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This paper presents a theoretical and experimental study of noise control in enclosures 

using a T-shaped acoustic resonator array.  A general model with multiple resonators is 

developed to predict the acoustic performance of small resonators placed in an acoustic 

enclosure.  Analytical solutions for the sound pressure inside the enclosure and the volume 

velocity source strength out of the resonator aperture are derived when a single resonator is 

installed, which provides insight into the physics of acoustic interaction between the enclosure 

and resonators.  Based on the understanding of the coupling between the individual resonators 

and enclosure modes, both targeted and non-targeted, a sequential design methodology is 

proposed for noise control in the enclosure using an array of acoustic resonators.  Design 

examples are given to illustrate the control performance at a specific or at several resonance 

peaks within a frequency band of interest.  Experiments are conducted to systematically validate 

the theory and the design method.  The agreement between the theoretical and experimental 

results shows that, with the help of the presented theory and design methodology, either single or 

multiple resonance peaks of the enclosure can be successfully controlled using an optimally 

located acoustic resonator array. 

 

PACS numbers: 43.50.Gf, 43.50.Jh, 43.20.Ks  
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I. INTRODUCTION 

 

Enclosures are widely used in civil and industrial systems.  Typical examples, such as 

cabinets of ground vehicles, nacelles of helicopters, and payload fairings of launch vehicles, 

exhibit a commonality of having relatively compact interior dimensions.   Low-frequency noise 

problems in such small enclosures are difficult to deal with since only compact noise control 

devices can satisfy the spatial limitations.  When properly designed, a passive method using an 

acoustic resonator can effectively absorb acoustic energy from a targeted acoustic mode 1-9.  

Ideally, it is desirable to integrate resonators into the host structure to save space, particularly for 

small enclosures.  However, it is difficult to meet this requirement with a classical Helmholtz 

resonator because of its bulbous profile.  In order to overcome the drawbacks of conventional 

resonators, considerable effort has been devoted  to developing new ideas and solutions.10   A 

good example is the recent work by Li and Vipperman7,8,11, who developed a multi-modal design 

theory of a long T-shaped acoustic resonator (TAR) for the low-frequency noise transmission 

control in an Expendable Launch Vehicle (ELV) payload fairing.  A TAR consists of two 

mutually perpendicular tubes: a long closed-end tube and a short open-end tube.  Compared with 

conventional Helmholtz resonators, one of the biggest advantages offered by the TAR is its large 

aspect ratio.  This unique feature makes it possible to integrate a TAR into the host structure as a 

structural component, such as a beam, a pillar, or an enhanced rib, which relaxes the space 

requirement in the implementation.  In the previous work, a TAR array has been structurally 

integrated into an ELV payload fairing, resulting in a 6-9 dB Noise Reduction in noise 

transmission control. 7,8   
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Various theoretical and experimental studies on the acoustic interaction between an 

enclosure and conventional Helmhotz resonators have been reported in the literature.  Fahy and 

Schofield presented a theoretical model involving acoustic interaction between an enclosure and 

a single Helmholtz resonator,12 which provides early explicit insight into the fundamental 

physics of the acoustic interaction.  Later, Cummings developed a multi-modal theory to deal 

with the acoustic coupling problem when introducing a Helmholtz or quarter-wave resonator 

array into the enclosure.13  Each resonator was modeled as a secondary point source with an 

unknown volume velocity.  The problem was approached by equalizing the pressure at each 

resonator aperture, which was computed from knowledge of the acoustic impedance of the 

resonators, and the pressure at the same location, which was determined from the radiation of the 

primary and secondary sound sources.  Thus, a singularity problem was reported when 

calculating the pressure at the resonator aperture using the volume velocity of the resonator itself. 

13   In order to solve the problem, an average sound pressure at the surface of an equivalent small 

pulsating sphere was used as the pressure at the resonator aperture.  This approximation can 

prevent the singularity problem but at the expense of introducing other problems.  For example, 

it was found that the coupled frequencies predicted from the sphere-based model were different 

from the measured ones.  Recently, a vibroacoustic coupling model was presented by Estève and 

Johnson to control noise transmitted into a composite cylinder using distributed vibration 

absorbers and Helmholtz resonators.2,3  Noise control using long cylindrical tube-shaped 

resonators for fairing noise control has also been investigated.4,5   

Despite all the effort, the design of acoustic resonators is still limited by a number of 

factors.  The first one is the lack of theoretical modeling tools to facilitate and optimize the 

design of such devices for a given enclosure, which actually still involves intensive experimental 
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measurements on a trial-and-error basis.  Moreover, should more resonators be used to form a 

resonator array to increase the control performance inside a small enclosure, an effective design 

cannot be achieved without considering the acoustic coupling between the resonators and all 

acoustic modes of the enclosure, as suggested by the earlier observation on conventional 

Helmholtz resonators.12 

This paper attempts to provide a theoretical model to predict the acoustic performance of 

multiple resonators placed in an acoustic enclosure, along with a reliable design methodology to 

maximize the control performance.  In a broader perspective, the general model is applicable not 

only to the TAR, but also to classical Helmholtz resonators.  The paper is divided into four 

sections.  The general model is first presented in Section II.  The formulation is based on the 

modal expansion of pressure in the enclosure and its coupling to the resonators.  Acoustic output 

impedance is used to package the dynamic information of the TAR, which greatly simplifies the 

modeling process.  A special case (with one resonator installed) is selected for detailed analysis, 

and a sequential design method (SDM) is also proposed in this section.  Numerical simulations 

and experimental validations are performed in Section III.  A detailed implementation procedure 

using a TAR array to control a single or multiple resonance peaks is demonstrated and discussed. 

Experimental validations are systematically carried out for each important stage of development, 

including the evaluation of dissipation characteristics of resonators, the performance assessment 

of the SDM with multiple resonators, and the validation of optimal locations of resonators.  

Finally, conclusions are drawn in the last section.  

 
 
 
 



 6

II. THEORY 

In this section, a general model considering acoustic interaction between an enclosure 

and an acoustic resonator array is developed before the special case involving a single resonator 

is discussed.  Throughout the paper, the superscripts and subscripts E, R, and S stand for 

variables associated with “Enclosure”, “Resonator”, and “primary Source”, respectively. 

 
A. Acoustic interaction between enclosure and acoustic resonator array 

 

The inhomogeneous wave equation governing the pressure fields inside the enclosure is 

 2
2

1
( , ) ( , ) ( , )t t q t

c
   r r r , (1) 

where ( , )t r  is the acoustic velocity potential; c the sound speed; q the volume velocity source 

strength density distribution within the volume or on the surface of the enclosure.  Assuming that 

a set of N harmonic sources with volume velocity source strength density 1
Sq , 2

Sq , …, S
Nq  

located at the points 1
Sr , 2

Sr , …, S
Nr  form the primary sound field, and M resonators with volume 

velocity source strength density 1
Rq , 2

Rq , …, R
Mq  located at the points 1

Rr , 2
Rr , …, R

Mr  (centers of 

the resonator apertures) form the secondary sound field in the enclosure, equation (1) becomes  

    2
2

1 1

1
( , ) ( , ) ( ) ( )

M N
R R S S
m m n n

m n

t t q t q t
c

   
 

      r r r r r r , (2) 

where 0( ) r r is a three dimensional Dirac delta function.  Notice that the volume velocity out 

of the resonator has the same sign as that of the primary sound source, i.e., the positive sign is 

directed out of the source into the enclosure, which results in an opposite sign as compared to 

that defined in many textbooks14, 15.  The volume velocity source strength density out of the 

acoustic resonator can be computed from 
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 

( , ) ( )R
m

m R
m

p t
Z

q t

 


r r r
, (3) 

where Zm is defined as the acoustic output impedance at the aperture of the mth resonator, and 

( , )R
mp tr  is the sound pressure at R

mr  provided the largest dimension of the resonator aperture is 

smaller than the sound wavelength of interest.  Substituting Eq. (3) into (2) and using 

0( , ) ( , )p t t  r r , Eq. (2) becomes  

 
   2

02
1 1

( , )1
( , ) ( , ) ( )

RM N
m S S

n n
m nm

t
t t q t

c Z

 
   

 


      

r r r
r r r r


 . (4) 

Acoustic velocity potential ( , )t r  can be decomposed on the basis of the respective 

mode-shape functions of the enclosure: ( , ) ( ) ( )j jt t  r r , where ( )j t  is the jth modal 

response and ( )j r  is the jth eigenfunction given in Ref. 13.  Substituting this modal expansion 

into Eq. (4) and applying orthogonality properties of the eigenfunctions yields an uncoupled 

acoustic equation 

 
       2

2
0

1 1 1

1
( ) ( ) ( ) ( )

R R SJ M N
j m h m j nE S

j h j j nE E
h m nm j j

cz c
t t t q t

V Z V

  
   

  

             
  

r r r
  , (5) 

where j and h = 1, 2, 3, …, J are the indices of the modal response, 0 0z c  is the characteristic 

acoustic impedance of the fluid, V E  is the volume of the enclosure, 
2

( )
E

E
j jV

dV V     r  is 

the modal normalization factor, ( )S
j n r  is the averaged ( )S

j n r over the volume of the nth source, 

and E
j  is the jth complex eigenvalue of the enclosures, expressed as E E E

j j jiC   , in which the 

real part is the angular frequency and the imaginary part is an equivalent ad hoc damping 

coefficient. 
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Assuming all time dependent variables are harmonic, i.e. ( ) i t
j jt P e    and 

( )S S i t
n nq t Q e  , equation (5) becomes 

 

   

     

222

0
2

1
2

0

1 1
2

1

1

RE M
j mj j

sE
m m j

E

R R S SJ M N
j m h m j nh n

sE s
h j m nm j j

E

Pz
i

QkV Z
k V

z P Q
i

QkV Z Q
k V

 



  



  

      
  

 
  

   



  

r

r r r
, (6) 

where QS is the volume velocity source strength of any point source, and k is the wave number.  

When a finite number of enclosure modes are considered, equation (6) forms a set of linear 

equations.  The set of linear equations can be numerically solved with the modal response 

coefficients Pj /(QS/k2VE) as unknowns if the eigenfuctions and eigenvalues of the enclosure are 

given.  A dimensionless amplitude of sound pressure inside the enclosure can be then computed 

from 0( , ) ( , )p t t  r r  as 

 
10

22

( )
( )

J
j

jS S
j

EE

Pp

i Q Q
k Vk V


 

  
  

    
      

r
r . (7) 

A dimensionless sound pressure level (SPL) is used to evaluate the pressure distribution inside 

the enclosure as 

 
0

2

( )
( ) 20 logp S

E

p
L

i Q

k V




r
r . (8) 
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B. Acoustic interaction between an enclosure and a single TAR 

In a previous study12, the targeted enclosure mode by a single resonator was assumed to 

be well separated in frequency from other neighboring modes, such that only the targeted mode 

was taken into account in the analysis of acoustic interaction.  For enclosures with higher modal 

density, however, the neighboring acoustic modes are not well separated, such that a general 

model accounting for all enclosure modes is needed.  In the following, such a model, namely the 

acoustic interaction between one single resonator and the enclosure with multiple modes is 

introduced.  This analysis results in analytical solutions of the sound pressure inside the 

enclosure and the volume velocity source strength of the resonator aperture, which provide 

insight into the fundamental physics of the acoustic interaction between the primary and the 

secondary sound sources.  

With one acoustic resonator and N point sources in the enclosure, the acoustic equation in 

the enclosure can be obtained from Eq. (6) after eliminating subscript m 

        2
22 0

1 1

1
R R SJ N

j h j nE S
j j h nE E

h nj j

cz c
P i P Q

V Z V

   
 

        
r r r

. (9) 

The modal response of Pj can be solved from Eq. (9) as 

 

 
   

 
 

   

 
 

2 2
0

2 22 22 1 1

2 22
1 2

02
2Contribution of primary sound field 2

1

C

1

1
1

R R SJ N
j h S n

h nE SE ES SN h nj hj hj nj n
S SE Rn Jjj h

E
E E

h hh

z Q
i

kZ V QP Q

Q Q
z

ik V
kZ V

   
   

  

 

 





                   
    



 




r r
r

r

r






ontribution of acoustic resonator


,(10) 

The first term on the right hand side of Eq. (10) is the contribution of the primary sound field and 

the second term results from inserting an acoustic resonator into the enclosure.  Note that a 

maximum ( )R
j r  would not automatically warrant a maximum performance of the absorber.  If 
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the resonator is located in the node of the mode [i.e., ( ) 0R
j r ], the value of the second term is 

systematically zero, suggesting zero contribution to the jth modal response.  From Eq. (10) it can 

be also observed that the noise control is a result of the second part in the right hand side of the 

equation, i.e. the acoustic interaction between the enclosure and the resonator.  A strong acoustic 

interaction between the enclosure and the resonator can provide good noise control, which 

depends on the location of rR and the physical parameters of the resonator indicated in Z.  

Through optimizing the location and physical parameters of the resonator, we can maximize the 

acoustic interaction in the second term of Eq. (10), and thus obtain optimal noise control.   

When only the targeted mode, i.e. the jth enclosure mode, is dominant, equation (10) can 

be simplified by ignoring all other minor enclosure modes as 

 

 
  2

2
02 2

without resonator22

1

1
1

j j

S S
R

jE E
E E

jj

P P

Q Q
z

ik V k V
kZ V



 

 
 

  
       



r
, (11) 

where  

 
 

 2

22
1

2
without resonator

S SN
j nj n

S SE
n jj

E

P Q

Q Q
k V



  

 
 

 
   

 


r

 (12) 

is the jth modal response of the enclosure in the absence of the resonators. 

Equation (11) is consistent with that shown in Ref. 12.   It is more clearly shown in Eq. 

(11) that when inserting an acoustic resonator at rR that targets the jth enclosure mode, the jth 

modal response is reduced by the factor of  
 

  2
2

0
22

1
1 1

R
j

E E
jj

z
i

kZ V



 

  


r .   From this simplified 

case, it is seen that when the physical parameters of the resonator are already determined, the 
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control result can be optimized only if the resonator is located at any of the anti-nodes of the 

targeted mode.  However, the actual case is much more complex than the simplified one because 

the resonator is coupled to all enclosure modes, not just to the targeted or dominant one.  This 

particular issue will be discussed later in the simulation section. 

The volume velocity source strength QR directed outwards from the resonator into the 

enclosure can be derived based on Eq. (3), 0( , ) ( , )p t t  r r , ( , ) ( ) ( )j jt t  r r , and Eq. 

(10) as 

 
 

   

 
 

2
0

22
1 1

2
2

0
22

1

1

1
1

R SJ N
h S n

h nE SER h nhh

S
R

J
h

E E
h hh

z Q
i

kZ V QQ

Q
z

i
kZ V

 
 



 

 



 
 
    

  


 



r
r

r



. (13) 

It is seen that the volume velocity source strength out of the resonator aperture depends 

not only on the acoustic output impedance of the resonator itself, but also on all acoustic modes 

of the enclosure.  In terms of volume velocity source strengths, the modal response shown in Eq. 

(10) can be rewritten as 

 

   
2 2

2 22 2
1

2

Contribution of primary sound field Contribution of acoustic resonator

( ) ( )S RS RN
j j n jn
S S SE E

n j jj j
E

P Q Q

Q Q Q
k V

  

   

 
  

    


r r

 

. (14) 

Therefore, the analytical solution of the sound pressure inside the enclosure is represented as 

 
 

 
 

 2 2

2 22 2
1 1 10

2

Contribution of primary sound field Contribution of acoustic resonator

( )( )( )
RS RJ N J

h hSh n
h nS S SE E

h n hh hh h
E

Qp Q

i Q Q Q
k V

  
       

   
     
        

  
r rrr

r



. (15) 
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C. Acoustic output impedance of TAR 

In the above derivations, the acoustic output impedance of a resonator was used to 

characterize the dynamic behavior of the secondary sound source.  In this subsection, the 

expression of the acoustic output impedance for T-shaped acoustic resonators is derived.   

A typical TAR7,8,11 is shown in Fig. 1.  The resonator consists of three branches 1-3 as 

depicted in the figure.  Branch 1 is a circular tube having radius a and physical length LB1, and 

Branch 2 and 3 are coaxial and have cross-sectional areas S2 and S3 (circular or rectangular) and 

physical lengths LB2 and LB3, respectively.  Branch 1 is perpendicular to Branches 2 and 3.  It is 

assumed that the wave inside the TAR is a plane wave, which is satisfied in this study since the 

sound wavelength of interest is sufficiently larger than the largest cross-sectional dimension of 

the resonators.  When ignoring the absorptive process within the fluid and at the walls of the 

resonator, the acoustic output impedance, Z, at the external aperture of the TAR can be obtained 

from Ref. 11 as 

 

32
1 1 2 2 1 1 3 3

1 1
0

1 1 1 2 2 2 3 3 3

1 tan( ) tan( ) tan( ) tan( )

tan( ) tan( ) tan( )

SS
k L k L k L k L

S S
Z iz

S k L S k L S k L

 


 
, (16) 

where k1, k2, and k3 are the wave numbers of three branches, composed of three tube segments 

(The three wave numbers are equal when the internal dissipation is not considered.), and L1, L2, 

and L3 are the effective lengths of Branch 1, Branch 2, and Branch 3, respectively, which can be 

computed using the physical lengths by adding end corrections.  When the external aperture of 

Branch 1 is unflanged, the hybrid end corrections of Branch 1, 2, and 3 presented in Ref. 7 and 

11 are used 
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 1

8

3
L a


  , (17) 

 2

8
1.5

3
L a


  , (18) 

 3

8
1.5

3
L a


  . (19) 

The absorptive process within the fluid and at the walls of a resonator is important 

because it provides a damping (internal resistance) mechanism for the resonator, which prevents 

the resonator from producing a mathematical singularity at its resonance frequencies.  The 

absorptive process directly dissipates the input energy.  The remaining, non-dissipated energy is 

re-radiated back to the enclosure from the resonator aperture as the secondary sound source, 

resulting in acoustic interaction with the primary source.  When the internal resistance of the 

resonator is very small, the acoustic interaction between the enclosure and resonator sharply 

splits the targeted resonance peak of the enclosure into two parts, and the peak response is 

significantly attenuated within a very narrow frequency band.4  By properly increasing the 

internal resistance of the coupled resonator mode, the working bandwidth of the resonator can be 

improved, while sacrificing some control performance due to decreased amplitude.  However, if 

the resistance is too large, both the velocity amplitude of the fluid inside the resonator and the 

strength of volume velocity out of the resonator aperture become too small; such low velocities 

can only produce low dissipation in the resonators and slight acoustic interaction between the 

enclosure and resonators and hence result in insignificant control at the targeted enclosure 

resonances.  A resonator with optimally designed internal-resistance can provide a good control 

performance in a relatively large working frequency bandwidth, which will be addressed in our 

another paper. 
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If the absorptive process within the fluid and at the walls of the resonator is considered, 

we can replace the lossless wavenumber ki ( i = 1, 2, 3) in Eq. (16) by a complex propagation 

constant ki, which can be approximately expressed with a dispersion relation15  

  i i ik i   k , (20) 

where i << k  is the absorption coefficient of tube i defined in Ref. 15.  For each tube segment, 

it can be computed by  

 
0

1
1

8

P
i

i
ir

L

cz SP

 
 

   
 
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where   is the shear viscosity coefficient,   is the specific heat ratio, r pP C   is the Prandtl 

number of the medium, Cp is the specific heat at constant pressure,   is the thermal conduction 

coefficient, and P
iL  and Si are the inner perimeter and cross-sectional area of tube i, respectively.   

When considering absorption, the tangent function used in Eq. (16) is extended as 14 
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. (22) 

 
D. Sequential design method using acoustic resonators 

When using acoustic resonators to control noise in a small enclosure, a sequential design 

method (SDM) is proposed as follows: 

1). A TAR to target the desired enclosure mode at R Rck   is designed and fabricated 

using11 

1 2
1 2

3 3
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k L k L i

S S
L

k


 

   
  ,   (23) 



 15

where L1, L2, S1, S2, and S3 are given, and i (=1, 2, 3, 4, …) are the harmonics of the acoustic 

resonator.  Any resonator harmonics can be used for control. 

2). The optimal location of TAR is determined while accounting for multiple enclosure 

modes.   

When there is a single resonator inside the enclosure and only the targeted enclosure 

mode j  is dominant. From Eq. (11), it is known that a maximal noise control can be obtained 

only if the resonator is located at any anti-node of the targeted mode.12   However, this result is 

not true when multiple modes are taken into account in the acoustic coupling model.  Actually, 

the resonator does couple with all acoustic modes of the enclosure.12   Therefore, there exists an 

optimal location for the resonator among anti-nodal points, in which the best control 

performance of the resonator can be obtained.  For controlling sound pressure at a specific point, 

the optimal location can be determined through comparing the SPL obtained from different 

resonator locations.  The optimal location corresponds to the largest SPL reduction in the vicinity 

of the targeted frequency. 

3). After coupling the lightly damped TAR with the lightly damped enclosure, two new 

resonance peaks appear to replace the original peak, and a frequency shift at other non-targeted 

resonances also occurs.  In order to improve the control performance, new resonators can be 

added to tackle the newly emerged peaks through repeating steps (1) to (2).  Theoretically, 

provided that enough space is available to host additional resonators, the sound pressure level at 

the targeted resonance can be reduced to a desired level after several iterations.   
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III. COMPARISONS BETWEEN THEORY AND EXPERIMENT 

 
The noise control of an enclosure using multiple TARs was numerically investigated and 

experimentally validated.  To this end, one right parallepiped reverberant enclosure having 

geometric dimensions lx = 0.976 m, ly = 0.695 m, lz = 1.188 m was used and shown in Fig. 2.  

The enclosure was fabricated using six polywood boards assembled with L-type steel plates, 

bolts and nuts (see Fig. 2).  Each of the six boards was comprised of two 1-inch boards, which 

were tightly screwed together.  Silicon sealant and foam strips were also applied to prevent air 

leakage from the enclosure.  The upper duct wall was removable and an enclosed loudspeaker 

was located on the upper surface at (100, 59, -51) mm to excite the primary sound field in the 

enclosure through a square hole of 100  100 mm.  The SPL at an arbitrary point (816, 70, 1028) 

mm in the enclosure was predicted and measured.  In all simulations, a total of 216 enclosure 

modes were used [(l,m,n)=(0 ~ 5,0 ~ 5,0 ~ 5), where l, m, n are the node number in x-, y-, and z-

direction, respectively.].  The eigenfunctions ( )R
j r  of the enclosure accounted  for the 

thermalviscous boundary conditions were obtained from Ref. 13, and the eigenvalues 

E
j j jiC    were assembled using the undamped natural frequency of the jth enclosure mode 

j and the jth ad hoc damping coefficient Cj = j / 2Qj, obtained from the measured quality or Q-

factors listed in Table I.  All physical parameters of air, tabulated in Table II, were used in the 

simulations.  The T-shaped acoustic resonators used in the simulations and experiments had a 

circular cross-sectional Branch 1, 21 mm in internal diameter, and a square cross-sectional Brach 

2 and 3 that was 29.5  29.5mm.  The physical lengths of Branch 1 and Branch 2 were LB1 = 30 

mm and LB2 = 20 mm, respectively, and the physical length of Branch 3 was calculated with Eq. 

(23).  In this study, the desired working frequency of all TARs was chosen to be their 
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fundamental or Helmholtz frequency [i = 1 in Eq. (23)].  No damping materials were used inside 

the resonator, and only the thermalviscous boundary conditions were considered.   

For the simulations, the convergence of the model size was achieved by examining the 

volume velocity at the resonator aperture of TARs and the pressure inside the enclosure as the 

number of enclosure modes was gradually increasing.  When the number of the enclosure modes 

was varied from 216 (l = m = n = 0~5) to 1000 (l = m = n = 0~9), neither the volume velocity nor 

the pressure at (816, 70, 1028) mm in the enclosure, as predicted by Eq. (6), were found to 

change (not shown).  As a result, 216 enclosure modes were determined to be for the model size.    

 
A. Evaluation of dissipation characteristics of resonators 

Equation (16) was used to calculate the acoustic impedance of TARs, based on the 

absorption coefficient of each tube segment using Eq. (21).  It is known that the damping of a 

resonator is an important parameter, which significantly affects both the coupled amplitude at the 

targeted resonance peak of the enclosure and the working frequency bandwidth of the resonator 

itself.  Therefore, the validity of Eq. (21) should first be assessed.  To this end, a classical 

Helmoholtz resonator shown in Fig. 3 is used, since a simple relationship exists between the 

absorption coefficient and the measurable Q-factor.  Therefore, it provides an alternative way to 

validate the absorption coefficient predicted by Eq. (21) using measured data.   This relationship 

is derived as follows:  

The acoustic output impedance of a Helmholtz resonator can be derived as 

 0
R R

z
Z

ikV A
 , (24) 

where  
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is the acoustic parameter of the Helmholtz resonator, VR the volume of the resonator body, 

0wR R cL ,  L the effective neck length counting the exterior and interior end correction, and 

Rw the internal resistance in the resonator neck excluding the external radiation resistance, which 

can be computed from the measured Q-factor, QR, and the resonance frequency R of the 

resonator by Rw = R0L/QR. 12  

Using the complex propagation constant k, AR can be also represented as 
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When the medium is air, the absorption coefficient of an empty-necked resonator is very 

low at low frequencies, thus the complex propagation constant can be approximately expressed 

as k i k .14   Substituting this result into Eq. (26), expanding, and ignoring the higher-order 

term 2  ( << 1) gives 

 
 

 

2

22 2

R

R

R

k
A

k i k k


 
. (27) 

Comparing Eqs. (27) with (25), the internal resistance can be estimated as 

 02wR cL  . (28) 

Substituting Rw = R0L/QR into Eq. (28), the absorption coefficient of the Helmholtz resonator 

at its resonance frequency can be expressed in terms of the measured Q-factor and resonance 

frequency R as  
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 ( )
2

R
R

RcQ

    . (29) 

For experimental validation, three resonators named HR1, HR2, and HR3 were fabricated 

using circular cross-sectional PVC tubes.  The geometric dimensions are listed in Table III.  The 

measured resonance frequencies, Q-factors, and the predicted absorption coefficients using Eqs. 

(21) and (29) are also shown in the table.  It can be seen that the predicted absorption coefficients 

using Eq. (21) are slightly smaller than the experimentally estimated ones, with errors ranging 

from 6% to 9%.  Generally speaking, the agreement between the model and experimental data is 

satisfactory.  Therefore, it is concluded that Eq. (16) can be used to calculate the acoustic 

impedance of the TAR using Eq.(21)  

 
B. Theoretical and experimental control results 

In this subsection, the capability of the proposed sequential design method (SMD) to 

tackle SPL reduction using a TAR array comprised of six TARs at two resonance frequencies is 

theoretically and experimentally demonstrated.  Firstly, the baseline SPL without resonators was 

predicted and compared with the measured baseline to validate the current theory.  Secondly, the 

implementation of the SDM for noise control was illustrated in detail.  Finally, the optimal 

location predicted for a 145 Hz TAR was experimentally validated. 

 
1. Predicted and measured baseline SPL 

The predicted and measured baseline SPLs without TARs are shown in Figs. 4(a) and 

4(b), respectively.  Notice that due to the difficulty in determining the volume velocity source 

strength QS for the primary sound source, numerical results are obtained in terms of 

2
0( ) /( / )S Ep i Q k Vr .  Therefore, the predicted SPL can not be directly compared with the 

measured SPL.  Instead, comparison will focus on the general trends and frequency-dependant 
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variations for the sound pressure inside the enclosure.  This is a common practice widely used in 

previous studies such as in Cummings.13   The agreement between the predicted and measured 

results in this ideal condition (rigid-walls) is obvious.  Both curves undergo very similar global 

variations with respect to frequency.  A more detailed inspection of the predicted SPL curve 

shows four major peaks at 145.0, 176.5, 228.4, and 247.8 Hz in the frequency band [100, 270] 

Hz.  The same peaks can also be found in the measured curve near these four locations.  The 

experimental curve also shows two additional small peaks at 123.0 Hz and 176.5 Hz.  Since the 

wooden boards used to fabricate the enclosure walls are not fully rigid, the first peak at 123.0 Hz 

is a structural resonance that has been identified by substantial measurements, and the second 

peak at 176.5 Hz is a coupled structural-acoustic mode.  This structural-acoustic coupling also 

affects the peak values around 247.8 Hz.  Therefore, only two significant peaks were clearly 

identified from the measured baseline data: one at 145 Hz, having SPL 86 dB, which is 

dominated by the acoustic mode (001), and another at 224 Hz with SPL 91 dB, which is 

governed by the acoustic mode (101).  While the measured (001) mode exactly matches the 

prediction, the predicted resonance frequency of 228.4 Hz for the (101) mode differs slightly 

from the measured peak at 224 Hz.  The two peaks at 145 Hz and 228 Hz will be targeted in the 

following noise control analyses.   

 
2. Predicted and measured control results 

The SDM procedure was implemented to control noise at the two resonance peaks at 145 

Hz and 228 Hz as follows.  Firstly, to reduce the noise level at the peak of 145 Hz, a TAR named 

as TAR_145 was designed using Eq. (23).  Note that the resonator was named using a “TAR_” 

and an integer indicting the resonator’s Helmholtz frequency.  The optimal location of TAR_145 

was determined according to the procedure that will be addressed in the next section.  The 
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theoretical SPL curve at (816, 70, 1028) mm with TAR_145 is shown in Fig. 5 by a dashed line.  

After introducing TAR_145, a 3.4 dB SPL reduction was achieved, and the original resonance 

peak at 145 Hz was replaced by two new peaks corresponding to two new-coupled frequencies at 

142 Hz and 147 Hz due to acoustic interaction.  In order to further reduce the SPL around 145 

Hz, another TAR named as TAR_142 was designed to target the new peak at 142 Hz.  Its 

optimal location was determined after TAR_145 was installed.  The computed SPL with installed 

TAR_145 and TAR_142 is also shown in FIG. 5 by a dot-dashed line.  From the curve, it is 

observed that the old peak at 147 Hz shifts to 148 Hz due to the new acoustic coupling with 

TAR_142.  Thus, a TAR with Helmholtz frequency 148 Hz and named as TAR_148 was 

inserted.  The predicted SPL with a total of three TARs are again shown in Fig. 5 by a doted line.  

This leads to a total of 6.2 dB SPL reduction in the enclosure mode at 145 Hz.   The geometric 

dimensions of the three TARs and predicted optimal locations are listed in Table IV.  These 

TARs were also fabricated and tuned for experimental validations.  The measured SPL curves 

with and without TARs are shown in Fig. 6, showing 3.4 dB SPL reduction with only TAR_145 

installed and 7.8 dB reduction with three resonators. Comparisons between Figs. 5 and 6 show 

very similar SPL variation for each configuration.  Quantitatively speaking, the predicted SPL 

reductions are smaller than the measured ones and the predicted peaks are also sharper than the 

measured peaks.  One plausible explanation may be that the real absorption-coefficients of the 

resonators are slightly larger than the predicted ones using Eq. (21), which is in agreement with 

the observations made in the previous section and summarized in Table III.  

To further control the peak at 228 Hz, another three TARs were designed and 

implemented by following the same methodology.  The three resonators, TAR_228, TAR_224 

and TAR_233,  were added one after another at their corresponding optimal locations determined 
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by the model.  The final resonator array was comprised of six TARs that simultaneously control 

the two resonance peaks at 145 and 228 Hz.  Their geometric dimensions, working frequency, 

and optimal locations are also listed in Table IV.  Figure 7 shows the predicted SPLs with and 

without the resonator array.  A 5.9 dB and 7.4 dB reduction in SPL around frequencies 145 Hz 

and 228 Hz is predicted, respectively.  Notice that the total volume occupied by all six resonators 

is 0.0022 m3, which is only 0.3% of the enclosure volume 0.833 m3.  Therefore the effect of the 

physical presence of the resonators inside the enclosure is negligible.  

The final configuration using all six resonators was also experimentally tested. 

Resonators (TAR_145, TAR_142, TAR_148, TAR_224, TAR_220, and TAR_228) were 

installed at locations determined by the model.  The measured SPL with and without the TAR 

array is shown in Fig. 8.   SPL reductions of 7.9 dB and 10.6 dB were observed around 145 Hz 

and 224 Hz, respectively.  Compared to the predicted results shown in Fig. 7, a remarkable 

resemblance in the control results can be observed, testifying the validity of the proposed design 

model and methodology.  

 
3. Predicted and measured optimal locations of TARs 

Theoretical analysis in Section II suggests that the optimal location of a TAR is not an 

arbitrary point among all possible anti-node points because each resonator couples with all 

enclosure modes.  When determining the optimal location for a TAR, the interaction of the 

resonator with multiple enclosure modes, in addition to the targeted mode, must be considered. 

The proposed model, actually provides such a tool.  Assuming that possible locations for 

installing resonators are constrained near the six-wall surfaces of the enclosure, which are: x = 60 

mm ( equals to the physical length of resonator Branch 1 plus the external cross-sectional height 

of the resonator Branch 2 or 3) , x = lx - 60 mm, y = 60 mm, y = ly - 60 mm, z = 60 mm, and z = lz 
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- 60 mm, a grid with a step of 100 mm in each direction was created for each surface, the 

frequency step is 1 Hz, and the SPL curves were computed for each TAR location at each grid 

point.  After comparing the SPLs for all locations, the optimal one that provides the maximum 

SPL reduction in the vicinity of the targeted resonance frequency was chosen.  Applying this 

procedure to a TAR_145, the optimization location was determined to be (700, 400, 1128) mm, 

with a corresponding SPL reduction of 3.4 dB around the targeted frequency of 145 Hz .   

An experimental validation on this particular point was carried out.  A series of 

measurements were conducted when the resonator was located at different locations.  Five 

representative measured SPL curves are shown in Fig. 9, which shows a variation range of 

roughly 4 dB in terms of peak values among the five configurations.  The experimentally 

determined optimal location at (700, 400, 1128) mm matches exactly the one predicted by 

simulations.  

 
C. Theoretical design of a wide range control 

This last example illustrates the capability of the proposed design approach in achieving 

wide band (or multi-resonance) control using a resonator array, which consisted of ten TARs, 

including the six TARs used above and other four new TARs, named as TAR_177, TAR_173, 

TAR_180, and TAR_249.  Based on the control achieved in Section III.B.2, the four new 

resonators were respectively designed and optimally positioned using SDM.  The geometric 

dimensions of the four resonators and their predicted optimal locations are again listed in Table 

IV.  The predicted SPL curves with and without the ten resonators are shown in Fig. 10.  It can 

be seen that all four major resonances at 145 Hz, 177 Hz, 229 Hz, and 249 Hz can be 

simultaneously targeted, resulting in sound pressure level reduction ranging from 5.0 dB to 7.2 
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dB.  Therefore, at the expense of adding more resonators, significant wide band control can be 

achieved.  

 
 

IV. CONCLUSIONS   

 
A theoretical model to predict the acoustic performance of multiple resonators placed in 

an acoustic enclosure and a reliable design methodology to maximize the control performance 

have been presented and experimentally validated.  The sound field inside the enclosure with 

integrated acoustic resonators is a result of primary sound sources and the secondary sound 

source formed from re-radiation from the resonator, where the latter is the resonator response to 

the excitation from the enclosure.  All these phenomena occur as a result of the acoustic 

interaction as a whole, which is significantly affected by the location of the resonator.  The 

optimal location of the resonator to ensure strong interaction between the enclosure and the 

resonator is no longer an arbitrary point in the anti-nodal surface, as suggested by previous 

studies that only considered the interaction between the single targeted mode and the resonator.  

With the consideration of all possible coupled modes, the optimal location of a resonator can be 

determined using the general approach proposed in this paper which is based on a general 

coupling model.  This technique becomes a necessity when multiple resonators are used either to 

increase the sound reduction performance or to achieve wide range control.  

The acoustic interaction is also affected by the internal resistance or the absorption 

coefficient of the resonator.  It is found that the internal resistance of the resonator not only 

determines the energy dissipation inside the resonator, but also the source strength of the volume 

velocity directed out of the resonator aperture, and further influences the acoustic coupling with 
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the enclosure.  An optimally designed internal resistance can increase energy dissipation and 

improve bandwidth of the resonator around its working frequency.   

  A simulation model and a systematic design approach are established and validated by 

experiments.  It is shown that, with the help of the proposed design methodology, either single or 

multiple resonance peaks of the enclosure can be successfully controlled.    
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TABLE I. Computed natural frequencies and measured Q-factors of the enclosure. 

Index Mode 
number 
(l m n) 

Natural 
frequency 

(Hz) 

Q-factor 

1 000 0 - 
2 001 145.0 32 
3 100 176.5 42 
4 101 228.4 44 
5 010 247.8 46 
6 011 287.1 84 
7 002 290.0 42 
8 110 304.3 51 
9 111 337.0 79 

10 102 339.5 60 
11 200 353.0 80 
12 012 381.5 60 
13 201 381.6 45 
- - >400.0 45 
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TABLE II. Air properties. 

Physical parameter Used value 
Ambient temperature, T (oC) 20 
Humidity (%) 90 
Speed of sound, c (m/s)  344.5 
Density of air,  0 (kg/m3) 1.205 
Specific heat ratio of air,   1.402 
Thermal conductivity of air,  [W/(m·K)] 0.0257 
Specific heat at constant  
pressure of the air , Cp [J/(kg·K)]  

1.005×103 

Coefficient of shear viscosity, µ (Pa·s) 1.88×10-5 
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TABLE III. Measured and predicted absorption coefficients. 

Helmholtz
resonator 

Dimensions 
 (mm) 

Measured 
resonance 
freq. (Hz) 

Measured 
Q-factor 

Measured 
absorption 
coefficient 
Eq. (29) 

Predicted 
absorption 
coefficient  
 Eq. (21) 

Error 
(%) 

 
HR1 

Neck diameter:  21 
Neck length:      60.0 
Body diameter:  77.5 
Body length:     155.3 

 
136.0 

 
35.3 

 
0.035 

 
0.033 

 
6 

 
HR2 

Neck diameter:  21 
Neck length:      51.9 
Body diameter: 79.2 
Body length:    65.3 

 
222.0 

 
43.5 

 
0.047 

 
0.043 

 
9 

 
HR3 

Neck diameter: 21 
Neck length:     50.4 
Body diameter: 77.5 
Body length:    57.5 

 
245.6 

 
47.1 

 
0.048 

 
0.045 

 
6 
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TABLE IV. Parameters and optimal locations of TARs. 

Resonator Helmholtz 
frequency 

(Hz) 

Branch 1 
diameter 

(mm) 

Branch 2 &3 
width  height 

(mm) 

LB1 
(mm) 

LB2 
(mm) 

LB3 
(mm) 

Predicted 
location 

(mm) 
TAR_145 145 21 29.529.5 30 20 482.4 (700, 400, 1128) 
TAR_142 142 21 29.529.5 30 20 495.0 (300, 0, 1128) 
TAR_148 148 21 29.529.5 30 20 470.4  (200, 200, 60) 
TAR_229 228 21 29.529.5 30 20 265.7 (0, 300, 60) 
TAR_224 224 21 29.529.5 30 20 272.5 (900, 500, 1128) 
TAR_233 233 21 29.529.5 30 20 257.5 (800, 200, 1128) 
TAR_177 177 21 29.529.5 30 20 374.9 (0, 0, 1128) 
TAR_173 173 21 29.529.5 30 20 386.1 (916,0,1100) 
TAR_180 179.5 21 29.529.5 30 20 368.1 (60,0,0) 
TAR_249 249 21 29.529.5 30 20 233.7 (100,60,0) 
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FIGURE CAPTIONS 

FIG. 1. (color on line) A typical T-shaped acoustic resonator: (a) Design geometries; (b) A 

fabricated TAR. 

FIG. 2. (color on line) Right parallepiped reverberant enclosure with a coordinate system. 

FIG. 3. A classical Helmholtz resonator. 

FIG. 4. (color on line) Predicted and measured baseline SPLs at (816, 70, 1028) mm:  (a) 

predicted.  (b)  measured. 

FIG. 5. (color on line) Predicted SPLs at (816, 70, 1028) mm:  –, without resonator;  – –, with 

TAR_145;  – · –, with TAR_145 and TAR_142; , with TAR_145, TAR_142, and TAR_148. 

FIG. 6. (color on line) Measured SPLs at (816, 70, 1028) mm:  –, without resonator;  – –, with 

TAR_145;  – · –, with TAR_145 and TAR_142; , with TAR_145, TAR_142, and TAR_148. 

FIG. 7. (color on line) Predicted SPLs at (816, 70, 1028) mm:  –, without resonator;  – –, with 

TAR_145, TAR_142, TAR_148, TAR_228, TAR_224, and TAR_233. 

FIG. 8. (color on line) Measured SPLs at (816, 70, 1028) mm:  –, without resonator;  – –, with 

TAR_145, TAR_142, TAR_148, TAR_224, TAR_220, and TAR_228. 

FIG. 9  (color on line) Measured representative SPL curves for identifying optimal location of 

the resonator TAR_145. 

FIG. 10  (color on line) Predicted SPL curves at (816, 70, 1028) mm for demonstrating wide rang 

control in the first four resonance peaks using ten TARs:  –, without resonator;  – –, with 

resonators. 

 


