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Acoustic metamaterials are artificial materials whose properties can be controlled at will. Acoustic 

cloaking is an important application. It can make some space acoustically invisible. In this paper, a 

model of transformation acoustics is proposed for a general tetrahedron. It contains three parts, 

each with homogeneous properties. Since most cloaks can be approximated by polyhedrons, they 

can be divided into a series of tetrahedrons. Thus, most cloaks can be built with homogeneous 

parts. Helmholtz equations are solved for the space with two polyhedral cloaks with COMSOL 

Multiphysics finite element software. The results show that the cloaks work well in hiding the 

space acoustically. In the models, all properties of each part are non-singular. Since all the 

parameters affect the properties of each part and some also affect the performance of cloaking, a 

balance can be found between performance and properties. It provides an easier and more 

realizable way to fabricate acoustic cloaks. 

 

1. Introduction 

Acoustic metamaterials are artificial materials 

whose properties can be designed at will. Thus, the 

propagation of waves inside the acoustic metamaterials 

can be controlled. With acoustic metamaterials, many 

applications previously only in imaginary can be 

realized in future. One application on the way is 

acoustic cloaking. It can make some space acoustically 

invisible. 

The cloak that is first proposed with specific 

properties is in electromagnetic field. Pendry, et al [1] 

derived the properties of a spherical cloak in EM field 

based on transformation optics. Later, Cummer, et al 

[2] presented the 2D annular acoustic cloaks by 

comparing the 2D time harmonic acoustic equations 

with 2D Maxwell equations. Chen and Chan [3] found 

that spherical acoustic cloaks could be designed with 

transformation acoustics as well. The properties of the 

perfect annular cloak or spherical cloak are singular at 

the inner boundary. To overcome this difficulty, 

reduced cloak [4] and carpet cloak [5] are proposed as 

a solution with sacrifice of some cloaking performance.  

Some models have been manufactured and tested. 

Popa, et al [6] designed and experimentally 

demonstrated a 2D ground cloak. After that, 

Zigoneanu, et al [7] fabricated an omnidirectional 3D 

ground cloak. Zhang, et al [8] fabricated a 2D annular 

cloak based on a transmission line approach.  

Besides inertial cloaks as mentioned above, 

pentamode materials can also be used to design cloaks. 

Norris [9] found that either density or stiffness or both 

can be anisotropic. Chen, et al [10] proposed a latticed 

pentamode acoustic cloak.  

In theory, cloaks with more complicated boundaries 

have been studied. Several EM cloaks of more 

complicated shapes have been presented based on 

transformation optics.[11-14] The authors [15] 

proposed a method for designing acoustic cloaks of 

arbitrary shapes. The properties of the cloaks are 

anisotropic and inhomogeneous. 

Li, et al [15] proposed a near-perfect EM cloak 

consisting of homogeneous parts. Wang, et al [16] 

extended it to a three-dimensional model and derived 

diamond-shaped EM cloaks. In acoustics, Li, et al [17] 

developed acoustic cloaks with homogeneous parts in 

2D and 3D. In their 3D model, all the vertices are on 

the axes, and the cloaked space is mapped to an area. 

In this paper, a general tetrahedron is used in 
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transformation acoustics. The cloaked space is mapped 

to a tetrahedron. In particular cases, the cloaked space 

is mapped to an area or a line. The cloak in each 

section contains three parts, each with homogeneous 

properties. Since most 3D cloaks can be approximated 

by a polyhedron, which can be divided into a series of 

tetrahedrons, they can be built with homogeneous 

parts. Helmholtz equations are solved for the space 

with the two polyhedral cloaks with COMSOL 

Multiphysics finite element software. The results show 

that the cloaks work well in hiding the space 

acoustically. All the dimension parameters affect the 

properties of each part, and some also affect the 

performance of cloaking. Two important factors are 

investigated at last. 

2. Method 

Most cloaks can be divided into small sections, 

each of which is the difference of two tetrahedrons, as 

shown in Fig. 1. The Tetrahedron OA1B1C1 is the 

cloaked space. A0, B0 and C0 are virtual points which 

are used to derive properties. Without generality, the 

edge OA2 is put on the x-axis, and the face OA2B2 is 

put on the xy plane. This model is used to derive the 

properties of a section from an arbitrary cloak. 

 

FIG.1  A section in an acoustic cloak with arbitrary shape 

 

The section will be divided into three parts, each 

with homogeneous properties. A three-step method is 

performed, as shown in Fig.2. In the first step, 

Tetrahedron OA0B2C2 is expanded to OA1B2C2 and 

A0A2B2C2 is compressed to A1A2B2C2 with linear 

transform along OA2. In the second step, the OA1C2B0 

is expanded to OA1C2B1 and B0A1C2B2 is compressed 

to B1A1C2B2 with linear transform along OB2. In the 

third step, C0A1B1C2 is compressed to C1A1B1C2 along 

OC2.  

 

 

 

FIG.2  Schematic diagram of the three-step mapping (a) first 

step (b) second step (c) third step 
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Set OAOA 210  , OAOA 221  , OBOB 210  , 

OBOB 221  , OCOC 210  , OCOC 221  . λi, μi 
and ξi (i=1,2) are all constants. 

The points in tetrahedron A0A2B2C2 after 

transformation with respect to the points in tetrahedron 

A1A2B2C2 before transformation are 
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The points in Tetrahedron OA0B2C2 after 

transformation with respect to the points in Tetrahedron 

OA1B2C2 before transformation are 
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where,  
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The second step continues after the first step. The 

points in Tetrahedron B1A1C2B2 after the second 

transformation with respect to those in Tetrahedron 

B1A1C2B2 before second transformation are 
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where,  
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The points in Tetrahedron OA1C2B1 after the second 

transformation with respect to those in Tetrahedron 

OA1C2B0 before the second transformation are 
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The third step continues after the two steps. The points 

in Tetrahedron C0A1B1C2 after the third transformation 

with respect to those in Tetrahedron C1A1B1C2 before 

the third transformation are 
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where,  
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With the transformation relations, the properties of 

each part are  
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where J is the Jacobian matrix, which is defined as 
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For Tetrahedron A1A2B2C2, the Jacobian matrix is 

 AJ 11   (8) 

For Tetrahedron B1A1C2B2, the Jacobian matrix is 

 AAJ 232   (9) 

For Tetrahedron C1A1B1C2, the Jacobian matrix is 

 AAAJ 4 253   (10) 

Since Ai (i=1,2,3,4,5) are free of  x and y, all the 

Jacobian matrices are constant. With Eq. (6) ,the 

properties in each part are homogeneous. 

3. Simulation 

Two models are developed with this method. When 

OA2, OB2 and OC2 are perpendicular to each other, it is 

an octohedral cloak, as shown in Fig. 3. Let λ1 = μ1 = ξ1 

= 0.05, and λ2 = μ2 = ξ2 = 0.5. The cloaked space is an 
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octohedral which is mapped to a smaller one in virtual 

space. 

Helmholtz equations for a space with the octohedral 

cloak were solved with COMSOL Multiphysics finite 

element analysis software. The results are shown in 

Fig. 3. It can be seen that the cloak reduces the effect 

of the cloaked area. From the outside of the cloak, it 

seems the wave propagates in a homogeneous medium. 

 

 
FIG. 3  An octohedral cloak and its cloaking performance 

 

More complicated polyhedral cloak can also be 

designed with this method. Actually, most 3D cloaks 

can be approximated by polyhedrons. Thus, most 

cloaks can be built with this method. 

A polyhedron is shown in Fig. 4. It contains 32 

faces, which is an approximation of a sphere when 

|OA2|=|OB2|=|OC2| for every section. Let λ1 = μ1 = ξ1 = 

0.05, and λ2 = μ2 = ξ2 = 0.5. The properties of each 

section can be calculated. 

Helmholtz equations for the space with the 

polyhedral cloak were conducted with COMSOL 

Multiphysics finite element analysis software. The 

results are shown in Fig. 4. It can be seen from the 

figure that the cloak works well in reducing the effect 

of the cloaked area.  

 

 

 

FIG. 4  A polyhedral cloak and its cloaking performance 
 

The properties of the two models are different. That means the properties of each section can be 
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affected by the dimension parameters. Although all the 

parameters can change independently, a simple model 

is used. Let |OA2|=|OB2|=|OC2|, λ2 = μ2 = ξ2 = 0.5, λ1 = 

μ1 = ξ1 = η, and ∠A2OB2=∠B2OC2=∠C2OA2=θ. 

Then, analyze the effect of θ and η separately. When 

η=0.05, the principal velocities of each part vary with 

θ, as shown in Fig. 5. When θ=5 , the principal 

velocities of each part vary with η, as shown in Fig. 6.  

 

 
FIG. 5  Effect of θ on the principal velocities of each part 

 

 
FIG. 6  Effect of η on the principal velocities of each part 

 

It can be seen from the figures that the two factors 

affect the properties evidently. In Fig. 5, the deviation 

of three principal velocities within each part decreases 

with the decrease of θ. Particularly for part I and II, two 

principal velocities approaches to be the same. In Fig. 6, the 

deviation of three principal velocities within each part 

decreases with the increase of η. η is the size of tetrahedron 

to which the cloaked space is mapped. Increase of η means 

decrease of cloaking performance. 
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4. Conclusion 

Most cloaks can be approximated by polyhedrons, 

which can be divided into a series of tetrahedrons. A 

method of transformation acoustics is proposed for a 

general tetrahedron. It contains three parts, each with 

homogeneous properties. Thus, most cloaks can be 

built with homogeneous parts. 

Two polyhedral cloaks are designed with this 

method as examples. One is an octohedron and another 

has 32 faces, which is an approximation of a sphere. 

Helmholtz equations are solved for the space with the 

cloaks. The results show that the cloaks work well in 

reducing reflections and shadows. It means that 

acoustic cloaks with arbitrary shapes can be designed 

with this method and work well. 

All the dimension parameters affect the properties 

of each part. Certain parameters also affect the 

performance of the cloaks. A balance can be made 

between cloaking performance and cloak properties. It 

provides an easier way to design and fabricate acoustic 

cloaks. 
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