeta” parameter. Each tilt-series may have multiple areas slated for reconstruction, tiltN M refers to tilt-series “N” and reconstruction area “M.” A brief description of the major functions (in italic) in emClarity is below:

emClarity init paramC.m

Read in the desired dimensions for each sub-region of each tilt-series to reconstruct, initialize the subTomoMeta (metadata binary.)

emClarity ctf estimate paramC.m tiltN

estimate the ctf for a given tilt-series N

emClarity reScale mapNameIN mapNameOUT AngPixIN AngPixOUT CPU/GPU

	resample a map to a new pixel size, particularly for template matching.

emClarity templateSearch paramC.m tiltN M reference.mrc symmetry gpuIDX

Reconstruct tomogram M from tilt-series N without ctf correction, run template matching on GPU # gpuIDX, randomize results at symmetry-related positions.

emClarity ctf 3d paramC.m 

	Run 3d-CTF corrected weighted-back projection. 

emClarity avg paramC.m N RawAlignment

Every cycle begins by creating a sub-tomogram average, calculating the “gold-standard” FSC, and weighting the average accordingly while compensating for amplitude attenuation by the CTF to produce references for the alignment.

emClarity alignRaw paramC.m N 

	Run the alignment

emClarity removeDuplicates paramC.m N

cleans out any sub-tomograms that have drifted to the same position. Not needed every cycle.

emClarity tomo-CPR paramC.m N

Run tomogram constrained particle refinement; this is generally done before a step down in binning, e.g., bin4  bin3.

emClarity ctf update paramC.m N

Only needed after a run of tomo-CPR, this updates the tilt-series geometry in the subTomoMeta, and also resamples the raw tilt-series applying rotation, shift, and magnification scaling all in Fourier space to reduce interpolation losses of high-resolution information.



Since the tilt-series alignments are updated, and usually also the binning is reduced, a new round of 3D-CTF reconstructions need to be made.

If the classification is to be run, the cycle starts the same, but with the “flgClassification” parameter enabled.

emClarity avg paramC.m N

emClarity pca paramC.m N previousPCA

Run 3D-sampling function compensated PCA at each length scale specified in the “pcaScaleSpace” parameter. The command line argument previousPCA is always zero in the first run.  If a random subset (25% or ~3000, whichever is larger) is to be analyzed by setting “Pca_randSubset”, then a subsequent round of pca must be run with “previousPCA” set to one to project all of the sub-tomograms along the principal component axes.

emClarity cluster paramC.m N

	Cluster the data based on selected eigenvectors from the pca step.

emClarity avg paramC.m N Cluster_cls

Notice the last argument (a string) which creates a montage of the class averages selected in the parameter file. Classes with different memberships may be selected. 

At the end of processing, the half-sets may be aligned and combined by running:

emClarity avg paramC.m N FinalAlignment

Align and combine half-sets, optionally creating multiple, differently sharpened maps.



[bookmark: _Toc520659045]Image processing

The alignment and classification procedures are generally identical for all the samples, except for the HIV-1 Gag data, which were not classified and had C6 symmetry applied. All parameters are unique to each dataset, including the angular search range and iterations used. emClarity is only tested on Linux operating systems, and all references to command line operations are to be understood in that manner.

[bookmark: _Toc520659046]Project set-up and coarse tilt-series alignment

For each specimen, I make a project directory, which I will refer to generically as “projectDir.” During processing, several sub-directories will be created by emClarity in addition to the user created directories for the raw data, which I recommend calling “rawData” and a folder for the cleaned data that must be named “fixedStacks.” 

The HIV-1 Gag data consist of dose fractionated frames, which I aligned using the program “unblur” version 1.0 included in the cisTEM package. The aligned frames were summed and saved without any exposure-based filtering because this is handled later inside emClarity.

All tilt-series were aligned using the default parameters in IMOD version 4.10.12 using the eTomo interface, with the available gold-fiducial markers. For the ribosome datasets, all gold fiducials (~5-7/ tilt) were selected, while for the HIV-1 Gag data ~20-30 closest to the protein and distributed on both surfaces of the ice were selected. Local alignments with fixed XYZ global coordinates were run for the HIV-1 Gag data only. After generating the final aligned stack, the gold beads were located using find beads3d. Only the fiducial model describing the location of the beads is needed, so they were not erased. Note: for EMPIAR 10045 the pixel size in the header must be corrected to 2.17 Å before beginning. This may be done with the IMOD program alterheader from the command line.

The files describing the projection transformations, any local alignments, and fitted tilt-angles are copied to the fixedStacks directory and renamed.

>$ mv specimen_name_1_fid.xf		projectDir/fixedStacks/tilt1.xf

>$ mv specimen_name_1_fid.tlt 		projectDir/fixedStacks/tilt1.tlt

>$ mv specimen_name_1_local.xf		projectDir/fixedStacks/tilt1.local

>$ mv specimen_name_1_erase.fid 		projectDir/fixedStacks/tilt1.erase

If outlier pixels are removed in IMOD, this “fixed” stack may be moved to projectDir/fixedStacks/tilt1.fixed, otherwise you may just link the raw data.

>$ cd projectDir/fixedStacks 

>$ ln -s ../rawData/specimen_name_1.st	tilt1.fixed

This is repeated for all tilts-series, of which there are 7, 4, and 41 in the yeast, mammalian, and HIV-1 Gag data sets respectively.

[bookmark: _Toc520659047]CTF estimation

The mean defocus at the tilt-axis was then estimated in emClarity for each tilt-series using a 3.5 ± 2.5 µm window covering the range of expected defocus values for all three data sets.

For the HIV-1 Gag data, the per-tilt defocus was determined using “emClarity ctf refine” to produce the power-spectra, which were subsequently fit using ctffind4 with the –amplitude-spectrum input flag and default parameters.

For the yeast ribosome data which have a thin layer of carbon providing an extra signal in the power spectrum, the per-tilt defocus values were refined during tomo-CPR. To do so, the height of the cross-correlation peak is maximized by scanning through a small range of defocus values as applied to each reference tile [146]. 

[bookmark: _Toc520659048]Selecting sub-regions for further analysis

The selection of sub-regions of each tilt-series for reconstruction is defined by a text file with the minimum and maximum values in x, y, z for each region. The script “recScript2.sh” provided with emClarity was used to first create reconstructions of each tilt-series at a binning of 10 and thickness of 300 covering the full X, Y dimension of the images. Each region is then defined while viewing the reconstruction in IMOD by making an IMOD model with six points per region, xmin, xmax, ymin, ymax, zmin, zmax, in that order.

A second run of “recScript2.sh” creates a projectDir/recon directory and converts these model files into the text files read in by emClarity to be used for the rest of the procedure. These are called tilt1_recon.coords and list the tilt-series base name, number of regions to reconstruct, and for each region the width, first and the last slice in y, thickness, x-origin offset, and z-origin offset.

The ribosome data were divided on the x-axis into two regions per tilt-series. The HIV-1 Gag data were divided into quadrants. Additionally, the flag “fscGoldSplitOnTomos=1” is set in the parameter file for the HIV-1 Gag data, so that the even/odd half sets are divided based on tomogram, not randomly on sub-tomograms. This is necessary to avoid mixing neighboring particles which would violate the gold-standard hypothesis.

[bookmark: _Toc520659049]Template matching

References were derived from SPA EMD-3228 [48] (yeast 80S ribosome), EMD-5592 [147] (human 80S ribosome) and EMD-8403 (HIV-1 Gag) [148] and rescaled to the full pixel size of each data set using “emClarity reScale.” These references were then passed to “emClarity templateSearch” binned to achieve a nominal pixel size ~ 8-12 Å depending on the size of the specimen. All maps and tomograms are automatically low-pass filtered to 40 Å resolution by default in emClarity. Non-CTF corrected tomograms are reconstructed by the templateSearch program as needed for template matching. 

The results for the ribosome dataset were cleaned manually by comparing the maximum intensity projection maps and the binned tomograms overlaid with an IMOD model showing the x,y,z coordinates of each peak detected. 

For the HIV-1 Gag data, emClarity removeNeighbors was used to automatically clean the results based on geometrical restraints. Only peaks that had five neighbors within 100 Å and also oriented within 20˚ were retained, resulting in 179,168 sub-tomograms to start. (This number dropped to 162,213 in the first round of averaging as particles too close to the edge to allow padding by 1.5 x particleRadius were excluded.

Particles with symmetry pose a special challenge to all missing-wedge compensation approaches as any error in the compensation will result in the particle looking different at its symmetry-related orientations. To help with this, I set the orientation found in template matching to any of the equivalent symmetry-related positions, and subsequently only search an angular range small enough to not reach the neighboring positions.

[bookmark: _Toc520659050]Iterative alignment

Each cycle of alignment is initiated by calculating averages of the two half sets, calculating the gold-standard FSC, and then applying re-weighting each average to generate a FOM weighted reference.

I alternate searching over just the azimuthal and polar angles, and an in-plane search. For each specimen, I started at a binning of chosen to produce a pixel size of ~7-8 Å. I then go through three rounds of averaging and alignment, followed by removing any positions that may have drifted to overlap using “emClarity removeDuplicates.” I then run a round of tomo-CPR, which requires updating the aligned tilt-series and the 3d CTF corrected tomograms. 

>$ emClarity ctf update paramX.m 

>$ emClarity ctf 3d paramX.m 

This reconstruction is generated at a binning one finer than the previous, and the same pattern was repeated until reaching full sampling. 

[bookmark: _Toc520659051]Classification

The ribosome data for the yeast 80S were classified in a single pass, using three resolution bands 10,18, and 28Å, 36 of the top eigenvalues were saved, and five from each band were selected ( parameter Pca_coefficients=[7:11;7:11;1:11] )] for clustering via kmeans the class averages were then generated by running 

>$  emClarity avg paramX.m X cluster_cls

The ribosome data for the mammalian 80S were classified in two passes. First, they were split into groups displaying either a rotated or un-rotated 40S small subunit. To do this, the subTomoMeta file (projectName.mat) was copied to two new files: project_smallSU.mat and project_largeSU.mat. The classes are selected for removal by viewing the class average montage in IMOD and selecting any point in the region of a given class. These models are then used to remove their contributing members in the subTomoMeta.

>$  emClarity geometry paramX.m X RemoveClasses [X,0,0] STD. 

Since both branches of the project access the same raw data, it is convenient to remain in the same project directory, and all subsequent output will be identified by the new subTomoMeta base name.

A subsequent round of classification was run using 12,22,32 Å resolutions. Unlike the yeast 80S which had some Eigen images with clear missing wedge bias, revealed as “streakiness” in the density, the mammalian displayed sufficient true variability to overpower the noise from the missing-wedge bias, and all 36 eigenvectors from each resolution band were used in clustering.

[bookmark: _Toc520659052]Analysis

Models PDB-3J78 for yeast were rigid body docked in using Chimera. 

Models PDB-4UJO for mammalian were docked in using Chimera, in combination with the “Segger” plugin.

Models PDB-5l93 were docked in using Chimera, refined in real-space using Phenix version 1.13-2998-000, and manually edited in COOT version 0.8.9.
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