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SEMANTICS ENHANCED DEEP LEARNING MEDICAL TEXT CLASSIFIER

Jose David Posada Aguilar, PhD

University of Pittsburgh, 2018

Electronic health records (EHR) contain a vast amount of data with the potential to leverage

applications that improve patient outcomes and enhance the work of health care providers.

A major portion of this data is inside unstructured text in the form of clinical narratives.

To effectively use clinical text, NLP tools have been developed and applied to numerous

problems involving clinical decision support systems, cohort identification, and phenotyping

among others.

However, one of the main problems that face the development of NLP tools for the clinical

domain is the lack of large annotated data sets. Clinical language and report style variations

are another major problem for clinical NLP. These variations lead to problems where NLP

systems created with data from one institution exhibit significantly different performance

when tested in a different institution.

One way to address the lack of large annotated datasets and variations in clinical lan-

guage is the explicit incorporation of semantics into the development of clinical NLP tools.

Semantics allow us to know that the meaning of words, and thus help us account for language

variations. In this work, we incorporate the semantics from ontologies into a loss function of

a deep learning text classifier. Also, to specifically address the problem of the lack of large

annotated datasets we used a large unannotated or unlabeled dataset, increasing the sample

size as a result. To properly use such unlabeled data, we adapted a semi-supervised binary

approach that uses the unlabeled dataset during training.

To the best of our knowledge we are the first to do so, and for that reason, this is one

of the main theoretical contributions of this work. Also, by reducing the need for extensive
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annotations, we believe this work could enable researchers in clinical settings to embrace

and leverage the full potential of clinical NLP tools given the reduced effort required to

achieve the desired performance. Furthermore, all the methods in this work are designed as

reproducible and extensible software tools that aid further biomedical informatics research

in this area.

Keywords: Deep Learning, Ontology, Natural Language Processing, Psychiatric Reports.
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PREFACE

For the LORD gives wisdom; from his mouth come knowledge and understanding

Proverbs 2:6

The fear of the Lord is the beginning of wisdom, and the knowledge of the Holy One is

insight.

Proverbs 9:10
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1.0 INTRODUCTION

Electronic health records (EHR) contain a vast amount of data with the potential to leverage

applications that improve patient outcomes, reduce healthcare expenditure and enhance the

work of health care providers [1, 2, 3]. It is estimated that roughly 25,000 petabytes of

healthcare data will be available by 2020 [1, 3]. A major portion of this data is inside

unstructured text in the form of radiology reports, operative notes and discharge summaries

among other types of clinical narratives [4]. This clinical text is dictated and transcribed

or directly entered by healthcare professionals to communicate the status and history of a

single patient to other health care professionals or themselves [5]. This text is what best

tells us the patients story and describes the physician thought processes and decision making

[6]. Free text continues to be used despite many attempts to encode such information in the

form of drop-down menus offered by commercial EHR applications [6].

To effectively use clinical text, natural language processing (NLP) tools have been de-

veloped and applied to numerous problems involving clinical decision support systems [4],

cohort identification [7, 8], syndromic surveillance systems [9], information extraction [10]

and phenotyping [11], among others. Many of these applications depend on some form of

text classification. In clinical text classification, the interest is to classify a document into a

set of predefined labels that usually represent a disease or condition of interest that is not

easily captured by ICD or CPT codes.

Recently, for clinical text classification, deep learning (DL) strategies have gained in-

creased attention. Different applications of deep learning applied to clinical text have shown

an increase or at least a comparable performance to strategies that rely on handcrafted fea-

tures [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Usually, these DL text classification strategies

rely on pre-trained distributional semantic models for text representation. Distributional
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semantic models are models that usually represent word or documents in a vector space. In

that space vectors that are close to each other are assumed to have similar meaning, this is

being semantically similar. These models are trained with the assumption that words used

in similar context have a similar meaning. With that assumption, the models are trained to

capture semantics by using the ”distribution” of words in the document.

In consequence, words that rarely occur in a similar context but are related will not be

close in the vector space. As an example lets, consider the sentences continued problems in

school with frequent suspensions and received an undergraduate degree followed by a master’s

in Zoology. These sentences are related because both are describing situations related to ed-

ucation. However, it is unlikely that the words in the sentences and the sentences itself occur

in a similar context within a clinical text. Because of that distributional semantic models will

hardly capture the semantic relationship from sentences like those. To overcome this issue,

we can supply an external knowledge source containing relationships usually not present on

distributional models. Such knowledge source in the biomedical domain is usually presented

in the form of ontologies. In the biomedical domain, ontologies have been integrated into

DL strategies for word sense disambiguation [22, 23], text classification [24], representation

learning for predictive modeling [25, 18]. Outside the biomedical domain, they have been

combined for short text classification [26] and to enhance distributional semantic models

[27].

1.1 THE PROBLEM

A well-known problem in clinical NLP research is the lack of large annotated data sets.

Training samples for clinical NLP are collected through annotation of clinical reports. An-

notations are usually performed by clinicians who read through a clinical report and highlight

the portion of text that is relevant. Because a clinician performs the task, the cost of an-

notating a large corpus is prohibitive for most research projects [28]. That is the reason

that when we compare the size of annotated samples for non-clinical text data sets such as

bAbI (20,000 samples) [29] or the Imbd movie reviews (50,000 samples) [30], with one of
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the most recent annotated clinical data sets (816 samples) [31], we see a notable difference.

Any method applied to text classification in the clinical domain needs to account for this

problem.

To understand how this problem is solved we need to first describe in more detail the

characteristics of those annotations. Clinicians annotate only the portion of text that ex-

plicitly contain the relevant information; those annotations are the positive samples. All the

other portion of text it is assumed to be non-relevant if the clinician read the entire report,

and those annotations become the negative samples. The majority of the developed clinical

NLP exclusively make use of positive and negative samples, requiring fully annotation of the

reports. We will name those approaches PN, for positive and negative.

However, if the clinician does not read the entire report, the report is partially annotated,

and it cannot be assumed that all the non-annotated text is non-relevant. In this case, those

portions of text are considered unlabeled samples because they can be either positive or

negative. Unlabeled samples can also be collected through clinical reports the annotator

never saw but possibly contain the information we are looking. Partial annotation is done in

cases where the time required to read the entire report could prevent the collection of enough

samples, or when the annotations are done at a document level or when the information for

a given patient in a report is just repetitive and does not contribute to the diversity of the

samples. To exemplify this let’s consider the report in Figure 1 and let’s say we would like to

annotate information pertaining to living conditions. This particular patient is homeless and

the way is described in both of the highlighted sentences is almost the same. Given that the

particular living condition for this patient is homelessness, all the information mentioned in

the report will be pointing to that. If we want a variety of living conditions, we would have to

read a clinical report from a different patient. So instead of spending the precious and costly

time of a clinician annotating the same information over and over again, it could be better

to ask them to partially annotate this report and move to the next. A report annotated in

this form gave way to applications in clinical NLP that only used positive samples [32] or

that used a combination of positive, negative and unlabeled samples (PNU) [33, 34]. No

attempt has been made in clinical NLP to train a system with only positive and unlabeled

samples (PU), and this is one of the focuses of this dissertation.
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Figure 1: Psychiatric Report Excerpt. Highlighted in green the relevant information anno-

tated
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The other major problem with clinical text is that clinical language and clinical report

styles vary across institutions [35, 36]. Even for the same institution, there is variation across

different practices [37]. Prior research shows a significant difference in performance of NLP

systems created with data from one institution and tested on data from another [38]. Given

this cross-institutional difference it is has been shown that tuning is usually needed when

moving a system from one institution to another [39, 40].

One of the ways to address the problem of variability in clinical language and report style

is to train with data from multiple institutions [41]. However, this is not always feasible given

regulatory restrictions and commercial interests from the healthcare institutions. Another

way is to incorporate semantics into the construction of clinical NLP systems [40]. Such

semantics can be incorporated through ontologies [42] or distributional semantics models

[19]. By incorporating semantics, we can enable NLP systems to understand what is written

[43] and consequently improve their performance. As an example, let’s consider the sentences

I live by myself, and I live alone. Both sentences are expressing the same reality with different

words. An NLP tool trained using only one of the two examples may not generalize well for

the second example, without knowing that the meaning of the words by myself and alone is

the same in this context.

Several methods have been investigated to incorporate semantics using ontologies. One

of the common approaches is to map words or phrases into concepts inside an ontology such

as SNOMED [44]. In this approach, instead of using the raw text in a sentence like this he

was homeless and living in his car, the mapped equivalent homeless (C0237154), car owner

(C0425252) is used to train the models. This approach has been used extensively in different

applications that use rule-based [45, 46] or machine learning systems [47, 48, 49, 50, 51].

These studies used the ontological concepts as input features. Most of these applications

use a dictionary lookup tool such as cTakes [52], MetaMap [53] or NOBLE Coder [54] to

accomplish a mapping.

However, none of these approaches take into account the relationships of those concepts

in their ontologies. To account for those relationships some approaches incorporate semantic

similarity metrics derived from them. Those similarity metrics are computed by using the hi-

erarchical structure of the ontologies, measuring how close two concepts are from each other.
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Figure 2: Example of an Ontology

The closeness is measured by accounting for the path between two concepts. Concepts that

are closer in the hierarchy (e.g., D and E in Figure 2) are assumed to be more semantically

similar than those that are farther apart (e.g., D and C in Figure 2). One of the ways to

incorporate this metric in biomedical text is to use support vector machine (SVM) with a

semantic kernel [55, 56, 57]. The semantic kernel is a matrix that contains the concept’s

pairwise semantic similarities derived from the ontologies. This matrix is used as the kernel

in the SVM. This approach does not take advantage of possibly defining the class as a set of

concepts, but keep the class defined as a simple categorical label. This is indeed attempted

to solve by [58] where the class is defined as a set of concepts. In this approach, the distance

between the set of concepts that form the document and the set that form the class is mea-

sured. The document is assigned to the class with lower distance, resembling a k-nearest

neighborhood(kNN) approach. In this approach the distance computed does not fully take

into account the hierarchy, suffer from the same weaknesses of kNN(e.g., lack of model and

computational cost for prediction) and was only applied to biomedical journals but not clin-

ical text. In both approaches (i.e., semantic kernel and class-based metrics) semantics that

could be derived from the words themselves are not considered, and consequently lost.

Besides ontologies, we can also incorporate semantics through distributional semantic

models. Those models are usually trained with unlabeled clinical notes using word2vec [59]
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or Glove [60]. Two main approaches have been used to obtain those models. The first one

used only the raw text to train such models using simple NLP processes such as tokenization

or stop word removal on the raw text [61, 62, 63, 19, 17, 14, 64, 28, 15]. The second

use dictionary lookup tool to transform the text into concepts and obtain a model for the

mapped concepts [65, 66, 13]. Therefore instead of having vector representations for words,

the representations are obtained for each concept. In this way, some knowledge from the

ontology is transferred by means of word normalization, but the hierarchical relationship

of the concepts is lost, and the semantics that could be derived from keeping the raw text

representation are also lost.

To overcome this issue, distributional semantic models are improved by using ontologies

in a process called retrofitting [67, 27, 68] or by modifying the loss function used to train

those models to incorporate knowledge constraints [69, 70]. Retrofitting is a process by which

those models are modified after training by forcing concepts that are related in the ontology

to be related in the models [68, 71]. As an example, let’s assume the vector representation

in the distributional semantic model for the words university and midterms are not close

to each other. If those words are indeed close in the ontology, the vectors are modified in

such a way that the distance between them is reduced. Once these distributional semantic

models are obtained, the semantics embedded in those models are leveraged in several works

[63, 21, 12, 19, 14, 15, 13] as input features of the machine learning algorithms. However, any

of those works merge the representation of the text as concepts, the ontologies hierarchical

relationships and the distributional semantics from raw text into the training of the classifiers.

A recent work applied to biomedical journals [24], attempts to use the controlled vocab-

ulary in the ontology, hierarchical structure, and the distributional semantics. In this work,

words that belong to a given group in the ontology share parameters in the model. Groups

are formed by merging concepts that share common parents. By merging concepts that share

common parents the hierarchical relationships are lost. To illustrate this let’s consider the

Figure 2 where according to this approach concepts B, C and D, E will be merged to groups

g1 and g2 respectively. Within those groups model parameters for B, C will be shared but

no sharing will occur between g1 and g2 effectively losing the relationship between B and D.

In this work we preserve those relationships, leverage the concept representation for the text

7



and also focus on the loss function of the classifier rather than enhancing the representation

of text, as a markedly different factor from all the previous research that solely focus on

modifying the text representation.

1.2 THE APPROACH

We propose a novel approach that combines distributional semantic models with ontologies

in a single framework. First, we trained a distributional semantic model from a large corpus

of unlabeled clinical reports. The distributional semantic model is in the form of word

embeddings. Second, we used an ontology to compute a semantic distance between concepts

in the ontology. This distance is incorporated into the loss function of a text classification

strategy. The strategy has two main components. The first component is a semantic deep

network (SDN) that predicts which concepts are inside a clinical text, similar to the work

done by a dictionary lookup tool. The second component is a classification deep network

(CDN) that given the probability of each concept in the input text outputs the class label

for the text. The unlabeled samples are used in a semi-supervised binary strategy integrated

with the SDN and the CDN. The semi-supervised strategy consists of a recursive elimination

method that attempts to remove probable positive samples from the unlabeled set of samples.

A diagram with the approach is shown in Figure 3.

1.2.1 Theses

In this dissertation, we tested the following hypotheses: (1) the proposed strategy will im-

prove the generalization performance of clinical text semi-supervised classification algorithms

by incorporating semantics into the training strategy. (2) The proposed strategy will im-

prove the generalization performance of clinical text supervised classification algorithms by

incorporating semantics into the training strategy

From our experiments, we can conclude the following theses: (1) a semi-supervised clin-

ical text classification strategy that integrated a semantic loss function with a recursive

8



Figure 3: Overview of the approach
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elimination method obtained a better generalization performance than strong clinical text

classification baseline methods. (2) Adding a semantic loss function did not improve the gen-

eralization performance over strong supervised clinical text classification methods. Based on

the experiments performed the following strong claims can be made:

1. Only positive labeled samples are needed to achieve good performance in clinical text

classification.

2. To train a semi-supervised strategy that only uses positive and unlabeled samples a

non-negative risk loss function is sufficient to evaluate model candidates during hyper-

parameter optimization.

3. It is feasible to incorporate prior knowledge into a deep learning strategy in the form of

a derivable semantic loss function.

The following weak claim can also be made

• A set based semantic distance function can be directly used to identify probable positive

samples to be used for training a clinical NLP tool.

1.3 SIGNIFICANCE AND INNOVATION

To the best of our knowledge, this is the first time that ontologies have been integrated with

deep learning to explicitly incorporate semantics into a text classification algorithm applied

to clinical text.

Also, to the best of our knowledge, this is the first time that a semi-supervised strategy

applied to the classification of clinical text has been trained by only using positive and

unlabeled samples. Moreover, our approach is one of the first being applied to a corpus of

psychiatric notes.

The principal contribution to informatics is the novelty of hierarchical relationships be-

tween ontological concepts to inject semantic relationships into a loss function used to train

a text classifier. This process is uniquely integrated into the loss function during classifier

training as opposed to preprocessing.

10



Capturing semantic information reduced the amount of data required to achieve a good

level of performance when classifying clinical text. This is advantageous for clinical trans-

lational research since the cost and time required to annotate clinical text is prohibitive

for most research projects [28]. Our strategy is designed to fill this need, with the pri-

mary objective to use less training data. By using less data this work has the potential to

enable applications that were restricted for the lack of resources to annotate the number

of required clinical reports. Also, applications such as cohort discovery [8] and screening

patient’s eligibility in clinical trials from clinical notes [72] can also benefit from this.

Finally, all the methods developed in this work are designed to be reproducible, transpar-

ent, accessible and generalizable for future clinical natural language processing applications.

We believe this work is important in both biomedical informatics and applied clinical re-

search.

1.4 THESIS OVERVIEW

In Chapter 2, a review of the relevant literature regarding clinical natural language pro-

cessing, deep learning, and semantic similarity measures in biomedical text is presented. In

Chapter 3, all the developed methods are described in detail, along with the development of

the dataset used to evaluate the proposed strategy. In Chapter 4, a detailed description of

the experiments performed is shown, along with evaluation results on the datasets. Finally,

in Chapter 5, a discussion of the results is presented along with the limitations, how to

address those and possible future work.
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2.0 BACKGROUND

In this chapter, we will discuss relevant concepts regarding clinical text classification, tradi-

tional algorithms, and features used for this task. Later we will explain the basic concepts of

deep learning pertinent to this work. Finally, we finish with a brief description of semantic

similarity measures applied to biomedical text using ontologies.

2.1 CLINICAL TEXT CLASSIFICATION

Text classification is a task that consist in assigning a document to a predefined set of classes

or labels [73]. Given an input document d and a set of nC class labels CL ∈ {1, . . . , nC}

we wish to learn a classification function f : d → CL that maps document to classes. For

supervised and semi-supervised learning the class labels are generally known during training,

contrary to unsupervised learning where the labels are completely unknown during training.

For clinical text, the most common supervised methods are Naive Bayes, support vector

machines (SVM), hidden Markov models and conditional random fields [74]. More recently

convolutional neural networks (CNN) [21, 17] and long short-term memory networks (LSTM)

[14] are becoming increasingly popular given their good results in general text. SVM will be

described in this section while CNN and LSTM will be described later in Section 2.2.

2.1.1 Support Vector Machines

Support vector machines are a binary discriminative learning approach that aims to learn

a hyperplane that separates two classes while maximizing the margin between the decision

12



Figure 4: Linear SVM decision boundary and Margin

boundary. The margin is defined as the distance between the closest data point to the

hyperplane that composes the decision boundary between the two classes [73]. Support

vectors are called to the data points that are closest to the hyperplane. In Figure 4, we can

see an example of a hyperplane, the margin and the support vectors in two dimensions for

a linearly separable case.

In general, the decision boundary is non-linear. Thus a nonlinear function is needed to

separate the classes. This non-linear function is embedded into SVM in the form of a kernel.

The idea of a kernel is to map the input space into a high dimensional space where the data

is separable. For this general case, the decision function for a new sample x of an SVM is

defined by

sign(
l∑
i

yiαiK(xi,x) + b) (2.1)

where K is the kernel function, xi ∈ RN , ∀ i = 1, . . . , l is the input vector that represents

d, with l training samples. yi ∈ {1,−1} are the labels of each class. αi and b are the

parameters learn by the algorithm [75, 76, 77].
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Traditionally to obtain a representation of d suitable for the use with SVM a tf-idf

vector space model [78] is obtained from the training corpus. To compute tf-idf vector we

need to compute three quantities: the term frequency, the document frequency, and the

inverse document frequency. First let’s represent a document di in a corpus D as a sequence

of words d = (w1, . . . , wn), ∀ di ∈ D. Then we can compute the term frequency tfwj ,di

as the number of times wj occur in di. Usually, instead of raw counts, we can use a log

normalization 1 + log(tfwj ,di
) to increase the weight of rare words that usually are more

informative than common words. Now, to compute the document frequency of a word dfwj

we only need to count the number of di that contains wj. The inverse document frequency

idfwj
is simply the inverse of the document frequency that is usually log scaled and computed

by idfwj
= 1 + log(l/dfwj

). Finally, the tf-idf weight for wj in di can be computed using the

equation 2.2.

tf-idfwj ,di
= tfwj ,di

∗ idfwj
(2.2)

Finally, the input feature vector xi ∈ RN with N as the vocabulary size is formed by the

tf-idf weights of each word such that xi
j = tf-idfwj ,di

.

2.2 DEEP LEARNING ARCHITECTURES FOR NATURAL LANGUAGE

PROCESSING

In the following sections, I describe a neural a network as well as the main architectures used

in the present work. I start by describing Deep Feedforward networks (FFN) to later move

to word embeddings as an application of this architecture to obtain a distributional semantic

model. In Section 2.2.3 I describe convolutional neural networks (CNN) which were initially

successfully applied in computer vision applications but has recently gained traction in the

NLP community. I then finalize explaining how the networks are trained.
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Figure 5: Representation of a basic neuron

2.2.1 Deep Feedforward Networks

Neural networks are a collection of units called neurons that aim to approximate any non-

linear function. Originally neural networks are biologically inspired, however in this work

we will approach them from the mathematical point of view.

A graphical representation of a basic neuron can be seen in Figure 5. This neuron can

be seen as a weighted sum of an input x ∈ RN with weights wi ∈ R, ∀ i, . . . , N and a bias

term b ∈ R. Here f is a nonlinear activation function applied to the result of the weighted

sum.

There are several options for nonlinear activation functions. In Table 1 we summarize

the most common ones.

A collection of neurons is called a layer. A layer is a collection of neurons that is applied

to the same input. In Figure 6, we can see the graphical representation. This layer can be

represented in matrix notation as

y = f (xW + b) (2.3)

where W ∈ RN×nout is the weight matrix, and the bias and output are now vectors

b,y ∈ Rnout .

Now deep feedforward networks (FFN) are typically a composition of multiple of such

layers one after another, such that the information flows from the input through the output
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Function Equation Plot

Sigmoid
1

1 + e−x

Tanh
2

1 + e−2x
− 1

ReLU [79] max(0, x)

Leaky

ReLU [80]
max(βx, x), β ∈ R

Table 1: Common nonlinear activation functions
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Figure 6: Representation of a basic Neural Network layer with two inputs and three neurons

in one direction with no feedback loops or recursion [81] exist. In this networks, there are

three main types of layers: an input layer, a hidden layer, and an output layer. An input

layer typically is the one that is in direct contact with the input. The hidden layers are

the ones that process information as a result of the output of other layers including the

input layer. The output layer is the one that produces the final output and is the one where

typically the results are observed. In Figure 7, we can see a graphical representation of a

prototypical deep feedforward network.

If the classification problem is multi-label multi-class usually a sigmoid function is used

in the output layer. In a multi-class problem the classifier is asked to differentiate between a

plural number of classes(i.e., more than two). In a multi-label classification problem a clas-

sifier is asked to assign more than one label to each sample. On the other hand, if we have a

multi-class problem a softmax function is usually applied to the last layer. softmax normalize

the output of the network between zero and one, thus allowing a probabilistic interpretation

of the output. For a vector x ∈ RN softmax can be defined as:

softmax (x) =
1∑N

i=1 e
xi


ex1

...

exN

 (2.4)

Usually, in NLP, these networks are used in combination with three types of different
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Figure 7: Representation of a typical Feedforward network with one input layer, one hidden

layer and one output layer

feature representation for text: one-hot, tf-idf and word embeddings. These feature repre-

sentations are used as inputs in the first layer of the network. In one-hot representations,

each word wj is represented by a 0 if it does not occur on document d and 1 if it does occur.

In this representation, we have a binary feature vector x ∈ ZN with N as the vocabulary

size. In tf-idf each document is represented by a real valued feature vector x ∈ RN .

For word embeddings [59] we have a matrix WE ∈ RN×a with a as the size of the

embeddings and N the vocabulary size. Here each wi is represented as a row vector in WE.

The vectors for individual words occurring in a document are aggregated using sum, mean

or other similar operation [61], to represent a full document. Using this approach the feature

vector is x ∈ Ra. Word embeddings will be discussed in detail in Section 2.2.2.

2.2.2 Word Embeddings

Word embeddings are a distributional semantics representation of words usually obtained

through unsupervised training in a large corpus [82]. The most common algorithm to obtain

word embeddings is called word2vec [59]. The most common architecture for word2vec is
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Figure 8: Skip-gram model architecture for word2vec

called Skip-gram (see Figure 8).

In this architecture, the goal is to predict the context words C(wj) = (wj−k, . . . , wj+k)

given an input word wj in a window of length k. The model attempts to maximize the

average log probability of the corpus D [83]:

arg max
θ

∑
(w,cw)∈Dp

log(p(cw|w;θ)) (2.5)

where θ are a set of model parameters, and Dp ⊂ D is a set composed of all word and

context pairs that occur in the corpus. Dp is a subset because it is regulated by the size

of the context window, so if the context window is infinite, the subset is exactly equal to

the set, but this will be computationally intractable. For simplicity, we drop the j index

in w, and any word in C(wj) is represented now as cw. The proposed architecture to

compute this probability is an FFN with one input layer W ∈ RN×a, one output layer

W′ ∈ Ra×N with softmax output, where a is the size of the embeddings. However, the

softmax is not entirely computed but approximated using a method called negative sampling

[59]. Negative sampling is a method composed by a mathematical approximation followed
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by a series of heuristics where the initial objective proposed in Equation 2.5 is changed by

a binary classification problem. In this binary classification problem, the objective is to

predict whether a pair of words occur in the corpus or not. In the following, we will describe

in detail how the algorithm works.

Let x ∈ ZN be the one-hot vector representing the word w. The output of the FFN can be

computed as y = softmax (xTWW′),y ∈ RN . As we can see from the previous equation, the

only non-linearity comes from the computation of the softmax . Computing the softmax is

expensive when the vocabulary has millions of words. Instead, the computation is reframed

by using rows and column vectors from the input and output weights.

Let vw ∈ Ra be a row vector from the matrix W and vcw ∈ Ra be a column vector from

the matrix W′. Also, let z be a dummy variable that indicates whether a pair (w, cw) is in

the corpus or not and defined by:

z = 1 ∀ (w, cw) ∈ Dp

z = 0 ∀ (w, cw) /∈ Dp

(2.6)

Now let’s propose two logistic functions to define the probability of z as:

P (z = 1|(w, cw)) = σ(vw · vcw)

P (z = 0|(w, cw)) = σ(−vw · vcw)
(2.7)

where σ = 1
1+exp(−x) . With this proposition, the new objective is to minimize [83]:

arg max
θ

∑
(w,cw)∈Dp

log σ(vw · vcw) +
∑

(w,cw)/∈Dp

log σ(−vw · vcw) (2.8)

However, to compute the second term, this means the probability for all the samples

that do not occur in the corpus will be computationally infeasible. To overcome this instead

of computing for all (w, cw) /∈ Dp the sum is computed for ns negative samples which

become a hyper-parameter of the algorithm. Negative sample pairs are formed such that

((w, cw1), . . . , (w, cwns)). The objective in Equation 2.8 is more computationally efficient

than a softmax because it is not necessary to obtain the output for each one of the N words

in the vocabulary. Instead, this costly procedure is replaced by computing the probability
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only for the words in the window k plus ns negative samples. To select the negative samples

a heuristic is implemented. The heuristic consists in randomly drawing words from the

vocabulary with a probability:

pnegative−sample(cwi) =
(tfcwi

)3/4∑ns
j=1 (tfcwj

)3/4
(2.9)

Also, to compensate for too frequent words (e.g. the), each word in a sequence is assigned

a probability for keeping such word. If the computed probability is below a predefined thresh-

old, the word is discarded. The probability according to their published code is computed

by:

pkeeping(w) = (

√
U(w)

0.001
+ 1) · 0.001

U(w)
(2.10)

where U(w) is the unigram probability of the word w. Finally, instead of keeping the

entire network we only keep the input weights matrix W. That matrix (W) is what we

called the embeddings.

2.2.3 Convolutional Neural Networks

Convolutional neural networks (CNN) are neural networks that use a convolution operation

along with matrix multiplication operations to compute their output [81]. A convolution is

an operation typical defined in the signal processing world as a real value operation between

time-dependent signals. For NLP a convolution is a binary operation that involves segments

of text that are represented as real values [84] and a filter or kernel, whose purpose is to

extract useful features from the text. One of the advantages of CNN vs. FFN is that we do

not need to aggregate the embeddings of words occurring in a document.

To show how embeddings are used with a CNN lets start by defining a document as an

ordered sequence of words d = (w1, . . . , wn). Each word is represented as a row vector in

WE and thus an input feature matrix x ∈ Rn×a is formed by the concatenation of each row

vector that represents each wj. Next, a convolution filter is applied to the feature matrix.

A convolution filter is defined as a matrix of weights W ∈ Rh×a where h <= n is the size

of the sliding window in which the convolution is applied. Before defining the convolution,
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Figure 9: Convolutional Neural Network with Word Embeddings

let us define first the concatenation of h consecutive row vectors as xj:j+h−1. Then we can

define the result of the convolution ck ∈ R as:

ck = f (W · xk:k+h−1 + b) , ∀ k = 1, . . . , n− h (2.11)

where · is the dot product, b ∈ R is a bias term, and f is a nonlinear function (see

Section 2.2.1). After doing the convolution over the entire document we have a feature map

cW = [c1, . . . , cn−h] ∈ Rn−h [85]. Over this feature map we apply a max-pooling operation

ĉW = max (cW) , ĉW ∈ R [86]. Given that we can have multiple q filtersW = {W1, . . . ,Wq}

we can form a feature pooled vector ĉW = [ĉW1 , . . . , ĉWq ] , ĉW ∈ Rq [84]. After this, we use

an FFN with at least one layer with ĉW as the input and y ∈ RnC as the output vector for

nC class labels. Without hidden layers, we will have a weight matrix WFFN ∈ Rq×nC . The

final output is obtained by using a softmax function over y. A graphical representation of a

CNN for NLP can be seen in Figure 9.
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2.2.4 Long Short Term Memory Networks

Long short-term memory networks (LSTM) are a type of recurrent neural networks (RNN)

were the order of the input sequence is taken into account. To make predictions the input

sequence does not need to have a fixed length [82]. Specifically, an LSTM was designed to

address the vanishing gradient problem with long-term dependencies, allowing predictions

with longer sequences than a regular RNN [87]. An RNN is called recurrent because part of

their output is feedback to the input. As well as CNN, LSTM can use the word embeddings

directly without the need for an aggregation operator.

In an LSTM there are five main components which can be defined as vectors in Rhu : an

input gate ij, an output gate oj, a forget gate fj, a cell state cj, and an output state hj.

In all of those vectors hu represent the number of hidden units. The input of this network

is again a feature matrix x ∈ Rn×a produced as the concatenation of the row vectors from

the word embeddings that represent the document d. xj, ∀ j = 1, . . . , n is a single row in

the feature matrix representing the word wj in the ordered sequence. Also, we will represent

the concatenation of two row vectors with [ ; ]. The graphical representation of the required

computation for an LSTM is shown in Figure 10. To compute the output hj we need the

following equations [82, 14]

oj = σ(Wioxj + bio + Whohj−1 + bho)

ij = σ
[
Wii (xj)

T + bii + Whihj−1 + bhi
]

gj = tanh(Wigxj + big + Whchj−1 + bhg)

fj = σ(Wifxj + bif + Whfhj−1 + bhf )

cj = fj � cj−1 + ij � gj

hj = oj � tanh(cj)

(2.12)

{
Wii,Wif ,Wig,Wio

}
∈ Rhu×a{

Whi,Whf ,Whc,Who
}
∈ Rhu×hu{

bii,bhi,bif ,bhf ,big,bhg,bio,bho
}
∈ Rhu

σ : sigmoid,� : component wise product
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Figure 10: Long Short-Term Memory Network with Word Embeddings

All the gates outputs are computed by using the previous output state hj−1 and the

current input xj. hj−1 is also used to update candidate gj. The forget gate fj controls how

much of the previous cell state cj−1 is considered to compute the new cell state cj, and the

input cell ij controls how much of the proposed update to keep. Finally, the output gate

oj controls how much of the current state cj is used to compute the output state hj. To

compute a final output we could use hn directly or use this output state in combination with

an FFN layer and softmax or sigmoid output.

2.3 DEEP LEARNING TRAINING

To train a neural network, we need to usually specify three main things: the architecture, the

loss function, and the training algorithm. We will go over each one of them in the following

sections.
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2.3.1 Loss Functions

Loss functions are an essential component of the training since they specify how good a

given classifier is doing. They define what is good and what is bad, so for a given dataset,

they are the eyes that look at how well the strategy is doing. The two most common loss

functions used in neural network training for NLP are Hinge and cross entropy loss. These

losses are computed for each training sample j using the predicted output ŷi ∈ RnC and the

true output yi ∈ RnC where nC is the number of classes. Let us represent a loss function as

L (ŷi,yi) ∈ R and the total loss for all the samples is usually computed as the sum of each

of the sample loss:

LT =
l∑

i=1

L (ŷi,yi) (2.13)

Usually, the loss should be zero if a perfect classification was made. Now, we will show

explicitly how the different losses are computed. Without loss of generality, in the following

equations, we will drop the sample index i to simplify the equations when possible.

Hinge Loss

For binary classification problems, the output of the network is usually a scalar ŷ ∈ R

and the class labels y ∈ {−1, 1}. This is similar to what is done in an SVM and, like in that

case, the decision function is sign (ŷ). A correct classification is produced if y ∗ ŷ > 0. Is

important to consider that the output for the network when using this loss function is usually

between (−∞,+∞) and linear. Finally, for a single sample the loss can be formulated as

[82]:

LHinge (ŷ, y) = max (0, 1− y ∗ ŷ) (2.14)

This loss attempts to have a correct classification with a margin of at least one

Multiclass Hinge Loss

The multiclass extension of the hinge loss was proposed by [88] where now ŷ ∈ RnC is

the predicted output vector, and the true class labels are a one-hot vector y ∈ RnC . It is

important to notice that here the output is not a probability but a score that in general is
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not bounded. To classify a sample, we need to compute:

prediction = arg max(ŷ) (2.15)

The loss can be computed in two ways. The first one [82] only considers the prediction

for the highest scoring class as shown in the following equation:

LHinge (ŷ,y) =

max (0, ŷj − ŷk + ∆) if arg max(ŷ) 6= arg max(y)

0 otherwise

 (2.16)

where ŷj = max(ŷ) and ŷk is the output for the true class with k = arg max(y) being

the index for the true class. This loss function wants the predicted score for the correct

class being larger than the score for any other class at least for a margin ∆. Classically, this

margin is static and have the value of one, but in general is a hyperparameter to be tuned.

The second way is to consider all the other scores for all the other classes into the

computation of the loss, thus this time attempting to produce not just a high score for the

true class but the lowest possible score for all the other classes that are not the true one.

This function can be defined as:

LHinge (ŷ,y) =
∑
j

max (0, ŷj − ŷk + ∆) (2.17)

ŷj ∈ ŷ, ∀j(j ∈ {1, . . . , nC} ∧ j 6= k), k = arg max(y)

The first one is more appealing since a prediction is not needed for all the classes and

only for the one that has the maximum predicted value.

Cross Entropy Loss

When the outputs of the neural network can be interpreted as probabilities a cross entropy

loss can be used. The output of the network is usually normalized using a softmax , and

in consequence, we could interpret such output as a probability of each class. This time let

y = {y1, . . . , ynC
} be set representing the true multinomial distribution over nC classes and

let ŷ = {ŷ1, . . . , ŷnC
} be the network’s output. Because we are using softmax , the output

can be interpreted as ŷj = P (yj|x) where x is the input of the network. Thus, the categorical
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cross entropy is measuring the dissimilarity between the two probability distribution and is

defined as:

LcE = (ŷ,y) = −
∑
j

yj log ŷj (2.18)

2.3.2 Regularization

Usually to avoid overfitting several strategies need to be used for training a deep neural

network. Due to the vast amount of parameters, the network can easily overfit the training

data and perform poorly on unseen data. Three types of regularization methods are discussed

in this section. The first one imposes penalties on the learned weights, the second attempts

to regularize the intermediate layer outputs, and the third one uses a developing set to stop

the training process.

Parameter Norm Penalties

In this family of regularization, the two most used methods are L1 and L2 regularization

[81]. Both methods impose an additional term to the loss function that depends exclusively

on the norm of the weights. With this regularization a loss function takes the following form:

LT =
l∑

i=1

L (ŷi,yi) + αΩ(θ) (2.19)

where θ is the set of model parameters and α ∈ [0,∞) is a hyperparameter that regulates

the contribution of the penalty term to the total loss function. In L1 regularization Ω(θ) is

substituted by the L1 norm. In the L2 regularization Ω(θ) is substituted by L2 norm. Each

of the norms is computed by:

L1 = ‖θ‖1 = |W| (2.20)

L2 =
1

2
‖θ‖2 =

1

2
WTW (2.21)
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where W are the weights of each one of the layers.

Layer’s Output Regularization

For layer’s output regularization two main techniques are presented here: dropout [89]

and batch normalization [90]. Dropout is a technique that randomly drops components of

the input vector of any layer using a Bernoulli distribution. Formally let x ∈ RN be an

input vector and a random vector r ∼ Bernoulli(pr), r ∈ RN with probability pr, a dropout

operation is defined as:

x̃ =
1

1− pr
x� r (2.22)

where � is the component-wise product and x̃ is the vector used now as the input for

the layer. During test time r is not generated and thus x̃ = x. This technique attempts to

prevent co-adaptation by relying only on some specific weights to produce an output. In [91]

is shown that dropout has a strong connection with L2 regularization.

The second technique, batch normalization, attempts to reduce the amount of change

in the distribution of network activations. This change is called internal covariate shift.

Through the use of batch normalization, the optimizer is less likely to get stuck in saturated

regime and training would accelerate [90]. Let xij ∈ xi be the values of the variable j in

sample i. Let us define a batch for a variable j as a series of consecutive m samples as

Bj = {x1j, . . . , xmj}. First, to compute the normalized output for the variable j x̃ij we need

to compute the mean and variance of the batch as

µBj =
1

m

m∑
i=1

xij

σ2
Bj =

1

m

m∑
i=1

(
xij − µBj

) (2.23)

then we standardize the input

x̂ij =
xij − µBj√
σ2
Bj + ε

(2.24)
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where ε is a constant added for numeric stability. To finally produce the output:

x̃ij = γx̂ij + β, ∀ γ, β ∈ R (2.25)

where γ and β are parameters to be estimated. As we can see, batch normalization

becomes another layer of the neural network. At test time, means and the variances estimated

during training are used for testing. In consequence, γ, β, µBj , σ
2
Bj are constants during

testing.

Early Stopping

Early stopping is a regularization technique that stops the training process before the

overfitting happens [81]. For this technique, a separate developing set is required. This

developing set is used to compute the same loss being optimized or another relevant perfor-

mance metric to the task (e.g., precision). Using the result of this computation a decision is

taken to whether continue training or stop. The decision is taken in two different ways. The

first one is checking if the validation loss is going up instead of going down. The second is

checking if the validation loss is not changing at all. For both strategies two parameters are

defined: patience and δ ∈ R. Patience is the number of iterations/epochs to wait while the

condition is met before to stop training. δ is the threshold used to decide whether a change

in the metric being watched is taken into account or not. In Figure 11 a flowchart with the

strategy is shown. The meaning of epochs and iterations is clarified in the Section 2.3.3.

2.3.3 Optimization Algorithms

Stochastic gradient descent (SGD) and their variants are the most widely used algorithms

for deep learning training [81]. Stochastic gradient descent is a modification of the original

gradient descent [92, 93]. The most significant difference of SDG vs. traditional gradient

descent in the use of the batch B (sometimes referred as minibatch). The batch is no more

than a set composed by a sample of the training data. Rather than computing the gradient

after passing all the data through the network, SGD computes the gradient and modify the

weights by only using the batch (see Figure 12). The batch size |B| is usually greater than one

and less than the training sample size. However, smaller sizes are currently preferred since
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Figure 11: Early Stopping using a Validation Set. Other stopping criteria includes number

of epochs, number of iterations and minimum required loss.
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Figure 12: Stochastic Gradient Descent Algorithm with batches

they produce faster convergence [82]. They also improve training efficiency by computing

the steps in lines 3 and 4 of Figure 12 in parallel. Given that now with have batches an epoch

is defined as the moment where all the training data has been used for modifying the weights

in the network. In consequence, an epoch is composed of several iterations. If the sample

taken from the batch is without replacement, we can compute the number of iterations as

bl/|B|c where l is the number of samples, and b/c is the integer division. If the division is

not exact, there are two possible options. In the first option, the last batch is bigger. In

the second the samples in the last batch are discarded. To compute the gradient several

automatic differentiation techniques have been proposed [94], and they are currently used by

popular frameworks such as TensorFlow [95] and PyTorch [94]. The later is the one being

used in the present work. Those techniques allow the computation of the gradient without

the need to define it explicitly. The only requirement is that the loss function must always

be positive and differentiable.
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Figure 13: Snapshot of SNOMED CT Ontology. Path between two concepts (blue). For this

case the path has a value of five. In green, we can see the least common subsummer of the

two highlighted concepts

2.4 SEMANTIC SIMILARITY IN CLINICAL TEXT

Semantic similarity is a metric of how similar are the meanings of two words. This similarity

can be measured using distributional methods or ontologies. With distributional methods,

we rely on the hypothesis that words occurring in the same context tend to have the same

meaning [96]. With ontologies, we rely on the taxonomic structure to define the similarity

[97]. In ontologies word of phrases are seen as concepts. This has the advantage that

ontologies can be used as a source for word normalization or as a controlled terminology.

Those concepts have relationships to other concepts as part of the definition of the ontology.

One of those relationships ins the is-a relationship that define a hierarchy between the

given concepts, e.g., Failed Exams is-a Academic Problem. In the biomedical domain, other

useful relationships are part-of and treated-by. In the present work, we will limit to the

is-a relationship. In the following, metrics to measure the semantic similarity between two

concepts in an ontology are presented.
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2.4.1 Semantic Similarity using Ontologies

An ontologyO is a set of concepts ci that belong to a controlled terminology usually organized

in a tree-like structure (see Figure 13). The simplest way to compute the semantic similarity

between two concepts in the ontology is using the path p between them. The path is defined

as the shortest path between two concepts in the tree as seen in Figure 13. Thus, the

similarity between two concepts c1 and c2 is defined by [98]:

simpath(c1, c2) =
1

p
(2.26)

However, the main drawback of this measure is that does not take into account how big is

the ontology. Tho address this issue a new measure was proposed [99] and later normalized

to the unit scale [100]. This measure is usually called LCH because of the authors Leacock

& Chodorow. The following equation defines the metric:

simLCH(c1, c2) = 1− log p

log 2d
(2.27)

where d is the maximum number of nodes from the root to any concept. Later on, a new

metric was proposed [101] to take into account the granularity of the least common subsumer

of two concepts lcs(c1, c2). lcs is the closest common parent of any two given concepts (see

Figure 13). The normalized version as available in the NLTK Toolkit [102] is:

simwp(c1, c2) =
2 ∗ depth(lcs(c1, c2))

p− 1 + 2 ∗ depth(lcs(c1, c2))
(2.28)

where the depth of a concept is the number of nodes in the path between the root and

the concept. Besides paths, we can also use the information content IC(ci) to measure the

semantic similarity. This metric attempts to quantify information by measuring a ratio

between the number of leaves and the number of subsumers. The leaves are a set formed by

the descendants of a concept that have no descendants. The subsumers is a set formed by

all the ancestors of a concept included the concept itself. The information content is defined
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by [103]:

IC(ci) = − log


|leaves(ci)|
|subsumers(ci)|

+ 1

maxLeaves + 1

 (2.29)

where maxLeaves is the total number of leaves in the ontology. Using this metric, we

can measure the semantic similarity between two concepts by [100]:

simLIN(c1, c2) =

(
2 ∗ IC(lcs(c1, c2))

IC(c1) + IC(c2)

)
(2.30)
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3.0 SEMANTICS ENHANCED DEEP LEARNING BASED MEDICAL

TEXT CLASSIFIER

In this dissertation, we developed a supervised and semi-supervised deep learning strategy.

Our strategy aims to classify clinical text incorporating a semantic similarity loss as part of

the training process. A corpus of social context sentences inside psychiatric reports was used

to assess the performance of the proposed strategy. The main contributions of the proposed

strategy are: (1) incorporate a medical ontology as prior knowledge into a deep learning

strategy, (2) train a deep learning strategy using such ontology to compute a semantic loss

that is used during training, (3) use unlabeled data during semi-supervised training.

3.1 OVERVIEW OF THE METHODS

Deep knowledge-based Semantics Medical Text Classifier is a deep learning strategy for

classifying medical text that is composed of two components: a semantic deep network

(SDN) and a classification deep network (CDN). The primary task of the SDN is to predict

the most probable concepts present in the text. The CDN uses the prediction from SDN to

assign the most probable label to the input text. Formally, given a tokenized input document

d and a set of nC class labels CL ∈ {1, . . . , nC}, the strategy will predict P (CL|d).

Both networks are trained simultaneously by backpropagation using a loss function that

incorporates a semantic loss and a classification loss. The semantic loss function is computed

using the output from SDN and a medical ontology (e.g., SNOMED). For the classification

loss, we used cross-entropy or a modified hinge loss. Both losses are described in Section

2.3. Details of both networks and how the losses are computed are given in the following
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Figure 14: Overall design of the deep learning strategy

sections. In Figure 14, we can see a graphical representation of the strategy.

3.2 SEMANTIC DEEP NETWORK

Given a tokenized input document d as an ordered sequence of n words wi such that d =

(w1, . . . , wn) the task of SDN is to predict the most probable m (m <= n) set of concepts

SC = {c1, . . . , cj, . . . , cm, ∀ cj ∈ O} inside d, with O as the ontology. More formally, given

d, SDN predicts P (SC = cj|d), ∀ cj ∈ SC.

SDN will have two possible architectures CNN and LSTM (see Section 2.2). For both

architectures, the first component is the word embeddings. For embeddings constructed with

algorithms that consider only entire with words(e.g., word2Vec [59]) they are represented as

WE ∈ RN×a where N is the size of the Vocabulary V, and a is the size of the embeddings.

WE transform d into feature matrix x ∈ Rn×a. In the following, the result of the embedding

operation over d will be represented as x ∈ Rn×a.
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As the output of this network regardless of which architecture is used a sigmoid activation

function is used in the output layer. The sigmoid function has some desirable properties such

as bounded output (0, 1) and smooth gradient. If we interpret each output as a probability

they are mutually exclusive, so in general they not sum up to 1, because d can contain

multiple concepts. Each node in the output represents a concept in the ontology, and it is

assigned before the training process starts and its keep consistent during all training and

evaluation.

However, the issue that emerges here is that the number of possible concepts to predict

is the combination
(|O|

l

)
. To give an example, an ontology such as SNOMED has more than

3 × 105 concepts, if we consider only 1000 and a sequence of length 10 we have 2.63 × 1023

possible predictions. To solve this problem, we will only consider the top k outputs using

k-max pooling [104]. Formally, given a predefined value k and a sequence p ∈ Rp where

p ≥ k, k-max pooling selects a subsequence pk
max of the k highest values of p [104]. For the

rest of the values, a zero is assigned to nullify the effects of further operations that feed on

those nodes. This is similar to what occurs in a dropout layer. In consequence, we can then

represent the output of SDN as ŷSDN ∈ Rk after the k-max pooling layer.

The next aspect to consider is how this network is trained. Given that the input is

a sequence of words, initially, we do not have the actual concepts that occur within the

sequence. To solve this problem I used MetaMap [53] to obtain SC and use those are labels.

The output of MetaMap is only used in conjunction with the loss function in Equation 3.4.

Now given a set of mapped concepts SC, we formulated a supervised loss function using

a structured hinge loss [105] as

LHinge
SDN = max(0, s(SC|x)− s(SCtrue|x) + SL(ŷSDN)) (3.1)

Where SL is the semantic loss. The computation of SL is explained in detail in Section

3.2.1. In this equation s (SCtrue|x) is computed for the set of true concepts regardless of they

being the top k and s(SC|x) is computed for the top k obtained after the k-max pooling

layer.
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In general the score s is computed as

s(SC|x) =
k∑

j=1

ŷSDN
j =

k∑
j=1

P (SC = cj|x) (3.2)

3.2.1 Semantic Loss Function

In this function, we wanted to capture how semantically similar is an input document to a

target class defined as a set of concepts in an ontology. We wanted this loss function to have

a [0, 1] range. This loss is defined as an inverse measure of a semantic similarity because we

want the most similar elements to have zero loss. With this bounded range, it resembles a

distance function. In the following, we will treat this loss as a distance function.

A target class is usually defined as an integer label which does not adequately represent

everything that a class comprises. Here we attempt to extend the definition of a target class.

In this work we defined a target class as a set of concepts in an ontology. Formally let us

represent a target class as CO ⊂ O. The elements in CO are selected by an expert clinician

and should represent his knowledge about a particular condition of interest. In this work,

we limit the expressiveness to a set of concepts without further using first-order logic (FOL).

By doing this, we exclude properties on the concepts such as negation.

Given CO and SC, we used a distance [106] that takes into account the hierarchy of the

ontology. The loss can be computed using the following equation:

SL(ŷSDN) =
1

|SC ∪ CO|

 ∑
cj∈SC\CO

1

|CO|
∑
ci∈CO

d(ci, cj) +
∑

ci∈CO\SC

1

|SC|
∑
cj∈SC

d(ci, cj)

 (3.3)

Here d(ci, cj) is the distance between two concepts which is computed using the metric

presented in equation 2.30.

Incorporating the hierarchy in the semantic loss is used to inform about similarities that

otherwise may be hindered. Let’s use as an example the following sentences she will now not

be able to go to college, and She did not graduate from special education at the high school

level. The mapped concepts from those sentences are [College (C0557806), Able (C1299581)],

and [Special Education (C0013649), High School Level (C0683862)]. If we use a metric such
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as the Jaccard distance, that does not take into account the hierarchy, there is no similarity

between those sentences because they do not share common concepts. The concepts in both

texts are different, but it is obvious that they are talking about academic problems. What

is needed to know this is a hierarchy that reflects this similarity, because without them

there is no relationship between those sentences because there is no intersection. So this

semantic loss is not directly aiding the prediction of the concepts made by the SDN but the

classification task by informing about similarities in the input text.

3.3 CLASSIFICATION DEEP NETWORK AND TOTAL LOSS FUNCTION

Given the output of the SDN as ŷSDN the classification network implements a non-linear

function f : Rk → RnC to classify the input text in one of each nC classes. The architecture

for this network is a Feed Forward Network as described in Section 2.2.1. The output of this

network is a softmax .

For training, we proposed two functions: an additive loss and a hinge loss. The additive

loss is computed using the following equation:

Ladd = LcE(ŷCDN,y) + λ ∗ LHinge
SDN (3.4)

where LcE is the cross-entropy loss (Equation 2.18), λ is a scalar, ŷCDN is the predicted

output and y is the true output. The hinge loss is defined by:

LHinge = max(0, s(ŷCDN|x)− s(y|x) + SL(ŷSDN)) (3.5)

where s(ŷCDN|x) is the score for the output with the maximum predicted value and

s(y|x) is the score for the predicted true output. In this case, the score is the unnormalized

output of CDN. As an example, let us say we have two outputs and the true label is 1. If the

output of the network is [10, 20] the maximum value is in index 2. In this case, the predicted

score is 20, and the score for the correct output is 10. The scores can be computed using

the unnormalized output of the network. This means the score is computed before applying

the softmax .
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3.4 SEMI-SUPERVISED STRATEGY

To use unlabeled samples to improve generalization we used to three methods. The first

one was training word embeddings using the method described in Section 2.2.2. The second

has to do with hyperparameters search and will be explained in Section 3.5. The third is

presented in this section, and it is a strategy that directly deals with unlabeled samples while

training a text classifier. The semi-supervised strategy we used belongs to a subset of binary

classification strategies called positive and unlabeled (PU) learning [107]. In this mode of

learning, we have two sets available for training: positive and unlabeled. The positive set

contains samples adequately labeled as belonging to a class of interest. The unlabeled set

contains samples that could be either positives or negatives. By negatives, we mean samples

that do not belong to the class of interest. To evaluate the overall performance of the strategy

a small subset of positive and negative samples are usually obtained.

In this work, we modified a recently proposed strategy [108] for PU learning that uses

text data. In this strategy, an iterative process is proposed where probable positive samples

are removed from the unlabeled set. In the previous work, they used an FFN in combination

with part of speech tags to make predictions for single words. In this work, we used a CNN

and the proposed strategy as the classifiers. The algorithm for the strategy is shown in

Figure 15.

In step 5 a binary CNN is trained or a binary version of the proposed strategy. The

threshold in step 8 is computed by assuming a Gaussian distribution of the predicted proba-

bilities for the spy samples. Thus φ is computed by using the maximum likelihood estimation

of the mean µ and the standard deviation sd as shown in the following equations:

φ = µ+ sd

µ =
1

|S|

|S|∑
i=1

sSi

sd =

(
1

|S|

|S|∑
i=1

(sSi − µ)2
)1/2

(3.6)
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Figure 15: Spy-based elimination of positive class instances using CNN

3.5 HYPERPARAMETERS SEARCH

Given the extreme importance of the hyperparameters in the performance of deep learn-

ing strategies [109, 110, 111] we performed a random search [110] to find the best set of

hyperparameters using the developing set.

For the Binary dataset, we used the F1 score as the criteria to maximize given a set

of hyperparameters. However, for the PU dataset, the true negatives are unknown during

training. For this reason, a loss or a risk function is needed to guide the search by only using

positive and unlabeled examples. Recently a non-negative risk estimator for positive and

unlabeled learning (NNPU) was developed [112]. This risk guarantees a reduction in the

mean squared error. We selected the hyperparameters with the minimum risk. The risk can
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be estimated using the following equation:

R̃pu(g) = πpR̂
+
p (g) + max

{
0, R̂−u (g)− πpR̂−p (g)

}
. (3.7)

In this equation πp is the positive class prior or prevalence, and R̂+
p (g), R̂−u (g), and R̂−p (g)

can be estimated by:

R̂+
p (g) =

1

np

np∑
i=1

`(g(xp
i ),+1) (3.8)

R̂−u (g) =
1

nu

nu∑
i=1

`(g(xu
i ),−1) (3.9)

R̂−p (g) =
1

np

np∑
i=1

`(g(xp
i ),−1) (3.10)

Here xp
i and xu

i are the positive and unlabeled input samples respectively, g is a decision

function for binary classification. In other words, g is the function that applies out proposed

text classifier to the input feature vector. Finally, ` : R× {±1} → R is a loss function that

for our case is a sigmoid of the form

`sig(y, t) =
1

1 + exp(yt)
(3.11)

where y = 2 ∗ arg max(ŷCDN)− 1 and t = 2 ∗ arg max(y)− 1. These transformations are

done because those equations need an -1/1 type output.

3.6 SOCIAL CONTEXT SENTENCE CORPUS FROM PSYCHIATRIC

REPORTS

To assess the performance of the proposed strategy we used a previously created corpus of

social context sentences from psychiatric reports. The goal of this corpus is to train text

classifiers capable of classifying sentences in psychiatric reports that contain social context

information. To create this corpus, we developed the description for social context using
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SNOMED and DSM-IV. From DSM-IV, we used the axis IV description of psychosocial and

environmental problems. We excluded patient psychiatric symptoms, psychiatric disorders

and behaviors strongly linked to psychiatric disorders which might otherwise be considered

social context (e.g., violence and drug abuse) to avoid overlapping with psychiatric clinical

findings. Our description extends the DSM-IV axis IV because it includes positive and

negative stressors without explicitly considering their impact on the diagnosis, treatment,

and prognosis of mental disorders.

We used SNOMED CT US version present on the unified medical language system

(UMLS) 2017AA release [113]. To build the description we considered two places inside

the SNOMED hierarchy: social context, and clinical findingfinding by methodhistory find-

ingsocial and personal history finding. Below those two places in the hierarchy, there are

6463 concepts. We used SNOMED to explicitly find concepts semantically similar to cate-

gories defined in DSM-IV axis IV, but without ruling out concepts that are not problems.

We finally defined eleven types (see Table 2) that relate to some SNOMED concepts and

DSM-IV categories defined in axis IV.

The list in Table 2 is not comprehensive but instead provides examples of some of the

concepts considered in SNOMED. In summary, we described a persons social context as

situations, conditions and environment of a patient and his relationship with the society

which may influence peoples health outcomes [114, 115, 116].

Later we developed a guideline to annotate sentences inside psychiatric inpatient dis-

charge summaries containing social context information according to our description. The

guideline includes specifics about each type and several examples taken from a subset of

reports. We refined the guideline using an iterative process. In the training phase, the

two annotators independently applied the guideline to 4 reports using the software e-Host

[117]. After that, the annotators and the research team met to review the disagreements.

In this agreement meeting, a consensus was reached related to the changes needed to the

guideline. The process was repeated in phase one with 18 more discharge summaries, and

the inter-annotation agreement (IAA) was measured over these 18 reports. After reaching

a final consensus, phase II started with the refined guidelines. The corpus was constructed

using the annotations from phase two to phase six as shown in Figure 16.
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Table 2: Social context types with related DSM-IV axis IV categories and SNOMED concepts
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Figure 16: Summary of Annotation of social context sentences

For the training corpus, only the first sentence containing a mention indicative of a

type of social context information was annotated in each report. For example, for a given

report, the first sentence containing the word mother is annotated; subsequent sentences

in the report mentioning mother are not annotated as sentences containing social context

information. We decided this with the intent to speed up the annotation process and collect

a wider variety of samples. In our case variety means collecting information from possibly

more patients or different conditions from the same patient. When collecting information

from more patients, the assumption is that a wider variety of social contexts could occur

more between patients than within patients.

As a result, the reports from phase 2 to 5 contain two sets of annotations that we define

as positive and unlabeled. Positive annotations are sentences annotators explicitly labeled

as containing a social context. Unlabeled are sentences annotators did not annotate as

containing social context. These unlabeled sentences could have social context information.

The test corpus was fully annotated, this means the annotator read and annotate the

entire report. This test corpus contains two sets of annotations: positive and negative. As

before, positive annotations contain sentences annotators explicitly labeled as containing

a social context. Negative annotations contain sentences annotators did not annotate as
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Table 3: Characteristic of Social Context Sentence Corpus

having social context information.

Two board-certified psychiatrists annotated 270 reports. The IAA for phases I, II, III

was 47.3%, 71%, and 62.1% respectively. The final IAA measured on phase V was 75.4%.

In the 270 discharge summaries, 817 sentences containing social context information were

annotated. Finally, for the test set, 60 discharge summaries were annotated giving 30 to

each one of the annotators. In this part, each report was fully annotated. In the test set,

436 sentences containing social context information were annotated.

A common psychiatric discharge summary is formed by different sections and a set of

structured questions that depend on of each patient condition. Because of this, we used

a customized developed sectionizer to obtain the unlabeled/negative sentences from all the

phases. Is essential to identify sections given that social context information is more likely

to be found in sections such as reason for referral, and narrative summary of treatment

course. Some section titles include information that is considered social; however, the title

itself does not provide information about the patient. For example,a section named legal

services, if naively parsed, could lead to affirm that the patient has some legal services in

place when the content of the section could be completely empty. We found a total of 91

possible sections that a report could contain. The average number of sections per report

was 71. Using those identified sections alone with the developed sectionizer we extracted the

sentences from reports to use them as unlabeled/negative samples.

From this corpus, we created two different datasets: PU and Binary. The PU dataset

was formed by using the samples from phases II to V as part of the training and developing
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sets. The test dataset was formed by using only the samples from phase 6. The Binary

dataset was formed by combining the positive samples from phases II to VI and using only

the negative samples from phase 6. Those were later randomly partitioned into train, develop,

and test sets.
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4.0 EVALUATION

In the following chapter, we describe the evaluation steps taken to assess the performance

and gain insights into the functioning of the proposed algorithm. The focus of the evaluation

is to show the viability of the proposed loss function and their usefulness, particularly in

the semi-supervised scenario. First, we describe the different experiments and their purpose

along with the metrics used. Following the description of the experiments, the results of

each one of the main components of this work are presented.

4.1 EXPERIMENTS AND METRICS

To evaluate the model we used two datasets (PU and Binary) described in Section 3.6. For

both datasets we split the data into training, developing and testing sets. For the PU dataset,

the developing set is 20% of the total training data. For the Binary dataset, the developing

set is 10%, and the test set is 20%. In both datasets, the developing set is used to tune the

hyperparameters and also perform early stopping.

To compare the performance of the proposed strategy in the semi-supervised setting we

choose four baselines, with two of them used previously in text classification tasks [118].

The first one is Biased PrTFIDF (B-Pr) [119] which is a probability-based algorithm. The

second is biased-SVM (bSVM) [107]. For bSVM we used the traditional tf-idf feature matrix,

and for B-Pr we used word counts. The third strategy that we called dictionary lookup,

directly used the output from MetaMap. In the dictionary lookup strategy, any sentence

that contained at least one of the concepts defined as a social context class is assigned to this

class. This strategy does not need a training corpus. The fourth algorithm, Spy-elimination
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CNN (SeCNN) is a strategy we developed, but it does not use the novel semantic loss

function. This strategy uses the recursive elimination strategy presented in Section 3.4 in

combination with a CNN presented in Section 2.2.3. All the hyperparameters were optimized

using the NNPU loss function and the strategy described in Section 3.5.

For the supervised setting three baselines were used. A standard SVM with a tf-idf

feature matrix and CNN and a dictionary lookup that works in the same way than for the

semi-supervised setting. The hyperparameter search is also performed with random search,

but the optimized metric is the F1 score instead of the NNPU loss. Once the hyperparame-

ters for each model is selected the final performance of all the strategies is evaluated in the

correspondent test set, which is worth mentioning again, is different for the PU and Binary

datasets. To evaluate the model, we focused on the F1 score given that the prevalence of the

class is low, so a balanced metric such as the AUC is usually not adequate for text classifi-

cation tasks. For the best performing model of the proposed strategy, we run experiments

were training is performed with only a portion of the available data, and tested using the

same test dataset. We used 25, 50 and 80 percent of the training data to quantify the impact

of the reduction. For the PU dataset, only positive samples are reduced since those are the

ones costly to produce. The number of unlabeled samples was kept constant. For the Binary

dataset, both positive and negative samples were reduced. The complete set of experiments

is shown in Table 4.

The experiments were run in a desktop computer located at the Department of Biomedi-

cal Informatics at the University of Pittsburgh with an Intel i7 @3.6GHz, 32GB of RAM and

an NVIDIA 1070Ti graphics card. The majority of the code was written in Python using

Scikit Learn [120] and Pandas [121] for machine learning and data manipulation, PyTorch

[94] for deep learning, gensim [122] for obtaining the embeddings, and NLTK [102] for nat-

ural language processing standard tasks. The semantic similarity was computed using the

semantic measures library and toolkit [123] written in Java.
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Table 4: Full set of experiments performed to evaluate the proposed strategy. DMT: Pro-

posed Strategy. Add: Additive Loss from Equation 3.4. Hinge: Hinge loss from Equation

3.5. LSTM/CNN: Architecture for the Semantic Deep Network.

4.2 RESULTS

4.2.1 Word Embeddings Training Results

We trained word embeddings from MIMIC III [124], a freely available clinical database that

contains more than 2 millions clinical notes that are properly de-identified. Those have been

used previously [17] showing a better performance than embeddings trained with general

text. To train the word embeddings we used word2vec, an algorithm described in Section

2.2.2. The word2vec version used was the one available in the python package gensim [122].

The reports were preprocessed using a custom pipeline based on NLTLK [102]. At the

string level we lowercased all characters, removed newline characters and double spacings

and substituted all numbers with the ]character. After this procedures, we split the reports

into sentences and tokenized the text. The sentence split was performed in an attempt to

reduce unrelated words to be related by being within the context window. We used almost

all the defaults parameters of the algorithm and only changed the minimum word counts

to 10 and the size of the embeddings to 200. Properly chose the hyperparameters of the
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Table 5: Example for three words and their closest words in the vocabulary

algorithm is not an easy task given that a proper evaluation of the embeddings is a task that

requires domain knowledge, an in this case physicians. A recent study does this evaluation

with a corpus obtained in Mayo Clinic [125]. This embeddings evaluation is not the focus of

this work. Our evaluation of the embeddings will be limited to an inspection of similarity

between words of interest.

71,825 unique words compose the resulting word embeddings. As an inspection of the

semantics captured, it is useful to choose some words of interest and see what the closest

to those are. In Table 5 are shown words with their top 10 closest words by using cosine

similarity between the word vectors.

To visualize the embeddings we used principal component analysis to reduce the dimen-

sionality of the vectors to 2. To visualize how related words form clusters, we plotted the

embeddings for the words homeless and diabetes and their 600 closest words in the original

embedding space. In Figure 17 we can see the separation between the clusters of the related

words with some minor overlap. We can also zoom to their ten closest words in the bottom

of Figure 17. This inspection suggests the embeddings are actually capturing the semantics

of such words and consequently showing their usefulness for clinical text classification.
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Figure 17: Visualization of the word embeddings in a reduced dimensionality space for the

600 closest words to homeless(purple) and diabetes(yellow). In the bottom we can observe

a closeup for the closest 10 words
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Figure 18: Number of concepts in training and testing for PU and binary datasets

4.2.2 Semantic Distance Results

Metamap Mapping

We used Metamap [53] to map each one of the sentences to CUIs for both datasets. In

Figure 18 we can see the distribution of concepts in training and testing for both datasets.

The main difference between the absolute number of unique concepts is the larger sample

size of the PU dataset. For the PU dataset we a had a total of 3749 CUIs, and for the Binary

we had 2308 unique CUIs.

If we consider the entire SNOMED, the social context class contains 6462 possible CUIs.

However, in our case, only 209 and 170 occurred in the PU and binary datasets respectively.

For both datasets, in Figure 19 we can see that the distribution of CUIs is heavily skewed

with some CUIs occurring the majority of the time. However, to better observe the impact

of this phenomenon on the entire corpus in Figure 20 it can be seen that less than 1% have

a prevalence higher than 5%.

Finally, in Figure 6 we can appreciate the output of MetaMap for some of the sentences.

In general, some of the concepts related to words like mother, boyfriend, and family are
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Figure 19: Histograms for the distribution of CUIs in PU(left) and binary(right) datasets

for the training set. IN the x axe we have the CUI index instead of the full code to facilitate

the display

appropriately mapped most of the time. Some others like the abbreviation for patient pt

and the words stated and to are mapped to possible expansions that are clearly not relevant

in this context.

Semantic Distance

With this mapping, we proceed to asses whether the semantic distance metric from

Equation 3.3 has the ability to distinguish between the different classes. To do this, we

computed the semantic distance of each sample in the training set to the social context

class. The results for both datasets are shown in Figure 21.

With those distances computed, we then proceeded to use a non-parametric test to see

whether the two distributions are different. We used two well-known tests available in the

python package SciPy [126]: The Kolmogorov-Smirnoff test and the Mann-Whitney rank

test. For both datasets, p-values were zero.

Finally, given that only a small subset of the social context class occurred in both datasets

we decided to investigate the semantic relationship between those. In this case, we used

the pairwise similarity between each of the concepts measured using equation 2.30. Those

similarities can be seen in Figure 22. The big block of blue suggest that most of the CUIs
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Figure 20: Prevalence of CUIs in PU(up) and binary(bottom) datasets
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Table 6: Examples from the mapping performed by MetaMap

Figure 21: Histogram of the semantic distances to the social context class in PU(left) and

binary(right) datasets. The area of histograms is normalized to account for the differences

between the number positive(blue) and unlabeled/negative (red) samples
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Figure 22: Pairwise semantic similarity of CUIs in the social context class in PU(left) and

binary(right) datasets.

have the same distance with the least common ancestor and have the same number of leaves.

This frequently happens with concepts that have multiple descendants with no children

themselves. This plot also suggests that most of the concepts are occurring in a similar place

in the ontology.

4.2.3 Classification Results

For the semi-supervised setting, the proposed strategy outperformed all the others except

when the dataset is very limited. Taking a closer look at the performance of the winning

strategy when trained with 100% of the available data, the performances observed are 0.73,

0.76, 0.78, 0.79, and 0.82 for iterations one to five respectively. We can also observe, by

looking at the F1 scores that the elimination procedure is working as expected given that

the performance of the last iteration is better than the performance of the first.

For the supervised setting, the proposed strategy had a better performance than the

SVM but not better than the CNN. In most of the cases, the performance of the proposed

strategy degraded with less data, while the performance of the CNN stayed almost the same
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except when 25% of training data was used.

Finally, the behavior of the proposed loss function can be seen in Figure 23. In the figure

both the total and the semantic loss function decrease with each epoch. This decrease is

empirical evidence that the proposed loss function is derivable.
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Table 7: Semi-Supervised and Supervised Classification results on the test set. Best results

for each partition of training data in bold
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Figure 23: Loss function behavior during training for PU(up) and binary(down) datasets.

Each point is the average loss over all the batches in the epoch.
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5.0 DISCUSSION

In this dissertation, we tested a hypothesis of to whether the incorporation of a semantic

loss function into the training of a deep learning supervised and semi-supervised medical

text classifier could improve their generalization performance when compared with strong

baselines. For the semi-supervised case, we can evidence from the results shown in Table 7,

where the performance of the proposed strategy outperformed the baselines when training

with 50, 80 and 100% of the data. These results also support the claim that only positive

and unlabeled samples are needed to achieve good performance on clinical text classification.

To the best of our knowledge, we believe this is the first time in the biomedical informatics

domain that a semantic loss function for training a deep learning classifier is proposed. Also,

to the best of our knowledge, this is the first time that a semi-supervised strategy applied to

clinical text is trained by only using positive and unlabeled samples, more even so applied

to a corpus of psychiatric notes.

To evaluate the behavior of the semantic distance used in the loss function we observed

the distributions of the distances for samples in the positive and unlabeled/negative set

shown in Figure 21. These distances were computed using Equation 3.3. The first insight

is that the distributions from the positive and the unlabeled/negative class does not look

markedly different. For the case of positive vs. unlabeled, this may be because some of the

unlabeled samples are positive. However, for the case of positive vs. negative, we could have

expected a more appreciable difference. Given that this is not the case, a possible explanation

is that given that the IAA was not 100% there is room for some for those sentences in the

negative class to be actually positive and vice versa. This cannot be easily corroborated

without going through those overlapping examples with the annotators. However, what we

can see is that the positive sentences distribution has a longer tail that extend to lower
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distances, while the negative sentences distribution is skewed towards the 1 as it is expected,

given that they do not belong to the social context class.

Given that visually is not possible to conclusively assess whether there is a difference

between the distributions we test the difference between them using two nonparametric

statistical tests. The results showed on Section 4.2.2 evidence that the distributions are

indeed different given that for both comparisons (i.e., positive vs. unlabeled and positive vs.

negative) p-values were zero in both tests. This is an interesting result in itself given that

such metrics were used in the past to phenotype but not to classify portions of clinical text.

This opens up an avenue to explore whether such metrics can be enhanced by using linguistic

modifiers among the concepts derived from an algorithm such as ConText [127]. Also, the

use of set metrics derived from ontologies is recommended as input features to clinical text

classifiers. This departs from previous works [56] that used the semantic similarity as a

feature selection method and was only used at the individual concept level and not at the

set level. Also in an active learning scenario [49] where instead of a cosine distance to compute

a similarity, a set based similarity used here may prove more useful to select candidates for

labeling.

We can also see that the recursive elimination strategy in the semi-supervised setting

played an important role in the final performance. This is evidenced when the performance

of the models at each iteration increase even when the number of samples used for training

is reduced (see Section 4.2.3). This may be to the fact that models trained in this strategy

are forced to assign a label 0 for unlabeled samples that may be very similar to samples in

the positive set which we want to assign a label of 1. Two very similar sentences from the

training data can be used to exemplify this. The sentence ”lives with mother and mother’s

boyfriend” belongs to the unlabeled set, and the sentence ”He lives with mother, step-father

and 4 siblings” belongs to the positive set. It can be seen directly the usefulness of remove

sentences like the first one from the unlabeled set. By removing samples like this, the

classifier can better generalize by not forcing it to assign a label to sample that does not

truly belong to that class.

Along with the recursive strategy, the NNPU risk also played an important role in se-

lecting the best set of hyperparameters for each strategy. The challenge while training a PU
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learning strategy is how to compare the performance of two sets of model parameters without

actually having negative samples (see Table 7). The risk proposed in [112] allowed us to do

that. To the best of our knowledge, we believe this is the first time that a hyperparameters

search strategy is done in a truly PU setting where negative samples are not required in

any part of the training. The results support the claim that an NNPU risk loss function is

sufficient to evaluate model candidates during hyperparameter optimization. This claim is

validated by the good performance of the proposed strategy on the test set. This we believe

is a relevant result in the biomedical domain where the prevalence and characteristics of

diseases make easier to define positive samples than negative samples.

Now putting aside the hyperparameter optimization, from looking at Figure 23 two

main conclusions can be drawn. First, in general, the semantic loss proposed in Equation 3.1

decreased at each epoch and the automatic differentiation from PyTorch did the computation

of the gradient without explicitly defining it. This is strong evidence that the proposed loss

is derivable. Second, the figure reinforce the need for early stopping as a regularization

technique. For the semi-supervised setting the validation loss stop decreasing around epoch

10 but the training loss continued its descend as expected. For the supervised setting,

overfitting is easier to appreciate when we observe the semantic loss ”wandering” around

epoch 25 with a tendency to increase. Given that cross entropy contributes more to the

total loss, the effect of the wandering is less noticeable in the final additive loss.

Consistently, CNN based strategies with word embeddings outperformed all the other

algorithms. It is important to notice that the CNN used in the proposed approach is much

larger than the CNN used in the supervised and semi-supervised setting given the need to

predict CUIs. Even with a larger set of parameters and not a large amount of data, the

proposed approach has a better performance in the semi-supervised case and a competitive

one in the supervised one. This may be attributed at a possible regularizing effect performed

by the semantic loss, given that to truly capture the semantics it is imperative to generalize

better.

Regarding the embeddings is important to note that they were trained using a corpus

from a different institution and a different hospital units. The embedding weights were

not updated during training. Even with those two conditions the performance of the deep
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learning strategies was not presumably impacted given that the final results outperformed

all the baselines. The results here are similar to the ones found in [128]. In this particular

work, an application using psychiatric notes also benefited from embeddings derived from

MIMIC instead of sources outside the clinical domain.

5.1 LIMITATIONS AND FUTURE WORK

The main limitation of this work is the lack of improvement in the supervised setting when

compared with the deep learning baseline. Contrary to expectations the performance was

lower even for the cases when there was less training data. This unexpected behavior may

be triggered by the number of concepts that the SDN needed to predict. As mentioned in

Section 4.2.2 the number of concepts to predict for the supervised setting was 2112. Closely

analyzing the distribution of those concepts, it can be observed from Figure 20 than less

than 7% of the CUIs had a prevalence greater than 1%. This imposes a severe burden on

the SDN given than most of the CUIs had less than 70 samples.

We may solve this issue by pre-training the SDN on a larger corpus such as MIMIC.

Then with this pre-trained network, we could use a transfer learning approach similar to

the one proposed in this work [129], where different components of the network are unfrozen

gradually, and fine tunned to prevent forgetting what the network already learned. Also,

the architecture for SDN may be changed for a seq2seq network [130, 131]. These networks

are particularly good when labels are sparse and the number of classes to predict at each

sequence depends on the length of the sequence. Also for a sentence like this: Pt reports

having verbal argument w/ stepfather, then pt pushed stepfather. when we have multiple

occurrences of a single concept stepfather seq2seq networks, have proven useful in the past.

Also in this architecture recently released CUI embeddings [132] can be used. One interesting

aspect of having a network to predict concepts instead of mappings is the possibility to have

associated probabilities to each one of the predicted concepts, that may be seen as a degree

of certainty in the prediction made. Given the deterministic nature of most of the dictionary

mapping tools, this is a desirable feature when using CUIs in downstream tasks like the
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one presented in this work. Using the output of a dictionary lookup directly with a neural

network will increase the sparsity of the input given the lack of embeddings, loosing also

the information contained in the raw text that does not map to any concept and losing the

capacity of optimizing for the primary task (i.e., text classification), while also trying to get

better at the secondary task (i.e., concept mapping). One possible hypothesis to consider

is whether a network like this can perform extrapolation, possibly do unseen mapping and

when used full documents help with the very challenging task of co-reference resolution in

the clinical NLP.

However, one important aspect to consider is the performance of the dictionary mapping

tool. In Table 6 we see the results of a less than successful mappings performed by MetaMap.

We can appreciate three main problems by looking at this example. The first is the lack

of domain adaptation, reflected in the expansion of abbreviations that are not relevant for

this particular set of notes. Second is the lack of coverage by the specific terminology used,

observed in the lack of mapping for a possible concept such as estranged from his family. The

last one is the lack of mapping of concepts that are indeed present in the terminology but

where not mapped such as employment. We hypothesize that these particular set of problems

affected more the supervised than the semi-supervised strategy because of the sample size.

With a bigger sample size, there is a chance that we have more samples of concepts with low

prevalence but important to the classification. The low prevalence could be caused by either

an actual low prevalence in the corpus or by a low success rate in mapping such concept by

the dictionary lookup tool. By having more samples, the prediction of such concepts could

be better, and the effects of the errors ameliorated. In the future, to overcome the problems

associated with the dictionary lookup we could look at several options. The first one is to use

a better tool or to attempt tuning an existing one. Tuning a dictionary lookup tool can be

very challenging since they depend on a set of rules that may not allow easy customization.

On the other hand, finding a better tool depends on what better means and how to measure

it. Access to a properly labeled corpus for this task is not trivial, and every tool is usually

tested and tuned on a single institution corpus, or a single domain, making the selection of

the tools challenging. Instead, an approach previously presented [133] where several tools

are combined to produce a silver standard corpus may be more desirable.
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Another limitation is that surprisingly LSTM did not perform well for our case. We

hypothesize that this occurred due to overfitting, produced by the lack of a bigger sample size

required for this architecture. It is important to state that the architecture itself is the one

questioned here, instead of the number of parameters. The reasons for this conclusion is that

small architectures were part of the search done when looking for best hyperparameters. Also,

this architecture is well suited when there is the need to capture long-term dependencies.

Since the LSTM was used in the SDN, long-term dependencies are not needed since usually

a concept map to a word or series of words that are contiguous.

For three of the four cases where the Hinge loss was used, it did not have a good per-

formance. This may because there are no labels for the prediction in the SDN and in

consequence the semantic distance computed is not as good as when the labels are used. For

the supervised setting, the close performance with the additive loss may be due to that given

that most of the loss comes from predicting the label right it is sufficient to predict concepts

that may not be the ones present in the text but have a low semantic distance with the

class. Besides the seq2seq architecture explained before another possible solution is the use

of weight sharing [24]. In this strategy, a set of words is tied to a concept represented by an

embedding. In this way, different words activate different concepts and sparsity is enforced.

One of the most promising avenues for future work is the use of the computation of the

semantic loss only on unlabeled samples. This may be feasible only when large available

of unlabeled samples are available, and it requires the use of the predicted label. This is

similar to the works of [134, 135, 136] where the loss for unlabeled samples is computed

different than the loss for labeled samples. It is important to notice here that the SDN is

the one enabling us to compute this semantic loss. If as an alternative we would like to use

only the word embeddings to compute a semantic loss a very different architecture should

be proposed. First such a strategy needs to prevent the embeddings from forgetting what

was learned during pre-training. Second, a class definition using raw words may need to be

proposed in a way that the incorporation a differentiable loss is feasible. This is not a trivial

task, and it could be an interesting route to explore in future works. In the present work,

we proposed a solution that departs from only using the word embeddings attempting to

leverage the knowledge contained in the manually curated ontologies.
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Another future avenue is to explore whether predicting concepts as an intermediate

task could help explain overall model predictions. For instance specific predictions current

techniques such as LIME [137] construct a linear model with a modified version of the

input features. These linear models may not capture the complexities involved in such

predictions. Instead, we could use the information provided by an intermediate task (i.e.,

concept mapping) to explain those predictions. To do so, we could generate synthetic text by

sampling sentences from an unlabeled corpus. After sampling, we could modify some portions

of the text with synonyms without affecting syntax or grammar. As an example let consider

the sentence discharged to home, from which we could generate synthetic samples such as

discharged to house, and discharged to domicile. Doing this we could see how the model

responds to these changes in the final prediction, whether the concept predicted changed or

not and whether the prediction is dependent on this particular word changed or others in

the given sentence.
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APPENDIX

CONFIDENCE INTERVALS FOR CLASSIFICATION RESULTS

F1 score is a widely used metric in NLP to compare the performance of two systems when

the prevalence of the target class is low. This is because this metric does not take into

account the true negatives for its computation. However, it is important to note that the

F1 score does not have a direct probabilistic interpretation given that is the harmonic mean

between two quantities that can be interpreted as probabilities, this is recall and precision

[138]. Because of that the computation of the confidence intervals (CI) presented here was

done using boostrap, a common non-parametric technique. The intervals computed here are

BCa intervals. BCa is a bias corrected bootstrap that adjust for skewness in the bootstrap

distribution [139]. The intervals were computed using the package boot from R [140] with

10,000 bootstrap replicas. The final CIs are shown in Table 8
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Table 8: Confidence Intervals for Classification Results
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