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PROGRESS TOWARDS THE STRUCTURAL BASIS OF TEC-FAMILY KINASE 

ACTIVATION BY HIV-1 NEF 

 

Kindra N. Whitlatch, M.S. 

 

University of Pittsburgh, 2018 

 

HIV-1 Nef is a viral accessory factor that is essential for virus infectivity, host immune evasion 

and AIDS progression. Nef lacks intrinsic catalytic activity and functions instead via interactions 

with multiple classes of host cell proteins involved in signal transduction and endocytic trafficking. 

Nef interacts with the Src-family tyrosine kinases Hck and Lyn through their SH3 domains, 

resulting in constitutive kinase activity. Nef also binds to select members of the Tec-family of 

tyrosine kinases, including Btk, Bmx, and Itk, all of which are expressed in HIV-1 target cells. Of 

particular interest is Itk, which is expressed in CD4+ T cells and is activated by Nef.  Selective Itk 

inhibitors block Nef-dependent enhancement of HIV-1 infectivity and replication, suggesting an 

important role in the viral life cycle. While the interaction between Itk and Nef has been 

demonstrated at the plasma membrane in cell-based fluorescence complementation assays, the 

structural basis of this interaction has not been reported. Like Src-family kinases, Itk has a core 

region consisting of sequential SH3, SH2 and kinase domains. In addition, Itk has an N-terminal 

pleckstrin homology (PH) domain important for membrane targeting as well as a Tec homology
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(TH) region involved in kinase regulation. To explore the structure of the Nef:Tec-family kinase 

(TFK) complexes, I have created a panel of bacterial expression constructs for the Itk and Btk 

regulatory region. These include the entire PH-TH-SH3-SH2 region, the SH3-SH2 region, and the 

isolated SH3 domain, all of which have yielded mg amounts of soluble protein. I have also 

produced recombinant, N-terminally myristoylated (Myr) Nef in bacteria, a post-translational 

modification essential for Nef membrane localization in cells. Preliminary Surface Plasmon 

Resonance (SPR) studies show that Myr-Nef binds membrane bilayers with low µM affinity in a 

Myr-dependent manner. These proteins will provide the foundation for future structural 

determination of Nef-TFK complexes by X-ray crystallography as well as the nature of this 

interaction in lipid bilayers, the physiological site of interaction in HIV-infected cells. 
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1.0 INTRODUCTION 

 

 

 

 

1.1 HIV-1 NEF IN VIRAL PATHOGENESIS AND AIDS 

 

Infection with the human immunodeficiency virus (HIV-1) results in severe immunodeficiency 

brought about by the chronic depletion of CD4+ T lymphocytes (1), leading to the Acquired 

Immunodeficiency Syndrome (AIDS). The HIV/AIDS global pandemic is responsible for over 25 

million AIDS-related deaths in the last 30 years, with 33 million people presently infected with 

the virus (2). The introduction of antiretroviral drugs that target critical enzymes in the HIV-1 viral 

life cycle and fusion to the host cell have dramatically affected the life span of HIV positive 

individuals. However, HIV is not cleared from the patients, and the chronic condition must be 

controlled with persistent administration of antiretroviral therapy (2, 3). This chronic therapy, 

along with the mutational frequency of HIV, has fueled the establishment of multi-drug resistant 

strains of HIV-1. Along with ambiguous chances for an effective vaccine (4), these drug resistant 

strains of HIV-1 highlight the need for antiretroviral treatments with complementary mechanisms 

and targets to the existing therapies. 
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The HIV-1 genome encodes the retroviral genes Gag, Pol, and Env, as well as proteins that 

regulate RNA splicing (Rev) and viral transcription (Tat). The current protein targets for HIV-1 

treatments – reverse transcriptase, integrase, protease, and the gp41 envelope glycoprotein – are 

products of the Pol and Env genes (2, 3). Four distinctive accessory proteins are also encoded by 

HIV-1: Nef, Vif, Vpu, and Vpr. These accessory proteins promote viral growth and pathogenesis 

and represent alternative antiretroviral targets for future therapies (5). HIV-1 Nef, in particular, is 

a promising target as a large body of evidence supports a critical role for Nef in HIV-1 

pathogenesis.  In an early study utilizing a rhesus macaque animal model, infection with an SIV 

(simian immunodeficiency virus) variant lacking nef sequences did not result in sAIDS, indicating 

that Nef is essential for the progression from SIV infection into AIDS-like disease (6).  Conversely, 

in a transgenic mouse model, the expression of Nef alone is sufficient to drive HIV pathogenesis 

(7), producing an immunodeficiency syndrome that includes loss of CD4+ T lymphocytes 

reminiscent of HIV infection in humans. Interestingly, some patients who carry HIV-1 variants 

that are defective in nef sequences are described as long-term non-progressors, meaning their HIV 

infections persist, but they do not develop AIDS even in the absence of antiretroviral therapy (8-

10). Taken together, these data suggest that Nef is a key factor in HIV pathogenesis to AIDS, and 

validate Nef as a strong target for future antiretroviral therapy. 
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1.2 HOST CELL INTERACTIONS WITH HIV-1 NEF 

 

Nef has been shown to downregulate surface receptors in HIV-infected cells, including CD4 (11-

13) and MHC-I (14-16). The Nef-induced endocytosis of CD4 occurs soon after HIV infection 

(17-19), and is mediated by AP-1 and clathrin-coated pits that direct CD4 to endosomal 

degradation via lysosomes (20). The downregulation of cell surface CD4 is beneficial to the virus 

because it prevents HIV superinfection (21) and enhances release of virion particles (22-24) from 

the cellular membrane. Recent evidence also implicates Nef-associated CD4 downregulation as 

integral to the evasion of the potent, anti-viral response known as antibody-dependent cell-

mediated cytotoxicity (25, 26). Interaction of CD4 with HIV Env proteins on the cell surface is 

important for exposure of epitopes that are recognized by neutralizing Env antibodies. By 

downregulating CD4, HIV Nef prevents antibody recognition and thus promotes immune evasion 

of HIV-infected cells.  

Another group of cell surface proteins that are downregulated by HIV Nef are encoded by 

the major histocompatibility complex 1 (MHC-I). MHC-I genes encode receptor proteins that 

present peptide antigens on the infected cell surface for recognition by cytotoxic T lymphocytes 

(CTLs) (27). It is beneficial for the virus to down regulate MHC-I to protect the infected cell from 

the CTL response to HIV antigens (15, 27).  There are two mechanisms that have been described 

for MHC-I downregulation: rapid internalization of surface-exposed MHC-I (14, 16), and direct 

trafficking to clathrin-coated vesicles instead of the plasma membrane from the trans-Golgi (28). 

To complete the downregulation of MHC-I, Nef works by recruiting the clathrin adaptor protein 

AP-1 to the cytoplasmic tail of MHC-I (29), displaying a different downregulation mechanism 

than CD4 internalization, which involves the AP-2 clathrin adaptor.  
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Nef also targets T-cell receptor signaling pathways as well as anti-apoptotic pathways (27, 

30, 31). These pathways are affected by Nef interaction with a variety of host cell kinases, which 

are normally part of signal generation and propagation pathways linked to T cell activation. By 

interacting with kinases, Nef adjusts kinase regulation and catalytic activity, resulting in either 

activation or inhibition of the specific kinase involved. Two families of kinases that interact 

directly with Nef are described in more detail in the following sections.  

 

1.3 HIV-1 NEF AND SRC FAMILY KINASES 

 

The Src family of non-receptor protein-tyrosine kinases (SFKs) is among the best understood 

kinase families that interact with Nef. Src family kinases adopt a domain organization that includes 

a myristoylated N-terminal arm, followed by Src homology 3 (SH3) and Src homology 2 (SH2) 

domains, the catalytic kinase domain, and a short C-terminal tail (Fig. 1a). The myristate group 

on the N-terminus of all SFKs promotes the association of these kinases with membranes, and is 

required for SFK cellular function.  

Structural studies show that interdomain interactions between the SH3, SH2, and kinase 

domains regulate Src-family kinase activity (32-38). SH3 domains bind proline-rich regions that 

adopt left-handed polyproline type II (PPII) helices, while SH2 domains bind short peptide 

recognition motifs containing phosphotyrosine. In the absence of an activating signal, SFKs adopt 

an autoinhibited conformation in which the SH3 domain packs against the N-lobe of the kinase 

domain via an interaction with the SH2-kinase linker (Fig. 2a). This linker adopts a PPII helical 

fold for interaction with the SH3 binding pocket. This holds the SH2 domain against the C-lobe. 

A phosphorylated tyrosine on the C-terminal tail binds in the SH2 binding pocket, acting as a 
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clamp to hold the entire downregulated structure together (SFK structure reviewed in (39-41)). 

Phosphorylation of the C-terminal tail tyrosine is catalyzed by an independent regulatory kinase 

known as Csk (42). 

Nef activates some SFK members – notably Hck, Lyn, and c-Src – by interacting with the 

SH3 domains of these kinases (35, 36). When Nef binds the SH3 domain via a conserved PXXP 

motif, the SH3 domain is displaced from the autoinhibited conformation, and the SFK is activated 

(37). Recent hydrogen deuterium exchange studies suggest that Nef-induced activation of Src-

family kinases correlates with only a subtle change in the overall conformation of the active 

complex (43).  Structures of Nef:SFK complexes will be described in more detail below.  

The Nef-mediated activation of SFKs is a key piece of the functionality of Nef. Selective 

inhibitors of Nef-dependent SFK activation inhibit HIV-1 replication in vitro (44, 45), and in 

primary macrophages knockdown of Hck expression inhibits HIV-1 replication (46). The 

activation of SFKs has also been shown to contribute to the Nef-dependent down modulation of 

MHC-I (47) as described above.  
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Figure 1. Domain organization of Src and Tec Famliy Kinases. A) Domain structure of SFKs. Src family kinases are comprised 

of a myristoylated N-terminal region, a SH3 domain, SH2 domain, SH2-kinase linker, tyrosine kinase domain, and a C-terminal 

tail. Tyr 416 is the site of activation loop phosphorylation, while Tyr 527 is phosphorylated by Csk in the autoinhibited state. B) 

Domain structure of TFKs. Tec family kinases are comprised of a PH domain, TH motif, SH3 domain, SH2 domain, SH2-kinase 

linker and tyrosine kinase domain. Tyr 511 is the site of activation loop phosphorylation, while autophosphorylation of Tyr 180 

results in modified ligand binding.   
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1.4 HIV-1 NEF AND TEC FAMILY KINASES 

 

Published work from our group has shown that Nef also interacts with several members of the Tec 

family of protein-tyrosine kinases (TFKs). Tec kinases are modular in domain organization, 

containing SH3, SH2, and tyrosine kinase domains in a Src-like arrangement. The Src-like module 

is preceded by a Pleckstrin homology (PH) and a Tec homology (TH) domain (Fig. 1b), which are 

also involved in kinase regulation. There is no N-terminal myristate group; instead, the PH domain 

supports membrane recognition and binding.  The TH motif is N-terminal to  a proline-rich region 

that is implicated in an intramolecular domain association with the SH3 domain (48), and which 

competes with the SH2-kinase linker for SH3 engagement.  

 

1.4.1 Structural Biology of Bruton’s Tyrosine Kinase (Btk) 

 

The 2015 model of autoinhibited Btk (49), which is found in all hematopoietic cells except for T 

cells and NK cells, highlights the similarities and differences between SFKs and TFKs. Kuriyan 

et al. (2015) solved the X-ray crystal structure of a PH-TH-kinase protein and a SH3-SH2-kinase 

protein and used these structures to build a model of the full structure.  The authors built a full 

length model by aligning the kinase domains of each individual X-ray structure and subjecting the 

alignment to molecular dynamics relaxation.  The relaxed model (Fig. 2b) reveals a compact 

domain organization similar to the autoinhibited form of the Src-family kinase Hck, albeit with 

some key differences (49). The SH3 domain of Btk is packed against the N-lobe of the kinase 

domain and interacts with the SH2-kinase linker, analogous to the downregulated Hck structure. 
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Unlike Hck, however, Btk appears to utilize the PH-TH domain module as a clamp to hold the 

autoinhibited structure together instead of a phosphorylated C-terminal tail. The PH-TH module 

sits atop the kinase domain, and is packed against the back of the SH3 domain. This arrangement 

exposes the lipid-binding site of the PH domain for membrane interaction, and leaves the SH3 

domain available for displacement by a high affinity ligand (49). While this model of autoinhibited 

Btk provides important new insight into TFK downregulation, the mechanism of TFK activation 

is still unclear. The model proposed has been validated through a variety of techniques in 

competing laboratories, and while the compact, autoinhibited Src-like core has been shown to be 

reproducible, the site of PH domain packing on the kinase domain has been called into question.  

HIV-1 Nef may provide a unique probe to address this important question, as it has in the past for 

Hck and other Src-family kinases. 

 A series of more recent publications from the Andreotti and Engen labs have proposed that 

Btk is regulated by more than just the SH2-kinase linker interaction with the SH3 domain. These 

further regulatory effectors include Trp395 in the kinase linker (50, 51), the proline-rich-region 

found upstream of the SH3 domain and PH domain interaction with lipid ligands (52). These 

groups have used a combination of nuclear magnetic resonance (NMR), hydrogen-deuterium 

exchange mass spectrometry (HDX-MS), and molecular dynamics simulations to probe these 

interactions and learn more about the regulation of Btk in solution. Trp395, which is located in the 

SH2-kinase linker and sits at the top of the N-lobe of the kinase domain, affects the activation state 

of the kinase based on which rotamer conformation is adopted (51). If this residue is mutated, the 

kinase is less active due to the disruption of the regulatory spine in the kinase domain, which 

negatively affects the allosteric movement of the kinase domain as a whole (50, 51). Similarly, the 

proline rich region (PRR) that is N-terminal to the SH3 domain also acts as an activator of kinase 
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signaling (52), in contrast to the SH2-kinase linker proline region, which is involved in 

autoinhibition (50). As shown in complementary HDX-MS and NMR experiments (52), this N-

terminal PRR competes with the SH2-kinase linker to bind the SH3 domain and affect kinase 

activation. When the PRR is bound to the SH3 domain, the kinase is in an active conformation, 

but when the SH2-kinase linker is bound to the SH3 domain the kinase is inactive. This set of 

experiments, in combination with work from the Kuriyan lab, also highlights the role of lipid 

binding to the PH domain (49, 52, 53). When the PH domain is bound by a lipid ligand (e.g., 

PI(3,4,5)P3 or soluble IP6) the kinase adopts a more active conformation. This is achieved through 

a structural rearrangement of the entire Btk protein, that unwinds the compact autoinhibited 

structure (49) into an active linear array of domains previously described by small-angle X-ray 

scattering (54).  It is important to realize that for Btk, activation is not an ‘on/off switch’ but instead 

acts more like a ‘dimmer switch’, regulating the amount of activation based on the combination of 

regulatory factors (52). These interactions, taken together, tightly regulate Btk kinase, but not all 

of these interactions are found in TEC family member Itk. Compared to Btk, Itk regulation is still 

poorly understood, due in part to the difficulty of producing soluble Itk proteins for use in structural 

and/or biochemical studies. This thesis seeks to develop methods by which a larger library of Itk 

and Btk proteins can be produced on a scale sizeable enough for use in structural biology. 

 

1.4.2 HIV-1 and Interleukin-2-inducible T-cell kinase (Itk) 

 

Of the five TFKs, Itk in particular has been shown to affect multiple stages of the HIV-1 life cycle 

including viral entry, transcription from the viral LTR, virion assembly and release (55). Itk is 

found in T cells, NK cells, and mast cells where it functions as part of the response to T cell 
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activation downstream of the T cell receptor (53, 56-59). Btk has also been implicated in the HIV 

life cycle, with Btk specific inhibitors showing promising results against HIV-1 infected cells (60). 

Using a cell-based bimolecular fluorescence complementation (BIFC) assay, our group established 

that Nef interacts directly with Itk, Btk, and Bmx through their SH3 domains at the plasma 

membrane (61). Nef was also shown to induce Itk activation in transfected cells, and a selective 

inhibitor of Itk catalytic activity was shown to block HIV infectivity and replication in a Nef-

dependent manner (61), but only in cells where HIV-1 replication is enhanced by Nef. These 

studies are important because they provide the mechanistic bridge between HIV-1 and the host 

cell kinase Itk. They also suggest an SH3 domain displacement mechanism for Itk activation by 

Nef; which comprises part of my thesis project to address this possibility from a biochemical and 

structural perspective. 
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PDB: 1QCF 

Figure 2. Comparison of down-regulated SFKs and TFKs. A) X-ray crystal structure of down-regulated, auto-inhibited Hck. The two interactions that define 

the auto-inhibited kinase are the engagement of the SH2-kinase linker (orange) by the SH3 domain (red), and the binding of pTyr 527 from the C-terminal tail 

(cyan) into the SH2 domain (blue) binding pocket. Together, these interactions hold Hck in a compact, inactive structure. Upon activation, loop Tyr 416 is 

phosphorylated. Subtle displacement of the SH3 domain from SH2-linker engagement is sufficient to activate the kinase.  B) Model of auto-inhibited Btk. The 

Btk SH3-SH2-kinase core adopts a similar conformation as autoinhibited Hck. Unlike SFKs, Tec-family kinases lack a regulatory C-terminal tail. Instead, the 

PH-TH domain (green) clamps the kinase in the inactive state. This model of autoinhibited Btk was built utilizing two crystal structures relaxed together using 

molecular dynamics simulations. 

A. B.

PDB: 4XI2 
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1.5 STRUCTURES OF HIV-1 NEF IN COMPLEX WITH KEY HOST CELL 

EFFECTORS 

 

HIV-1 Nef is a 27 kDa N-myristoylated protein containing a flexible N-terminal arm (residues 1-

56), a proline-rich loop (57-80), a well-structured core domain (81-206, 148-180) and a C-

terminal flexible loop (148-180) (62). The N-terminal arm of Nef is responsible for membrane 

localization, which requires the myristate group to be exposed, as well as a basic patch of residues 

further down the arm (62). There have been several X-ray crystal structures solved of Nef in 

complex with a variety of host proteins (32-34, 63, 64), a subset of which are described below.  In 

all structures reported to date, the Nef core adopts a nearly identical three-dimensional fold despite 

its ability to interact with diverse host cell proteins. 

 

1.5.1 Nef : AP-2 -2 hemicomplex 

 

The clathrin adaptor protein AP-2 is the mechanistic link by which Nef downregulates cell surface 

CD4, as described above. Ren et al. (2014) solved the structure of the Nef core, including the C-

terminal loop, in complex with the AP-2 -2 hemicomplex. The majority of contacts between 

Nef and the AP-2 hemicomplex are located in the Nef C-terminal loop, which adopts a fold 

containing two helices, an acidic-dileucine motif, and a series of turns.  A helix that comprises 

residues 167-170 and a segment of turns (171-179) are packed between Nef and AP-2, allowing 

for the visualization of the entire C-terminal loop for the first time by X-ray crystallography. While 

the majority of interactions between AP-2 and Nef are located in the loop, the Nef core also packs 
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against the AP-2 hemicomplex. Previous mapping of Nef residues that interact with the 

cytoplasmic tail domain of CD4 (65) indicate that these residues are still available for interaction 

once Nef has bound AP-2, providing a model of Nef-dependent association between the CD4 tail 

and the clathrin adaptor AP-2. This study (64) also highlights a possible advantage of crystallizing 

proteins with flexible regions in complexes with binding partners. In the case of Nef, the complex 

with AP-2 provided the first structure of the Nef internal loop, which was unstructured in all 

previous Nef X-ray crystal structures.  

 

1.5.2 Nef : MHC-I : AP-1 1 

 

Another key function of Nef is the downmodulation of MHC-I from the cell surface to protect 

HIV-infected cells from CTL- induced cell death (15, 27). Nef mediates this response by acting as 

an adaptor between MHC-I in the trans-Golgi network and the 1 subunit of AP-1. In order to 

visualize the ternary interaction between the cytoplasmic domain (CD) of MHC-I, the 1 subunit 

of AP-1, and Nef, Jia et al. (2012) used a Nef-MHC-I CD fusion protein to bind 1 AP-1 for 

crystallographic analysis. The fusion of Nef and MHC-I CD was in a flexible region of Nef, so the 

authors believe the structure is free from artifacts (63). The structure reveals that the complex of 

Nef with AP-1 1 engages the MHC-I CD in a binding groove that is only present when Nef and 

AP-1 come together. In the absence of Nef, the MHC-I binding motif for AP-1 (Yxx motif) does 

not engage the AP-1 1 binding pocket due to the lack of a large hydrophobic residue at Y+3 (= 

alanine in MHC-I). When Nef is present, however, a sidewall is formed at the pocket creating a 

more favorable groove for MHC-I binding (63). The sidewall is comprised of the Nef proline-rich 
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region, which then pre-organizes Nef for long range electrostatic interactions with 1 AP-1 and 

MHC-I (63).  These electrostatic interactions hold the ternary complex together, and involve 

Asp123 of Nef, which is highly conserved and critical to this and other Nef functions. This 

structure, in conjunction with the Nef:AP-2 structure highlights the diverse functionality of Nef. 

Nef interacts with both adaptor proteins, but through different mechanisms and binding sites, 

indicating that the mechanism of Nef partner protein binding is not always predictable based on 

previous structures.  

 

1.5.3 Nef : Hck SH3-SH2 

 

In addition to adaptor proteins, Nef also binds and activates members of Src kinase family as 

described above (32-38). Among these, the Hck SH3-SH2 dual domain has been solved in complex 

with Nef (32) (as has the Hck SH3 domain in earlier work (66)). The structure of the Nef:Hck 

SH3-SH2 complex revealed previously unknown contacts between the SH3 domain and Nef, as 

well as contacts between SH2 and Nef, and a novel Nef:Nef dimer interface. As described earlier, 

SH3 domains contain two binding grooves on their surface that recognize the Nef PXXP motif 

that adopts a polyproline type II helix. This expected interaction is observed in the complex, plus 

a new salt-bridge between residues Nef Arg105 and SH3 Glu93, which was shown to be critical 

for Nef:Hck complex formation and activation of the kinase (32). The structure also revealed a 

system of van der Waals contacts between the Hck SH2 domain and Nef, which was previously 

unknown. While a Nef-Nef dimer interface was visualized in previous Nef:SH3 (34, 66) structures 

as well as the Nef:Hck SH3-SH2 (32) structure, the dimer interface varies between them. While 

the Nef residues involved in the dimer interfaces overlap, there are some key differences that 
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expose residues important for other functions.  Most interesting is the observation that engagement 

of Hck SH3-SH2 exposes Nef Asp123, which is critical to both CD4 and MHC-I downregulation. 

This observation suggests that interaction with Hck may reorganize the Nef dimer to allow 

interaction with endocytic adaptor proteins, and is consistent with the requirement for Hck in the 

MHC-I downregulation pathway.  More generally, the differences in quaternary structure between 

Nef when bound to SH3 vs. SH3-SH2 speak to the importance of solving structures that contain 

as much of each partner protein as possible. 

 

1.6 ADDITIONAL STRUCTURAL FEATURES OF HIV-1 NEF 

 

1.6.1 Nef Dimerization 

 

The Nef dimers that have been observed (Fig 3.) in X-ray crystal structures (32, 34, 66) are not 

merely artifacts of crystallization conditions.  These dimers are dependent on the binding partner 

of the Nef protein, and are generally oriented around the B helix. While the helix that forms the 

dimer interface is the same across the dimers, the orientation of that helix varies greatly between 

the structures. This indicates that Nef may be pre-organized for binding certain partners based on 

the dimerization state of the core molecule. Nef homodimers have been observed in cells through 

BiFC studies (67), and mutagenesis of the Nef dimerization interface based on these crystal 

structures have established that dimerization is required for various functions of Nef. These 

functions include CD4 and MHC-1 downregulation (67, 68), Src-family kinase activation (32), 

and HIV infectivity and replication (67). It is even possible to interfere with various functions of 

Nef though the use of small molecules that bind and disrupt Nef dimerization (69), indicating that 
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the quaternary structure of Nef is vital to its interactions with other molecules. This quaternary 

structure appears to be responsible, at least in part, for the ability of Nef to interact with a multitude 

of binding partners, and has now been observed in several different orientations.  

 

1.6.2 Nef Myristoylation 

 

In cells, Nef is N-terminally myristoylated in order to promote association with cellular 

membranes, where much of the function of Nef is carried out (70, 71). This myristoylation, 

covalently attached at Gly2, is necessary for many of the functions of Nef, and has been implicated 

in the binding of Nef to sites of activity (70, 71). Interestingly, many of the proteins that are known 

to interact with Nef functionality are also targeted to cellular membranes via an assortment of 

different pathways. These partners include Src and Tec-family kinases, as well as endocytic 

adaptor complexes and membrane receptors as described in the preceding sections.  While the role 

of myristoylation in Nef function is well known, the atomic-level structure of full-length 

myristoylated Nef is undetermined. Models based on low resolution structural studies have been 

conducted, and will be discussed in further detail in following sections.  Thus another important 

goal of this project was to develop methods for production of full-length, myristoylated Nef protein 

for biophysical studies in model lipid bilayers.       
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PDB: 1EFN PDB: 4U5W 

PDB: 6B72 

Figure 3. HIV-1 Nef Dimers in Selected Crystal Structures. A) Nef bound to Hck SH3 domain results in a dimer of complexes that orients 

the B helix of Nef into the dimer interface. B) Nef bound to Hck SH3-SH2 results in a dimer that is reoriented around the same B helix 

interface, but the orientation is different from that seen in A.  C) Nef bound to a single -octyl glycoside detergent molecule (not shown) 

dimerizes in yet another orientation that utilizes the B helix in a novel fashion. This function of Nef, to dimerize around the B helix in a 

ligand- or partner protein-dependent manner, may explain how Nef associates with diverse host cell proteins for the advantage of HIV-1.  

The Nef monomer is virtually unchanged in each structure.  

B
B B B
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B
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2.0 MATERIALS AND METHODS 

 

 

 

 

2.1 BACTERIAL EXPRESSION VECTORS 

 

2.1.1 Itk His6 Tagged Library 

 

Multiple expression constructs were designed based on previous structural data, and were PCR-

amplified and subcloned into the pET-30a(+) vector via Nco1 and Xho1 restriction sites to yield a 

library of plasmids for expression of C-terminally His6-tagged Itk proteins. The final expression 

library consisted of Itk SH3, SH3-SH2, PH-SH3-SH2, and PH-SH3 proteins.  The Itk SH3-SH2 

P287A, and PH-SH3-SH2 R96P/T110I/P287A mutants were created with site-directed 

mutagenesis using the parent plasmids described above and the QuickChange II XL site-directed 

mutagenesis kit (Stratagene). The Itk R96P/T110I mutant was prepared by J. Reese, a former 

undergraduate student in our lab, who performed site-directed mutagenesis on the parent plasmid 

described as above. 
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2.1.2 Btk /Itk Smt3 Tagged Library 

 

An expression library consisting of N-terminally Smt3-tagged Btk and Itk proteins was PCR-

amplified (from plasmids gifted from A. Andreotti, Iowa State University) and subcloned into the 

pET-28a(+) vector containing N-terminally His6-tagged Smt3 (gift from P. Thibodeau, University 

of Pittsburgh) via Bam-HI and XhoI restriction sites. The final expression library consisted of Itk 

SH3, SH2 WT, SH2 P287A, PH-SH3-SH2 R96P/T110I/P287A, and Btk SH3, SH2, PH-SH3-SH2, 

PH-SH3, SH3-SH2. All proteins in this library contained the N-terminal Smt3-tag.  

 

2.1.3 Nef SF2 Proteins 

 

The full length and core Nef SF2 allele vectors were obtained from Dr. John Jeff Alvarado and 

encompassed residues 1-209 and 58-209, respectively in a pET-21a(+) backbone.  The Nef 

PP76,79AA mutant was created by site-directed mutagenesis using the parent plasmids described 

and the QuickChange II XL site-directed mutagenesis kit (Stratagene). 

 

2.1.4 Full Length Myristoylated Nef SF2 

 

Myristoylated Nef was produced through the use of a pET-Duet 1 plasmid encoding full-length 

Nef SF2 with a C-terminal His6 tag and human N-myristoyl transferase-1 (hNMT-1) (72), which 

was kindly provided by Dr. John Engen (Northeastern University, Boston MA). The Myr-Nef 

D123N mutant was produced with site-directed mutagenesis using the parent plasmid and the 

QuickChange II XL site-directed mutagenesis kit (Stratagene) 
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2.2 EXPRESSION AND PURIFICATION FROM BACTERIAL VECTORS 

 

2.2.1 Itk His6 Tagged Protein Library 

 

All expression constructs were used to transform Escherichia coli (E. coli) strain Rosetta2(DE3) 

pLysS (EMD Millipore), and a single colony used to inoculate starter cultures of LB media. Starter 

cultures were grown overnight at 37°C, and then diluted 100-fold into 1 liter fresh LB. Expression 

cultures were grown at 37°C until OD600 of 0.8, and then cooled to 15°C for 1 hr. Cooled cultures 

were induced with 1 mM isopropyl 1-thio--D-galactopyranoside (IPTG), and left overnight for 

protein expression. After 16 h, cells were collected by 4,000g centrifugation, snap-frozen in liquid 

nitrogen, and stored at -80C. 

 Purification of the Itk His6 protein library was carried out on 1 L cell pellets (~5g), which 

were thawed on ice and resuspended into Ni-IMAC binding buffer (25 mM Tris-HCl, pH 8.3, 0.5 

M NaCl, 20 mM imidazole, 10% v/v glycerol, 2 mM -mercaptoethanol [BME]). Pellets were 

fully homogenized with a protease inhibitor pellet (cOmplete, EDTA-free; Sigma) according to 

manufacturer recommendations, and passed through a microfluidizer (Microfluidics) 10-12 times 

at 4°C. The cell lysate was then spun at 56,000Xg for 1 hr at 4°C to clarify. The clarified lysate 

was loaded onto a pre-equilibrated 5 mL HIS-TrapHP column (GE Healthcare) at 2.0 mL/min. 

Bound protein was washed with 5-column volumes of binding buffer before being eluted over a 

32-column volume linear gradient between 20 mM and 500 mM imidazole using Ni-IMAC elution 

buffer (binding buffer with 500 mM imidazole). Fractions containing the protein of interest were 

identified using SDS-PAGE gels, pooled, and dialyzed overnight into ion exchange binding buffer 

(25 mM Tris, pH 8.0, 1 mM EDTA, 10% v/v glycerol, 4 mM BME) using a 3-kDa cut-off 
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membrane (Millipore). Following dialysis, the protein was loaded onto a either pre-equilibrated 5 

mL Q-TrapHP or SP-TrapHP column (GE Healthcare) at 2.0 mL/min, and washed with 5-column 

volumes binding buffer, before being eluted over a 32-column volume linear gradient between 0 

0.5 M NaCl using ion exchange elution buffer (binding buffer with 1M NaCl). Fractions containing 

the protein of interest were pooled and concentrated on an Amicon stirred-cell concentrator with 

a 3-kDa membrane to a volume of approximately 10 mL. The protein was then buffer exchanged 

with size exclusion buffer (20 mM Tris-HCl, pH 8.3, 150 mM NaCl, 1 mM EDTA, 10% v/v 

glycerol, and 2 mM Tris (2-carboxyethyl) phosphine [TCEP]) and further concentrated to a final 

volume of less than 6 mL, followed by centrifugation at 10,000 rpm for 10 min at 4°C to pellet 

any insoluble precipitate. The soluble protein was loaded onto a pre-equilibrated HiLoad 16/60 

Superdex 75 gel filtration column (GE Healthcare), and eluted at a flow rate of 0.5mL/min. 

Fractions containing the protein were assayed by SDS-PAGE, pooled, concentrated, flash-frozen 

in liquid nitrogen, and stored at -80°C for use.  

 

2.2.2 Btk /Itk Smt3 Tagged Library 

 

All Smt3-tagged proteins were expressed in the E. coli strain Rosetta2(DE3) pLysS (EMD 

Millipore) using the same procedure as described for His6 tagged proteins above.  

Purification of the Btk/Itk Smt3  library of proteins was carried out on 1 L cell pellets (~5g), 

which were thawed on ice and resuspended into Ni-IMAC binding buffer (25 mM Tris-HCl, pH 

8.3, 0.5 M NaCl, 20 mM imidazole, 10% v/v glycerol, 2 mM TCEP). Pellets were fully 

homogenized with a protease inhibitor pellet (cOmplete, EDTA-free; Sigma) according to 

manufacturer recommendations, and passed through a microfluidizer (Microfluidics) 10-12 times 
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at 4°C. The cell lysate was then spun at 110,000Xg for 1 h at 4°C to clarify. The clarified lysate 

was loaded onto a pre-equilibrated 1 mL His GraviTrap column (GE Healthcare) and allowed to 

drip through under atmospheric pressure at 4°C. The bound protein was then washed with 30-

column volumes of binding buffer, before being eluted with 3 mL elution buffer (binding buffer 

supplemented with 500 mM imidazole). If the Smt3 tag was to be removed, the 3mL elution was 

diluted into 50 mL binding buffer and rocked overnight at 4 °C in the presence of SUMO-protease 

at a ratio of 10,000:1 protein:protease. Following cleavage, the sample was run over the same His 

GraviTrap column, and the flow-through collected. This flow-through was then concentrated to 6 

mL, and buffer exchanged into size-exclusion buffer (same as above). If cleavage was not desired, 

the 3 mL elution was diluted 2-fold in size exclusion buffer and then dialyzed overnight into the 

size exclusion buffer over a 3-kDa membrane (Millipore). The full 6 mL sample (either cleaved or 

uncleaved) was then loaded onto a pre-equilibrated HiLoad 16/60 Superdex 75 gel filtration 

column (GE Healthcare), and eluted at a flow rate of 0.5 mL/min. Fractions containing the protein 

were pooled, concentrated, flash-frozen in liquid nitrogen, and stored at -80°C for use. 

 

2.2.3 Nef SF2 Proteins 

 

All Nef proteins were expressed in the E. coli strain Rosetta2(DE3) pLysS (EMD Millipore) using 

the same procedure as described for His6 tagged proteins above, with the modification of 25 °C 

induction temperature instead of 15 °C.  

Purification of the full length and core Nef proteins was carried out on 2 L cell pellets (~10 

g), which were thawed on ice and resuspended into anion exchange binding buffer (25 mM Tris-

HCl, pH 8.0, 1 mM EDTA, 10% v/v glycerol, 4mM BME). Pellets were fully homogenized with 
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a protease inhibitor pellet (cOmplete, EDTA-free; Sigma) according to manufacturer 

recommendations, and passed through a microfluidizer (Microfluidics) 10-12 times at 4°C. The 

cell lysate was then spun at 110,000Xg for 1 h at 4 °C to clarify. The clarified lysate was loaded 

onto a pre-equilibrated 5mL Q-TrapHP column (GE Healthcare) at 2.0 mL/min. Bound protein 

was washed with 5-column volumes of binding buffer before being eluted over a 32-column 

volume linear gradient between 20 mM and 500 mM NaCl using ion exchange elution buffer 

(binding buffer with 1M NaCl). Fractions containing the protein of interest were pooled, and 

diluted into cation exchange binding buffer (25 mM HEPES, pH 7.5, 1 mM EDTA, 10% v/v 

glycerol, 1 mM DTT) The protein was loaded onto a pre-equilibrated 5 mL SP-TrapHP column 

(GE Healthcare) at 2.0 mL/min, and washed with 5-column volumes binding buffer, before being 

eluted over a 32-column volume linear gradient between 0 to 0.5M NaCl using cation exchange 

elution buffer (binding buffer with 1M NaCl). Fractions containing the protein of interest were 

pooled and concentrated on a Amicon stirred-cell concentrator with a 10-kDa membrane to a 

volume of approximately 10 mL. The protein was then buffer exchanged with size exclusion buffer 

(20 mM Tris-HCl, pH 8.3, 150 mM NaCl, 1 mM EDTA, 10% v/v glycerol, 2 mM TCEP) and 

further concentrated to a final volume of less than 6 mL, followed by centrifugation at 17,000 g 

for 10 min at 4 °C to pellet any insoluble precipitate. The soluble protein was loaded onto a pre-

equilibrated HiLoad 16/60 Superdex 75 gel filtration column (GE Healthcare), and eluted at a flow 

rate of 0.5 mL/min. Fractions containing the protein were pooled, concentrated, flash-frozen in 

liquid nitrogen, and stored at -80°C for use.  
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2.2.4 Full length Myristoylated Nef SF2 

 

The pET-Duet 1 plasmid containing Nef SF2 and hNMT-1 into E. coli  strain Rosetta2(DE3) 

pLysS (EMD Millipore) using the protocol provided by the Engen lab (71). Briefly, a single colony 

used to inoculate starter cultures of freshly mixed M9 medium consisting of 1 mM CaCl2, M9 salts 

and trace elements, 100 mM HEPES, pH 7.4, 1% casamino acids, 2% glucose, and 2 mM MgSO4.  

Starter cultures were grown overnight at 37°C, and then diluted 100-fold into 1 L of fresh M9 

minimal medium. Expression cultures were grown at 37 °C until OD600 of 0.6, at which time the 

medium was supplemented with myristic acid (Sigma) solution to 50 M. Myristic acid solution 

was previously prepared as a 5 mM stock solution in 0.6 mM BSA, heated to 60 °C and pH 

corrected to 9.0 with NaOH, in order to promote solubilization. Following the addition of myristic 

acid, the cultures were shaken at 37°C for 1 hr, then cooled to 15 °C for 1 h. Cooled cultures were 

induced with 1 mM IPTG and left overnight. After 16 h, cells were collected into 1 L pellets by 

centrifugation, snap-frozen in liquid nitrogen, and stored at -80C. 

Purification of myristoylated Nef proteins was carried out on 2 L cell pellets (~5 g), which 

were thawed on ice and resuspended into Ni-IMAC lysis buffer (20 mM Tris-HCl, pH 8.3, 100 

mM NaCl, 20 mM imidazole, 10% v/v glycerol, 2 mM TCEP, 1% Triton X-100). Pellets were 

fully homogenized with a protease inhibitor pellet (cOmplete, EDTA-free; Sigma) according to 

manufacturer recommendations, and passed through a microfluidizer (Microfluidics) 5-7 times at 

4°C. The cell lysate was then spun at 110,000Xg for 1 hr at 4°C to clarify. The clarified lysate was 

loaded onto a pre-equilibrated 5 mL HIS-TrapHP column (GE Healthcare) at 2.0 mL/min. Bound 

protein was washed with 30-column volumes of lysis buffer before being washed with 30-column 

volumes of Ni-IMAC wash buffer (lysis buffer with 25 mM sodium cholate instead of Triton X-
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100). Then, the bound protein was washed with Ni-IMAC wash buffer (lysis buffer without Triton 

X-100), and finally eluted over a 32-column volume linear gradient between 20 mM and 500 mM 

imidazole using Ni-IMAC elution buffer (wash buffer with 500 mM imidazole). Fractions 

containing Myr-Nef (but not hNMT-1) were pooled and concentrated on a Amicon stirred-cell 

concentrator with a 10-kDa membrane to a volume of approximately 10 mL. The protein was then 

buffer exchanged with size exclusion buffer (20 mM Tris-HCl, pH 8.3, 150 mM NaCl, 10% v/v 

glycerol, 2 mM TCEP) and further concentrated to a final volume of approximately 10 mL, 

followed by centrifugation at 10,000 rpm for 10 min at 4 °C to pellet any insoluble precipitate. 

The soluble protein was loaded onto a pre-equilibrated HiLoad 16/60 Superdex 75 gel filtration 

column (GE Healthcare), and eluted at a flow rate of 0.5 mL/min. Fractions containing the protein 

were pooled, concentrated, and stored at 4 °C for use. One aliquot was sent to Jamie Morocco 

(Engen Lab, Northeastern University, Boston MA) for characterization of the ratio of 

myristoylated vs. non-myristoylated protein in the final sample.  

 

2.3 SURFACE PLASMON RESONANCE (SPR) 

 

SPR analysis was performed on a BIAcore T100 instrument (GE Healthcare) using a CM5 

carboxymethyl dextran chip. The full-length Nef SF2 C210 protein was covalently attached to 

the four-channel chip via standard amine coupling chemistry in HBS-EPD buffer (10 mM HEPES, 

pH 7.5, 150 mM NaCl, 3 mM EDTA, 0.05% v/v P20 surfactant, 1 mM DTT). All Itk and Btk 

proteins were then flowed past the immobilized Nef protein channel and a reference channel in 

HBS-EPD buffer at a flow rate of 10 μL/min for 2 min, followed by a 2 min dissociation period 

and surface regeneration step of increased flow of HBS-EPD buffer at 40 L/min for 5 min. The 
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results were corrected for buffer effects and fitted to 1:1 binding model using the BIAcore T100 

evaluation software.
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3.0 RESULTS AND ANALYSIS 

 

 

 

 

3.1 PROTEIN PURIFICATION 

 

The purification of multiple proteins for the use in biochemical and biophysical assays comprised 

a significant portion of time in the laboratory during my thesis research and will be addressed in 

detail in the following sections. The Nef proteins that I utilized throughout the research were 

primarily purified from plasmids kindly provided by Dr. John Jeff Alvarado. I purified these 

proteins based on standard laboratory protocols, as outlined above, and they were generally 

concentrated to greater than 1 mg/mL with a yield greater than 10 mg per liter, with variations 

based on batches. In the following experiments, full-length Nef SF2 C210 was utilized as a ligand 

in SPR experiments to the Itk proteins produced. Other Nef proteins that I produced in my time in 

the lab include Nef core SF2 C210 (59-209) and the full-length Nef SF2 C210 - PP76, 79AA 

mutant which lacks the proline residues essential for SH3 binding. While these proteins will not 

be described in the following results, they are available in the lab for use in future experiments.  
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3.1.1 Itk His6 Library 

 

The first plasmids produced and tested for expression and purification in this collection of proteins 

were the wild type Itk SH3, Itk SH3-SH2, and the Itk PH-SH3-SH2 constructs. Of these, the Itk 

SH3 and Itk SH3-SH2 proteins were readily expressed, and soluble at higher than 3 mg/mL 

concentrations in gel filtration buffer. Unfortunately, the Itk PH, Itk PH-SH3, and Itk PH-SH3-

SH2 wild type proteins were not expressed as soluble proteins in E. coli, and required multiple 

mutations to promote soluble protein expression based on literature precedent for Btk. The first 

mutations were directed to the -helix of the PH domain (73).  This pair of mutations 

(R96P/T110I) comprise the flanking residues of the PH domain α-helix and are mutated to match 

the analogous residues in the Btk PH domain. Unfortunately, while the expression of the Itk PH 

protein was improved by the inclusion of the mutations, the amount of soluble protein after the 3-

step purification process was negligible. However, the longer construct of Itk PH-SH3-SH2 was 

improved by the inclusion of the two PH domain mutations. The Itk PH-SH3 protein was not 

affected by the PH domain mutations, and could not be expressed in soluble form under any tested 

condition. In contrast to the PH domain containing proteins, Itk SH3-SH2 was highly soluble and 

produced protein on the order of greater than 20 mg per liter of induced bacterial culture. However, 

this protein displayed two peaks on elution from the Superdex 75 gel filtration column, with one 

peak elution volume consistent with monomer protein and one with dimer protein. These peaks 

were separated for use in subsequent experiments. To promote conversion of the Itk SH3-SH2 

protein to the monomeric form, Pro287 was mutated to Ala (74), which was successful in reducing 

the amount of dimeric Itk SH3-SH2 protein found in the final SEC elution profile (Figure 4). The 

Pro287Ala substitution was also introduced into the Itk PH-SH3-SH2 construct.  While the Itk PH-
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SH3-SH2 triple mutant is still not a highly soluble protein, the cumulative addition of these three 

mutations was able to promote soluble protein expression to about 3 mg per liter.  A summary of 

all the proteins produced for the Itk protein domain library are shown in Table 1 and Figure 8 in 

Appendix B. 
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Figure 4. Size Exclusion Chromatography of Itk SH3-SH2 WT and P287A. Itk SH3-SH2 elutes from a gel filtration column as two 

species, one corresponding to a dimer and one corresponding to a monomer. Making a mutation in the SH2 domain to prevent a 

cis isomerization of P287 reduces the ratio of dimer produced in the final product, and has no negative impact on the solubility of 

the final protein.  
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3.1.2 Btk/Itk Smt3 Library 

 

Following the limited success of expression of soluble C-terminal His6-tagged Itk proteins, 

another method was needed to produce a significant amount of proteins that contained the PH 

domain. At the same time, it was decided to pursue Btk proteins concurrently with Itk proteins in 

the hope that Btk may provide an easier path to sufficient quantities of longer PH domain-

containing proteins. To that end, a pET28a(+) plasmid that contained a N-terminal Smt3 tag was 

obtained from Dr. Patrick Thibodeau and an assortment of Btk and Itk proteins were pursued. 

The Itk SH3 and SH3-SH2 proteins were not remade in this new backbone since they were 

successful expressed in the earlier library. A full component of Btk domain proteins were 

produced, along with a set of complementary Itk proteins that were not successful in the His6 tag 

vector.  These proteins are summarized in Table 2 and Figures 9 and 10 in Appendix B. While 

the goal was to use the Smt3 tag to solubilize the proteins before cleaving the tag and leaving an 

untagged protein for use in experiments, this proved to be incompatible with some of the Btk and 

Itk proteins produced. Again, the PH domain-containing proteins proved to be problematic. All 

of the Btk and Itk proteins that contained a PH domain must be left with the Smt3 tag uncleaved 

in order to produce enough soluble protein for biophysical experiments. Proteins that do not 

contain a PH domain do not require the tag to be soluble, and proved to be expressed at a high 

level and amenable to cleavage, with yields of over 5 mg from 1 liter of culture. The yield of 

cleaved PH domain containing proteins was less than 0.5 mg from 1 liter of culture, but the yield 

was improved to over 1 mg per liter when the tag was left uncleaved.  
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Table 1. Summary of Itk Proteins Expressed with C-terminal His6 Tags. 

Protein Domain(s) Mutation(s) 
MW 

(Da) 
pI 

 

 (−cm−) 
State a 

Yield 

(mg/L) 

Itk SH3 WT 8679.4 5.14 18450 Monomer >20

Itk SH3-SH2 WT 21542.0 6.16 37360 Monomer >20

Itk SH3-SH2 WT 43084.0 6.16 37360 Dimer 6

Itk SH3-SH2 P287A 21516.0 6.16 37360 Monomer >20

Itk PH  R96P/T110I 21085.2 9.66 32430 ------------ ------------ 

Itk PH-SH3 R96P/T110I 28550.3 8.78 50880 ------------ ------------ 

Itk PH-SH3-SH2 WT 41412.9 8.97 69790 ------------ ------------ 

Itk PH-SH3-SH2 R96P/T110I 41365.9 8.89 69790 Monomer b 1 

Itk PH-SH3-SH2 R96P/T110I/P287A 41339.9 8.89 69670 Monomer b 3 
aState refers to the predicted oligomerization state of protein eluted off the Superdex75 gel filtration column and based on 

observed elution volume compared to known standards 
bThese proteins were observed to precipitate/oligomerize in solution during concentration 
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      Table 2. Summary of Btk and Itk Proteins Expressed with N-terminal Smt3 Tags.  

Protein Domain(s) Mutation(s) 
MW with Smt3 

(Da) 
pI 

MW without Smt3 

(Da) 

Smt3 

Taga 

Yield  

(mg/L) 

Btk 

Btk 

PH-TH WT 34523.4 9.25 20739.9 Uncleaved >20 

PH-TH-SH3 WT 45730.0 8.77 31946.6 Uncleaved >20 

Btk PH-TH-SH3-SH2 WT 57482.3 8.92 43698.9 Uncleaved >20 

Btk SH3-SH2 WT 32881.9 6.21 19098.5 Cleaved 6 

Btk SH2 WT 25019.2 9.44 11235.8 Cleaved 3 

Btk SH3 WT 21129.6 4.45 7346.2 Cleaved 7 

Itk PH-TH  R96P/T110I 33756.5 9.66 19973.1 Uncleaved  3 

Itk SH2  WT 27006.4 9.08 13222.9 Cleaved  10 

Itk SH2  P287A 26980.4 9.08 13196.9 Cleaved >20 

Itk PH-TH-SH3-SH2  R96P/T110I/P287A 54058.2 8.97 40274.8 Uncleaved 1 
aRefers to the recommended state of Smt3 tag cleavage for soluble, concentrated final protein  
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3.2 SPR OF ITK SH3 AND ITK SH3-SH2 

 

In a pilot experiment to determine if Itk was capable of binding Nef, full-length Nef SF2 was 

covalently bound to a CM5 chip on a BIAcore T100 instrument (GE Healthcare), and the soluble 

Itk SH3 and Itk SH3-SH2 proteins were flowed over to determine the kinetics and affinity of 

binding. The Src-family kinase Hck has been used extensively in the lab as a positive control for 

Nef binding, and was used in these experiments to show that the bound Nef was functional.  As 

seen in Figure 5, Itk SH3 did not show binding to the full-length Nef unlike the Hck SH3 domain. 

This result suggests that the Itk SH3 domain alone is not sufficient for interaction with Nef, unlike 

the Hck SH3 domain. In contrast to the isolated Itk SH3 domain, the dual SH3-SH2 Itk protein 

readily bound to Nef.  The Itk SH3-SH2 monomeric protein bound full-length Nef with a similar 

affinity as the Hck SH3-SH2 protein (3.35x10-7 M vs. 2.34x10-7 M, respectively), but with much 

different binding kinetics (Table 3). The Itk SH3-SH2 had a much slower rate of dissociation than 

Hck SH3-SH2 from Nef, and required a regeneration step to fully remove the protein from Nef on 

the chip.  As observed, the 1:1 binding model did not describe the Itk SH3-SH2 data well, so this 

data was also fit with a heterogeneous ligand model. This model accounts for two ligand 

molecules, or binding sites, to bind an analyte independently of each other. The Itk SH3-SH2 dimer 

protein also bound full-length Nef, but the extent of binding was greatly reduced (i.e., the response 

was much lower) indicating that the protein was not as robust a binding partner for Nef as the 

monomeric protein. These findings suggest that the mode of Nef interaction differs between Src 

and Tec family kinases, with the SH2 domain potentially having a bigger role in the Nef complex 

with Itk.
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Legend 

Figure 5. SPR of Itk SH3 and Itk SH3-SH2 to surface-bound full-length Nef SF2. Hck SH3 binds to FL Nef SF2 in a concentration dependent manner 

at KD = 1.015x01-6 M, while Itk SH3 does not bind to FL Nef SF2, indicating a difference in how Nef interacts with these different tyrosine kinase 

families. Hck SH3-SH2 binds to FL Nef SF2 at a KD = 2.34x10-7 and Itk SH3-SH2 binds Nef at a KD = 3.35x10-7, indicating that more than the Itk 

SH3 domain is necessary for Nef:Itk complex formation. All curves are fit with a 1:1 binding model to determine the KD, unless otherwise noted. The 

fitted curves are shown as the black traces, while the experimental data are shown in color. 
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Table 3. Summary of SPR data.  

Protein k
on

 (M
-1 

sec
-1

) k
off

 (sec
-1

) K
D 

(M) Chi
2

 

Hck SH3 2.79 x 10
5

 0.38 1.015 x 10
-6

 0.137 

Itk SH3 N/A N/A No Binding N/A 

Hck SH3-SH2 8.93 x 10
4

 2.09 x 10
-2

 2.34 x 10
-7

 15.6 

Itk SH3-SH2 9.47 x 10
3

 3.17 x 10
-3

 3.35 x 10
-7

 1.53 

Itk SH3-SH2 

Heterogeneous Liganda 
1.14 x 10

5

 

2775 

6.55 x 10
-3

 

1.30 x 10
-3

 

5.75 x 10
-8

 

4.70 x 10
-7

 
0.602 

aThis fitting model results in two values for each kinetic parameter, with a separate binding affinity for each set.  
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3.3 FULL-LENGTH MYRISTOYLATED NEF 

 

The purification of full-length myristoylated Nef was undertaken for use in lipid SPR and 

neutron reflectometry studies in collaboration with Rebecca Eells and Mathias Lösche 

(Department of Physics, Carnegie Mellon University). The general protocol and plasmids were 

provided by Chris Morgan and John Engen (Northeastern University). Following the published 

protocol, each batch of the myristoylated Nef that I produced was checked by mass spectrometry 

for purity in the Engen lab before use. Generally, a single batch was purified from a 2-liter cell 

pellet, and yielded between 0.5 mg and 1 mg of protein at a concentration usually around 10 M 

or less. Due to the instability of the myristic acid moiety on the N-terminus, this protein was not 

stored at -80°C, and was prepared fresh for each round of experiments. Each batch had a 

different ratio of myristoylated : non-myristoylated Nef, which was taken into consideration for 

each experiment. Two examples of a typical mass check result can be found in Figure 6, located 

in Appendix A. Before the protein was assayed in lipid SPR or other experiments, the stability 

of the protein was checked using a thermal melt assay. Full-length myristoylated Nef was stable 

for 24 h at room temperature in all salt buffer conditions tested (Figure 7). All experiments 

conducted on lipid membranes were conducted in 50mM NaCl in order to promote Myr-Nef 

binding to the membrane.   

 In collaboration with the Lösche group, association of recombinant purified Myr-Nef was 

tested for associated with artificial lipid bilayers using an SPR approach.  For these studies, 

lipids are tethered to a gold surface, and association of the myristoylated and non-myristoylated 

forms of Nef was assessed as increases in the SPR signal.  We found that the Myr-Nef protein 

associated readily with the lipid bilayer, with preliminary KD values in the low micromolar 

range.  Interestingly, once Myr-Nef associated with the membrane, it remained stably bound, 
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enabling further characterization by neutron reflectometry.  In contrast, the non-Myr-Nef protein 

interacted weakly with the membrane and only at high concentrations.  Together, these 

observations suggest that the use of the sparsely-tethered lipid bilayers and Myr-Nef will be a 

viable system for future structural studies of Nef:Itk and other effector complexes in the 

membrane environment.  
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4.0 DISCUSSION 

 

 

 

 

4.1 ITK HIS6 LIBRARY 

 

The inclusion of the two -helix mutations in the PH domain is necessary for the increased 

solubility of any Itk protein that contains the PH domain. It is also important to remember the 

inclusion of the PH domain in the Itk protein greatly affects the pI of the protein. The increased 

basicity of the proteins with PH domains must be taken into consideration when designing the 

purification conditions and future experiments. While the Itk PH and the Itk PH-SH3 proteins were 

not soluble even with the mutations included, the yield of Itk PH-SH3-SH2 was improved upon 

the inclusion of mutations.  

Working towards the formation of a homogenous, soluble protein mixture that would be 

suitable for use in X-ray crystallography experiments, Pro287 in the SH2 domain was mutated t
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Ala (74, 75). This mutation forces the residue at position 287 to adopt a trans conformation, which 

may be necessary to produce consistently monomeric Itk SH3-SH2 protein. The proline that is 

native to this position in Itk can adopt a cis or trans conformation and has been shown, by 

molecular dynamics simulations, to cause the Itk SH3-SH2 protein to oligomerize when in the cis 

conformation (74, 76). While oligomers larger than dimers were never observed in the soluble 

fraction eluted from gel filtration, it was necessary to spin the concentrated protein prior to gel 

filtration to remove a fine precipitate that would fall out of solution during concentration. This 

SH2 domain mutation was also added to the Itk PH-SH3-SH2 R96P/T110I protein to try to 

alleviate precipitation and oligomerization of the larger protein, and further promoted the 

expression of soluble Itk PH-SH3-SH2 protein. 

The Itk PH-SH3-SH2 protein was purified multiple times, and there are several additives that 

can affect the solubility that were tested. The addition of the surfactant -octyl glucoside was able 

increase the solubility of the final protein when included in the concentration buffer (before and 

after gel filtration). However, these proteins were being used in multiple assays by myself and 

others in the laboratory in experiments where the addition of this surfactant could be detrimental 

to the outcome of the assay. This is especially true in the case of testing the proteins in the lipid 

SPR setup in collaboration with the Lösche lab (Carnegie Mellon University).  For this reason, the 

protein that was most commonly utilized did not contain detergent in the final buffer. If it was 

desirable to boost the final concentration of this protein (i.e., for use in X-ray crystallography) the 

addition of β-octyl glucoside may be a good starting point. 

The addition of the soluble phosphoinositide PH domain ligand IP6 was also tested as a 

technique to boost solubility, but unfortunately it was not sufficient to increase the final yield or 

concentration of the protein.  Previous studies have shown that IP6 is a potent activator of Btk 
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kinase activity (49).  I also explored the interaction of IP6 with the Itk PH-SH3-SH2 protein in 

SPR experiments, which yielded a KD value of approximately 0.3 mM (data not shown).  

 

4.2 BTK/ITK SMT3 LIBRARY 

 

The use of the Smt3 tag as a solubilization aid has been previously noted (77), and it proved to be 

equally successful for the production of both Btk and Itk proteins that were unsuccessful with a 

His6 tag. However, it was not possible to take full advantage of the system as several of the proteins 

had to be left with the Smt3 tag, as they fell out of solution upon cleavage of the tag; including Btk 

PH, PH-SH3, PH-SH3-SH2, Itk PH R96P/T110I, and Itk PH-SH3-SH2 R96P/T110I/P287.  

It is important to note that all ten of the proteins in this library had to be treated carefully 

during the dialysis from Ni-IMAC elution buffer into gel filtration buffer. All ten proteins 

experienced heavy precipitation at this step the first time they were purified. Subsequent attempts 

to prevent precipitation were most successful when the eluted protein was diluted by at least two 

times in the dialysis buffer, before being dialyzed overnight at 4°C. This gentle dialysis step 

seemed to help reduce precipitation. There was also heavy precipitation following cleavage of the 

Btk SH2 domain. It is recommended to dilute this protein before cleavage as well. This proved to 

be an easy, reliable way to minimize protein loss due to precipitation, and is recommended before 

any cleavage step as a precaution. Most of the precipitation noted during the purification of these 

proteins appeared to be related to protein concentration, so as long as the protein remained dilute 

(e.g. 1.0 mg/ml or less), the precipitation was minimal.  
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The protocol developed for these proteins utilized gravity fed columns that proved to be 

straightforward to use, and provided a way to purify a large number of proteins quickly and 

efficiently. However, because these columns only have a 1 mL bed volume it is important to restrict 

expression to a less rich media, like the standard LB media. While expression in a richer media 

like Terrific Broth (TB) can produce larger cell pellets (and subsequently more recombinant 

protein), TB pellets proved to be too large for these columns.  Even though the cell lysates treated 

with benzonase and clarified by ultracentrifugation, the gravity-flow columns still became 

clogged. That said, it is likely that all of these proteins could be purified using standard 5 mL 

columns under the regulated flow of our automated purification systems.  Nevertheless, the single-

use Ni-IMAC gravity flow columns proved to be exceptionally amenable to the cleavage step, 

where the flow-through is collected (Smt3 tag contains an N-terminal His sequence for clean 

removal). Moving forward, I would recommend these columns for use with Smt3 tagged proteins, 

particularly those that will be cleaved before gel filtration chromatography.  

 

4.3 FULL-LENGTH MYRISTOYLATED NEF 

 

The experiments carried out by Rebecca Eells (Lösche laboratory, CMU) on the Myr-Nef I 

produced can be found in her Ph.D. thesis. Briefly,  she determined that myristoylated Nef binds 

charged sparsely-tethered lipid bilayer membranes with a KD of approximately 1 M. The binding 

was robust enough for data to be collected during neutron reflectometry (NR) experiments, which 

revealed the core of Nef is suspended about 80 angstroms from the lipid membrane, while the 

myristate group inserts into the outer layer of the bilayer. Taken together, the lipid SPR and NR 
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experiments provide a good base for future experiments utilizing these techniques and proteins. It 

is necessary to take into account that each batch of Myr-Nef results in a limited amount of protein, 

so experiments regarding this protein have to be well planned in advance so that the protein can 

be utilized to its full extent. I tried to use protein within two or three weeks of purification. This is 

because the protein was stored at 4°C, as opposed to -80°C in small aliquots. NR experiments 

require 2.5 mL of protein at a concentration at least twice that of the KD determined from SPR 

experiments, so it takes almost a full batch to complete a set of NR experiments. 
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5.0 FUTURE DIRECTIONS 

 

 

 

 

 

In this thesis, I have presented the work put towards producing Itk and Btk proteins that can be 

utilized in a variety of biochemical and biophysical techniques to address the question of how Itk 

and Btk are activated both in the presence and absence of HIV-1 Nef. These proteins can be used 

to study the interaction between TFKs and Nef. I did not address the work put into producing full-

length Btk and Itk and their use in biochemical assays. This work has already been picked up by 

others in the lab, and is promising for future success.  

 The first study I would advise would be a comprehensive analysis of which (if any) of the 

TFK proteins will form a stable complex with Nef in solution, the first step towards a 

crystallization trial. While I tried to form a complex between several of the Itk His6 tagged proteins 

and Nef, I was not successful in forming a stable complex in solution. I mixed the proteins in a 

1:1.2 ratio for an hour on ice and ran them over a Superdex 75 analytical column (GE Healthcare) 

to determine if a complex was formed. While this technique has shown success with Hck SH3-

SH2 and Nef, ultimately leading to an X-ray structure (32), the Itk SH3-SH2 cHis6 protein was not 

able to consistently form a complex with either the Nef core or full-length Nef proteins. I also 

attempted to co-express and co-purify these proteins together, but was unsuccessful in forming a 
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stable complex. It is entirely possible that Btk proteins would be more amenable to complex 

formation with Nef, or even one of the longer Itk constructs that are tagged with Smt3.  

 Complementary to the analytical gel filtration experiment, a comprehensive study of 

protein: protein interactions via SPR would be another experiment I would propose to be 

conducted. The results of this study may provide valuable preliminary data in advance of 

crystallization screens. Itk and Btk proteins that form high affinity interactions with Nef, or 

displayed a prolonged dissociation in a kinetic experiment, would be the ideal candidates to 

combine in crystallization trials going forward.  

 I set up four trays of crystallization trials pursuing a complex between Nef and the Itk SH3-

SH2cHis6., by simply mixing the proteins in a 1:1 ratio. Unfortunately, the attempt was 

unsuccessful and no crystals were observed either for the complex or the individual Itk protein. 

However, there are still many promising proteins and protein complexes that are available to test 

in co-crystallization studies. The Btk proteins in particular may be favorable as the Btk Src-like 

core has been crystallized (49) previously (see Introduction). While my proteins do not contain the 

kinase domain, they do contain the Smt3 tag, which might work to promote crystallization in the 

same way. Ideally, the crystals would be obtained from untagged protein, but those proteins that 

contain PH domains benefit greatly from the addition of the Smt3 tag in solubility and yield.  

However, any data collected with the Smt3 tag will need to be verified on untagged protein to 

ensure the tag is not inducing an artifact. Crystal trials should also be completed on the individual 

Itk proteins. There are currently no published X-ray structures of more than a single domain of Itk. 

The only Itk structure that contains two domains is an NMR structure of an individual SH3 domain 

bound to an isolated SH2 domain. For this reason, any structure that can be obtained from any of 

the larger constructs of Itk would be a major advance in the field of Itk structural biology.  
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The structure of Itk or Btk in complex with Nef will reveal the binding interface between 

two proteins that have been shown to be a mechanistic link between HIV infection and the T-cell 

signaling pathway (in the case of Itk). With a better understanding of how Nef activates and 

interacts with Itk it may be possible to design or discover small molecules that target the interaction 

and provide additional protection from the pathogenicity of HIV-1. The structure of the Itk:Nef 

complex may also reveal how Itk is activated for the first time, thus providing insight into not only 

HIV-1 biology, but also Itk activation.
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APPENDIX A 

 

ANALYSIS OF MYRISTOYLATED NEF PROTEINS 

 

Before the full-length myristoylated Nef could be used in lipid SPR or nuclear reflectometry 

experiments it was necessary to get the mass check of each batch of protein (Figure 6). Each batch 

exhibited a different level of myristoylation, and this ratio of myristoylated to non-myristoylated 

protein was used to estimate the actual concentration of myristoylated Nef in each sample. The 

protein was also assayed for thermal stability at room temperature over a 24h period (Figure 7). 

This was to test if the protein would aggregate during a typical neutron reflectometry experiment.  
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1 ul myr nef sample kindra

mass
25500 25520 25540 25560 25580 25600 25620 25640 25660 25680 25700 25720 25740 25760 25780 25800 25820 25840 25860 25880 25900 25920 25940 25960 25980 26000

%

0

100

2017_01_09_MYRNEF  306 (5.190) M1 [Ev-360172,It52] (Gs,0.750,951:1584,0.50,L33,R33); Cm (274:372) TOF MS ES+ 
1.60e725750.50

25830.00

25750.5 
No myr, +N Met 

25830 
+myr, -N Met

200 pmoles myr-Nef Sf2

mass
25500 25520 25540 25560 25580 25600 25620 25640 25660 25680 25700 25720 25740 25760 25780 25800 25820 25840 25860 25880 25900 25920 25940 25960 25980 26000

%

0

100

2017_03_09_MYR_NEF_SF2_2  302 (5.123) M1 [Ev0,It16] (Gs,0.750,690:1439,0.50,L33,R33); Cm (265:344) TOF MS ES+ 
8.29e6

A: 25748.59±0.12
B: 25828.26±0.11
C: 22369.68±5.92

B
25827.50

A
25748.00

25800.50

25777.00 25854.00

25748 
No myr, +N Met 

25827 
+myr, -N Met

Figure 6. Mass Check of Selected Batches of Myr-Nef. Every time a new batch of myristoylated Nef had 

to be expressed and purified an aliquot from that batch was sent to the Engen Lab at Northeastern 

University for mass check. The best batch, WT Myr-Nef from March 2017 was approximately a 1:1 ratio 

of Myr : Non-Myr Nef. Most other batches were around 30% myristoylated, similar to the January 2017 

batch shown. Some batches were 0% myristoylated and could not be used for lipid SPR studies.  

January 2017 

March 2017 
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Figure 7. Thermal stability of Myr-Nef. The stability of full-length myristoylated Nef was determined 

to be stable over a 12 hour period in buffers containing 0-150 mM NaCl. This experiment was utilized 

to prove that the protein would not destabilize over the course of a typical neutron reflectometry 

experiment, even at low salt concentrations. Experiments were carried out at 50mM NaCl on lipid 

membranes.  
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APPENDIX B 

SELECTED SDS-PAGE GELS OF PURIFIED PROTEINS 

Figure 8. SDS-PAGE of Successful ItkcHis6 Proteins. Protein was purified from a one liter expression as 

described in Methods. Gels shown are of the final protein fractions after gel filtration, but before 

concentration.   
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Figure 9. SDS-PAGE of Successful Btk-Smt3 Fusion Proteins. Protein was purified from a one liter expression as described in Methods. 

Gels shown are of the final protein assayed against a BSA standard of 0.5g, 1g, 2g, 3g, and 4g. The name of the protein denotes if 

cleavage was utilized for the final protein. The BSA standard was used to calculate the final yield of protein in the 3mL sample.  
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Figure 10. SDS-PAGE of Successful Btk-Smt3 Fusion Proteins. Protein was purified from a one liter expression as 

described in Methods. Gels shown are of the final protein assayed against a BSA standard of 0.5g, 1g, 2g, 3g, 

and 4g. The name of the protein denotes if cleavage was utilized for the final protein. The BSA standard was used 

to calculate the final yield of protein in the 3mL sample.  
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