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Bipolar Disorder (BD) is a serious psychiatric illness with demonstrated structural and functional 

abnormalities in emotion processing, emotion regulation, and reward processing neural 

circuitries. BD is also a highly heritable disorder, placing first-degree relatives of patients with 

BD at great risk for developing the disorder, themselves. There are many similarities, however, 

between BD and other psychiatric illnesses, such as Major Depressive Disorder, Attention 

Deficit/Hyperactive Disorder, and Anxiety Disorders, which often makes it difficult to diagnose 

BD. By detecting abnormalities in neural measures and symptomatology that uniquely 

distinguish youth at risk for BD, we have the potential to identify objective biological markers of 

BD risk that may aid in the development of improved diagnostic and therapeutic strategies for 

BD. In this dissertation, we use elastic net regression analyses to examine structural, functional, 

and symptomatic measures in offspring of bipolar parents (OBP) compared with offspring of 

comparison parents with non-BD psychiatric disorders (OCP) and offspring of healthy parents 

(OHP). In chapter 3, we present findings demonstrating greater rostral anterior cingulate cortex 

(ACC) activity when regulating attention away from positive (i.e. happy) emotions, as well as 

BRAIN STRUCTURE AND FUNCTION IN EMOTION PROCESSING, EMOTION 

REGULATION, AND REWARD PROCESSING NEURAL CIRCUITRIES IN 

OFFSPRING AT RISK FOR BIPOLAR DISORDER 

Heather Elise Acuff, PhD 

 

University of Pittsburgh, 2018 

 

 

 

 

   

 



 v 

greater bilateral amygdala-left caudal ACC functional connectivity (FC) when regulating 

attention away from all (i.e. fearful, happy, and neutral) emotions in OBP compared with OCP. 

In chapter 4, we demonstrate lower right ventral striatum-left caudal ACC FC when processing 

loss and greater right pars orbitalis-orbitofrontal cortex FC when processing reward in OBP 

compared with both OCP and OHP. In chapter 5, we demonstrate inverse relationships between 

right cingulum-cingulate gyrus length and bilateral caudal ACC activity, as well as between 

forceps minor radial diffusivity and bilateral rostral ACC activity, when processing positive 

emotions in OBP compared with OCP. Throughout these analyses, significant relationships were 

observed between the ACC and affective lability severity. Together, these studies identify the 

ACC as a key neural region that may help distinguish youth at risk for BD from youth at risk for 

other psychiatric disorders. These findings provide specific neural and symptomatic targets 

which may improve the diagnosis and treatment of BD, leading to overall better outcomes for 

youth at risk for BD. 
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1.0  GENERAL INTRODUCTION 

This chapter provides a general introduction regarding Bipolar Disorder (BD), youth at familial 

risk for BD, and several neural circuitries and symptoms that are important to the study of BD 

risk. 

1.1 OVERVIEW OF BIPOLAR DISORDER 

1.1.1 Bipolar Disorder (BD) 

BD is a debilitating psychiatric disorder characterized by recurrent and episodic disturbances in 

mood, sleep, behavior, perception, and cognition, rendering it a leading cause of disability, 

morbidity, and mortality worldwide (Mahon, Burdick et al. 2010). BD is classified as a group of 

affective disorders that are characterized by episodes of depression and either mania or 

hypomania (Phillips and Kupfer 2013). The four main subtypes of BD, according to the DSM-V, 

are: BD type I, characterized by episodes of depression and mania; BD type II, characterized by 

episodes of depression and hypomania; Cyclothymic Disorder, characterized by depressive and 

hypomanic symptoms that do not meet full criteria for episodes; and Other Specified Bipolar and 

Related Disorder, characterized by symptoms that are related to BD but do not meet full criteria 
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for any other disorders that are related to BD (American Psychiatric Association 2013, Phillips 

and Kupfer 2013). 

 Criteria for major depressive episodes include at least five of the following symptoms: 

depressed mood, anhedonia, significant changes in weight or appetite, insomnia or hypersomnia, 

psychomotor agitation or retardation, fatigue or decreased energy, feelings of worthlessness or 

guilt, diminished ability to concentrate, and suicidal ideation (American Psychiatric Association 

2013). Additionally, at least one of these symptoms must be either depressed mood or anhedonia 

(American Psychiatric Association 2013). Criteria for manic episodes include elevated, 

expansive, or irritable mood with at least three or four of the following symptoms: inflated self-

esteem or grandiosity, decreased need for sleep, more talkative or pressured speech, flight of 

ideas or racing thoughts, distractibility, increased goal-directed activity or psychomotor 

agitation, and excessive involvement in activities with a high risk for painful consequences 

(American Psychiatric Association 2013). Manic episodes may additionally cause impaired 

social or occupational functioning, require hospitalization, and/or have psychotic features 

(American Psychiatric Association 2013). The criteria for hypomanic episodes are the same as 

for manic episodes with the following differences: hypomanic episodes require fewer days of 

symptoms and do not additionally cause impaired functioning, require hospitalization, or have 

psychotic features (American Psychiatric Association 2013).  

BD affects 1-3% of the adult population and has a high heritability of 59-87% (Smoller 

and Finn 2003, Merikangas, Akiskal et al. 2007, Singh and Chang 2013, Phillips and Swartz 

2014). BD often emerges during adolescence (Kowatch, Fristad et al. 2005, Kowatch, 

Youngstrom et al. 2005, Pavuluri, Birmaher et al. 2005) with 15-28% of adults having 

experienced illness onset before age 13 years and 50-66% having experienced illness onset 
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before age 19 years (Leverich, McElroy et al. 2002, Leverich, Altshuler et al. 2003, Perlis, 

Miyahara et al. 2004). Recent estimates place the mean prevalence of BD in children and 

adolescents at approximately 2% (Van, Moreira et al. 2011). Approximately 5.6% of adolescents 

have subthreshold manic, hypomanic, or depressive symptoms, and some symptoms of BD 

overlap with other disorders, such as Major Depressive Disorder (MDD), Attention 

Deficit/Hyperactive Disorder (ADHD), or Anxiety Disorders, which often makes it difficult to 

diagnose BD (Lewinsohn, Klein et al. 1995, Birmaher and Axelson 2006). Additionally, BD is 

one of the most frequent and costly primary mental health diagnoses in children and adolescents, 

with recent studies estimating that it makes up 18.1% of all mental health admissions and costs 

$702 million, nationally, in the United States (Bardach, Coker et al. 2014). It is thus important to 

detect objective biological markers to help differentiate BD from other disorders and identify 

young individuals who are likely to develop BD in the future. 

1.1.2 Offspring at Risk for BD 

The high heritability of BD places first-degree relatives of individuals with BD at a 10-fold 

increased risk of the disorder compared with relatives of healthy individuals (Smoller and Finn 

2003, Merikangas, Akiskal et al. 2007, Singh and Chang 2013, Phillips and Swartz 2014). 

Compared with children of parents without psychiatric illness, offspring of bipolar parents 

(OBP) are at increased risk of BD and other mood and anxiety disorders (Chang, Steiner et al. 

2000). Studying OBP and comparing them with offspring of healthy parents (OHP) can identify 

early phenotypes associated with BD risk. However, such comparisons are limited in their ability 

to distinguish risk for BD, specifically, from risk for psychiatric illness, in general. This is 

because OBP are also at risk for non-BD psychopathology (Chang, Steiner et al. 2000). 
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Because OBP are at an increased risk for not only BD but also other mood and anxiety 

disorders, an additional comparison group is necessary to determine whether risk markers are 

specific to BD or to general psychopathology. Comparing OBP to offspring of comparison 

parents (OCP) who have non-BD diagnoses, such as MDD, ADHD, or an Anxiety Disorder, can 

help distinguish specific BD risk. This is because, while both OBP and OCP are at higher risk for 

psychiatric disorders than the general population (Birmaher, Axelson et al. 2009), OBP have an 

additionally increased risk for developing BD, specifically. While both OBP and OCP are at 

increased risk for BD compared with healthy controls, OBP are at an approximate seven-fold 

increased risk for developing BD compared with OCP with a recent study finding that 23% of 

OBP developed a bipolar spectrum disorder by age 21 compared with 3.2% in OCP and OHP 

(Axelson, Goldstein et al. 2015). OCP thus serve as a control group for familial risk for non-BD 

psychiatric disorders. Additionally, OCP control for the presence of non-BD psychiatric 

disorders in parents, since parents with BD have high rates of non-BD comorbidity (Merikangas, 

Akiskal et al. 2007), as well as for the environmental effects of living with a parent with a 

psychiatric illness (Goldstein, Birmaher et al. 2005). Together, comparing OBP to both OHP and 

OCP can provide further insight into the underlying mechanisms of BD development and may 

lead to enhanced early identification and preventative treatment for youth who are likely to 

develop BD in the future. 

1.2 CURRENT MODEL OF BD RISK 

There are several predisposing factors, neurobiological processes, behaviors, and outcomes that 

comprise the current model of BD risk (Figure 3). 
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Figure 1: Current Model of BD Risk 

 
 

Predisposing factors include a familial risk for BD and exposure to environmental 

stressors. Familial risk for BD is characterized by a family history of BD, particularly a first-

degree relative (Smoller and Finn 2003, Merikangas, Akiskal et al. 2007, Singh and Chang 2013, 

Phillips and Swartz 2014). Abnormalities in gene expression likely underlie the neurobiology of 

BD at the molecular level and predispose at-risk individuals to the development of the disorder 

(Manji, Quiroz et al. 2003). Examples of environmental stressors include: infections, such as 

intrauterine infections predisposing to fetal and postnatal neurodevelopment and maternal 

exposure to influenza; maternal smoking during pregnancy, which has been shown to increase 

the risk of not only BD but many other mental illnesses; birth complications, including preterm 

birth; climate, such as weakened circadian rhythms and seasonal effects and variation; childhood 

trauma, which has been shown to increase the likelihood and occurrences of rapid cycling 

courses, psychotic features, lifetime mood episodes, suicidal ideation and attempts, and 

substance misuse; life events, described as substantial changes in personal surroundings that 
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result in personal and social consequences, including interpersonal problems; and poor social 

support, affecting ones perception of being loved, cared for, esteemed, valued, and/or a part of a 

network involving communication and mutual obligation (Aldinger and Schulze 2017). 

Together, these familial and environmental factors predispose to the development and worsening 

of BD. 

Next in the model of BD risk are neurobiological processes, including underlying 

molecular and cellular mechanisms. The pathophysiology of BD comprises networks of 

interconnected limbic, striatal, and fronto-cortical neurotransmitter circuits that involve 

interactions between cholinergic, catecholaminergic, and serotonergic neurotransmitter systems 

(Manji, Quiroz et al. 2003). For example, the monoamine neurotransmitter systems mediate 

complex behavioral effects of BD, including dysregulated behavior, circadian rhythms, sleep, 

and neuroendocrine and biochemical processes (Manji and Lenox 2000, Goodwin and Jamison 

2007). Specifically, abnormalities in noradrenergic systems contribute to levels of depression 

and mania; reductions in serotonergic systems contribute to levels of depression, impulsivity, 

aggression, and suicide attempts; reductions in dopaminergic systems contribute to levels of 

depression, anhedonia, and abnormal incentive motivational behavior; and abnormalities in 

cholinergic systems contribute to levels of depression and mania (Manji, Quiroz et al. 2003). 

Abnormalities in signaling pathways have also been implicated in the pathophysiology of BD 

through their regulation of mood, appetite, and wakefulness (Manji 1992, Milligan and Wakelam 

1992, Manji, Quiroz et al. 2003, Spiegel 2012). Specifically, abnormalities in the Gs/cAMP 

generating signaling pathway contribute to cyclic affective episodes; abnormalities in the protein 

kinase C signaling pathway contribute to levels of mania; and abnormalities in calcium signaling 

have also been observed in individuals with BD (Manji, Quiroz et al. 2003). These molecular and 
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cellular mechanisms all contribute to other abnormalities in BD, such as reduced gray matter 

volumes via reduced cortex volume, glial cell counts, and neuronal densities and sizes in 

subgenual prefrontal, orbital, and dorsal anterolateral prefrontal cortical regions (Drevets 2001, 

Manji, Quiroz et al. 2003). More specifically, reduced gray matter has been observed in orbital 

and medial PFC regions, the ventral striatum, and the hippocampus (Drevets 2001). These 

underlying processes all contribute to the development of structural and functional abnormalities 

that are observed in neural circuitries. There are three circuitries that are particularly important 

for understanding the neural mechanisms that underlie the vulnerability of youth at risk for BD 

to develop dimensional or categorical psychopathology. Two such circuitries are emotion 

processing and emotion regulation, as BD is characterized by emotional over-reactivity and 

emotional dysregulation (Goodwin and Jamison 2007). Emotion regulation circuitry incorporates 

several executive function domains, including voluntary and automatic subprocesses (Phillips, 

Ladouceur et al. 2008). Voluntary subprocesses include voluntary behavioral control (e.g. 

suppressing emotional expression), voluntary attentional control (e.g. selective attention, 

overcoming interference from emotional distractors, and inhibiting emotional motor responses), 

and voluntary cognitive change (e.g. reappraising anticipation of forthcoming events) (Phillips, 

Ladouceur et al. 2008). Automatic subprocesses include automatic behavioral change (e.g. 

extinction and behavioral regulation), automatic attentional control (e.g. cognitive 

disengagement and repressive and avoidant personality styles), and automatic cognitive change 

(e.g. covert appraisal and reappraisal, cover response (e.g. error) monitoring, and covert learning 

that automatically adjusts behavior) (Phillips, Ladouceur et al. 2008). A third circuitry is reward 

processing, as BD is also characterized by heightened reward sensitivity (Alloy, Bender et al. 
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2012, Ibanez, Cetkovich et al. 2012, Mason, O'Sullivan et al. 2012). Regions that are important 

to these circuitries will be discussed in detail, below. 

These neurobiological processes all contribute to certain behaviors. For example, in 

youth at risk for BD, abnormalities in emotion processing circuitry contribute to greater 

emotional reactivity. This may manifest as abnormal hypersensitivity to the processing of 

emotional stimuli and may predispose to deficits in social processing. Additionally, 

abnormalities in emotion regulation circuitry contribute to greater emotional dysregulation. This 

may manifest as abnormally reduced abilities to regulate emotions while either voluntarily or 

automatically attending to non-emotional stimuli. Furthermore, abnormalities in reward 

processing contribute to greater impulsive sensation seeking. This may manifest as prematurely 

elicited behavior with little to no regard for the consequences, as well as an abnormally greater 

desire to engage in risky behavior. Furthermore, abnormalities in any of these circuitries may 

contribute to greater symptom severity. A recent study identified four symptoms as the strongest 

dimensions of psychopathology associated with BD risk: depression, mania, affective lability, 

and anxiety (Hafeman, Merranko et al. 2016). They found that OBP with high levels of these 

symptoms (i.e. all four measures being one standard deviation above the mean) had a 24-fold 

increased risk than OBP with low levels of these symptoms (i.e. all four measures being one 

standard deviation below the mean) of developing a new-onset bipolar spectrum disorder, over 

follow-up (Hafeman, Merranko et al. 2016). Specifically, they found that the predicted chance of 

conversion was 49% in OBP with high symptom levels and only 2% in OBP with low symptom 

levels (Hafeman, Merranko et al. 2016). Thus, these symptoms of depression, mania, affective 

lability, and anxiety are important predictors of new-onset bipolar spectrum in populations of 

youth at risk for BD (Hafeman, Merranko et al. 2016). 
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Finally, these predisposing factors, neurobiological processes, and behaviors result in a 

set of outcomes in youth at risk for BD. One such outcome may be the development of a mood or 

anxiety disorder, such as BD (Hafeman, Merranko et al. 2016), MDD, ADHD, and/or an Anxiety 

Disorder (Birmaher, Axelson et al. 2009). Furthermore, offspring may develop comorbidities 

between these disorders (Merikangas, Akiskal et al. 2007). Additionally, these outcomes may 

include functional impairments, such as in social or occupational functioning (American 

Psychiatric Association 2013). 

1.3 NEURAL CIRCUITRIES IMPORTANT TO BD AND BD RISK 

1.3.1 Neural Regions 

Several major themes that have been elucidated from functional neuroimaging studies in BD 

include abnormally increased amygdala and decreased prefrontal cortical (PFC) activity during 

emotion processing and regulation, as well as abnormally increased PFC activity during reward 

processing (Phillips and Swartz 2014). More specifically, emotion processing (Phillips, Drevets 

et al. 2003) and regulation (Dolcos, Iordan et al. 2011) circuitries primarily involve the 

amygdala, anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (vlPFC), and 

dorsolateral prefrontal cortex (dlPFC) (Phillips, Drevets et al. 2003, Phillips, Ladouceur et al. 

2008, Dolcos, Iordan et al. 2011). Reward processing circuitry primarily involves the amygdala, 

ACC, vlPFC, orbitofrontal cortex (OFC), and ventral striatum (VS) (Kumar, Waiter et al. 2008, 

Grabenhorst and Rolls 2011, Phillips and Swartz 2014). A rough, conceptual illustration of the 
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location of these regions is presented in Figure 1. These regions will be described in detail, 

below. 

 

 

 

Figure 2: Neural Regions Implicated in Emotion Processing, Emotion Regulation, and Reward Processing 

Neural Circuitries 

 

1.3.1.1 Amygdala 

The amygdala is an important neural region of the limbic system (Swanson 2003), which is a 

functional anatomical system composed of the medial portions of the frontal, parietal, and 

temporal lobes that has important roles in learning, memory, and emotions (Kötter and Meyer 

1992). It is strongly connected to the ACC and OFC (Ghashghaei, Hilgetag et al. 2007). 

Connections between the amygdala and the first and second cortical layers of the ACC and OFC 

may be interpreted as an implication in the focus of attention to motivationally relevant stimuli 
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(Ghashghaei, Hilgetag et al. 2007). Specifically, projections from the amygdala to the middle 

layers of these regions may provide information about emotional salience or external sensory 

stimuli (Ghashghaei, Hilgetag et al. 2007). The amygdala also has projections to the vlPFC 

(Carmichael and Price 1995). Specifically, studies have postulated that disturbed amygdala-

vlPFC connectivity may be related to symptoms of anxiety (Hariri, Mattay et al. 2003). 

The amygdala has well established roles in generating fear and anxiety responses, 

assigning emotional salience to external stimuli, and coordinating affective, autonomic, and 

behavioral responses to such stimuli (Davis 1997, Paré, Quirk et al. 2004, Pape and Pare 2010). 

The amygdala is also a key component of emotion processing, emotion regulation, and reward 

processing neural circuitries. In emotion circuitry, the amygdala is involved in regulating internal 

emotional states, cognitively evaluating the emotional content of complex perceptual cues, and 

processing information about emotions that are conveyed by complex perceptual cues (Gallagher 

and Chiba 1996). In reward processing circuitry, the amygdala is involved in associating stimuli 

with their reward values (Baxter and Murray 2002). 

Many studies have examined the role of the amygdala in BD. Functional abnormalities in 

emotion processing and regulation neural circuitries in youth and adults with BD, compared with 

healthy controls (Phillips and Swartz 2014), include greater amygdala activity to emotional 

stimuli (Lawrence, Williams et al. 2004, Blumberg, Donegan et al. 2005) and lower amygdala-

vlPFC FC (Altshuler, Bookheimer et al. 2008, Kalmar, Wang et al. 2009, Ladouceur, Farchione 

et al. 2011, Strakowski, Eliassen et al. 2011, Delvecchio, Fossati et al. 2012, Foland-Ross, 

Bookheimer et al. 2012, Garrett, Reiss et al. 2012, Kim, Thomas et al. 2012, Passarotti, Ellis et 

al. 2012, Townsend, Bookheimer et al. 2012, Townsend, Torrisi et al. 2013). Cross-sectional 

studies of youth at risk for BD have shown that, compared with OHP, OBP showed lower 
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amygdala-vlPFC FC to fearful faces during emotion regulation (Ladouceur, Diwadkar et al. 

2013) and greater amygdala activity during facial emotion processing (Phillips, Ladouceur et al. 

2008, Olsavsky, Brotman et al. 2012, Tseng, Bones et al. 2015, Chan, Sussmann et al. 2016), 

specifically to fearful faces (Olsavsky, Brotman et al. 2012). The few neuroimaging studies 

comparing OBP and OCP have found patterns of activity and FC in the amygdala and vlPFC that 

distinguish OBP from OCP (Manelis, Ladouceur et al. 2015, Manelis, Ladouceur et al. 2016, 

Soehner, Bertocci et al. 2016). Comparing all three groups during emotional face processing, 

OBP and OCP have shown greater right amygdala activity to all emotional faces compared with 

OHP, while OBP have shown lower right amygdala-ACC FC to all emotional faces and greater 

right amygdala-left vlPFC FC to happy faces compared with OCP and OHP (Manelis, Ladouceur 

et al. 2015). In reward circuitry, specific findings in relatives of adults with BD include greater 

amygdala activity during reward reversal compared with healthy controls (Linke, King et al. 

2012). Thus, in youth at risk for BD, greater amygdala may reflect a higher arousal to emotions 

and reward, while lower connectivity between the amygdala and other PFC regions might reflect 

a reduced ability to regulate other regions that are important to emotion processing. These 

findings may also reflect an underlying attentional bias to positive emotional stimuli, 

specifically, in BD, which may predispose to symptoms of mania (Phillips and Swartz 2014). 

1.3.1.2 Anterior Cingulate Cortex (ACC) 

The ACC is another component of the limbic system which is involved in cognitive and 

emotional tasks (Bush, Luu et al. 2000). It is a part of the ventromedial PFC which covers the 

medial wall and ventral surface of the frontal cortex and develops relatively early in life (Fuster 

2002, Phillips, Ladouceur et al. 2008). The ACC is divided into an anterior/ventral, or rostral 

(rACC), division and a posterior/dorsal, or caudal (cACC), division, which are interconnected 
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with each other (Musil and Olson 1988, Van Hoesen, Morecraft et al. 1993). FC studies have 

provided insight into the division of the ACC into rostral and caudal portions (Das, Kemp et al. 

2005). Specifically, studies have suggested that the rACC shows an inverse modulation of the 

thalamus-sensory cortex pathway in response to emotionally salient stimuli while the cACC 

shown a positive relationship (Das, Kemp et al. 2005). This suggests that there is a functional 

differentiation between these ACC divisions that may contribute to dynamic functional 

relationships between the ACC and thalamo-amygdala regions (Das, Kemp et al. 2005, Phillips, 

Ladouceur et al. 2008). 

 As mentioned above, there are established connections between the ACC and the 

amygdala. Projections from the ACC to the amygdala may reflect the involvement of the ACC in 

conveying information to the amygdala about internalized emotions (Phillips, Ladouceur et al. 

2008). Specifically, FC has been observed between the amygdala and the rACC (Van Hoesen, 

Morecraft et al. 1993, Carmichael and Price 1995). Studies have shown that the rACC projects to 

the amygdala which, in turn, regulates other regions, such as the hypothalamus (Bechara, Tranel 

et al. 1995). Other studies have postulated that increased rACC activity may lead to a reduction 

in amygdala activity, which may have a role in the reduction of emotional responsivity, 

particularly when resolving emotional conflict (Etkin, Egner et al. 2006). FC between the 

amygdala and the cACC has also been identified. Specifically, connections go from the 

amygdala to the subgenual part of the cACC (Brodmann’s Area (BA) 25) to the supragenual part 

of the cACC (BA32) and then back to the amygdala (Paus 2001, Ghashghaei and Barbas 2002, 

Phillips, Drevets et al. 2003, Meyer-Lindenberg, Hariri et al. 2005, Pezawas, Meyer-Lindenberg 

et al. 2005). This relationship has been specifically implicated in the processing of fearful and 

angry emotions (Stein, Wiedholz et al. 2007). The ACC also has connections with the VS. 
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While, in general, the strongest projections to the VS are from the rACC (Kunishio and Haber 

1994, Haber, Kunishio et al. 1995, Parvizi, Van Hoesen et al. 2006), studies have also identified 

projections from the cACC (specifically the supragenual part, BA32) to the VS (specifically the 

rostral pole of the caudate nucleus) (Haber, Kim et al. 2006). Studies have primarily implicated 

the latter relationships in tasks related to impulsivity and gambling (Jung, Schulte et al. 2013, 

van Holst, Chase et al. 2014). 

The function of the rACC is generally characterized as more affective in nature (i.e. 

involved in assessing the salience of emotional and motivational information and regulating 

emotional responses), while the cACC is generally characterized as more evaluative or 

attentional in nature (Vogt, Finch et al. 1992, Bush, Luu et al. 2000). The ACC, as a whole, is 

also involved in emotion processing, emotion regulation, and reward processing neural 

circuitries (Phillips, Drevets et al. 2003, Phillips and Swartz 2014). Regarding emotion 

circuitries, lesion studies of the ACC have produced symptoms of emotional instability, apathy, 

and inattention (Tow and Whitty 1953, Kennard 1955, Corkin, Twitchell et al. 1979). Regarding 

reward processing, the ACC is involved in cost-benefit decision-making and associating actions 

with rewards (Walton, Kennerley et al. 2006, Croxson, Walton et al. 2009, Rushworth, Noonan 

et al. 2011). 

Studies have reported lower ACC activity during facial emotion processing (Blumberg, 

Donegan et al. 2005), as well as during reward anticipation (Chase, Nusslock et al. 2013), in 

adults with BD. Lower ACC activity has also been reported in in youth at risk for BD during 

facial emotion processing (Chan, Sussmann et al. 2016). In a study comparing OBP, OCP, and 

OHP during emotional face processing, OBP showed lower positive FC between the right 

amygdala and ACC to all emotional faces than OCP and OHP (Manelis, Ladouceur et al. 2015). 
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During reward processing, findings in youth at risk for BD include lower cACC (BA32) activity 

and greater cACC-right vlPFC FC during the anticipation of loss, as well as lower cACC-right 

vlPFC FC during the anticipation of reward (Singh, Kelley et al. 2014). In general, these findings 

suggest that the ACC contributes to more diminished responses to emotional and rewarding 

stimuli in youth at risk for BD compared with control groups. 

1.3.1.3 Ventrolateral Prefrontal Cortex (vlPFC) 

The vlPFC is a part of the lateral PFC which develops relatively late in life and is principally 

involved in higher executive functions (Fuster 2002). The vlPFC is composed of the pars 

opercularis (BA44, located anterior to the premotor cortex (BA6) and on the lateral surface, 

inferior to BA9), the pars triangularis (BA45, located on the lateral surface, inferior to BA9 and 

adjacent to BA46), and the pars orbitalis and lateral orbitofrontal cortex (BA47, located below 

areas BA10 and BA45 and beside BA11) (Hooker and Knight 2006, Badre and Wagner 2007). 

Studies have shown functional connections between the vlPFC and several other regions, 

including the OFC, amygdala, and VS. Specifically, FC studies have suggested that the OFC 

may mediate an inhibitory role of the right vlPFC, specifically, upon the amygdala (Hariri, 

Bookheimer et al. 2000, Lange, Williams et al. 2003, Lieberman, Hariri et al. 2005, Lieberman, 

Eisenberger et al. 2007). Additionally, rodent studies have shown that the vlPFC has excitatory 

afferent connections with the VS (Sesack and Grace 2010). 

The vlPFC has many different functions, including having roles in motor inhibition 

(Aron, Robbins et al. 2004), spatial attention (Corbetta and Shulman 2002, Corbetta, Patel et al. 

2008), and processing information related to negative life experiences (Shin, Whalen et al. 2001, 

Markowitsch, Vandekerckhove et al. 2003, Dresler, Attar et al. 2012, Morey and Brown 2012). 

This region is also involved in emotion processing, emotion regulation, and reward processing 
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neural circuitries (Phillips, Drevets et al. 2003, Phillips and Swartz 2014). Regarding emotion, 

the vlPFC is implicated in the evaluation and effortful regulation of emotional behavior (Phillips, 

Drevets et al. 2003, Buhle, Silvers et al. 2014, Kohn, Eickhoff et al. 2014). Regarding reward, 

the vlPFC is involved in encoding values of choices and decision-making options (Walton, 

Behrens et al. 2011). 

Functional abnormalities in emotion processing and regulation circuitries in youth and 

adults with BD (Phillips and Swartz 2014) include lower vlPFC activity (Phillips, Drevets et al. 

2003, Phillips, Ladouceur et al. 2008, Hafeman, Bebko et al. 2014) and lower amygdala-vlPFC 

FC (Altshuler, Bookheimer et al. 2008, Kalmar, Wang et al. 2009, Ladouceur, Farchione et al. 

2011, Strakowski, Eliassen et al. 2011, Delvecchio, Fossati et al. 2012, Foland-Ross, 

Bookheimer et al. 2012, Garrett, Reiss et al. 2012, Kim, Thomas et al. 2012, Passarotti, Ellis et 

al. 2012, Townsend, Bookheimer et al. 2012, Townsend, Torrisi et al. 2013) during emotion 

processing and regulation tasks. Findings in reward circuitry in adults with BD include greater 

left vlPFC activity during reward anticipation (Bermpohl, Kahnt et al. 2010, Nusslock, Almeida 

et al. 2012, Chase, Nusslock et al. 2013) and lower vlPFC-VS FC during processing of reward 

outcomes (Trost, Diekhof et al. 2014). Cross-sectional studies of youth at risk for BD have 

reported that, compared with OHP, OBP showed greater vlPFC activity to happy faces and lower 

right vlPFC-left amygdala FC to fearful faces during emotion regulation (Ladouceur, Diwadkar 

et al. 2013). Comparing all three groups during emotional face processing, OBP showed and 

greater right amygdala-left vlPFC FC to happy faces than OCP and OHP (Manelis, Ladouceur et 

al. 2015). Reward findings in youth at risk for BD include greater cACC-right vlPFC FC during 

loss anticipation, and lower cACC-right vlPFC FC during reward anticipation (Singh, Kelley et 

al. 2014). Only one study to date has compared reward circuitry activation in OBP, OCP, and 
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OHP (Manelis, Ladouceur et al. 2016). In this study, OBP had more negative bilateral VS-right 

vlPFC FC compared with both OCP and OHP during the processing of receipt of both reward 

and loss (Manelis, Ladouceur et al. 2016). These findings suggest that, in youth at risk for BD, 

the vlPFC significantly contributes to abnormal emotion regulation and reward processing both 

individually as well as through its connections with other prefrontal cortical and subcortical 

regions. 

1.3.1.4 Dorsolateral Prefrontal Cortex (dlPFC) 

The dlPFC is a lateral prefrontal cortical region that is comprised of BA9 and BA46, two regions 

that constitute the lower half of the mid-dorsolateral frontal cortex (Petrides and Pandya 1999). It 

is densely connected to many other prefrontal cortical and subcortical structures, including the 

OFC, thalamus, dorsal striatum, hippocampus, and secondary cortical association areas such as 

the posterior temporal, parietal, and occipital areas (Procyk and Goldman-Rakic 2006). It is a 

key component of neural circuitries that are involved in higher executive functions, such as 

effortful attentional and cognitive processes, including working memory and response inhibition 

(Fuster 2002, Dolcos, Iordan et al. 2011). The dlPFC is also involved in emotion processing and 

regulation neural circuitries. For example, this region has been consistently implicated in 

voluntary emotion regulation (Phillips, Ladouceur et al. 2008), including the voluntary 

behavioral control of both positive and negative emotions (Beauregard, Levesque et al. 2001, 

Lévesque, Eugene et al. 2003). 

 Studies in adults with BD have found lower dlPFC activity during memory tasks 

designed to implicitly evoke affective change (Malhi, Lagopoulos et al. 2007) and tasks of 

voluntary attentional control (Monks, Thompson et al. 2004, Lagopoulos, Ivanovski et al. 2007), 

but greater dlPFC activity during voluntary attentional control of emotion, specifically to sad and 
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happy distractors (Elliott, Ogilvie et al. 2004), and automatic attentional control (Gruber, 

Rogowska et al. 2004). In children and adolescents with BD, studies have shown greater dlPFC 

activity during voluntary attentional control (Chang, Adleman et al. 2004). Studies in youth at 

risk for BD have found lower dlPFC activity during emotional face processing (Tseng, Bones et 

al. 2015), as well as lower right vlPFC-left dlPFC FC during emotion regulation (Ladouceur, 

Diwadkar et al. 2013). These findings suggest that the dlPFC contributes to an abnormally 

reduced ability for youth at risk for BD to process and regulate emotions. 

1.3.1.5 Orbitofrontal Cortex (OFC) 

The OFC is a prefrontal cortical region that can be defined as BAs 11-14, the medial part of 

BA47, the dorsomedial PFC (BA10/32), and parts of the ACC (Ongur and Price 2000). In this 

dissertation, the OFC was defined as BA11. The OFC is a part of the orbital prefrontal network 

which has connections with subcortical limbic structures, such as with the ventral medial part of 

the basal nucleus of the amygdala, as well as with the striatum, thalamus, hypothalamus, and 

brainstem (Ongur and Price 2000). This network interacts with the medial prefrontal network to 

facilitate emotional behavior regulation by converging sensorimotor integration and 

visceromotor control when processing emotionally salient information (Phillips, Ladouceur et al. 

2008). The OFC also has extensive and reciprocal connections with the amygdala and dlPFC 

(Stein, Wiedholz et al. 2007), which suggests that the OFC may mediate connections between 

higher-order dorsolateral prefrontal regions and subcortical limbic regions during emotion 

regulation (Phillips, Ladouceur et al. 2008). 

The OFC receives information from ventral processing visual stream, taste, olfactory, and 

somatosensory inputs (Rolls 2004). It is also anatomically connected to regions such as the 

amygdala and cingulate cortex (Insausti, Amaral et al. 1987, Ongur and Price 2000). It is 
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primarily involved in reward processing neural circuitries. More specifically, this region is 

involved in encoding reward values, comparing values of different options (Boorman, Behrens et 

al. 2009), learning about the rewarding nature of stimuli, and rapid stimulus-reinforcement 

association learning (Rolls 2004). Relationships between the OFC and other regions are also 

important in reward circuitry. For example, coordinated activation of the ACC and OFC may 

help enable reward-based incentives (Haber 2011). 

Studies have shown abnormalities in reward circuitry in youth and adults with, and at risk 

for, BD compared with healthy controls. Findings in adults with BD include greater right OFC 

activity during reward anticipation (Bermpohl, Kahnt et al. 2010, Nusslock, Almeida et al. 2012, 

Chase, Nusslock et al. 2013) and greater left OFC activity during reward reversal (Linke, King et 

al. 2012). Findings in youth at risk for BD include greater left lateral OFC activity during 

feedback of successful rewards (Singh, Kelley et al. 2014), which suggests that youth at risk for 

BD have an increased attempt to encode rewarding values of choice and have a greater 

attunement to rewarding stimuli. 

1.3.1.6 Ventral Striatum (VS) 

The VS is a subcortical structure that includes the nucleus accumbens as well as the broad 

continuity between the caudate nucleus and putamen (Haber and McFARLAND 1999). Its 

afferent projections from regions such as the amygdala, ACC, and OFC mediate different aspects 

of reward and emotional processing (Haber and Knutson 2010). Projections from the VS go to 

the ventral pallidum and substantia nigra and are then transferred to the ACC and OFC via the 

mediodorsal nucleus of the thalamus (Haber 2011). Coordinated activation of terminals in the 

striatum from regions such as the ACC and OFC may, together, enable reward-based incentives 

that drive impacts on long-term strategic planning (Haber 2011). More specifically, the VS is 
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involved in activations preceding and following rewards (Schultz, Tremblay et al. 2000), 

expecting positive incentive values (Knutson, Adams et al. 2001), processing reward prediction 

errors (Pagnoni, Zink et al. 2002), coding stimulus-reward values (O’Doherty 2004), and 

immediate reward prediction (Tanaka, Doya et al. 2004). 

Studies showing abnormalities in reward circuitry in adults with BD include greater VS 

activity during reward anticipation (Nusslock, Almeida et al. 2012, Caseras, Lawrence et al. 

2013, Phillips and Kupfer 2013), lower VS activity during reward receipt (Abler, Greenhouse et 

al. 2008, Trost, Diekhof et al. 2014), and lower vlPFC-VS FC during the processing of reward 

outcomes (Trost, Diekhof et al. 2014). In the one study to date that compared reward circuitry 

activation in OBP, OCP, and OHP, OBP had more negative bilateral VS-right vlPFC FC 

compared with both OCP and OHP during the processing of both reward and loss receipt 

(Manelis, Ladouceur et al. 2016). This finding suggests that, in OBP, the formation of 

associations between reward values and corresponding visual stimuli in the VS may inhibit the 

evaluation of reward and loss encoded by the vlPFC (Manelis, Ladouceur et al. 2016). 

1.3.2 White Matter Tracts (WMTs) 

Abnormalities in the structure of several WMTs have also been identified in youth with, and at 

risk for, BD. Specific tracts implicated in the pathophysiology of BD include the cingulum, 

forceps minor of the corpus callosum, superior longitudinal fasciculus, and uncinate fasciculus 

(Figure 2). Structural abnormalities in all of these tracts primarily include lower FA, which likely 

reflects lower collinearity of longitudinally-aligned fibers (Versace, Almeida et al. 2008), and 

greater RD, which likely reflects abnormal myelination, more obliquely oriented fibers, and/or 

local inflammation (Song, Yoshino et al. 2005, Mahon, Burdick et al. 2010). 
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Figure 3: White Matter Tracts Implicated in Bipolar Disorder Pathophysiology 

 

1.3.2.1 Cingulum 

The cingulum is a white matter tract that is further divided into the angular bundle and the 

bundle of the cingulate gyrus (Wakana, Caprihan et al. 2007). It lies beneath the cortex of the 

cingulate gyrus and forms the white matter core of this region and the limbic lobe (Bruni and 

Montemurro 2009). Its trajectory follows the curve of the cingulate gyrus from the frontal lobe to 

the temporal lobe, encircling the corpus callosum (Bruni and Montemurro 2009). Its association 

fibers reciprocally connect medial cortical areas of the frontal and parietal lobes with the medial 

cortical areas of the temporal lobe (Bruni and Montemurro 2009). The cingulum has an essential 

role in emotion regulation, with the anterior portion connecting the ACC to the OFC (Papez 

1937, Mufson and Pandya 1984). Abnormalities in youth and adults with BD include lower FA 
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and greater RD, likely reflecting cingulum demyelination without axonal loss that parallel 

clinical changes across illness phases in BD (Benedetti, Yeh et al. 2011, Versace, Andreazza et 

al. 2014). 

1.3.2.2 Forceps Minor of the Corpus Callosum 

The corpus callosum is the largest WMT in the brain and is situated on the floor of the 

interhemispheric fissure in between the cerebral hemispheres (Bruni and Montemurro 2009). It 

interconnects widespread areas of the neopallia association cortex and integrates sensory and 

motor information between the two hemispheres (Bruni and Montemurro 2009). The genu of the 

corpus callosum gives rise to the forceps minor, the subdivision of the tract that sweeps forward 

on both sides of the midline, anteriorly (Bruni and Montemurro 2009). The role of the forceps 

minor is to integrate language, attention, emotion, and sensorimotor functions (Sarrazin, d'Albis 

et al. 2015). In youth and adults with BD, lower FA and greater RD has also been shown in the 

forceps minor, and lower forceps minor FA has been associated with psychotic features and 

impulsivity (Wang, Jackowski et al. 2008, Wang, Kalmar et al. 2008, Chaddock, Barker et al. 

2009, Benedetti, Yeh et al. 2011, Haller, Xekardaki et al. 2011, Versace, Andreazza et al. 2014, 

Sarrazin, d'Albis et al. 2015). 

1.3.2.3 Superior Longitudinal Fasciculus 

The superior longitudinal fasciculus is the largest association fiber bundle and is positioned 

laterally beneath the frontal, parietal, and temporal opercula (Bruni and Montemurro 2009). Its 

fibers are most compact in its mid portion and fan out forward and backward into the frontal, 

parietal, occipital, and temporal lobe association cortices, connecting regions in the frontal lobe 

(e.g. the vlPFC and dlPFC) and temporo-parietal lobe cortices (Bruni and Montemurro 2009). 
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The two most notable subdivisions of the superior longitudinal fasciculus are the parietal and 

temporal subdivisions (Bruni and Montemurro 2009). This tract supports roles of executive 

functioning, emotion regulation, and language processing (Versace, Andreazza et al. 2014). 

Similar to the above tracts, studies in youth and adults with BD have found lower FA and greater 

RD in the superior longitudinal fasciculus (Chaddock, Barker et al. 2009, van der Schot, Vonk et 

al. 2010, Versace, Almeida et al. 2010, Benedetti, Yeh et al. 2011, Versace, Andreazza et al. 

2014). 

1.3.2.4 Uncinate Fasciculus 

The uncinate fasciculus, along with the inferior occipitofrontal fasciculus and the inferior 

longitudinal fasciculus, belongs to a large WMT network that connects fronto-temporal regions 

with the occipital cortex (Bruni and Montemurro 2009). The fibers of the uncinate fasciculus 

curve around the lateral fissure and interconnect the cortices of the middle, inferior frontal, 

orbital gyri, anterior temporal lobe gyri, parahippocampal gyri, and hippocampal gyri (Bruni and 

Montemurro 2009). This tract has also been implicated in emotion processing and regulation, as 

it connects key regions in emotion neural circuitry, including the amygdala, ACC, vlPFC, and 

OFC (Petrides and Pandya 2007), as well as prefrontal and anterior temporal cortices (Craig, 

Catani et al. 2009). As with the aforementioned tracts, lower FA and greater RD has also been 

shown in the uncinate fasciculus in youth and adults with BD (Versace, Almeida et al. 2008, 

Benedetti, Yeh et al. 2011, Linke, King et al. 2013, Versace, Andreazza et al. 2014). 
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1.3.3 Contribution to the Current Model of BD Risk 

Given these findings, we can see how these abnormalities directly contribute to the 

neurobiological processes in the current model of BD risk. In emotion processing circuitry, key 

findings in youth at risk for BD include greater right amygdala activity to all emotional faces 

(Manelis, Ladouceur et al. 2015), lower ACC activity during facial emotion processing (Chan, 

Sussmann et al. 2016), lower dlPFC activity during facial emotion processing (Tseng, Bones et 

al. 2015), lower right amygdala-ACC FC to all emotional faces (Manelis, Ladouceur et al. 2015), 

greater right amygdala-left vlPFC FC to happy faces (Manelis, Ladouceur et al. 2015), lower 

collinearity in the forceps minor of the corpus callosum (Wang, Jackowski et al. 2008, Wang, 

Kalmar et al. 2008, Chaddock, Barker et al. 2009, Benedetti, Yeh et al. 2011, Haller, Xekardaki 

et al. 2011, Versace, Andreazza et al. 2014, Sarrazin, d'Albis et al. 2015), and lower collinearity 

in the uncinate fasciculus (Versace, Almeida et al. 2008, Benedetti, Yeh et al. 2011, Linke, King 

et al. 2013, Versace, Andreazza et al. 2014) (Figure 4).  

 For Figure 4, as well as similar figures: a green upward arrow within a region indicates 

greater activity; a red downward arrow within a region indicates lower activity; a green arrow 

connecting regions indicates greater FC between the seed and target region; and a red arrow 

connecting regions indicates lower FC between the seed and target region. 
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Figure 4: Current Model of BD Risk - Emotion Processing 

 

 
In emotion regulation circuitry, key findings in youth at risk for BD include greater 

vlPFC activity when regulating attention away from happy faces (Ladouceur, Diwadkar et al. 

2013), lower right vlPFC-left amygdala FC when regulating attention away from fearful faces 

(Ladouceur, Diwadkar et al. 2013), lower right vlPFC-left dlPFC FC during emotion regulation 
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(Ladouceur, Diwadkar et al. 2013), lower collinearity in the cingulum (Benedetti, Yeh et al. 

2011, Versace, Andreazza et al. 2014), lower collinearity in the forceps minor of the corpus 

callosum (Wang, Jackowski et al. 2008, Wang, Kalmar et al. 2008, Chaddock, Barker et al. 2009, 

Benedetti, Yeh et al. 2011, Haller, Xekardaki et al. 2011, Versace, Andreazza et al. 2014, 

Sarrazin, d'Albis et al. 2015), lower collinearity in the superior longitudinal fasciculus 

(Chaddock, Barker et al. 2009, van der Schot, Vonk et al. 2010, Versace, Almeida et al. 2010, 

Benedetti, Yeh et al. 2011, Versace, Andreazza et al. 2014), and lower collinearity in the 

uncinate fasciculus (Versace, Almeida et al. 2008, Benedetti, Yeh et al. 2011, Linke, King et al. 

2013, Versace, Andreazza et al. 2014) (Figure 5).  
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Figure 5: Current Model of BD Risk - Emotion Regulation 

 

 
Finally, in reward processing circuitry, key findings in youth at risk for BD include 

greater amygdala activity during reward reversal (Linke, King et al. 2012), greater left OFC 

activity during reward reversal and receipt (Linke, King et al. 2012, Singh, Kelley et al. 2014), 

lower cACC activity during loss anticipation (Singh, Kelley et al. 2014), more negative bilateral 
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VS-right vlPFC FC during the processing of both reward and loss receipt (Manelis, Ladouceur et 

al. 2016), greater cACC-right vlPFC FC during loss anticipation (Singh, Kelley et al. 2014), and 

lower cACC-right vlPFC FC during reward anticipation (Singh, Kelley et al. 2014) (Figure 6).  

 

 

 

Figure 6: Current Model of BD Risk - Reward Processing 

1.4 NEUROIMAGING TECHNIQUES 

Using neuroimaging methods to identify neural abnormalities in youth at familial risk for BD 

may elucidate biological markers that may help distinguish specific risk for BD from risk for 

other psychiatric disorders. Furthermore, focusing on youth at risk for BD who are not yet 

unaffected by the disorder may identify markers of BD before illness onset. Functional magnetic 

resonance imaging (fMRI) and diffusion tensor imaging (DTI) are neuroimaging methods which 
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can be used to assess neural function and structure, respectively, in youth at risk for BD 

(Matthews and Jezzard 2004). 

1.4.1 Functional Magnetic Resonance Imaging (fMRI) 

1.4.1.1 Basic Principles of fMRI 

fMRI is noninvasive, widely-used neuroimaging technique that can examine cerebral physiology 

and pathophysiology by detecting regional hemodynamic responses to stimulation tasks 

(Bogusławska, Romanowski et al. 1999). Specifically, fMRI detects effects of neural activity on 

local blood volume, blood flow, and blood oxygen saturation (Bogusławska, Romanowski et al. 

1999). This technique is based on the premise that localized changes in cerebral blood flow, 

cerebral blood volume, oxygen content, oxygen metabolism, oxygen extraction, glucose 

metabolism, and lactate concentration occur during neural activation (Bogusławska, 

Romanowski et al. 1999). Based on the relationships between these localized changes and 

anatomical areas of neural activation, we may use fMRI to visualize changes within activated 

brain tissue and map activity in the human brain (Bogusławska, Romanowski et al. 1999). 

At rest, there is a strong special correlation between blood flow and glucose and oxygen 

metabolism (Bogusławska, Romanowski et al. 1999). After the onset of a stimulus, there is an 

initial rise in oxygen and glucose delivery to the neural regions that are activated, with glucose 

metabolism and cerebral blood flow increasing more robustly than oxygen metabolism 

(Bogusławska, Romanowski et al. 1999). Because of this, it is likely that non-oxidative, rather 

than oxidative, glycolysis largely supports physiological increases in neural activity (Fox and 

Raichle 1986, Fox, Raichle et al. 1988, Bogusławska, Romanowski et al. 1999). When cerebral 

blood flow greatly increases and oxygen metabolism only minimally increases, this uncoupling 
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results in a significant decrease in the oxygen extraction fraction during neural activation 

(Bogusławska, Romanowski et al. 1999). This decrease in the oxygen extraction fraction during 

local metabolism results in altered concentrations of oxyhemoglobin and deoxyhemoglobin in 

the neural region that is being activated (Bogusławska, Romanowski et al. 1999). This is the 

underlying principle of the blood-oxygen-level dependent (BOLD) effect (Bogusławska, 

Romanowski et al. 1999). As neural activity continues, the elevation of cerebral blood flow and 

glucose consumption persists, and oxidative metabolism progressively upregulates, causing 

regional cerebral blood oxygen levels to return to baseline (Bogusławska, Romanowski et al. 

1999). Once neural activity ceases, there is a rapid normalization of cerebral blood flow with 

persisting elevated oxygen consumption, resulting in a transient oxygenation undershoot that 

occurs before returning to baseline (Frahm, Kleinschmidt et al. 1996, Bogusławska, 

Romanowski et al. 1999). 

While studies have shown that the metabolic demands of neural activity do not regulate 

regional cerebral blood flow, there is nonetheless a tight association between neural activity and 

cerebral blood flow (Bogusławska, Romanowski et al. 1999). There are several mediators that 

have been identified that contribute to this association (Bogusławska, Romanowski et al. 1999). 

Neural activation results in increases in synaptic transmission and dendritic propagation of 

electrical impulses which, in turn, induce local increases in concentrations of mediators such as 

potassium, adenosine, nitric acid, and vasoactive neurotransmitters (Bogusławska, Romanowski 

et al. 1999). This then results in a cascade of changes in regional blood flow response during 

neural activation (Bogusławska, Romanowski et al. 1999). 

The origin of the fMRI signal change is based on the relative change in concentrations of 

oxyhemoglobin and deoxyhemoglobin within capillary and small venule beds during task 
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activation (Bogusławska, Romanowski et al. 1999). Oxyhemoglobin does not have any free 

electrons and is diamagnetic, while deoxyhemoglobin has four unpaired electrons and is 

paramagnetic (Bogusławska, Romanowski et al. 1999). The free electrons of deoxyhemoglobin 

cause a local magnetic field distortion (Bogusławska, Romanowski et al. 1999). This results in a 

shortening effect of T2 (i.e. the transverse relaxation time that determines the rate at which 

excited protons either reach equilibrium or go out of phase with each other), but not a shortening 

effect of T1 (i.e. the longitudinal relaxation time that determines the rate at which excited 

protons return to equilibrium) (Bogusławska, Romanowski et al. 1999). During task activation, 

there is a relative decrease in deoxyhemoglobin within the capillary and venous beds that results 

in an increase in BOLD signal (Bogusławska, Romanowski et al. 1999). This BOLD signal also 

demonstrates an approximate 5-8 second delay of the hemodynamic response to task activation 

(Bogusławska, Romanowski et al. 1999). Overall, this method allows for an image spatial 

resolution on the order of several millimeters and a temporal resolution of several seconds 

(Matthews and Jezzard 2004). 

1.4.1.2 Functional Connectivity (FC) Analyses 

Using fMRI, we are also able to study task-related regional brain responses and task-dependent 

connectivity (McLaren, Ries et al. 2012). Functional connectivity (FC) is a statistical relationship 

that shows correlations among measurements of neuronal activity in different regions that are 

associated across time (Friston 2011). This method is based on the premise that strongly 

correlated patterns of neural activity among brain regions may be interpreted as evidence for 

inter-regional communication, likely due to reciprocal excitatory neurotransmission, and gives us 

insight into neural networks (Tononi, Edelman et al. 1998, Bressler and Kelso 2001, Fingelkurts, 

Fingelkurts et al. 2005). It is quantified with metrics such as correlation, covariance, and mutual 
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information between the time series of different neural regions (Hutchison, Womelsdorf et al. 

2013). FC data may be acquired either during rest or during a task (Stevens 2016). A common 

way of performing FC analyses is to choose a seed brain region and use cross-correlation 

techniques to determine the association of this region with the time courses of other target 

regions (Stevens 2016). 

One of the most popular types of FC analyses is known as a psychophysiological 

interactions (PPI) analysis (McLaren, Ries et al. 2012). PPI methods allow for the study of how 

brain regions interact in a task-dependent manner (Dodel, Golestani et al. 2005, Schmitz and 

Johnson 2006, Kim and Horwitz 2008, Minnebusch, Suchan et al. 2009, Chee, Tan et al. 2010, 

Snijders, Petersson et al. 2010). They provide information about functional integration of the 

brain and allow us to elucidate the psychological or behavioral significance of these integrations 

(Friston, Buechel et al. 1997, McLaren, Ries et al. 2012). The goal of PPI is to determine which 

target brain regions, or voxels, fluctuate in the same way as a given seed region in a specific 

context, such as during a behavioral task (O’Reilly, Woolrich et al. 2012). In doing so, PPI can 

identify regions whose activity depends on an interaction between a given task (i.e. 

psychological factors) and the time course of specific regions of interest (i.e. physiological 

factors) (O’Reilly, Woolrich et al. 2012). If an effect is observed, reflected by a task-specific 

increase in the relationship between brain regions, then this effect would suggest that the BOLD 

activity in these regions fluctuate similarly in response to a given task (O’Reilly, Woolrich et al. 

2012). 

 In standard PPI implementation, a psychophysiological term is formed by the interaction 

of neural activity and a difference vector of two tasks (Friston, Buechel et al. 1997, Gitelman, 

Penny et al. 2003, McLaren, Ries et al. 2012). The goal of PPI methods is to infer condition-
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specific functional integration by identifying regions that differ in connectivity by context or 

condition in fMRI studies that use block designs (Friston, Buechel et al. 1997, McLaren, Ries et 

al. 2012). There are several limitations to standard PPI methods, however. Such limitations 

include the inability to identify regional effects that are related to similarities between 

psychological contrasts, as well as the inability to span the space of all conditions, limiting 

standard PPI approaches to experiments with no more than two conditions (McLaren, Ries et al. 

2012). This latter limitation is due to the fact that standard PPI methods assume that regional 

connectivity across conditions varies symmetrically around 0, which would affect the 

interpretation of analyses using more than two conditions (McLaren, Ries et al. 2012). 

A generalized form of PPI (gPPI) has been developed to address several limitations of 

this standard approach (McLaren, Ries et al. 2008, Higo, Mars et al. 2011). In this approach, 

analyses begin with the identification of ON times for each condition which are then separately 

convolved with the canonical hemodynamic response function (McLaren, Ries et al. 2012). This 

forms a set of task, or psychological, regressors to allow for the correlation of neural signals and 

experimental conditions (McLaren, Ries et al. 2012). Next, BOLD signals are extracted from 

regions of interest (ROIs), and any effects of noise are removed using motion regressors 

(McLaren, Ries et al. 2012). This adjusted signal is then deconvolved in order to obtain an 

estimate of neural activity (Gitelman, Penny et al. 2003, McLaren, Ries et al. 2012). Finally, the 

estimated neural activity is multiplied by the condition ON times for each condition, separately, 

and then convolved with the hemodynamic response function (McLaren, Ries et al. 2012). 

There are several advantages to using gPPI over standard PPI approaches (McLaren, Ries 

et al. 2012). For one, gPPI is expandable to an infinite number of conditions, as long as there are 

enough trials and time points (McLaren, Ries et al. 2012). It is important to note, however, that a 
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greater number of conditions require a greater number of regressors in the model, causing the 

accuracy of the estimates to decrease (McLaren, Ries et al. 2012). Second, gPPI allows for the 

investigation of how two neural regions interact and affect a third region (McLaren, Ries et al. 

2012). Third, gPPI has been shown to reduce both false positives and false negatives, particularly 

for experiments that involve more than two conditions (McLaren, Ries et al. 2012). Altogether, 

gPPI is a well-validated method that enables the investigation of the brain’s functional 

integration and its psychological or behavioral significance (McLaren, Ries et al. 2012). It was 

thus the method used in the FC analyses laid out in this dissertation (Chapters 3-4). 

1.4.2 Diffusion Tensor Imaging (DTI) 

DTI is a noninvasive neuroimaging technique that is used to characterize microstructural 

properties of soft tissue (Jones and Leemans 2011). It uses the diffusion of water to investigate 

subtle changes in white matter microstructural organization (Versace, Almeida et al. 2008). It 

adds diffusion-encoding gradients to standard magnetic resonance pulse sequences to sensitize 

MRI signals to the diffusion of water molecules (Stejskal and Tanner 1965). The anisotropic 

diffusion of water molecules along the dominant fiber orientation of white matter provides 

insights into its microstructural organization (Moseley, Cohen et al. 1990, Jones and Leemans 

2011). Fiber orientation can be determined from the direction of the diffusion-weighted signal 

with the greatest attenuation which can then be used to reconstruct white matter trajectories 

(Conturo, Lori et al. 1999, Jones, Simmons et al. 1999, Mori, Crain et al. 1999, Basser, Pajevic et 

al. 2000, Parker, Haroon et al. 2003). 

Several measures of diffusion can aid in the interpretation of white matter tract (WMT) 

structure. One of the most commonly used measures is fractional anisotropy (FA), which is an 
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index ratio of diffusional anisotropy in longitudinal versus oblique directions (Versace, Almeida 

et al. 2008, Huisman 2010). Greater FA has been associated with greater fiber myelination, a 

greater number of myelinated fibers, and greater longitudinal directional alignment of fibers 

versus oblique alignment (Versace, Almeida et al. 2008, Huisman 2010). Conversely, lower FA 

may reflect local edema, the presence of cerebrospinal fluid, compromised myelin structure, 

changes in axonal structure, or altered spacing of fibers (Arfanakis, Haughton et al. 2002, 

Beaulieu 2002, Mukherjee, Miller et al. 2002, Thomalla, Glauche et al. 2004, Concha, Beaulieu 

et al. 2005). A second measure is known as longitudinal or axial diffusivity (AD), which is a 

measure of water diffusion along the principal direction that has been associated with a greater 

number of longitudinally aligned fibers or greater axonal diameters (Versace, Almeida et al. 

2008). A third measure is known as radial diffusivity (RD), which is a measure of water 

diffusion along oblique directions that has been associated with abnormal myelination, a greater 

number of obliquely oriented fibers, and local inflammation (Song, Yoshino et al. 2005). 

Another metric that can be used to assess WMT structure is length. Greater length may be 

interpreted as an attempt to enhance interhemispheric connectivity to better achieve functional 

integration (Kumar, Sundaram et al. 2009, Hong, Ke et al. 2011). On the other hand, greater 

length has also been associated with structural reductions in fiber diameter, myelin, or numbers 

of fibers, all of which may contribute to lower fiber collinearity (Lewis, Theilmann et al. 2013). 

Finally, a fifth measure that can be used in the study of white matter is tract volume, which may 

reflect fiber density (Brecheisen, Vilanova et al. 2009). 

DTI is one of the most commonly used methods to examine changes in WMT structure 

due to its abilities to allow for robust estimation of parameters and be sensitive to microstructural 

changes while being time efficient and relatively simple to implement (Pierpaoli, Jezzard et al. 
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1996, Scholz, Klein et al. 2009, Fields 2010, Zatorre, Fields et al. 2012, Beaulieu 2014). There 

are other types of diffusion imaging techniques in addition to DTI, however. For example, 

diffusion spectrum imaging (DSI) and Q-ball imaging (QBI) use probability density functions 

instead of single tensors, allowing them to describe the diffusion process in multiple direction at 

each voxel (Soares, Marques et al. 2013). These techniques require longer acquisition times, 

however, as well as more encoding directions (Tournier, Mori et al. 2011). Diffusion kurtosis 

imaging (DKI) attempts to address some limitations of DTI, such as its reduced ability to resolve 

intra-voxel fiber crossing, by providing additional measures of tissue heterogeneity and resolving 

multiple tracts within each voxel (Henriques, Correia et al. 2015). Similar to DSI and QBI, DKI 

also has relatively long image acquisition times, and it has a more complex model whose 

parameters are still unclear (Steven, Zhuo et al. 2014). Another technique, known as neurite 

orientation dispersion and density imaging (NODDI), is a robust and time-efficient method that 

estimates parameters that represent axon density and dispersion (Zhang, Schneider et al. 2012). 

Some limitations of NODDI include its inability to formally represent perpendicularly crossing 

fibers (Jeurissen, Leemans et al. 2013) and the fact that pathological neural processes and/or non-

healthy appearing WMTs may undermine its underlying assumptions (Pasternak, Sochen et al. 

2009, Jelescu, Veraart et al. 2015, Guglielmetti, Veraart et al. 2016). DTI methods were used to 

examine WMT structure in this dissertation (Chapter 5).  

1.4.3 White Matter Tract – Neural Activity Relationships 

Given that the structural integrity of white matter is key for ensuring the intact functioning of a 

given neural circuitry, studying relationships between WMT structure and activity may provide a 

more comprehensive understanding of BD. Combining DTI and fMRI techniques has become 
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increasingly important in fields of cognitive and clinical neuroscience (Zhu, Zhang et al. 2014). 

Such studies have examined relationships between WMT structure and either BOLD activity 

(Conturo, Lori et al. 1999, Werring, Clark et al. 1999, Olesen, Nagy et al. 2003, Toosy, 

Ciccarelli et al. 2004, Baird, Colvin et al. 2005, Madden, Spaniol et al. 2007, Ystad, Hodneland 

et al. 2011, O'Donnell, Rigolo et al. 2012) or FC (Koch, Norris et al. 2002, Guye, Parker et al. 

2003, van den Heuvel, Mandl et al. 2008, Greicius, Supekar et al. 2009, Supekar, Uddin et al. 

2010, Calamante, Masterton et al. 2013). These studies have demonstrated that benefits to 

combining these methods include the facilitation of studies of structural connectivity, the 

examination of relationships between neural structure and function, and the guidance of 

neurosurgical interventions (Rykhlevskaia, Gratton et al. 2008). Thus, studying structure-

function relationships has the potential to contribute to our understanding of mechanisms 

underlying multiple pathophysiological conditions, including psychiatric disorders. 

There are three main ways in which such combinations are done (Zhu, Zhang et al. 2014). 

The first is fMRI-assisted DTI, including fMRI guided fiber tracking or filtering and fMRI-based 

validation (Zhu, Zhang et al. 2014). The second is DTI-assisted fMRI, including functional 

analyses based on DTI-derived networks and the inference of functional roles from structural 

connectivity (Zhu, Zhang et al. 2014). The third is the joint fusion of DTI and fMRI, including 

joint analyses and joint modeling (Zhu, Zhang et al. 2014). In joint DTI/fMRI fusion, both 

modalities are considered to have equally important roles (Zhu, Zhang et al. 2014). In joint 

analysis, specifically, the results of analyzing the different modalities are derived, separately, and 

then combined when performing statistical analyses (Zhu, Zhang et al. 2014). Such statistical 

analyses often include analysis of variance (ANOVA), Pearson correlation, linear regression, 

and/or principal component analyses to examine the interactions between the two techniques 
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(Zhu, Zhang et al. 2014). This latter method was used in the WMT-activity analyses presented in 

this dissertation (Chapter 5). 

An important topic related to the study of WMT-activity relationships, as well as to 

individual structural and functional analyses, is that of native space. Performing tractographic 

analyses in each individual’s own native space allows for the reconstruction of tracts connecting 

specific cortical and subcortical regions using individually-based neuroanatomy (Adluru, Zhang 

et al. 2013). This is in contrast to other methods that use standard group-level analyses, such as 

voxel-based analyses and tract-based spatial statistics (Adluru, Zhang et al. 2013). Voxel-based 

analyses are limited in power due to the need to address multiple comparisons, and the focal 

effects of tract-based spatial statistics may be obscured due to the fact that regional mapping of 

measures is based upon the local maximum FA (Adluru, Zhang et al. 2013). Thus, performing 

tractographic analyses in native space better accounts for anatomical inter-subject variability, 

which provides greater specificity in the study of neural structure and function, as well as the 

relationships between them (Adluru, Zhang et al. 2013). Additionally, performing fMRI analyses 

in native space particularly helps identify relationships between structural and functional 

connectivity, whereas normalization to MNI space and smoothing might reduce this ability 

(Razlighi, Habeck et al. 2014). All analyses throughout this dissertation were thus performed in 

native space (Chapters 3-5). 

1.5 GOALS OF DISSERTATION RESEARCH 

While much is known about BD risk, there are still several gaps in knowledge that need to be 

addressed. For one, studies comparing OBP to both OCP and OHP in emotion processing, 
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emotion regulation, and reward processing neural circuitries are limited. More studies are needed 

to either confirm or add to this body of knowledge. Second, it is still unclear whether these 

neural measures are markers of risk for the future development of BD. Examination of 

longitudinal follow-up of both neural and symptom measures in OBP compared with OCP and 

OHP is needed to help determine whether these neural measures are markers of specific risk for 

BD. Third, while structural and functional abnormalities in these circuitries have been identified, 

separately, little is known about the relationships between them and their implications in BD 

risk. Exploration of WMT-activity relationships may provide greater insight into the mechanisms 

that underlie BD risk in at-risk youth. 

Given the current literature regarding BD risk, as well as the gaps in knowledge that have 

yet to be understood, we sought to identify abnormalities in neural measures and 

symptomatology that distinguish youth at risk for BD from youth at risk for other psychiatric 

disorders and healthy control groups. In this dissertation, we describe a series of studies that 

employed both cross-sectional and longitudinal analyses to examine activity, FC, and symptom 

measures in emotion processing and emotion regulation neural circuitries (Chapter 3), as well as 

in reward processing neural circuitry (Chapter 4), in OBP compared with OCP and OHP. We 

also explored relationships between WMT structure and activity in emotion processing neural 

circuitry, as well as symptomatology, in OBP compared with control groups (Chapter 5). Taken 

together, our results identify several neural and symptomatic abnormalities that uniquely 

distinguish youth at risk for BD and that have the potential to be objective neural markers of BD 

risk. These findings contribute to our understanding of the pathophysiology that underlies BD 

risk and have significant implications for the improved diagnosis and treatment of BD in at-risk 

youth. 
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2.0  GENERAL METHODS 

This chapter provides descriptions of the methods that are relevant to all of the studies that are 

subsequently described in this dissertation. 

2.1 PARTICIPANTS 

2.1.1 Recruitment 

Most OBP and OCP, as well as some OHP, were recruited from the Bipolar Offspring Study 

(BIOS) (Birmaher, Axelson et al. 2009). BIOS is a longitudinal study that aims to identify 

objective neural markers of BD risk by comparing emotion processing, emotion regulation, and 

reward neural circuitries in OBP and OCP. Specifically, BIOS follows the clinical, psychosocial, 

neurocognitive, and neural trajectories of at-risk youth from childhood into adulthood and 

examines prodromal symptoms of BD in these youth. The ultimate goal of BIOS is to use these 

findings to improve our understanding of prodromal symptoms associated with BD risk and 

eventually lead to enhanced early identification and preventative treatment for youth at risk for 

BD. Most OHP, as well as some OBP and OCP, were also recruited from the healthy control 

group of the Longitudinal Assessment of Manic Symptoms (LAMS) study (Findling, 

Youngstrom et al. 2010, Horwitz, Demeter et al. 2010). LAMS is a parallel study to BIOS which 
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examines neurocognitive and neural circuitry functioning in youth with behavioral and emotional 

dysregulation. The goals of LAMS are to document the rate of elevated symptoms of mania in 

children, describe the longitudinal course and diagnostic evolution of elevated symptoms of 

mania from childhood into adolescence, and identify childhood risk factors that may predict poor 

functional outcomes in children and adolescents with elevated symptoms of mania. 

2.1.2 Inclusion and Exclusion Criteria 

OBP had at least one parent with BD; OCP had at least one parent with a non-BD psychiatric 

disorder (i.e. MDD, ADHD, and/or an Anxiety Disorder); and OHP had parents with no 

psychiatric disorders. All offspring were between the ages of 8 and 17 years in order to identify 

youth at familial risk for BD in whom symptoms that often predate BD onset can emerge 

(Axelson, Birmaher et al. 2003). Exclusion criteria included: a personal history of a serious 

medical illness, head injury, or neurological disorder; an IQ < 70, assessed with Wechsler 

Abbreviate Scale of Intelligence (Wechsler 1999); a personal diagnosis of BD, as we were 

interested in identifying neural markers of BD risk prior to illness onset; a personal diagnosis of 

autism or schizophrenia, as these disorders have wide spectrums of symptoms, and having such 

diagnoses would make it difficult to understand whether or not emerging symptoms pertain to 

the familial load of these disorders rather than BD; a contraindication to magnetic resonance 

imaging (MRI), including pregnancy or having metal in the body; substance use on the day of 

the scan or a substance abuse disorder in the last three months; and emotional face n-back task 

accuracy < 70%. For OHP, additional exclusion criteria included a personal history of a DSM-IV 

disorder. Before participation, parents and guardians provided written informed consent, and 

youth provided written informed assent. Participants received monetary compensation. 
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2.1.3 Clinical Assessments Used to Assess Symptomatology 

Several clinical assessments were used in the studies laid out in this dissertation. Psychiatric 

diagnoses were confirmed by a licensed psychiatrist or psychologist prior to scanning. The 

Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children (K-

SADS)–Present and Lifetime Version is a well-validated and accepted measure that was used to 

confirm psychiatric diagnoses in offspring (Kaufman, Birmaher et al. 1997). To confirm 

psychiatric diagnoses in parents, the well-validated and accepted Structural Clinical Interview for 

DSM-IV (SCID) (First 1996) and Family History Screen (Weissman, Wickramaratne et al. 2000) 

were used in BIOS and LAMS, respectively. SES was assessed by the well-validated and 

accepted Hollingshead Four Factor Index of Social Status (Hollingshead 1975). 

Both the Mood and Feelings Questionnaire (MFQ) (Sund, Larsson et al. 2001) and the K-

SADS Depression Rating Scale (KDRS) (Kaufman, Birmaher et al. 1997) are well-validated and 

accepted measures used to assess symptoms of depression. The K-SADS Mania Rating Scale 

(KMRS) is a well-validated and accepted measure used to assess symptoms of mania (Axelson, 

Birmaher et al. 2003). The Children’s Affective Lability Scale (CALS) is a well-validated and 

accepted measure used to assess symptoms of affective lability (Gerson, Gerring et al. 1996). 

The Screen for Child Anxiety Related Disorders (SCARED) is a well-validated and accepted 

measure used to asses symptoms of anxiety (Birmaher, Khetarpal et al. 1997, Birmaher, Brent et 

al. 1999). Both parent-reported (-P) and child-reported (-C) versions of MFQ, CALS, and 

SCARED were administered on the day of the scan. Summary assessments, which are based on 

both parent-reported and child-reported information, of KDRS and KMRS were administered, on 

average, two months after the scan. 
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2.1.4 Power Calculations 

Power calculations are in line with those in BIOS. For standard regression analyses, with n = 28-

35 youth per group, we have 75-84% power to detect a significant main effect of group on 

neuroimaging dependent variables (medium effect size f = 0.25, up to 10 covariates per model) 

(Cohen 1988). For multivariate multiple regression analyses that involve variable selection, such 

as elastic net regression analyses, power calculations are impractical (Cohen 2003). 

2.2 NEUROIMAGING DATA ACQUISITION 

2.2.1 Scanners 

Two scanners were used throughout the following studies. Images were acquired either using a 

Siemens Magnetom TrimTrio 3T MRI system with a Siemens 32 radiofrequency channel 

receiver coil or with a Siemens Magnetom Prisma system with a 64-channel head coil. All 

participants were scanned at least one time. Because BIOS is an ongoing longitudinal study, 

several participants were also scanned for a second time at the time that these studies were 

conducted. Information regarding which participants were scanned on each scanner and duration 

between scans is detailed in the studies, below. Scanner was a covariate in analyses in which 

participants were scanned using different scanners.  

Axial 3D magnetization prepared rapid gradient echo (MPRAGE) sequences acquired 

T1-weighted volumetric anatomical images covering the whole brain. A reverse interleaved 

gradient echo planar imaging (EPI) sequence acquired T2-weighted BOLD images covering the 
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whole cerebrum and most of the cerebellum. Diffusion-weighted images were acquired using a 

single-shot spin-echo planar imaging sequence, parallel to the Anterior-Posterior Commissure 

line using 61 optimized non-collinear diffusion gradient directions. Sixty-one non-coplanar b = 

1000 sec / mm2 (diffusion-weighting b value) images were acquired, along with seven b = 0 (no-

diffusion weighting) images. Scanner parameters can be found in Table 1. 

 

 
Table 1: Scanner Parameters 

 

 

2.2.2 fMRI Tasks 

Every participant performed a series of fMRI tasks that were set in the following order: (1) 

emotional face processing task, (2) reward task, (3) DTI acquisition, (4) emotional face n-back 

task, (5) resting state. In each study, we examined performance on one or more of these tasks. 

We will now provide descriptions of the emotional face processing, emotional face n-back, and 
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reward tasks. The specific task contrasts used in each study are detailed in the study chapters, 

below. 

2.2.2.1 Emotional Face Processing Task 

The emotional face processing task, known as the dynamic faces task (DFT), is a 12.5-min long 

fMRI task (Figure 7) (Phillips, Ladouceur et al. 2008, Almeida, Kronhaus et al. 2011, Perlman, 

Almeida et al. 2012). In emotional trials, stimuli comprise faces from the NimStim set for 

positive (i.e. happy) and negative (i.e. angry, fearful, and sad) emotions (Tottenham, Tanaka et 

al. 2009). For each trial, one face is collated into a one-sec long movie, morphing in 5% 

increments from neutral (0% emotion) to 100% emotion. In control trials, movies comprise a 

simple shape (a dark oval) superimposed onto a light-grey oval with similar structural 

characteristics to the faces, which subsequently morphs into a larger shape, approximating the 

movement of the morphed faces. There are three blocks for each of the four emotional conditions 

(i.e. happy, angry, fearful, and sad), with twelve stimuli per block, and six control blocks with 

six stimuli per block. Emotional and control blocks are presented in a pseudorandomized order 

so that no two blocks of any condition are presented sequentially. Participants are asked to use 

one of three fingers to press a button indicating the color of a semi-transparent foreground color 

flash (i.e. orange, blue, or yellow) that appears during the mid-200–650 msec of the one-sec 

presentation of the dynamically-changing face. Emotional faces are task-irrelevant and, thus, 

processed implicitly (Tottenham, Tanaka et al. 2009). 
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Figure 7: Emotional Face Processing Task – Example Happy and Shape Trials 

 

2.2.2.2 Emotional Face N-Back Task 

The emotional face n-back task is a modified version of an n-back working memory task (Figure 

8) (Ladouceur, Silk et al. 2009). In this task, participants are asked to respond to a pre-specified 

letter out of a pseudorandom sequence of letters visually presented on a computer screen. It 

includes a 0-back no-memory load condition (EF-0-BACK; e.g., press the button to a specific 

letter (ex. “M”)) and a 2-back high-memory load condition (EF-2-BACK; e.g., press the button 

whenever the current letter is identical to the letter presented two trails back (ex. “G-N-G”)). The 

letters are flanked by fearful, happy, or neutral face distracters (Tottenham, Tanaka et al. 2009) 

with a no-face condition controlling for the interference related to presenting a face distractor. 

There are eight stimulus blocks: two memory-load conditions (EF-0-BACK and EF-2-BACK), 

each with one of four face distractor conditions (fearful, happy, neutral, or no face). The task 
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comprises three 7-min 4-sec runs for a total of 24 blocks presented in a pseudorandomized order. 

Each block includes twelve 500 msec trials that comprise a letter flanked with either identical 

pictures of an actor’s facial expression or no pictures. Jittered inter-trial intervals (mean duration 

= 3500 msec) comprise a fixation cross (flanked with faces). Participants are asked to respond as 

quickly as possible with their index fingers to the target letter. Brief instructions are presented on 

the screen for 4000 msec at the beginning of each block. Detailed instructions are provided 

during task practice prior to the scanning session. 

 

 

 

Figure 8: Emotional Face N-Back Task – Example 2-Back Happy Trial 

 

2.2.2.3 Reward Processing Task 

The reward processing task is a well-validated card guessing task with both reward and loss 

receipt components (Figure 9) (Forbes, Hariri et al. 2009, Bebko, Bertocci et al. 2014). This task 

comprises guessing and control trials. For guessing trials, participants view instructions to guess 

a number (2000 msec) and then press a button to guess whether the value of the card will be 

higher or lower than “5” (3000 msec). This is followed by the actual value of the card (between 

1-9; 500 msec), outcome feedback (Reward: green upward-facing arrow, Loss: red downward-

facing arrow; 500 msec), and a fixation cross (3000 msec). For control trials, participants press a 
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button to the letter “X” (3000 msec), followed by an asterisk (500 msec), a yellow circle (500 

msec), and a fixation cross (3000 msec). The entire task lasts approximately 6 minutes. The task 

is a block design with 3 reward (80% reward, 20% loss trials), 3 loss (80% loss, 20% reward 

trials), and 3 control (no change in reward/loss) blocks. Each guessing block consists of 5 trials 

presented in an oddball format (Reward: reward, reward, reward, loss, reward; Loss: loss, loss, 

reward, loss, loss); each control block consists of 6 control trials. Participants are misled into 

believing that task performance determined outcome. 

 

 

 

Figure 9: Reward Processing Task – Example Loss Trial 

2.3 NEUROIMAGING DATA ANALYSES 

Functional images were preprocessed using realignment and unwarping steps in Statistical 

Parametric Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm/doc/). First-level fixed effect 

models were created for activity and/or FC with trials modelled as epochs with design matrix 

regressors (Ashburner and Friston 2005), including 6 directions of motion artifact regressors 

(Satterthwaite, Elliott et al. 2013). Participants with excessive movement of translation > 4 mm 

were excluded, followed by despiking for all remaining participants 

http://www.fil.ion.ucl.ac.uk/spm/doc/
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(http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dDespike.html). For each participant, the 

Functional Magnetic Resonance Imaging of the Brain (FMRIB) Linear Image Registration Tool 

(FLIRT) in FMRIB Software Library (FSL) was used to coregister despiked functional images 

into structural space using each participant’s own segmentation and cortical parcellation volume 

aparc+aseg.mgz (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). 

ROIs were created for each participant, individually, using each participant’s own 

aparc+aseg.mgz file using the Center for Morphometric Analysis standard labels in FreeSurfer 

(https://surfer.nmr.mgh.harvard.edu/). See Table 2 for information from the FreeSurferColorLUT 

text file about each ROI used throughout this dissertation. Unless otherwise stated, the left vlPFC 

comprised the left lateral orbitofrontal cortex, left pars opercularis, left pars orbitalis, and left 

pars triangularis, together, and the right vlPFC comprised the right lateral orbitofrontal cortex, 

right pars opercularis, right pars orbitalis, and right pars triangularis, together. ROI masks were 

resampled into 2x2x2 mm3 fMRI voxel dimensions. The fslmeants command in FSL was used to 

extract raw BOLD and/or FC signals (threshold: p = 1) in each subject’s native space. Signals 

were extracted from each ROI for each contrast for each task for each subject. The specific ROIs 

used in each study, including seed and target regions for each gPPI analysis, are described in the 

studies, below. 

 

 

http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dDespike.html
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://surfer.nmr.mgh.harvard.edu/
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Table 2: Region of Interest Information 

 

2.4 ELASTIC NET REGRESSION ANALYSES 

Elastic net regression analyses with k = 10-fold cross-validation and α = 0.5 were used for data 

selection and reduction in each study using GLMNET in R (Friedman 2014). Elastic net is a 

statistical technique that has been used in genetic, clinical, and fMRI studies (Tibshirani 1996, 

Kohannim, Hibar et al. 2012, Kohannim, Hibar et al. 2012, Christensen, Zoetmulder et al. 2014, 

Friedman 2014, Luo, McShan et al. 2015, Wang, Xu et al. 2015, Yan, Tsurumi et al. 2015, 

Zemmour, Bertucci et al. 2015, Bertocci, Bebko et al. 2016, Bertocci, Bebko et al. 2017, 

Bertocci, Bebko et al. 2017). This technique allows for the testing of a large number of potential 

predictor variables, relative to the number of participants, while minimizing model error and the 
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risk of overfitting (Bertocci, Bebko et al. 2016). Elastic net is a variant of the modified least-

squares Least Absolute Shrinkage and Selection Operator (LASSO) regression which penalizes 

complex models with a regularization parameter (λ) (Tibshirani 1996). Compared to LASSO, 

which uses a penalty term of α = 1, elastic net uses an adjusted penalty term of α = 0.5 to allow 

for a greater extent of correlation among predictor variables, rendering these analyses more 

sensitive to correlated variables (Zou and Hastie 2005, Bertocci, Bebko et al. 2017). Elastic net 

method shrinks coefficients toward zero and eliminates unimportant terms entirely, thereby 

minimizing prediction error, reducing the chance of overfitting, and enforcing recommended 

sparsity in the solution (Tibshirani 1996, Friedman, Hastie et al. 2010, Friedman 2014).  

GLMNET uses an algorithm that involves cyclical coordinate descent and regularization 

(Wu and Lange 2008). In other words, this method optimizes each parameter separately, while 

holding all other parameters fixed until the coefficients stabilize, and then adds constraints to the 

problem in order to avoid overfitting (Wu and Lange 2008, Bertocci, Bebko et al. 2016). Further, 

GLMNET uses cross-validation to identify the optimal penalty term (λ) that minimizes mean 

cross-validated model error for the model while guarding against Type III errors (i.e. testing 

hypotheses suggested by the data) (Wu and Lange 2008, Bertocci, Bebko et al. 2016). A test 

statistic or p-value for elastic net that has a simple and exact asymptotic null distribution is still 

under development (Lockhart, Taylor et al. 2014). Thus, throughout our studies, significance was 

determined in all other statistical analyses. Please refer to Chapter 2.1.4 for the power 

computations for more conventional regression analyses. 

In each elastic net regression used throughout the studies, below, demographic measures 

were included as predictor variables: age, sex, intelligence quotient (IQ), socioeconomic status 

(SES), handedness, and highest parental education. Categorical outcomes (i.e. sex, SES, 
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handedness, and highest parental education) were entered into the model as dummy-coded 

variables. For example, for a variable with 2 possible outcomes (e.g. sex: male or female), this 

variable would be entered into the model as a single variable with one possible outcome coded 

with the value of 1 and the other possible outcome coded with the value of 0. Longitudinal 

follow-up was not examined using elastic net regression analyses and was, instead, examined in 

exploratory analyses. 
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3.0  ACTIVITY AND FUNCTIONAL CONNECTIVITY IN EMOTION PROCESSING 

AND REGULATION NEURAL CIRCUITRIES IN OFFSPRING AT RISK FOR BD 

This chapter is a modified version of the following manuscript that is currently in press: 

Acuff HE, Versace A, Bertocci MA, Ladouceur CD, Hanford LC, Manelis A, Monk K, Bonar L, 

McCaffrey A, Goldstein BI, Goldstein TR, Sakolsky D, Axelson D, Birmaher B, Phillips ML. 

Activity and functional connectivity in emotion processing and regulation neural circuitries in 

offspring at risk for bipolar disorder. JAMA Psychiatry. (In Press) 

3.1 INTRODUCTION 

Emotion processing and emotion regulation neural circuitries are very important to the study of 

BD risk. More work is needed, however, to determine whether abnormalities in these circuitries 

may be used to identify youth at familial risk for BD who are likely to develop the disorder in the 

future. Two previous BIOS studies examined activity and FC using emotion processing and 

regulation tasks, separately (Ladouceur, Diwadkar et al. 2013, Manelis, Ladouceur et al. 2015). 

No studies, however, have used both cross-sectional and longitudinal analyses to examine how 

measures of activity and FC in emotion processing and emotion regulation neural circuitries 

distinguish OBP from control groups. 
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 Specific functional abnormalities in these circuitries in adults and youth with and at risk 

for BD have been discussed previously (Chapter 1.3.1). Key findings in youth at risk for BD 

during emotion processing include greater amygdala activity to all emotional faces (Manelis, 

Ladouceur et al. 2015), lower ACC activity during facial emotion processing (Tseng, Bones et al. 

2015, Chan, Sussmann et al. 2016), lower dlPFC activity during facial emotion processing 

(Tseng, Bones et al. 2015), lower right amygdala-ACC FC to all emotional faces (Manelis, 

Ladouceur et al. 2015), and greater right amygdala-left vlPFC FC to happy faces (Manelis, 

Ladouceur et al. 2015). Findings during emotion regulation include greater vlPFC activity when 

regulating attention away from happy faces (Ladouceur, Diwadkar et al. 2013), lower amygdala-

vlPFC FC when regulating attention away from fearful faces (Ladouceur, Diwadkar et al. 2013), 

and lower dlPFC-vlPFC FC during emotion regulation (Ladouceur, Diwadkar et al. 2013). More 

studies, and particularly ones that additionally examine changes in neural measures over follow-

up, are needed to identify abnormalities in emotion processing and regulation neural circuitries 

that are specific to OBP. 

Additionally, relationships between neural measures in emotion processing and 

regulation neural circuitries and symptoms associated with BD risk (i.e. depression, mania, 

affective lability, and anxiety (Hafeman, Merranko et al. 2016)) remain relatively unexamined. 

In emotionally dysregulated youth, worsening affective lability and depression severity were 

associated with greater right amygdala and left vlPFC activity, worsening anxiety with lower 

right amygdala and greater left vlPFC activity, and worsening mania with greater right amygdala 

and lower left vlPFC activity over time (Bertocci, Bebko et al. 2017). In OCP, right amygdala-

ACC FC positively correlated with affective lability, depression, and anxiety severity (Manelis, 

Ladouceur et al. 2015). Such studies have yet to find significant relationships between 
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functioning in emotion processing and regulation neural circuitries and symptom severity in 

OBP, however. Examining these relationships can improve our understanding of BD 

development in youth and may enhance early identification of BD risk in, and guide novel 

interventions for, OBP.  

Given studies showing differences between OBP and both OCP and OHP in emotion 

processing and regulation neural circuitries, and the importance of relating these measures to 

symptoms associated with BD risk both at baseline and over follow-up, we hypothesized that: 

1. Greater amygdala and/or lower PFC activity and abnormal amygdala-PFC FC in emotion 

processing and regulation neural circuitries would distinguish OBP from OCP and OHP. 

2. Magnitudes of these abnormal neural measures would be positively associated with 

elevated depression, mania, affective lability, and/or anxiety severity in OBP compared 

with control groups. 

In exploratory analyses, we examined whether changes in neural measures over follow-

up were significantly associated with changes in symptom severity in all offspring. 

3.2 MATERIALS AND METHODS 

3.2.1 Participants 

Thirty-one OBP (mean (SD) age = 13.87 (2.42), 15 female), twenty-eight OCP (mean (SD) age = 

14.48 (2.01), 10 female), and twenty-one OHP (mean (SD) age = 14.20 (1.48), 10 female) were 

examined in this analysis (Table 3). In this and all future tables and figures, an asterisk indicates 

a p-value less than 0.05. Of the original thirty-seven OBP, forty OCP, and thirty-one OHP that 
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were recruited: three OBP, six OCP, and eight OHP were excluded due to excessive motion 

(translation > 4 mm); two OBP and one OCP were excluded due to missing data; and one OBP, 

five OCP, and two OHP were excluded due to poor emotional face n-back task performance (< 

70% accuracy on any block for either task). Overall emotional face n-back task performance for 

the remaining subjects were as follows: OBP, mean (SD) = 93.67% (0.04%), range = 81.25-

99.48%; OCP, mean (SD) = 95.13% (0.03%), range = 83.85-99.48%; OHP, mean (SD) = 

96.48% (0.03%), range = 86.98-99.48%. Twenty-six OBP, twenty-one OCP, and nineteen OHP 

were also included in a related BIOS paper (Manelis, Ladouceur et al. 2015). 

Twelve OBP had at least one non-BD diagnosis: three had MDD, three had an Anxiety 

Disorder, five had ADHD, one had Oppositional Defiant or Conduct Disorder, and one had an 

Eating Disorder. Fourteen OCP had at least one non-BD diagnosis: three had MDD, five had an 

Anxiety Disorder, eight had ADHD, three had Oppositional Defiant or Conduct Disorder, and 

one had Obsessive Compulsive Disorder. Five OBP and six OCP were taking antidepressant, 

antipsychotic, stimulant, and/or non-stimulant medications for non-BD disorders. Symptom 

assessments included SCARED-P, SCARED-C, CALS-P, CALS-C, MFQ-P, MFQ-C, KDRS, 

and KMRS (Chapter 2.1.3).  
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Table 3: Exp 1. Offspring of Bipolar, Comparison and Healthy Offspring 
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3.2.2 Neuroimaging Data Acquisition and Analyses 

All scan 1 and fifteen scan 2 images (for one OBP and fourteen OHP) were acquired using the 

Siemens Magnetom TrimTrio 3T MRI system, and fifteen scan 2 images (for eight OBP and 

seven OCP) were acquired using a Siemens Magnetom Prisma system (Chapter 2.2.1). 

Participants completed the emotional face processing task (DFT) (Chapter 2.2.2.1) and the 

emotional face n-back task with 0-back (EF-0-BACK) and 2-back (EF-2-BACK) conditions 

(Chapter 2.2.2.2). Neuroimaging data analyses were performed as previously described (Chapter 

2.3). ROIs included the amygdala, cACC, rACC, vlPFC, and dlPFC (Table 2). gPPI analyses 

assessed task-related connectivity (McLaren, Ries et al. 2012). Seed regions included the 

bilateral amygdala. Target regions included, separately: the left and right cACC, left and right 

rACC, left and right vlPFC, and left and right dlPFC. Task stimulus contrasts included, 

separately: happy, angry, fearful, and sad faces versus shapes for DFT; fearful, happy, and 

neutral versus no faces, and fearful and happy versus neutral faces, for EF-0-BACK and EF-2-

BACK; and EF-2-BACK versus EF-0-BACK for fearful, happy, neutral, and no faces. 

3.2.3 Primary Analyses 

A single elastic net regression analysis, including OBP, OCP, and OHP, was used for data 

selection and reduction. This single model contained 2 dummy-coded outcome variables: BD 

risk (OBP versus OCP/OHP) and general psychiatric disorder risk (OBP/OCP versus OHP). The 

number of dummy-coded variables for a given category is equal to one less than the total number 

of possible options (e.g. one variable to code for the two possible options of OBP and 

OCP/OHP). This one model also contained 336 predictor variables. Twelve of these predictor 
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variables were demographic measures: age, sex, IQ, SES, handedness, and highest parental 

education (Table 4).  

 

 
Table 4: Exp 1. Elastic Net Regression Predictor Variables: Demographic 

 

 

 
One hundred eighty of these predictor variables were activity measures in each ROI for 

each contrast, separately (Table 5). 
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Table 5: Exp 1. Elastic Net Regression Predictor Variables: Activity Measures 

 

 

 
One hundred forty-four of these predictor variables were FC measures with a bilateral 

amygdala seed region and target regions in each ROI for each contrast, separately (Table 6). 



 61 

Table 6: Exp 1. Elastic Net Regression Predictor Variables: Functional Connectivity Measures with 

Amygdala Seed 

 

 

 
In this analysis, the resulting model was chosen based on the corrected Akaike 

information criterion (AICc) to address smaller sample sizes and potential overfitting 

(McQuarrie and Tsai 1998, Claeskens and Hjort 2008, Giraud 2014): 

 

In the above equation, k = the number of parameters and n = the number of subjects. Change in 

AICc (ΔAICc) compared the AICc of each model (AICci) with the model with the next greatest 

number of parameters (AICcj), representing the information lost using the ith versus jth model 

(Burnham and Anderson 2004): 
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The model having the most substantial support was the one that had the fewest parameters with a 

ΔAICc < 2 (Burnham and Anderson 2004). 

Post-hoc pseudo r-squared analyses examined the proportion of variance in dependent 

variables explained by the non-zero predictor variables observed with elastic net. ANOVAs and 

post-hoc t-tests examined between-group differences in neuroimaging measures for all non-zero 

predictors and symptom measures. Correlation analyses examined relationships among 

neuroimaging and symptom measures.  

3.2.4 Exploratory Analyses 

Longitudinal follow-up analyses were performed in nine OBP (mean (SD) age = 15.17 (1.89), 3 

female), eleven OCP (mean (SD) age = 16.99 (1.81)), 2 female), and fourteen OHP (mean (SD) 

age = 15.78 (1.39), 5 female) who had completed second scans (mean (SD) inter-scan interval = 

2.24 (1.03) years). One OBP and two OCP were taking medications. In these follow-up subjects, 

correlation and linear regression analyses examined relationships between changes in symptoms 

and changes in neuroimaging measures showing between group differences in the above 

analyses. All analyses were repeated removing medicated youth. Additional analyses included: 

exploring group differences in reaction times; examining relationships between age and 

neuroimaging measures; comparing age to pubertal development measures using the Peterson 

Pubertal Development Scale (Petersen, Crockett et al. 1988); and comparing neuroimaging 

measures in offspring with and without non-BD psychiatric disorders. 
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3.3 RESULTS 

3.3.1 Hypothesis Testing 

Of the initial 336 predictors described in Tables 4-6, above, 12 variables, together, optimized 

model fit (ΔAICc = 1.811, λ = 0.553; Figure 10). Plots A-B represent variable fit for BD risk 

(OBP versus OCP/OHP; Figure 10A) and general psychiatric disorder risk (OBP/OCP versus 

OHP; Figure 10B). Each curve corresponds to an independent variable in the full model prior to 

optimization. Curves indicate the path of each variable coefficient as λ varies. In these figures, 

Lambda.min (λ = 0.553) corresponds to the λ of the selected model with 12 predictor variables. 

Plot C represents the non-zero variable fit after cross-validation (Figure 10C). In this figure, 

Lambda.min corresponds to the λ which minimizes mean squared error, and Lambda.1se 

corresponds to the λ that is one standard error away from the Lambda.min. 
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Figure 10: Exp 1. Elastic Net Plots 
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A pseudo r-squared, calculated containing the 12 non-zero predictors from the model 

versus an intercept-only model, indicated that 51.39% of the variance in group was explained by 

these predictors. All predictors were neuroimaging measures variables (Table 7). 

 

 
Table 7: Exp 1. Between-Group Differences in Neuroimaging Measures 

 

 

 
An ANOVA and post-hoc t-tests, Bonferroni-corrected for three between-group parallel 

tests, examined all twelve neuroimaging measures that were significant non-zero predictors of 

group (Figure 11). Compared with OHP, OBP had lower DFT left dlPFC activity to angry faces 

versus shapes (mean (SD) difference = 0.108 (0.033), p = 0.005; Figure 11A). Compared with 

OCP, OBP had greater EF-2-BACK bilateral amygdala-left cACC FC to fearful (mean (SD) 

difference = 0.493 (0.169), p = 0.014), happy (mean (SD) difference = 0.516 (0.148), p = 0.002), 

and neutral (mean (SD) difference = 0.604 (0.159), p = 0.001) versus no faces (Figure 11B), and 

greater EF-2-BACK right rACC activity to happy versus no faces (mean (SD) difference = 0.744 

(.249), p = 0.011; Figure 11C). Compared with OHP, OCP had lower EF-0-BACK left (mean 
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(SD) difference = 0.802 (0.241), p = 0.004) and right (mean (SD) difference = 0.691 (0.236), p = 

0.014) rACC activity to happy versus neutral faces, and OBP had lower EF-0-BACK right rACC 

activity to happy versus neutral faces (mean (SD) difference = 0.626 (.231), p = 0.025) (Figure 

11D). No significant group differences were found for the remaining measures. 

 

 

 

Figure 11: Exp 1. Group Differences in Neuroimaging Measures 

 

 
ANOVAs examined effects of group on all symptom measures (Table 8). For ANOVAs, 

additional Bonferroni corrections are presented in parentheses. 
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Table 8: Exp 1. Between-Group Differences in Symptom Measures 

 

 

 
Bonferroni corrections for eight parallel tests revealed two significant findings: CALS-P 

(F(2,77) = 6.464, p = 0.003 (0.024, corrected)) and KMRS (F(2,75) = 6.223, p = 0.003 (0.024, 

corrected)). Bonferroni-corrected post-hoc t-tests revealed that OBP had greater CALS-P 

severity than OHP (mean (SD) difference = 6.575 (1.853), p = 0.002), and greater KMRS 

severity than OHP (mean (SD) difference = 1.722 (0.529), p = 0.005) and OCP (mean (SD) 

difference = 1.238 (0.473), p = 0.032) (Figure 12). 
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Figure 12: Exp 1. Group Differences in Symptom Measures 

 

 
Bivariate Spearman’s rank-order correlation analyses examined relationships among all 

seven neuroimaging measures and both symptom measures that showed significant group 

differences, above. Across all subjects, one significant relationship was found: baseline CALS-P 

severity positively correlated with EF-2-BACK right rACC activity to happy faces (ρ = 0.304, p 

= 0.006; Figure 13). This just missed significance using Bonferroni corrections for fourteen tests 

(p < 0.004). 
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Figure 13: Exp 1. Relationships between Symptom and Neuroimaging Measures at Baseline 

 

3.3.2 Exploratory Analyses 

3.3.2.1 Longitudinal Follow-Up Analyses 

Bivariate Pearson’s correlation analyses examined relationships among changes over follow-up 

in all seven neuroimaging and both symptom measures that showed significant group 

differences, above. Across all follow-up subjects, one significant (Bonferroni-corrected) 

relationship was found: an increase in CALS-P severity was significantly positively correlated 

with an increase in EF-2-BACK bilateral amygdala-left cACC FC to fearful faces (r = 0.541, p = 

0.003 (0.042, corrected); Figure 14). A linear regression, with five covariates (age, gender, IQ, 

time between scans, and scanner) showed that change in CALS-P scores significantly predicted 

change in bilateral amygdala-left cACC FC to fearful faces (R2 = 0.423, F(6,21) = 2.569, p = 

0.050). 
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Figure 14: Exp 1. Relationships between Symptom and Neuroimaging Measures over Follow-Up 

 

3.3.2.2 Repeated Analyses Removing Medicated Youth 

When analyses were repeated removing medicated youth, OBP no longer had significantly 

greater right rACC activity to EF-2-BACK happy faces (mean (SD) difference = 0.408 (.275), p 

= 0.432) and showed borderline significantly greater bilateral amygdala-left cACC FC to fearful 

faces (mean (SD) difference = 0.454 (.188), p = 0.056) versus OCP. In follow-up analyses, the 

relationship between change in CALS-P score and change in EF-2-BACK bilateral amygdala-left 

cACC FC to fearful faces remained significant (r = 0.597, p = 0.002); the linear regression model 

just missed significance (R2 = 0.442, F(6,18) = 2.378, p = 0.072). No other findings changed by 

removing medicated youth. 
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3.3.2.3 Symptom Comparison in Offspring Taking and Not Taking Medications 

We compared symptom measures in offspring taking and not taking psychotropic medications. 

In OBP (Table 9), independent sample t-tests did not reveal any significant differences between 

offspring taking versus not taking medications for SCARED-P, SCARED-C, CALS-C, MFQ-P, 

MFQ-C, KMRS, or KDRS. Medicated OBP had greater CALS-P severity than unmedicated 

OBP (mean (SD) difference = 8.853 (3.916), p = 0.031 (0.248, corrected)), but this significance 

did not survive Bonferroni corrections. 

 

 
Table 9: Exp 1. Comparison of Symptom Measures in Medicated and Unmedicated Offspring of Bipolar 

Parents 

 

 

 
In OCP (Table 10), independent sample t-tests did not reveal any significant differences 

between offspring taking versus not taking medications for SCARED-P, SCARED-C, CALS-P, 

CALS-C, MFQ-P, MFQ-C, or KDRS. Medicated OCP had greater KMRS severity than 

unmedicated OCP (mean (SD) difference = 1.105 (.443), p = 0.030 (0.240, corrected)), but this 

significance also did not survive Bonferroni corrections. 
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Table 10: Exp 1. Comparison of Symptom Measures in Medicated and Unmedicated Offspring of 

Comparison Parents 

 

 

3.3.2.4 Effects of Non-BD Psychiatric Disorders 

We compared neuroimaging measures in OBP with and without non-BD psychiatric disorders 

(Table 11). Independent sample t-tests did not reveal any significant differences between 

offspring with versus without non-BD psychiatric disorders for the following measures: DFT 

bilateral amygdala-left dlPFC FC to sad faces versus shapes; DFT left dlPFC activity to angry 

faces versus shapes; EF-2-BACK bilateral amygdala-left cACC FC to fearful, happy, or neutral 

versus no faces; EF-2-BACK amygdala-right vlPFC FC to happy versus neutral faces; EF-2-

BACK right rACC activity to happy versus no faces; EF-0-BACK bilateral amygdala-left rACC 

FC to happy versus neutral faces; EF-0-BACK left or right rACC activity to happy versus neutral 

faces; or EF-2-BACK versus EF-0-BACK bilateral amygdala-left rACC FC to happy faces. The 

difference between offspring with versus without non-BD psychiatric disorders for EF-0-BACK 

bilateral amygdala-left dlPFC FC to happy versus no faces was significant but did not survive 

Bonferroni corrections (mean (SD) difference = 0.239 (0.116), p = 0.049 (0.588, corrected)). 
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Table 11: Exp 1. Comparison of Neuroimaging Measures in Offspring of Bipolar Parents With versus 

Without Non-Bipolar Disorders 

 

 

 
In addition, we repeated ANOVAs for each significant neuroimaging finding pertaining 

to OBP twice: once in OBP and OCP without non-BD disorders, and once in OBP and OCP with 

non-BD disorders (Table 12). Only one finding survived Bonferroni corrections for 7 tests: EF-2-

BACK bilateral amygdala-left cACC FC to neutral versus no faces in youth without non-BD 

disorders (mean (SD) difference = 0.643 (0.169), p = 0.001 for OBP vs. OCP; mean (SD) 

difference = 0.475 (0.165), p = 0.018 for OCP vs. OHP). No other findings survived Bonferroni 

corrections in youth with or without non-BD disorders. 
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Table 12: Exp 1. Repeated Analyses in Offspring With and Without Non-Bipolar Disorders 

 

 

3.3.2.5 Group Differences in Reaction Time 

We explored group differences in reaction times for both tasks (Table 13). For the DFT, no 

significant group differences in reaction times were found for the happy, sad, angry, fearful, or 

shape contrasts. For the emotional face n-back task, no significant group differences in reaction 

times were found for the 0-back fearful, 0-back happy, 0-back neutral, 0-back no face, 2-back 

fearful, 2-back happy, 2-back neutral, or 2-back no face contrasts. 
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Table 13: Exp 1. Comparison of Reaction Times in All Subjects 

 

 

3.3.2.6 Relationships between Age and Neuroimaging Measures 

We examined relationships between age and neuroimaging measures (Table 14). Across all 

subjects, bivariate Pearson’s correlation analyses did not reveal any significant correlations 

between age and DFT bilateral amygdala-left dlPFC FC to sad faces versus shapes; EF-2-BACK 

bilateral amygdala-left cACC FC to fearful, happy, or neutral versus no faces; EF-2-BACK 

amygdala-right vlPFC FC to happy versus neutral faces; EF-2-BACK right rACC activity to 

happy versus no faces; EF-0-BACK bilateral amygdala-left dlPFC FC to happy versus no faces; 

EF-0-BACK bilateral amygdala-left rACC FC to happy versus neutral faces; EF-0-BACK left or 

right rACC activity to happy versus neutral faces; or EF-2-BACK versus EF-0-BACK bilateral 

amygdala-left rACC FC to happy faces. The correlation between age and DFT left dlPFC 
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activity to angry faces versus shapes was significant but did not survive Bonferroni corrections (r 

= 0.225, p = 0.045 (0.540, corrected)). 

 

 
Table 14: Exp 1. Correlations between Neuroimaging Measures and Age 

 

 

3.3.2.7 Relationships between Age and Pubertal Status 

We ran additional analyses comparing age to pubertal development measures using the Peterson 

Pubertal Development Scale (Table 15) (Petersen, Crockett et al. 1988). Overall pubertal 

development scores were computed by summing across the five items for boys (body hair, facial 

hair, voice change, skin change, and growth spurt) and girls (body hair, breast growth, menarche, 

skin change, and growth spurt), separately. At baseline, bivariate Pearson’s correlation analyses 

revealed a significant correlation between age and overall pubertal development in all subjects (r 

= 0.687, p < 0.001), as well as in OBP (r = 0.698, p < 0.001), OCP (r = 0.682, p < 0.001), and 

OHP (r = 0.710, p < 0.001), separately. 
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Table 15: Exp 1. Correlations between Age and Peterson Pubertal Development 

 

 

3.3.2.8 Elastic Net Regression Analysis Including Clinical Variables 

We ran an additional elastic net regression analysis that included clinical variables (i.e. 

medications, diagnoses, and symptom measures) as additional predictor variables. When 

compared to the original model, this additional model identified diagnoses (present versus not 

present), CALS-P scores, and KMRS scores as additional predictors. Furthermore, all 

neuroimaging measures that were identified in the original model as showing significant 

differences between OBP and OCP and/or OHP remained significant in this additional model: 

DFT left dlPFC activity to angry faces versus shapes, EF-2-BACK bilateral amygdala-left cACC 

FC to fearful versus no faces, EF-2-BACK bilateral amygdala-left cACC FC to happy versus no 

faces, EF-2-BACK bilateral amygdala-left cACC FC to neutral versus no faces, EF-2-BACK 

right rACC activity to happy versus no faces, and EF-0-BACK right rACC activity to happy 

versus neutral faces. Psychotropic medication (i.e. taking versus not taking) was not a significant 

predictor of group. 

3.3.2.9 Determination of Variance in Group Explained by Neuroimaging and Symptom 

Measures that Differed Significantly Among Groups 

In order to identify the relative contribution of each of these neuroimaging and symptom 

measures to the determination of group membership, we used a stepwise linear regression to 
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determine the variance in group explained by each individual neuroimaging and symptom 

measure. DFT left dlPFC activity to angry faces versus shapes explained 4.6% of the variance (p 

= 0.033). CALS-P score explained 3.9% of the variance (p = 0.050). KMRS score explained 

2.8% of the variance (p = 0.093). EF-2-BACK bilateral amygdala-left cACC FC to fearful versus 

no faces explained 1.4% of the variance (p = 0.239). EF-0-BACK right rACC activity to happy 

versus neutral faces explained 0.8% of the variance (p = 0.360). EF-2-BACK right rACC activity 

to happy versus no faces explained 0.5% of the variance (p = 0.474). EF-2-BACK bilateral 

amygdala-left cACC FC to happy versus no faces explained 0.2% of the variance (p = 0.644). 

EF-2-BACK left rACC activity to happy versus neutral faces explained 0.1% of the variance (p = 

0.719). EF-2-BACK bilateral amygdala-left cACC FC to neutral versus no faces did not explain 

any additional variance (p = 0.852). 

3.4 DISCUSSION 

3.4.1 Summary of Findings 

In order to identify neural markers of future BD risk in OBP, we examined baseline and follow-

up measures of activity and FC in amygdala-PFC circuitry during emotion processing and 

regulation that distinguished OBP from OCP and OHP, and the extent to which these measures 

were associated with symptom severity. 

OBP showed greater right rACC activity to happy faces during EF-2-BACK performance 

than OCP. The rACC is the “affective division” of the ACC with connections to affective neural 

regions (e.g. amygdala) (Van Hoesen, Morecraft et al. 1993, Carmichael and Price 1995) and 
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roles in processing emotional conflict and integrating emotion and cognition (Vogt, Finch et al. 

1992, Devinsky, Morrell et al. 1995, Bush, Luu et al. 2000, Bishop, Duncan et al. 2004, Bissière, 

Plachta et al. 2008). rACC recruitment may help resolve emotional conflict by suppressing 

amygdala activity, leading to reduced emotional responsivity and blunted sympathetic autonomic 

responses to incongruent emotional distracters (Etkin, Egner et al. 2006). Greater right rACC 

activity to happy faces also positively correlated with greater parent-reported affective lability 

severity, a precursor of BD in OBP (Hafeman, Merranko et al. 2016). Affective lability is 

defined as “a predisposition to marked, rapidly reversible shifts in affective states, extremely 

sensitive to meaningful environmental events that might induce more modest emotional 

responses in normal individuals” (Siever and Davis 1991, Henry, Van den Bulke et al. 2008). We 

may speculate that these findings reflect inefficient recruitment of the rACC to downregulate 

amygdala activity, leading to affective lability and, potentially, risk for future BD in OBP. The 

relationship with parent-reported, versus child-reported, affective lability may reflect the greater 

reliability of parental reports of child symptoms, as these are considered more useful than child 

reports in diagnosing BD in children (Youngstrom, Findling et al. 2004).  

OBP and OCP showed lower rACC activity than OHP to happy faces during EF-0-

BACK performance. Similarly, OBP had lower dlPFC activity than OHP to angry faces during 

the DFT, another face emotion processing task with no working memory component. These 

findings suggest that both OBP and OCP fail to recruit, to a normal extent, PFC regions (i.e. the 

rACC and dlPFC) that are important for the processing of emotional stimuli. In addition, OBP, 

alone, showed abnormal recruitment of the rACC when regulating attention away from positive 

emotional stimuli. Differential patterns of aberrant recruitment of PFC regions for the processing 
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and regulation emotional stimuli in different contexts is thus a potential neural mechanism that 

distinguishes OBP from OCP and confers risk for BD in OBP.  

OBP also showed greater bilateral amygdala-left cACC FC to fearful, happy, and neutral 

faces during EF-2-BACK performance compared with OCP. Changes in bilateral amygdala-left 

cACC FC to fearful faces positively correlated with changes in parent-reported affective lability 

severity over follow-up. Along with the rACC, the cACC is implicated in implicit emotion 

regulation (Kober, Barrett et al. 2008, Phillips, Ladouceur et al. 2008, Kim, Loucks et al. 2011, 

Goodkind, Gyurak et al. 2013, Frank, Dewitt et al. 2014). The cACC is part of the central 

executive control network, however, and has a more specific role than the rACC in attentional 

task performance (Van Veen and Carter 2002, Haas, Omura et al. 2006, Margulies, Kelly et al. 

2007). Our findings thus suggest that greater bilateral amygdala-left cACC FC to emotional face 

distracters, as well as increasing bilateral amygdala-left cACC FC over time to fearful face 

distracters, may reflect a compensatory, but inefficient, neural mechanism to redirect attention 

away from emotional face distracters during attentional tasks. This, in turn, may predispose to 

increasing affective lability and BD in at-risk youth. 

Removing medicated youth reduced the significance of the differences between right 

rACC activity to happy faces and bilateral amygdala-left cACC FC to fearful faces during EF-2-

BACK performance in OBP versus OCP, as well as the relationship between change in the latter 

measure and change in affective lability over follow-up. Medicated OBP had greater affective 

lability severity than unmedicated OBP, however, and thus reflected a particularly high-risk 

subset of OBP. Furthermore, removing medicated youth from these analyses affected the 

significance only of neural measures that showed significant relationships with affective lability 

severity. Additionally, medication was not a predictor of group in an additional elastic net 
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regression model that included medication and all clinical variables, as well as all neuroimaging 

and demographic measures, as predictors. Thus, greater right rACC activity to happy faces, and 

greater bilateral amygdala-left cACC FC to fearful faces, during EF-2-BACK performance may 

represent markers of BD risk in higher-risk OBP who are more affectively labile and more likely 

to be medicated, but psychotropic medication use, in itself, is not a predictor of risk for BD in 

youth.  

Previous studies reported that OBP show greater amygdala and PFC activity during 

emotion processing and regulation (Olsavsky, Brotman et al. 2012, Ladouceur, Diwadkar et al. 

2013, Manelis, Ladouceur et al. 2015). While OBP showed greater right rACC activity to happy 

faces during EF-2-BACK versus OCP, OBP also showed lower left dlPFC activity to angry faces 

and lower right rACC activity to EF-0-BACK happy faces versus OHP. This is more consistent 

with studies of patients with BD showing lower activity in PFC regions supporting emotion 

regulation (Phillips, Drevets et al. 2003, Phillips, Ladouceur et al. 2008, Hafeman, Bebko et al. 

2014). Previous studies also reported mixed results of either greater (Manelis, Ladouceur et al. 

2015) or lower (Abler, Greenhouse et al. 2008, Bermpohl, Kahnt et al. 2010, Linke, King et al. 

2012, Nusslock, Almeida et al. 2012, Caseras, Lawrence et al. 2013, Chase, Nusslock et al. 2013, 

Ladouceur, Diwadkar et al. 2013) amygdala-PFC FC in OBP. In comparison to findings in other 

studies that focused on amygdala-vlPFC FC, our findings additionally implicated a relationship 

between the amygdala and cACC. Furthermore, our DFT findings of lower left dlPFC activity 

add to those in BIOS showing greater amygdala activity, lower amygdala-ACC FC, and greater 

amygdala-vlPFC FC in OBP compared with OHP (Manelis, Ladouceur et al. 2015). Together, 

our findings suggest differential patterns of functional abnormalities in circuitries associated with 

emotion processing and regulation in OBP compared with OCP and OHP.  
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3.4.2 Conclusions 

This is the first study to employ both cross-sectional and longitudinal analyses of emotion 

processing and regulation neural circuitries in youth at risk for BD versus comparative at-risk 

and healthy control groups. We show that greater right rACC activity to happy faces and greater 

bilateral amygdala-left cACC FC to fearful faces during attentional task performance with high-

memory load conditions significantly distinguish OBP from OCP, at the group level, and these 

measures have significant relationships with affective lability, a precursor of BD. We conclude 

that greater right rACC activity and greater amygdala-cACC FC during emotion regulation are 

candidate objective markers of BD risk in youth. Our findings are an important step toward 

identifying neural markers of BD risk to aid in enhanced early identification, and guide 

interventions for, youth at risk for BD. 
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4.0  BASELINE AND FOLLOW-UP ACTIVITY AND FUNCTIONAL 

CONNECTIVITY IN REWARD NEURAL CIRCUITRY IN OFFSPRING AT RISK FOR 

BIPOLAR DISORDER 

This chapter is a modified version of the following manuscript that is currently in preparation: 

Acuff HE, Versace A, Bertocci MA, Ladouceur CD, Hanford LC, Manelis A, Monk K, Bonar L, 

McCaffrey A, Goldstein BI, Goldstein TR, Sakolsky D, Axelson D, Birmaher B, Phillips ML. 

Baseline and follow-up activity and functional connectivity in reward neural circuitries in 

offspring at risk for bipolar disorder. In Preparation. 

4.1 INTRODUCTION 

One neural circuitry that is important to the study of BD is reward processing, which has strong 

associations with impulsive sensation seeking (Chase, Fournier et al. 2017). This is a personality 

trait that comprises impulsivity (i.e. often prematurely elicited behavior with little to no 

forethought, reflection, or consideration of the consequences (Evenden 1999)) and sensation 

seeking (i.e. the inclination and desire to seek and take risks for new and intense sensations and 

experiences (Zuckerman 2013)). Impulsive sensation seeking is also associated with the future 

development of BD (Meyer, Johnson et al. 1999, Meyer, Johnson et al. 2001, Alloy, Abramson 

et al. 2008, Harmon-Jones, Abramson et al. 2008, Urošević, Abramson et al. 2008). Studies have 
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reported positive associations between impulsive sensation seeking and greater probabilities of 

developing BD in adolescents and young adults (Meyer, Johnson et al. 1999, Giovanelli, Hoerger 

et al. 2013), as well as between this trait and mania severity in young adults who are at risk for 

developing the disorder (Alloy, Bender et al. 2012). Such findings implicate high levels of this 

trait as a potential risk factor for BD (Chase, Fournier et al. 2017). Identifying abnormalities in 

reward circuitry that are associated with impulsive sensation seeking in youth at familial risk for 

BD may thus elucidate biological markers of specific risk for future BD in at-risk populations.  

 Specific functional abnormalities in reward circuitry in adults and youth with and at risk 

for BD have been discussed previously (Chapter 1.3.1). Key findings in youth at risk for BD 

include greater amygdala activity during reward reversal (Linke, King et al. 2012), greater vlPFC 

activity during loss anticipation (Singh, Kelley et al. 2014), greater left OFC activity during 

reward reversal (Linke, King et al. 2012), lower cACC activity (Singh, Kelley et al. 2014), more 

negative bilateral VS-right vlPFC FC during the processing of both reward and loss receipt 

(Manelis, Ladouceur et al. 2016), greater vlPFC-ACC FC during loss anticipation (Singh, Kelley 

et al. 2014), and lower vlPFC-ACC FC during reward anticipation (Singh, Kelley et al. 2014). 

The findings of more negative bilateral VS-right vlPFC FC remained after removing youth who 

had non-BD psychiatric disorders and who were taking psychotropic medications, suggesting 

that these measures likely reflected trait-level neural markers that confer risk for, or protect 

against, BD in at-risk youth (Manelis, Ladouceur et al. 2016). 

Our primary goal in this present study was to expand upon our previous findings by 

further investigating differences between OBP, OCP, and OHP in reward processing circuitry, 

both at baseline and at follow-up, and by examining whether these findings reflected trait-or 

state-level markers of risk for BD versus risk for other psychiatric illnesses in OBP. To achieve 
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this goal, we wished to identify OBP-specific abnormalities in reward processing neural circuitry 

that were independent of non-BD psychopathology and psychotropic medication use. Elucidating 

such abnormalities would be a step toward identifying candidate neural markers of risk for BD 

versus risk for other psychiatric disorders. As described above, previous findings indicate 

predominantly greater amygdala and PFC activity, lower ACC activity, and either greater or 

lower FC between PFC regions in individuals at risk for BD relative to OHP and/or OCP, present 

largely to reward and loss receipt. Previous findings also indicate the stability of these patterns of 

neural activity and FC when removing youth with psychiatric disorders and medications. We 

thus hypothesized:  

1. OBP would show greater amygdala and PFC activity, lower ACC activity, and either 

greater or lower FC between PFC regions to reward and loss receipt compared with OCP 

and OHP. 

2. These findings would be unaffected by non-BD psychopathology and psychotropic 

medications. 

In exploratory analyses, we examined relationships among neural measures and 

symptomatology, both at baseline and follow-up. Together, these OBP-specific abnormalities in 

reward processing neural circuitry that are independent of non-BD psychopathology, medication 

use, and symptom severity would be candidate, trait-level neural markers of risk for BD versus 

risk for other psychiatric disorders in youth. 
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4.2 MATERIALS AND METHODS 

4.2.1 Participants 

Thirty-two OBP (mean (SD) age = 13.95 (2.43), 16 female), thirty-six OCP (mean (SD) age = 

14.09 (2.32), 14 female), and thirty-nine OHP (mean (SD) age = 13.90 (1.81), 18 female) were 

examined in this analysis (Table 16). Of the original thirty-six OBP, forty-two OCP, and forty-

one OHP that were recruited: two OBP, five OCP, and one OHP were excluded due to excessive 

motion (translational > 4 mm); and two OBP, one OCP, and one OHP were excluded due to 

missing data. Twenty-seven OBP, twenty-five OCP, and twenty-three OHP were also included in 

a related BIOS paper (Manelis, Ladouceur et al. 2016).  

Thirteen OBP had at least one non-BD diagnosis: four had MDD, four had an Anxiety 

Disorder, eight had ADHD, one had Oppositional Defiant or Conduct Disorder, and two had an 

Eating Disorder. Fifteen OCP had at least one non-BD diagnosis: three had MDD, seven had an 

Anxiety Disorder, six had ADHD, three had Oppositional Defiant or Conduct Disorder, and two 

had Obsessive Compulsive Disorder. Six OBP and eight OCP were taking antidepressant, 

antipsychotic, mood stabilizer, stimulant, and/or non-stimulant medications for non-BD 

disorders. Symptom assessments included SCARED-P, SCARED-C, CALS-P, CALS-C, MFQ-

P, MFQ-C, KDRS, and KMRS (Chapter 2.1.3). 
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Table 16: Exp 2. Offspring of Bipolar, Comparison, and Healthy Offspring 
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4.2.2 Neuroimaging Data Acquisition and Analyses 

All scan 1 and nineteen scan 2 images (for nineteen OHP) were acquired using a Siemens 

Magnetom TrimTrio 3T MRI system, and twenty-two scan 2 images (for fourteen OBP and eight 

OCP) were acquired using a Siemens Magnetom Prisma system (Chapter 2.2.1). Participants 

completed the reward processing task (Chapter 2.2.2.3). Neuroimaging data analyses were 

performed as previously described (Chapter 2.3). ROIs included the amygdala, cACC, rACC, 

vlPFC, OFC, and VS (Table 2). gPPI analyses assessed task-related connectivity. Seed regions 

included, separately, the bilateral VS, bilateral pars opercularis, bilateral pars orbitalis, bilateral 

pars triangularis, and bilateral lateral orbitofrontal cortex. These seed regions were chosen due to 

the particularly high associations between activity in both the VS and vlPFC and impulsive 

sensation seeking (Caseras, Lawrence et al. 2013, Chase, Fournier et al. 2017). Target regions for 

the bilateral VS seed region included, separately: the left and right amygdala, left and right 

cACC, left and right rACC, left and right OFC, and left and right vlPFC. Target regions for the 

bilateral vlPFC seed regions included, separately: the left and right amygdala, left and right 

cACC, left and right rACC, left and right OFC, and left and right VS. Task stimulus contrasts 

included, separately: reward versus control and loss versus control. 

4.2.3 Statistical Analyses 

A single elastic net regression analysis, including OBP, OCP, and OHP, was used for data 

selection and reduction. This single model contained 2 dummy-coded outcome variables: BD 

risk (OBP versus OCP/OHP) and general psychiatric disorder risk (OBP/OCP versus OHP). This 

one model also contained 117 predictor variables. Thirteen of these predictor variables were 
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demographics measures: age, sex, IQ, SES handedness, and highest parental education (Table 

17). 

 

 
Table 17: Exp 2. Elastic Net Regression Predictor Variables: Demographic 

 

 

 
Twenty-four of these predictor variables were activity measures in each ROI for each 

contrast, separately (Table 18). 
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Table 18: Exp 2. Elastic Net Regression Predictor Variables: Activity Measures 

 

 

 
Twenty of these predictor variables were FC measures with a bilateral VS seed region 

and target regions in each ROI for each contrast, separately (Table 19). 

 

 
Table 19: Elastic Net Regression Variables: Functional Connectivity Measures with Ventral Striatum Seed 

 

 

 
Sixty of these predictor variables were FC measures with a bilateral vlPFC seed region 

(separated into the pars orbitalis, pars opercularis, and pars triangularis) and target regions in 

each ROI for each contrast, separately (Table 20). 
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Table 20: Exp 2. Elastic Net Regression Predictor Variables: Functional Connectivity Measures with 

Ventrolateral Prefrontal Cortex Seed 

 

 

 
Post-hoc pseudo r-squared analyses examined the proportion of variance in dependent 

variables explained by the non-zero predictor variables observed with elastic net. ANOVAs and 

Tukey HSD-corrected post-hoc t-tests examined: between-group differences in neuroimaging 

measures for all non-zero predictors and effects of youth with versus without non-BD disorders. 

Additional analyses included ANOVAs and post-hoc t-tests to examine effects of psychotropic 

medications, and correlation analyses to examine effects of age, on non-zero predictor 

neuroimaging measures showing significant effects of group. 

ANOVAs and post-hoc t-tests examined between-group differences in baseline symptom 

measures. Correlation analyses examined relationships between neuroimaging and symptom 

measures, both at baseline and at follow-up, and relationships between changes in neuroimaging 

and symptom measures between baseline and follow-up, for all measures showing significant 

between-group differences at baseline. Follow-up analyses occurred in fourteen OBP (mean (SD) 

age = 17.48 (2.85), 6 female), eight OCP (mean (SD) age = 17.47 (1.89), 5 female), and nineteen 

OHP (mean (SD) age = 15.17 (1.65), 8 female) who had completed second scans (mean (SD) 
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inter-scan interval = 2.70 (1.22) years). Two OBP and one OCP were taking medications. 

Findings were corrected using Bonferroni corrections to account for the number of multiple tests. 

4.3 RESULTS 

4.3.1 Hypothesis Testing 1 

4.3.1.1 Identification of Non-Zero Predictors 

Of the initial 117 predictors, 26 variables, together optimized model fit using the minimum λ (λ 

= 0.224) identified by cross-validation (Figure 15). Plots A-B represent variable fit for BD risk 

(OBP versus OCP/OHP; Figure 15A) and general psychiatric disorder risk (OBP/OCP versus 

OHP; Figure 15B). Each curve corresponds to an independent variable in the full model prior to 

optimization. Plot C represents the non-zero variable fit after cross-validation (Figure 15C). 



 93 

 

Figure 15: Exp 2. Elastic Net Plots 
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A pseudo r-squared, calculated containing the 26 non-zero predictors from the model 

versus an intercept-only model, indicated that 34.24% of the variance in group was explained by 

these predictors (Table 21). Twenty-two neuroimaging variables predicted 40.90% of the total 

explained variance: 2 activity variables to reward (left and right OFC); 10 FC variables to reward 

(bilateral VS-left cACC, bilateral VS-right rACC, bilateral lateral orbitofrontal cortex-left 

amygdala, bilateral lateral orbitofrontal cortex-left rACC, bilateral lateral orbitofrontal cortex-

left VS, bilateral pars opercularis-right OFC, bilateral pars orbitalis-left OFC, bilateral pars 

orbitalis-right cACC, bilateral pars orbitalis-right OFC, and bilateral pars triangularis-right VS); 

and 10 FC variables to loss (bilateral VS-left cACC, bilateral VS-right rACC, bilateral lateral 

orbitofrontal cortex-left amygdala, bilateral lateral orbitofrontal cortex-left rACC, bilateral pars 

orbitalis-left rACC, bilateral pars orbitalis-right amygdala, bilateral pars orbitalis-right cACC, 

bilateral pars triangularis-left rACC, bilateral pars triangularis-right amygdala, and bilateral pars 

triangularis-right OFC). Four demographic variables predicted 83.00% of the total explained 

variance: IQ, SES (very low and low), and highest parental education (standard 

college/university graduate). 
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Table 21: Exp 2. Elastic Net Regression Non-Zero Coefficients 

 

 

4.3.1.2 Between-Group Differences in Neuroimaging Predictors 

A one-way between subjects ANOVA examined the effects of group on all non-zero predictors 

identified through elastic net (Table 22). 
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Table 22: Exp 2. Between-Group Differences in Neuroimaging Measures 

 

 

 
There was a significant effect (p < 0.05) of group on bilateral VS-left cACC FC to loss 

(F(2,104) = 4.173, p = 0.018), bilateral pars orbitalis-left (F(2,104) = 7.181, p = 0.001) and -right 

(F(2,104) = 8.457, p < 0.001) OFC FC to reward, bilateral pars triangularis-right OFC FC to loss 

(F(2,104) = 3.233, p = 0.043), bilateral lateral orbitofrontal cortex-left amygdala FC to reward 

(F(2,104) = 3.333, p = 0.040), and SES (F(2,104) = 6.771, p = 0.002). Post-hoc comparisons 

using the Tukey HSD test indicated that: OBP had significantly lower bilateral VS-left cACC FC 
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to loss versus OCP (p = 0.025) and OHP (p = 0.049) (Figure 16A); OBP had greater bilateral 

pars orbitalis-left (p = 0.001) and -right (p < 0.001) OFC FC to reward versus OCP; OCP had 

lower bilateral pars orbitalis-right OFC FC to reward versus OHP (p = 0.046); and OBP had 

greater bilateral pars triangularis-right OFC FC to loss versus OCP (p = 0.033) (Figure 16B). 

 

 

 

Figure 16: Exp 2. Between-Group Differences in Neuroimaging Measures 
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Additionally, OBP had lower SES versus OCP (p = 0.032) and OHP (p = 0.001) (Figure 

17). 

 

 

 

Figure 17: Exp 2. Between-Group Differences in Demographic Measures 

 

4.3.1.3 Exploratory Effects of Left- versus Right-Sided Regions 

Once the above FC findings were identified that significantly distinguished OBP from OCP 

and/or OHP, we additionally explored the nature of the laterality of the seed regions. Two one-

way between subjects ANOVAS (Bonferroni-corrected for 2 tests) and post-hoc t-tests (Tukey 

HSD-corrected) examined between-group differences in bilateral VS-left cACC FC to loss, 
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bilateral pars orbitalis-left and -right OFC FC to reward, and bilateral pars triangularis-right OFC 

FC to loss using left-sided and right-sided seed regions, separately (Figure 18). Regarding right-

sided seed regions, there was a main effect of group on right VS-left cACC FC to loss (F(2,104) 

= 4.857, p = 0.010) and right pars orbitalis-left (F(2,104) = 6.140, p = 0.003) and -right (F(2,104) 

= 7.552, p = 0.001) OFC FC to reward. OBP had lower right VS-left cACC FC to loss versus 

OCP (p = 0.028) and OHP (p = 0.015) but greater right pars orbitalis-left (p = 0.003 vs. OCP, p = 

0.036 vs. OHP) and -right (p = 0.001 vs. OCP, p = 0.038 vs. OHP) OFC FC to reward versus 

OCP and OHP, respectively. Regarding left-sided seed regions, there was also a main effect of 

group on left pars orbitalis-left (F(2,104) = 6.427, p = 0.002) and -right (F(2,104) = 6.283, p = 

0.003) OFC FC to reward. OBP showed greater FC versus OCP, but not versus OHP, for the left 

(p = 0.002) and right (p = 0.002) OFC, respectively. OCP additionally had significantly lower 

left pars orbitalis-left OFC FC to reward versus OHP (p = 0.045). 
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Figure 18: Exp 2. Between-Group Differences in Left- versus Right-Sided Neuroimaging Measures 
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In summary, OBP significantly differed from both OCP and OHP for three measures: 

right VS-left cACC FC to loss, right pars orbitalis-left OFC FC to reward, and right pars 

orbitalis-right OFC FC to reward. These were thus the focus of all future analyses. 

4.3.2 Hypothesis Testing 2: Effects of Non-BD Disorders 

Two one-way between subjects ANOVAS (Bonferroni-corrected for 2 tests) and post-hoc t-tests 

(Tukey HSD-corrected) examined between-group differences in the above three neuroimaging 

measures that significantly distinguished OBP from both OCP and OHP in youth with versus 

without non-BD disorders. OBP significantly differed from OCP and OHP only when examining 

youth without non-BD disorders for the right VS-left cACC (F(2,76) = 4.105, p = 0.020) and 

right pars orbitalis-left (F(2,76) = 4.218, p = 0.018) and -right (F(2,76) = 5.051, p = 0.009) OFC 

FC findings. In these youth, OBP had lower right VS-left cACC (p = 0.034 vs. OCP, p = 0.033 

vs. OHP) and greater right pars orbitalis-left (p = 0.031 vs. OCP, p = 0.030 vs. OHP) and -right 

(p = 0.008 vs. OCP, p = 0.037 vs. OHP) OFC FC versus OCP and OHP, respectively. No 

significant between-group differences were found in youth with non-BD disorders. 

No differences in the above findings were found when removing youth taking 

psychotropic medications. No significant correlations were found between age and any 

significant neuroimaging measures. 

4.3.3 Exploratory Analyses: Between-Group Differences in Baseline Symptom Measures 

A one-way between subjects ANOVA compared the effects of group on 8 baseline symptom 

measures (Figure 19). There was a significant effect (p < 0.006, Bonferroni corrected for 8 tests) 
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of group on SCARED-P (F(2,103) = 8.542, p < 0.001), CALS-P (F(2,103) = 10.707, p < 0.001), 

MFQ-P (F(2,103) = 5.690, p = 0.005), KDRS (F(2,103) = 5.558, p = 0.005), and KMRS 

(F(2,103) = 5.530, p = 0.005) scores. No significant effects of group were found for child-

reported measures. Post-hoc comparisons using the Tukey HSD test indicated that: compared 

with OCP, OBP had significantly greater CALS-P scores (p = 0.024); compared with OHP, OBP 

had significantly greater SCARED-P (p = 0.002), CALS-P (p < 0.001), MFQ-P (p = 0.003), 

KDRS (p = 0.004), and KMRS (p = 0.004) scores; and, compared with OHP, OCP had 

significantly greater SCARED-P (p = 0.002) scores. 

 

 

 

Figure 19: Exp 2. Between-Group Differences in Symptom Measures 
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No significant correlations were found when examining relationships between the above 

neuroimaging (right VS-left cACC, right pars orbitalis-left and -right OFC FC) and symptom 

(SCARED-P, CALS-P, MQ-P, KDRS, KMRS) measures that significantly differed among all 

groups at baseline (Table 23). 

 

 
Table 23: Exp 2. Correlations between Neuroimaging and Symptom Measures at Baseline 

 

 

 
Similarly, no significant correlations were found when examining relationships between 

the above neuroimaging and symptom measures at follow-up (Table 24). 
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Table 24: Exp 2. Correlations between Neuroimaging and Symptom Measures at Follow-Up 

 

 

 
Furthermore, no significant correlations were found when examining relationships 

between changes in the above neuroimaging and symptom measures, over time (Table 25). 

 

 
Table 25: Exp 2. Correlations between Changes in Neuroimaging and Symptom Measures Over Time 

 

 

 
Neuroimaging and symptom measures also did not significantly differ between first and 

second scans (Table 26). 



 105 

Table 26: Exp 2. Differences in Neuroimaging and Symptom Measures between First and Second Scans 

 

4.4 DISCUSSION 

4.4.1 Summary of Findings 

The goal of this study was to identify measures of activity and FC in reward processing neural 

circuitry that distinguished OBP from OCP and OHP and determine whether these measures 

represented trait- or state-level neural markers in OBP. Our primary findings indicated that OBP 

had lower FC between the right VS-left cACC to loss but greater FC between the right pars 

orbitalis and both the left and right OFC to reward. These findings were not affected by non-BD 

psychopathology, psychotropic medication use, or symptomatology. Additionally, these neural 

measures remained stable at follow-up. 

The VS and ACC have established connections that are important to reward neural 

circuitries (Jung, Schulte et al. 2013). Projections from the VS go to the ventral pallidum and 

substantia nigra and are then transferred to the ACC and OFC via the mediodorsal nucleus of the 

thalamus (Haber 2011). Coordinated activation of terminals in the striatum from regions such as 
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the ACC and OFC may, together, enable reward-based incentives that drive impacts on long-

term strategic planning (Haber 2011). Several studies have examined the relationship between 

the VS and ACC during decision-making and reward tasks. In one study, the left cACC was 

shown to have significant FC with both the left and right VS during resting state and decision-

making tasks (Jung, Schulte et al. 2013). This study found that greater left cACC-VS FC was 

associated with greater use of coping strategies and lower non-planning impulsiveness (Jung, 

Schulte et al. 2013). Another study found that more severe gambling problems were significantly 

correlated with lower FC between the right VS and left ACC (van Holst, Chase et al. 2014). Our 

findings of lower right VS-left cACC FC to loss in OBP parallel these findings and further 

suggest that lower FC between the VS and cACC may be related to impaired regulation of 

response to loss or reward receipt during reward and/or gambling tasks in youth at risk for BD. 

This may further reflect difficulty learning from punishment or failure, which may manifest as 

symptoms of impulsivity or impulsive sensation seeking. Specifically, individuals may continue 

to engage in risky situations with the potential for reward receipt despite evidence that these 

attempts may be futile or detrimental. The fact that this finding distinguished OBP from both 

OCP and OHP additionally suggests that abnormally reduced right VS-left cACC FC to loss may 

be a marker of risk for future development of BD in youth. 

While it is well established that the vlPFC and OFC are involved in reward processing 

individually, less is known about the relationship between these two important regions in reward 

circuitry. In the present study, the vlPFC was defined as the lateral orbitofrontal cortex (Hooker 

and Knight 2006), pars orbitalis (BA47), pars opercularis (BA44), and pars triangularis (BA45) 

(Badre and Wagner 2007), and the OFC was defined as the medial orbitofrontal cortex (BA11). 

Anatomically, BA47 is dorsolaterally adjacent to, and interconnected with, BA11 (Kelly, Uddin 
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et al. 2010, de Schotten, Dell’Acqua et al. 2012, Yeterian, Pandya et al. 2012, Snow 2016), and 

both regions coactivate during reward tasks (Zald, McHugo et al. 2012). Both regions are 

integrally involved in reward processing circuitry, with BA47 primarily having roles in reward-

related decision-making (Dixon and Christoff 2014), and BA11 having roles in encoding reward 

values and comparing values of different options (Rushworth, Noonan et al. 2011). Many studies 

in youth and adults with, and at risk for, BD found that these individuals show greater activity, 

bilaterally, in both regions during reward processing compared with control groups (Bermpohl, 

Kahnt et al. 2010, Linke, King et al. 2012, Nusslock, Almeida et al. 2012, Chase, Nusslock et al. 

2013, Singh, Kelley et al. 2014). It is thus unsurprising that we identified greater FC between the 

pars orbitalis (BA47) and OFC (BA11) during reward trials in OBP relative to both OCP and 

OHP, likely reflecting greater encoding of, and decision-making about, reward value in OBP. 

While we found that this relationship distinguished OBP from both groups when examining FC 

only with the right pars orbitalis, OBP were also significantly differentiated from OCP when 

examining FC with the left pars orbitalis. The fact that OBP were not significantly distinguished 

from OHP, as well, might reflect an issue with power. Thus, we may speculate the relationship 

between the bilateral pars orbitalis and bilateral OFC might be an additional neural marker of 

risk for BP in OBP. Future studies with increased sample sizes are necessary to determine this.  

Our findings parallel previous findings that highlighted the importance of the VS and 

vlPFC in distinguishing OBP from OCP and OHP during reward processing (Manelis, 

Ladouceur et al. 2016). A previous study, which used standard group-level analyses as opposed 

to analyses in native space, found that OBP had lower bilateral VS-right vlPFC FC to reward and 

loss trials (Manelis, Ladouceur et al. 2016), similar to our findings of decreased bilateral (and 

right) VS-left cACC FC to loss. Additionally, these vlPFC findings were primarily right-sided 
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(Manelis, Ladouceur et al. 2016), as in our study. While this previous study showed that the 

vlPFC had lower connectivity with the VS (Manelis, Ladouceur et al. 2016), we showed greater 

vlPFC-OFC to reward receipt, suggesting a greater encoding of reward values and attunement to 

reward stimuli in OBP. This highlights the vlPFC as a key region with multiple roles in reward 

processing circuitry that uniquely distinguish OBP. Additionally, main findings remained 

significant when excluding youth with non-BD psychopathology and psychotropic medications, 

as in previous studies (Manelis, Ladouceur et al. 2016). Furthermore, no relationships were 

found between main neural findings and symptomatology, either at baseline or at follow-up, and 

all of these measures remained stable over follow-up. Altogether, these findings suggest that our 

main findings of lower right VS-left cACC FC to loss and greater right pars orbitalis-OFC FC to 

reward may be trait-level neural markers of future BD risk in OBP. This is an important step 

toward understanding the mechanisms underlying the neural basis of familial risk for BD. 

Additional findings from our study were that OBP had lower SES compared with OCP 

and OHP. Several studies have shown that low SES is associated with an increased risk for BD 

(Weissmann, Bruce et al. 1991, Kessler, Rubinow et al. 1997, Tsuchiya, Agerbo et al. 2004). 

This further suggests that our sample of OBP may be at greater risk for developing BD in the 

future. An additional finding from this study was that OBP had greater bilateral pars triangularis-

right OFC FC to loss compared with OCP. However, this finding did not remain significant 

when separating the pars triangularis into left and right regions. It is possible that this region of 

the vlPFC has less of a role in reward processing circuitry compared with its other functions, 

such as verbal semantic retrieval (Buckner 1996). 



 109 

4.4.2 Conclusions 

This is the first study to employ both cross-sectional and longitudinal analyses of reward 

processing neural circuitry in youth at risk for BD versus comparative at-risk and healthy control 

groups. We show that lower right VS-left cACC FC to loss and greater right pars orbitalis-OFC 

FC to reward significantly distinguish OBP from both OCP and OHP. These findings are 

independent of non-BD psychopathology, psychotropic medication use, and symptomatology, 

and they remain stable at follow-up. This renders these findings likely trait-level neural markers 

that may reflect either risk for BD in at-risk youth. Our findings comprise an important step 

toward identifying neural markers of BD risk to aid in enhanced early identification, and guide 

interventions for, youth at risk for BD. 
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5.0  WHITE MATTER – EMOTION PROCESSING ACTIVITY RELATIONSHIPS IN 

YOUTH OFFSPRING OF BIPOLAR PARENTS 

This chapter is a modified version of the following manuscript that is currently under revision: 

Acuff HE, Versace A, Bertocci MA, Hanford LC, Ladouceur CD, Manelis A, Monk K, Bonar L, 

McCaffrey A, Goldstein BI, Goldstein TR, Sakolsky D, Axelson D, LAMS Consortium, 

Birmaher B, Phillips ML. White matter – emotion processing activity relationships in youth 

offspring of bipolar parents. Under Revision. 

5.1 INTRODUCTION 

Relationships between neural structure and function is an important, yet relatively unexamined, 

topic in the study of BD. Given that the structural integrity of white matter is key for ensuring 

the intact functioning of a given neural circuitry, studying relationships between WMT structure 

and neural activity may provide a more comprehensive understanding of BD risk. More 

specifically, neuroimaging studies can identify markers of risk for BD by detecting abnormal 

structure and activity in neural circuitries that are important for processes aberrant in individuals 

with BD, such as emotion processing (Phillips and Swartz 2014). In addition, studying 

relationships between these structural and functional abnormalities may provide greater insight 
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into mechanisms that underlie the pathophysiology of BD risk in comparison to risk for other 

psychiatric disorders. 

 Specific structural and functional abnormalities in emotion processing circuitry in adults 

and youth with and at risk for BD have been discussed previously (Chapters 1.3.1-2). Key 

structural findings in youth with, and at risk for, BD include lower collinearity in the cingulum 

(Benedetti, Yeh et al. 2011, Versace, Andreazza et al. 2014), forceps minor of the corpus 

callosum (Wang, Jackowski et al. 2008, Wang, Kalmar et al. 2008, Chaddock, Barker et al. 2009, 

Benedetti, Yeh et al. 2011, Haller, Xekardaki et al. 2011, Versace, Andreazza et al. 2014, 

Sarrazin, d'Albis et al. 2015), superior longitudinal fasciculus (Chaddock, Barker et al. 2009, van 

der Schot, Vonk et al. 2010, Versace, Almeida et al. 2010, Benedetti, Yeh et al. 2011, Versace, 

Andreazza et al. 2014), and uncinate fasciculus (Versace, Almeida et al. 2008, Benedetti, Yeh et 

al. 2011, Linke, King et al. 2013, Versace, Andreazza et al. 2014). Functional findings in youth 

at risk for BD during emotion processing include greater amygdala activity to all emotional faces 

(Manelis, Ladouceur et al. 2015), lower ACC activity during facial emotion processing (Tseng, 

Bones et al. 2015, Chan, Sussmann et al. 2016), lower dlPFC activity during facial emotion 

processing (Tseng, Bones et al. 2015), lower right amygdala-ACC FC to all emotional faces 

(Manelis, Ladouceur et al. 2015), and greater right amygdala-left vlPFC FC to happy faces 

(Manelis, Ladouceur et al. 2015). 

There are several gaps in the literature that hinder progress in understanding the 

underlying pathophysiology of BD. First, while most neuroimaging studies examined individuals 

diagnosed with BD, few examined youth at familial risk for the disorder (Phillips, Ladouceur et 

al. 2008, Versace, Ladouceur et al. 2010, Olsavsky, Brotman et al. 2012, Ladouceur, Diwadkar 

et al. 2013, Singh and Chang 2013, Singh, Kelley et al. 2014, Tseng, Bones et al. 2015). 
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Focusing on youth at risk for BD unaffected by the disorder may allow us to identify markers of 

BD before illness onset. Additionally, of the studies that examined youth at risk for BD, few 

compared youth at familial risk for BD to those at risk for other disorders (Manelis, Ladouceur et 

al. 2015, Manelis, Ladouceur et al. 2016, Soehner, Bertocci et al. 2016). It thus remains difficult 

to determine the extent to which neural findings represent markers of specific risk for BD.  

Second, while several WMT and activity abnormalities have been identified in youth 

with, and at risk for, BD, few studies have examined the relationships between them in this 

population. Combining diffusion imaging and fMRI techniques has become increasingly 

important in fields of cognitive and clinical neuroscience (Zhu, Zhang et al. 2014). Such studies 

have examined relationships between WMT structure and either BOLD activity (Conturo, Lori et 

al. 1999, Werring, Clark et al. 1999, Olesen, Nagy et al. 2003, Toosy, Ciccarelli et al. 2004, 

Baird, Colvin et al. 2005, Madden, Spaniol et al. 2007, Ystad, Hodneland et al. 2011, O'Donnell, 

Rigolo et al. 2012) or FC (Koch, Norris et al. 2002, Guye, Parker et al. 2003, van den Heuvel, 

Mandl et al. 2008, Greicius, Supekar et al. 2009, Supekar, Uddin et al. 2010, Calamante, 

Masterton et al. 2013). Both types of structure-function relationships have the potential to 

contribute to our understanding of mechanisms that underlie psychiatric disorders. No studies to 

date in youth at risk for BD, however, have employed multimodal neuroimaging techniques in 

attempts to identify markers of specific risk for BD. 

Third, relating WMT-activity measures and symptoms is very important in OBP, as youth 

at familial risk for BD with greater symptom severity (specifically depression, mania, affective 

lability, and anxiety (Hafeman, Merranko et al. 2016)) are likely to be more at risk for 

developing BD in the future. Yet, no studies to date have combined structural and functional 
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imaging to study WMT-activity relationships and their relationships with symptoms in youth at 

risk for BD.  

Furthermore, while non-BD disorders may confound neural findings, these disorders are 

common in youth at risk for BD. Including at-risk youth with, and without, these disorders in 

neuroimaging studies can help determine the extent to which findings are confounded, or not, by 

present psychopathology. Indeed, we previously reported that neural findings distinguishing 

OBP from OCP remained even after excluding youth with non-BD disorders (Manelis, 

Ladouceur et al. 2015, Manelis, Ladouceur et al. 2016). However, the effects of non-BD 

disorders on WMT-activity relationships have yet to be studied. Further examination of the 

effects of these disorders in at-risk youth may also enhance our understanding of how WMT-

activity relationships confer risk for BD. 

The goal of the present study was thus to explore relationships between WMT structure 

and activity in emotion processing neural circuitry that distinguish youth at familial risk for BD 

from youth at risk for non-BD disorders. We examined the effects of GROUP(OBP,OCP)xWMT 

interactions on activity in emotion processing circuitry to identify whether WMT-activity 

relationships distinguished OBP from OCP, and how non-BD disorders impacted these 

relationships. We hypothesized that: 

1. OBP would show relationships between lower prefrontal WMT (i.e. cingulum, forceps 

minor, superior longitudinal fasciculus, uncinate fasciculus) fiber collinearity and greater 

amygdala and/or lower prefrontal (i.e. vlPFC, ACC) cortical activity. 

2. These WMT-activity relationships would distinguish OBP from OCP. 

3. These relationships would remain when excluding youth with non-BD disorders. 
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In additional analyses, we examined: how these relationships compared to OHP; the 

relationships between WMT-activity and symptoms; correlations between WMT measures and 

FA; and whether or not main findings were affected by psychotropic medications or age. 

5.2 MATERIALS AND METHODS 

5.2.1 Participants 

Thirty-two OBP (mean (SD) age = 13.81 (2.45), 15 female), thirty OCP (mean (SD) age = 13.98 

(2.30), 12 female), and twenty-four OHP (mean (SD) age = 13.80 (1.72), 10 female), were 

examined in this analysis (Table 27). Of the original thirty-eight OBP, thirty-seven OCP, and 

twenty-seven OHP that were recruited: one OBP and five OCP were excluded due to excessive 

motion (translation > 4 mm); five OBP, two OCP, and three OHP were excluded due to missing 

data. Twenty-seven OBP, twenty-six OCP, and twenty-two OHP were also included in a related 

BIOS paper (Manelis, Ladouceur et al. 2015). 

Fourteen OBP had at least one non-BD diagnosis: four had MDD, four had an Anxiety 

Disorder, seven had ADHD, two had Oppositional Defiant or Conduct Disorder, and two had an 

Eating Disorder. Fifteen OCP had at least one non-BD diagnosis: four had MDD, six had an 

Anxiety Disorder, seven had ADHD, three had Oppositional Defiant or Conduct Disorder, and 

two had Obsessive Compulsive Disorder. Six OBP and six OCP were taking antidepressant, 

antipsychotic, mood stabilizer, stimulant, and/or non-stimulant medications for non-BD 

disorders. Symptom assessments included SCARED-P, SCARED-C, CALS-P, CALS-C, MFQ-

P, MFQ-C, and KMRS (Chapter 2.1.3). 
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Table 27: Exp 3. Offspring of Bipolar, Comparison, and Healthy Offspring 
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5.2.2 Neuroimaging Data Acquisition and Analyses 

All images were acquired using a Siemens Magnetom TrimTrio 3T MR system (Chapter 2.2.1). 

Participants completed the emotional face processing task (DFT) (Chapter 2.2.2.1). 

Neuroimaging data analyses were performed as previously described (Chapter 2.3). ROIs 

included the amygdala, vlPFC, cACC, and rACC (Table 2). In this analysis, the pars triangularis 

was excluded from the vlPFC because it cytoarchitectonically belongs to Broca’s area and is 

more implicated in various aspects of linguistic functioning (Saito, Muragaki et al. 2016), as 

opposed to emotion processing. Task stimulus contrasts of interest included, separately: positive 

emotional faces (i.e. happy) versus shapes and negative emotional faces (i.e. angry, fearful, and 

sad, averaged together) versus shapes. 

FreeSurfer was used to define the end regions for global probabilistic tractography 

(Fischl 2012). ExploreDTI was used to ensure image quality and to correct for motion artifacts 

and current distortions (Leemans and Jones 2009, Klein, Staring et al. 2010). A B-spline cubic 

interpolation reduced the EPI distortions and registered the mean b0 image to the structural, 

native space (Wu, Chang et al. 2008). TRActs Constrained by UnderLying Anatomy 

(TRACULA), based on a Bayesian framework, was used to determine the probabilistic 

distributions of 18 white matter tracts and extract FA, RD, AD, length, and volume for each tract 

(Yendiki, Panneck et al. 2011). Advantages of probabilistic tractography over deterministic 

methods include the ability to explicitly represent uncertainty in the data (Behrens, Woolrich et 

al. 2003, Behrens, Berg et al. 2007, Berman, Chung et al. 2008). 
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5.2.3 Statistical Analyses 

Two elastic net regression analyses, including OBP and OCP, only, were used for variable 

selection and reduction. The first model contained the following 6 outcome variables: activity in 

the left and right amygdala, left and right vlPFC, bilateral cACC, and bilateral rACC to positive 

(i.e. happy) emotional faces. The second model contained the following 6 outcome variables: 

activity in the left and right amygdala, left and right vlPFC, bilateral cACC, and bilateral rACC 

to negative (i.e. angry, fearful, and sad, averaged together) emotional faces. Both models 

contained the same 163 predictor variables. Nineteen of these predictor variables were 

demographic and clinical measures: age, gender, IQ, SES, handedness, and highest parental 

education, and diagnoses (Table 28). 
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Table 28: Exp 3. Elastic Net Regression Predictor Variables: Demographic and Clinical 

 

 

 
One hundred forty-four of these predictor variables were main effects of WMT measures 

(RD, AD, length, and volume of the forceps major, forceps minor, left and right anterior thalamic 

radiation, left and right cingulum-angular bundle, left and right cingulum-cingulate gyrus, left 

and right corticospinal tract, left and right inferior longitudinal fasciculus, left and right superior 

longitudinal fasciculus-parietal, left and right superior longitudinal fasciculus-temporal, and left 

and right uncinate fasciculus, separately) and GROUP(OBP,OCP)xWMT measure interactions to 

examine between-group differences in WMT-activity relationships (Table 29). 
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Table 29: Exp 3. Elastic Net Regression Predictor Variables: Diffusion Tensor Imaging Measures 

 

 

 
This was followed with post-hoc analyses to examine the contribution of non-zero 

variables observed with elastic net to the dependent variables, as well as the proportion of 

variance in dependent variables explained by the models. 

Elastic net is particularly useful when the number of predictor variables is much larger 

than the number of observations, or subjects (Zou and Hastie 2005). Thus, to maximize the 

usefulness of our model, we increased the number of predictors by including all WMT measures 

for all tracts identifiable through TRACULA (Yendiki, Panneck et al. 2011). While FA is the 

most widely used invariant measure of anisotropy used in diffusion tensor imaging, it is 

calculated from a combination of AD, RD, and mean diffusivity measures (Alexander, Lee et al. 

2007). This correlation between FA and both AD and RD rendered us unable to put all three 

measures in a single model. In keeping with our aim to maximize our model’s usefulness, we 

included twice as many variables (AD and RD) in the model, in lieu of FA, and instead 

examined FA in additional analyses. 

The goal of the present study was to identify WMT-activity relationships that differed 

between OBP and OCP. Thus, only GROUPxWMT interactions were examined further. For all 

non-zero predictors of GROUPxWMT interactions on activity measures, post-hoc analyses 
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determined the nature of between-group differences in the slopes of WMT-activity relationships, 

using the following equation (Paternoster, Brame et al. 1998): 

 

To control for multiple parallel tests of between-group differences in slopes of the above 

relationships, sequential goodness of fit (SGoF) metatests were used (Carvajal-Rodriguez, de 

Una-Alvarez et al. 2009). This method was chosen because it is a multitest adjustment 

methodology that increases its statistical power when the number of tests increases (Carvajal-

Rodriguez, de Una-Alvarez et al. 2009). Under favorable conditions, this test can show a 

statistical power up to two orders of magnitude higher than Benjamini and Hochberg and 

Bonferroni methods without appreciably increasing the false discovery rate (Carvajal-Rodriguez, 

de Una-Alvarez et al. 2009). Thus, it is an important tool for multitest adjustment when working 

with high-dimensional biological data (Carvajal-Rodriguez, de Una-Alvarez et al. 2009), 

rendering it well-suited for the large number of multiple comparison adjustments performed in 

this study. 

5.2.4 Additional Analyses 

Additional analyses focused on WMT-activity relationships that significantly differentiated OBP 

from OCP. We repeated the above analyses separating youth into those with and without non-BD 

disorders. We also conducted the above analyses in OHP as a comparison group for OBP and 

OCP. We determined how WMT measures correlated with FA and age. We examined between-

group differences in WMT and activity measures and determined whether main findings 

remained after excluding youth taking psychotropic medications. Finally, we examined between-
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group differences in symptom severity (using SCARED, CALS, MFQ, and KMRS) and 

determined whether symptoms that differed between groups impacted significant between-group 

differences in WMT-activity relationships. Here, we examined how symptom measures 

moderated WMT-activity relationships by determining whether there were significant 

interactions between symptom severity and WMT measures on neural activity. 

5.3 RESULTS 

5.3.1 Analyses Testing Hypotheses 

When examining responses to negative emotional faces in all ROIs, no predictors optimized 

model fit, indicating that there was no significant relationship between any of the predictors and 

activity in the amygdala, vlPFC, and ACC when processing negative emotions. Thus, we will 

hereafter focus on findings pertaining to the processing of positive (i.e. happy) emotional faces.  

Of the initial 163 predictors, 14 predictors, together, optimized model fit using the 

minimum λ (λ=1.436) identified by cross-validation when examining responses to happy faces in 

all ROIs (Figure 20). Plots A-F represent variable fit for activity in response to happy faces in the 

left amygdala (Figure 20A), right amygdala (Figure 20B), left vlPFC (Figure 20C), right vlPFC 

(Figure 20D), bilateral cACC (Figure 20E), and bilateral rACC (Figure 20F). Plot G represents 

the non-zero variable fit after cross validation (Figure 20G). 
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Figure 20: Exp 3. Elastic Net Plots 
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Eight GROUPxWMT interactions showed relationships with activity in all ROIs (inverse 

for OBP, positive for OCP): forceps minor RD, right cingulum-cingulate gyrus volume and 

length, right inferior longitudinal fasciculus length, left cingulum-angular bundle volume, 

forceps major volume and RD, and left superior longitudinal fasciculus-parietal AD. Four 

variables showed positive relationships with activity in all ROIs for all youth: left cingulum-

cingulate gyrus volume, left superior longitudinal fasciculus-temporal volume and length, and 

left handedness. Two variables showed inverse relationships with activity in all ROIs for all 

youth: right handedness and medium SES. (Table 30) 

 

 
Table 30: Exp 3. Elastic Net Coefficients and Explained Variance 

 

 

 
A pseudo r-squared, calculated containing the 14 non-zero predictors from the model 

versus an intercept only model, indicated that 16.5% of the variance in activity to happy faces in 

all ROIs was explained by these predictors. Eight of these predictors were GROUPxWMT 
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interaction variables (Figure 21). This heat map represents color-coded exponentiated 

coefficients for GROUPxWMT interaction variables in the elastic net model. Each row 

represents a variable with a group interaction between OBP and OCP that was found to be a 

significant predictor variable in the model. Each column represents one of the six regions for 

which the predictor variables predicted activity in response to happy faces. Exponentiated 

coefficients, representing the degree to which the predictor variables were associated with 

activity, are depicted with increased coefficients ranging from white to green, representing the 

least and greatest coefficient observed of these variables in this model, respectively. 

 

 

 

Figure 21: Exp 3. Heat Map of Select Exponentiated Coefficients 
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Of these interactions, the slopes of 2 WMT-activity relationships significantly differed 

between OBP and OCP after correcting for multiple comparisons (Table 31). 

 

 
Table 31: Exp 3. Slope Comparisons between Offspring of Bipolar and Comparison Parents 

 

 

 
These significant relationships were between right cingulum-cingulate gyrus length and 

cACC activity (p = 0.024 (0.054, corrected)) and between forceps minor RD and rACC activity 

(p = 0.014 (0.014, corrected)) (Figure 22). In OBP, longer right cingulum-cingulate gyrus length 

and greater forceps minor RD were associated with lower cACC and rACC activity to happy 
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faces, respectively. Conversely, in OCP, longer right cingulum-cingulate gyrus length and 

greater forceps minor RD were associated with greater cACC and rACC activity, respectively. 

 

 

 

Figure 22: Exp 3. Comparison of White Matter Tract-Activity Relationships in Offspring of Bipolar and 

Comparison Parents 

 

 
These WMT-activity relationships for right cingulum-cingulate gyrus length-cACC 

activity and forceps minor RD-rACC activity remained significantly different between OBP and 

OCP only in youth without non-BD disorders (p = 0.023 (0.002, corrected) and p = 0.017 (< 

0.001, corrected), respectively; Figures 23A-B). These relationships did not remain significantly 

different between OBP and OCP in youth with non-BD disorders (p = 0.276 and p = 0.204, 

respectively; Figures 23C-D). 
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Figure 23: Exp 3. Comparison of White Matter Tract-Activity Relationships in Offspring of Bipolar and 

Comparison Parents With and Without Non-Bipolar Disorders 

 

5.3.2 Additional Analyses 

The relationships for OHP were in between those of OBP and OCP (Figure 24). These 

relationships did not significantly differ, however, between OHP and either OBP (p = 0.401 for 

right cingulum-cingulate gyrus length-cACC activity, p = 0.258 for forceps minor RD-rACC 
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activity) or OCP (p = 0.126 for right cingulum-cingulate gyrus length-cACC activity, p = 0.107 

for forceps minor RD-rACC activity). 

 

 

 

Figure 24: Exp 3. Comparison of White Matter Tract-Activity Relationships in Offspring of Bipolar, 

Comparison, and Healthy Offspring 

 

 
Removing youth who were taking psychotropic medications did not affect the 

significance of either the right cingulum-cingulate gyrus length-cACC activity relationship (p = 

0.018 (0.014, corrected)) or the significance of the forceps minor RD-rACC activity relationship 

(p = 0.003 (< 0.001, corrected)) in all OBP and OCP (Figure 25). 
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Figure 25: Exp 3. Comparison of White Matter Tract-Activity Relationships in Unmedicated Offspring of 

Bipolar and Comparison Parents 

 

 
Greater right cingulum-cingulate gyrus length was significantly associated with lower 

right cingulum-cingulate gyrus FA (p = 0.001 (0.002, corrected)). Additionally, greater forceps 

minor RD was significantly associated with lower forceps minor FA (p < 0.001 (< 0.001, 

corrected)). (Table 32) 
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Table 32: Exp 3. Correlations between Neuroimaging Measures and Fractional Anisotropy 

 

 

 
Age was not significantly associated with right cingulum-cingulate gyrus length, forceps 

minor RD, cACC activity, or rACC activity in either OBP or OCP (Figure 26). 
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Figure 26: Exp 3. Relationships between Age and Measures of White Matter Tracts and Activity 

 

 
When comparing individual WMT and activity measures in all OBP and OCP, no group 

differences were found (Table 33). 
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Table 33: Exp 3. Between-Group Differences in Neuroimaging Measures 

 

 

 
ANOVAS examined group differences in SCARED, CALS, MFQ, and KMRS measures 

(Table 34). 
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Table 34: Exp 3. Between-Group Differences in Symptom Measures 

 

 

 
OBP had significantly greater CALS-P (p = 0.026 (0.044, corrected)) and KMRS (p = 

0.002 (0.004, corrected)) scores compared with OCP (Figure 27). 

 

 

 

Figure 27: Exp 3. Between-Group Differences in Symptom Measures 
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When examining the moderating effect of symptom measures on WMT-activity 

relationships, regression analyses showed a significant interaction between CALS-P scores and 

forceps minor RD on rACC activity in OBP (F(1,29) = 5.566, p = 0.025 (0.036, corrected)) 

(Table 35).  

 

 
Table 35: Exp 3. Interaction Analyses between Symptoms and White Matter Tract-Activity Relationships 

 

 

 
Separating OBP into those with higher and lower CALS-P scores, based on a median 

split, revealed that those with higher CALS-P scores (mean (SD) = 15.33 (10.52), r = -0.214, p = 

0.443) had greater inverse WMT-activity relationships than those with lower scores (mean (SD) 

= 2.13 (2.00), r = -0.181, p = 0.503) (Figure 28). 
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Figure 28: Exp 3. Effects of Symptom Measures on White Matter Tract-Activity Relationships 

5.4 DISCUSSION 

5.4.1 Summary of Findings 

To our knowledge, this is the first study to use multimodal neuroimaging techniques to identify 

WMT-activity relationships that distinguish youth at familial risk for BD from youth at risk for 

non-BD psychiatric disorders. Our goal was to explore WMT-activity relationships in emotion 

processing circuitry that distinguish OBP from OCP which may lead to the identification of 

potential markers of BD that precede illness onset. An elastic net regression model indicated that 

16.5% of the variance in activity to happy faces in the amygdala, vlPFC, and ACC was predicted 
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by 14 GROUPxWMT interaction, WMT, and demographic variables. This admittedly small 

amount of variance may be partly explained by the fact that six outcome regions were included 

in a single elastic net regression model. In other words, the 14 predictor variables, together, 

explained 16.5% of the variance in all 6 outcome regions at the same time. This also points 

toward the complex nature of the interaction between WMT measures and activity in the 

amygdala and PFC regions and suggests that many additional factors are likely contributing to 

activity in these regions. 

The primary aim of the elastic net regression analysis was to determine which WMT 

variables had significant relationships with activity in the amygdala, vlPFC, and/or ACC that 

distinguished OBP from OCP. Of the 8 GROUPxWMT interaction variables that resulted from 

the model, only 2 relationships significantly differed between OBP and OCP: right cingulum-

cingulate gyrus length-cACC activity and forceps minor RD-rACC activity. Greater right 

cingulum-cingulate gyrus length was associated with lower cACC activity to happy faces in OBP 

but greater activity in OCP. Similarly, greater forceps minor RD was associated with lower 

rACC activity to happy faces in OBP but greater activity in OCP. Neither relationship 

significantly differentiated either at-risk group from OHP, however. 

Greater WMT length has been associated with structural reductions in fiber diameter, 

myelin, or numbers of fibers (Lewis, Theilmann et al. 2013). Similarly, greater WMT RD has 

been associated with abnormal myelination, a greater number of obliquely oriented fibers, and 

local inflammation (Song, Yoshino et al. 2005). Furthermore, additional analyses revealed that 

both greater right cingulum-cingulate gyrus length and forceps minor RD were associated with 

lower FA and, thus, lower fiber collinearity. This suggests that, in OBP alone, lower fiber 

collinearity in the right cingulum-cingulate gyrus and forceps minor was significantly associated 
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with lower activity in the cACC and rACC, respectively. When comparing these WMT-activity 

relationships in youth with and without non-BD disorders, the between-group differences in 

these relationships remained significant only in OBP and OCP without disorders. Furthermore, 

removing youth taking psychotropic medications did not affect the significance of either WMT-

activity relationship. Together, these findings indicate that the key WMT-activity relationships 

differentiating OBP from OCP were the right cingulum-cingulate gyrus length-cACC activity 

and forceps minor RD-rACC activity relationships when processing positive emotions, which 

remained evident when excluding youth who had non-BD psychiatric disorders and who were 

taking medications. 

Previous neuroimaging studies of youth and adults with BD provide similar findings 

regarding WMT and activity abnormalities, separately, during emotion processing. Studies have 

reported that individuals with, and at risk for, BD have abnormally low ACC activity (Phillips, 

Drevets et al. 2003, Blumberg, Donegan et al. 2005, Dolcos, Iordan et al. 2011, Chan, Sussmann 

et al. 2016) and abnormally low fiber collinearity in the cingulum (Benedetti, Yeh et al. 2011, 

Linke, King et al. 2013, Versace, Andreazza et al. 2014) and forceps minor (Wang, Kalmar et al. 

2008, Chaddock, Barker et al. 2009, Benedetti, Yeh et al. 2011, Haller, Xekardaki et al. 2011, 

Versace, Andreazza et al. 2014). Our findings add to this literature by showing that, in OBP, 

lower fiber collinearity in the cingulum and forceps minor were associated with lower activity to 

happy faces in the cACC and rACC, respectively. The cingulum is the WMT that forms the 

white matter core of the cingulate gyrus and has an essential role in emotion regulation (Papez 

1937, Mufson and Pandya 1984, Wang, Jackowski et al. 2008, Bruni and Montemurro 2009). 

The forceps minor is the major interhemispheric WMT that anteriorly connects the cerebral 

hemispheres, integrates emotion, language, attention, arousal, memory, and sensory-motor 
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functions, and is vulnerable to repeated stresses such as psychosis and impulsivity (Lavagnino, 

Cao et al. 2015, Sarrazin, d'Albis et al. 2015). The cACC is a part of the central executive 

network with specific roles in attentional task performance (Van Veen and Carter 2002, Haas, 

Omura et al. 2006, Margulies, Kelly et al. 2007). The rACC has extensive connections to the 

amygdala and is involved in conditioned emotional learning, modulating internal emotional 

responses, and assigning emotional valence to internal and external stimuli (Devinsky, Morrell et 

al. 1995, Zimmerman, DelBello et al. 2006). Thus, the inverse relationships between right 

cingulum-cingulate gyrus length and cACC activity, as well as between forceps minor RD and 

rACC activity, in OBP may indicate that, in this at-risk group, abnormal myelination and/or 

more obliquely oriented fibers in the cingulum and forceps minor may contribute to lower 

activity in the ACC by reducing the integrity of connections between regions that are important 

to positive emotional processing and regulation (Morgan, Mishra et al. 2009).  

Conversely, the relationships between right cingulum-cingulate gyrus length and cACC 

activity, as well as between forceps minor RD and rACC activity, were positive in OCP such that 

lower fiber collinearity in the cingulum and forceps minor contributed to greater ACC activity in 

this group. Additionally, while not statistically significant, these WMT-activity relationships for 

OHP were intermediate between those of OBP and OCP. Because the at-risk groups did not 

differ from the healthy controls, it is not possible at this point to determine whether this WMT-

activity relationship is a neural marker preceding BD illness. Given the significantly greater 

familial risk for BD in OBP versus OCP, however, we may speculate that the right cingulum-

cingulate gyrus-cACC activity and forceps minor RD-rACC activity relationships suggest 

diverging pathophysiological mechanisms in OBP versus OCP. Further study, including larger 
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sample sizes and longitudinal analyses, is needed to understand the implications of these main 

findings to BD risk and development. 

Despite the lack of differences with OHP, additional analyses showed that OBP had 

significantly greater affective lability and manic symptom severity than OCP. Furthermore, there 

was a significant interaction between parent-reported affective lability severity and forceps 

minor RD on rACC activity to happy faces in OBP. Specifically, greater affective lability was 

associated with a greater inverse WMT-activity relationship. Affective lability is defined as “a 

predisposition to marked, rapidly reversible shifts in affective states, extremely sensitive to 

meaningful environmental events that might induce more modest emotional responses in normal 

individuals” (Siever and Davis 1991, Henry, Van den Bulke et al. 2008). Given that affective 

lability is a precursor of BD in OBP (Hafeman, Merranko et al. 2016), the forceps minor RD-

rACC activity relationship to happy faces may represent a neural basis for this clinical risk 

marker in OBP.  

Six other variables (right cingulum-cingulate gyrus volume, right inferior longitudinal 

fasciculus length, left cingulum-angular bundle volume, forceps major volume and RD, and left 

superior longitudinal fasciculus-parietal AD) showed GROUPxWMT interactions (inverse for 

OBP, positive for OCP). All of these measures, except left superior longitudinal fasciculus-

parietal AD, were inversely associated with FA, indicating that lower right cingulum-cingulate 

gyrus, right inferior longitudinal fasciculus, left cingulum-angular bundle, and forceps major 

fiber collinearity were associated with lower activity in OBP, but greater activity in OCP; the 

opposite was true for the left superior longitudinal fasciculus-parietal AD relationship. None of 

these relationships significantly differed between groups after SGoF corrections, however. Three 

WMT variables (left cingulum-cingulate gyrus volume and left superior longitudinal fasciculus-
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temporal volume and length) showed positive relationships with activity to happy faces in all 

ROIs for all youth. These measures were inversely associated with FA, indicating that lower left 

cingulum-cingulate gyrus and left superior longitudinal fasciculus-temporal fiber collinearity 

were associated with greater activity in all ROIs in OBP and OCP. Handedness also showed 

relationships with activity in all ROIs for all youth (inverse for right, positive for left); however, 

very few participants were left- (n=4) or mixed-handed (n=3), suggesting that handedness did 

not have a significant effect on the model. Similarly, youth with medium SES were relatively 

few (n=11), and neither very low, low, high, nor very high SES had any predictive value in the 

elastic net model, suggesting that SES also did not have a significant effect on the model. In 

summary, none of these relationships significantly differed between OBP and OCP. Thus, while 

these variables showed relationships with activity in emotion processing neural circuitry to 

happy faces, they are unlikely to be markers that either distinguish OBP from OCP or indicate 

specific risk for BD. 

All of the significant findings were specific to happy faces, reflecting the importance of 

positive emotion processing abnormalities in the development of BD. A common theme that has 

been observed in neuroimaging studies of BD is that of abnormal activity in emotion processing 

circuity to positive emotional stimuli (Phillips and Swartz 2014). Specifically, an emerging 

pattern is that of abnormally greater amygdala, striatal, and medial PFC activity in response to 

positive emotional stimuli in individuals affected with BD (Lawrence, Williams et al. 2004, 

Blumberg, Donegan et al. 2005). Several studies have shown that adults with BD have 

abnormally increased amygdala and medial PFC activity (Surguladze, Marshall et al. 2010, 

Keener, Fournier et al. 2012), as well as abnormally decreased positive bilateral OFC-amygdala 

effective connectivity (Almeida, Versace et al. 2009), to emotional faces, and particularly happy 
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faces. These results suggest that individuals with BD have a dysregulated amygdala response to 

positive emotional stimuli (Phillips and Swartz 2014). Overall, our findings suggest that 

abnormal perception of happy faces may reflect an underlying attentional bias to positive 

emotional stimuli, which may predispose to deficits in social processing, heightened perception 

of social reward, and, ultimately, mania and/or hypomania. 

5.4.2 Conclusions 

In this study, we showed that the relationships between right cingulum-cingulate gyrus length-

cACC activity when processing happy faces, as well as between forceps minor RD and rACC 

activity when processing happy faces, significantly differentiated youth at familial risk for BD 

from youth at risk for non-BD psychiatric disorders. These relationships were evident in youth 

unaffected by psychiatric disorders and medications. Additionally, the relationship between 

forceps minor RD and rACC activity was moderated by symptoms of affective lability. Given 

these findings, it is possible that these WMT-activity relationships reflect underlying neural 

processes that contribute to affectively labile youth at risk for BD and may help differentiate 

them from youth at risk for other psychiatric disorders. This is an important step toward 

identifying neural measures of BD risk that may help improve the accuracy in identifying and 

intervening for youth most at risk for future BD. 
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6.0  GENERAL DISCUSSION 

6.1 SUMMARY OF FINDINGS 

In this dissertation, we first sought to determine measures of activity and FC in emotion 

processing and regulation neural circuitries that distinguished youth at risk for BD from youth at 

risk for other psychiatric disorders and healthy controls. We found that OBP showed greater 

right rACC activity when regulating attention away from happy faces and greater bilateral 

amygdala-left cACC FC when regulating attention away from fearful faces, both of which had 

significant relationships with affective lability (Chapter 3). These findings contribute to the 

model of emotion regulation in BD risk which previously consisted of greater vlPFC activity 

when regulating attention away from happy faces (Ladouceur, Diwadkar et al. 2013), lower right 

vlPFC-left amygdala FC when regulating attention away from fearful faces (Ladouceur, 

Diwadkar et al. 2013), lower right vlPFC-left dlPFC FC during emotion regulation (Ladouceur, 

Diwadkar et al. 2013), lower collinearity in the cingulum (Benedetti, Yeh et al. 2011, Versace, 

Andreazza et al. 2014), lower collinearity in the forceps minor of the corpus callosum (Wang, 

Jackowski et al. 2008, Wang, Kalmar et al. 2008, Chaddock, Barker et al. 2009, Benedetti, Yeh 

et al. 2011, Haller, Xekardaki et al. 2011, Versace, Andreazza et al. 2014, Sarrazin, d'Albis et al. 

2015), lower collinearity in the superior longitudinal fasciculus (Chaddock, Barker et al. 2009, 

van der Schot, Vonk et al. 2010, Versace, Almeida et al. 2010, Benedetti, Yeh et al. 2011, 
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Versace, Andreazza et al. 2014), and lower collinearity in the uncinate fasciculus (Versace, 

Almeida et al. 2008, Benedetti, Yeh et al. 2011, Linke, King et al. 2013, Versace, Andreazza et 

al. 2014) (Figure 29). 

 

 

 

Figure 29: Updated Model of BD Risk - Emotion Regulation 
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Next, we took a similar approach to identify measures of activity and FC in reward neural 

circuitry that uniquely distinguished OBP from control groups. We observed that OBP had lower 

right VS-left cACC FC to loss and greater right pars orbitalis-OFC FC to reward, and these 

findings were independent of present non-BD psychopathology, psychotropic medication use, 

and symptomatology (Chapter 4). These findings contribute to the model of reward processing in 

BD risk which previously consisted of greater amygdala activity during reward reversal (Linke, 

King et al. 2012), greater left OFC activity during reward reversal and receipt (Linke, King et al. 

2012, Singh, Kelley et al. 2014), lower cACC activity during loss anticipation (Singh, Kelley et 

al. 2014), more negative bilateral VS-right vlPFC FC during the processing of both reward and 

loss receipt (Manelis, Ladouceur et al. 2016), greater cACC-right vlPFC FC during loss 

anticipation (Singh, Kelley et al. 2014), and lower cACC-right vlPFC FC during reward 

anticipation (Singh, Kelley et al. 2014) (Figure 30). 

 

 

 

Figure 30: Updated Model of BD Risk - Reward Processing 
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Finally, we explored relationships between WMT structure and activity in emotion 

processing neural circuitry in youth at risk for BD. We found that the relationships between right 

cingulum-cingulate gyrus length and cACC activity, as well as between forceps minor RD and 

rACC activity, when processing happy faces significantly differentiated OBP from OCP 

(Chapter 5). These findings were evident in youth unaffected by non-BD psychopathology, and 

the latter finding was moderated by symptoms of affective lability. These findings contribute to 

the model of emotion processing in BD risk which previously consisted of greater right 

amygdala activity to all emotional faces (Manelis, Ladouceur et al. 2015), lower ACC activity 

during facial emotion processing (Chan, Sussmann et al. 2016), lower dlPFC activity during 

facial emotion processing (Tseng, Bones et al. 2015), lower right amygdala-ACC FC to all 

emotional faces (Manelis, Ladouceur et al. 2015), greater right amygdala-left vlPFC FC to happy 

faces (Manelis, Ladouceur et al. 2015), lower collinearity in the forceps minor of the corpus 

callosum (Wang, Jackowski et al. 2008, Wang, Kalmar et al. 2008, Chaddock, Barker et al. 2009, 

Benedetti, Yeh et al. 2011, Haller, Xekardaki et al. 2011, Versace, Andreazza et al. 2014, 

Sarrazin, d'Albis et al. 2015), and lower collinearity in the uncinate fasciculus (Versace, Almeida 

et al. 2008, Benedetti, Yeh et al. 2011, Linke, King et al. 2013, Versace, Andreazza et al. 2014) 

(Figure 31). 
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Figure 31: Updated Model of BD Risk - Emotion Processing 

 

 
We will now discuss the implications of these findings for the pathophysiology 

underlying BD risk and possible targets for improved diagnostic and treatment interventions for 

youth at risk for BD. 
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6.2 CONTRIBUTIONS TO THE NEURAL MODEL OF BD RISK 

The primary aim of this dissertation was to examine emotion processing, emotion regulation, and 

reward neural circuitries both at baseline and at follow-up, as well as relationships between white 

matter structure and neural activity, in order to contribute to the neural model of BD risk. In 

addition to furthering our understanding of specific neural regions and tracts, other goals of this 

work included: examining relationships between neural measures and symptomatology, 

determining state- versus trait-dependent natures of these neural circuitries, and exploring effects 

of non-BD psychopathology, medications, and age. A summary of the main contributions of this 

dissertation to the neural model of BD risk can be found in red in Figure 32. 

 

 

 

Figure 32: Contributions to the Neural Model of Bipolar Disorder Risk with Chapter Numbers in 

Superscripts 
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6.2.1 Additional Understanding of Specific Neural Regions and Tracts 

6.2.1.1 Caudal and Rostral Anterior Cingulate Cortex 

Some of the most substantial and consistent findings to arise from this dissertation pertain to the 

ACC. It is the only neural region that had significant implications in all three studies laid out in 

this work. When examining emotion processing and regulation neural circuitry, we showed 

greater right rACC activity to happy versus no faces in OBP compared with OCP during EF-2-

BACK performance, lower right rACC activity to happy versus neutral faces in OBP and OCP 

compared with OHP during EF-0-BACK performance, and greater bilateral amygdala-left cACC 

FC to fearful, happy, and neutral versus no faces in OBP compared with OCP during EF-2-

BACK performance. When examining reward processing neural circuitry, we showed lower 

right VS-left cACC FC to loss in OBP compared with both OCP and OHP. When examining 

relationships between WMT structure and activity in emotion processing neural circuitry, we 

showed inverse relationships between right cingulum-cingulate gyrus length and bilateral cACC 

activity when processing happy faces versus shapes, as well as between forceps minor RD and 

bilateral rACC activity when processing happy faces versus shapes, which differed significantly 

from the positive relationships in OCP.  

 The primary contribution of these findings to the current model of BD risk pertain to the 

division of the ACC into rostral and caudal regions. The ACC, as a whole, has been well 

established in the literature as a region involved in both emotional and cognitive tasks (Bush, 

Luu et al. 2000). The rACC, specifically, has been found to have more affective roles in 

processing emotional conflict and integrating emotion and cognition (Vogt, Finch et al. 1992, 

Van Hoesen, Morecraft et al. 1993, Carmichael and Price 1995, Devinsky, Morrell et al. 1995, 

Bush, Luu et al. 2000, Bishop, Duncan et al. 2004, Bissière, Plachta et al. 2008). Conversely, the 
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cACC has been shown to be a part of the central executive control network with roles pertaining 

more to attentional task performance (Van Veen and Carter 2002, Haas, Omura et al. 2006, 

Margulies, Kelly et al. 2007). While these separate functions have been identified, little work has 

been done to determine the roles and implications of these separate regions in the 

pathophysiology of BD and BD risk.  

 For example, in emotion processing neural circuitry, studies have found lower ACC 

activity (Tseng, Bones et al. 2015, Chan, Sussmann et al. 2016) and lower amygdala-ACC FC 

(Manelis, Ladouceur et al. 2015) in youth at risk for BD. None of these studies, however, 

determined whether these findings were specific to the rostral or caudal portion of the ACC. In 

accordance with previous studies showing lower activity in the ACC, as a whole, we found that 

activity in the right rACC was lower compared with OHP during EF-0-BACK performance, a 

task that is similar to the emotional face processing task (DFT) in that participants are asked to 

attend to a task with no working memory component while emotional faces are simultaneously 

presented. Similarly, bilateral rACC activity when processing happy faces was inversely 

correlated with forceps minor RD, and this relationship significantly differentiated OBP from 

OCP. In line with previous studies characterizing the rACC as more affective in nature (Vogt, 

Finch et al. 1992, Bush, Luu et al. 2000), our findings further suggest that the rostral ACC is the 

primary portion of the ACC implicated in emotion processing neural circuitry in youth at risk for 

BD. We did, however, find one additional role of the cACC in emotion processing neural 

circuitry. Specifically, we found that the relationship between right cingulum-cingulate gyrus 

length and cACC activity when processing happy faces also distinguished OBP from OCP. Thus, 

while the rACC appears to be more heavily implicated in the processing of emotions, the cACC 

may also have a contributing role in this neural circuitry. 
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In addition to identifying the portion of the ACC primarily implicated in emotion 

processing neural circuitry, our findings also suggest that lower rACC activity is primarily 

observed when OBP are processing happy faces. It has been suggested that a deficit in depressed 

individuals may reflect negative bias when perceiving emotional faces such that happy faces are 

interpreted as neutral faces (Schaefer, Baumann et al. 2010). A decrease in activity in the rACC 

(and cACC) may thus contribute to an abnormal perception of happy faces in patients with and at 

risk for BD, and perhaps particularly those who are in depressed states. The mechanism by 

which this occurs might pertain to the role of the rACC in suppressing amygdala activity when 

participants are attempting to resolve emotional conflict (Etkin, Egner et al. 2006). Indeed, 

abnormally greater amygdala activity has been shown in individuals with BD when processing 

positive emotional stimuli (Lawrence, Williams et al. 2004, Blumberg, Donegan et al. 2005, 

Surguladze, Marshall et al. 2010, Keener, Fournier et al. 2012). Thus, we may postulate that, in 

youth at risk for BD, abnormally lower activity in the rACC, specifically, may reflect inefficient 

recruitment of this region to downregulate amygdala activity, leading to abnormally greater 

amygdala activity when processing positive emotional stimuli, such as happy faces. This would 

implicate the rACC as a key region in emotional processing neural circuitry in youth at risk for 

BD. 

The circuitry of emotion regulation, on the other hand, more clearly has roles for both the 

rostral and caudal portions of the ACC. Compared to studies examining emotion and reward 

processing neural circuitries, previous studies investigating emotion regulation in youth at risk 

for BD have produced little regarding the role of the ACC. In our studies, we found that greater 

rACC activity when regulating attention away from positive emotions and greater bilateral 

amygdala-left cACC FC when regulating attention away from all emotions (i.e. fearful, happy, 
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and neutral faces) during EF-2-BACK performance distinguished OBP from OCP. The 2-back 

condition of the emotional face n-back task, compared to the 0-back condition, introduces a 

difficult working memory component that is not present when simply processing emotions. Thus, 

it is not surprising that both the “affective” rACC and the “attentional” cACC are recruited in 

OBP during a task that requires the ability to regulate emotions while simultaneously attending 

to a working memory task. We may speculate about a pathophysiological process in OBP that 

underlies their attempt to regulate emotions during attentional tasks. On one hand, greater rACC 

activity may correspond with an attempt to downregulate amygdala activity when resolving 

emotional conflict. On the other hand, greater FC between the cACC and the amygdala may 

reflect an attempt on the part of the cACC to upregulate amygdala activity, or this may reflect a 

failure of the cACC to downregulate amygdala activity. Altogether, this may reflect a 

compensatory, but ultimately inefficient, mechanism in the ACC to regulate amygdala activity 

while redirecting attention away from emotional face distracters during an attentional task in 

youth at risk for BD. 

Conversely, in reward processing neural circuitry, the caudal ACC appears to be the 

portion of the ACC that is primarily implicated. One previous study showed that OBP had lower 

cACC activity and greater vlPFC-cACC FC when anticipating loss, as well as lower vlPFC-

cACC FC when anticipating rewards (Singh, Kelley et al. 2014). In line with these findings, we 

found that FC between the bilateral (and right) VS and the left cACC when experiencing loss 

was lower in OBP compared to both OCP and OHP. While such findings have not been shown in 

individuals with or at risk for BD, they are consistent with studies showing lower connectivity 

between the left cACC and both the bilateral and right VS during tasks related to gambling and 

decision-making, specifically correlating with decreases in impulsive behavior strategies (Jung, 
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Schulte et al. 2013, van Holst, Chase et al. 2014). Thus, our work here may have uncovered a 

unique role of the left cACC, and its FC with the VS, in abnormal processing of loss in youth at 

risk for BD. Specifically, we may speculate that an abnormal connection between the left cACC 

and the VS in youth at risk for BD may negatively affect their ability to properly use behavioral 

and/or coping strategies when faced with either ambiguous or risky decisions that have outcomes 

pertaining to loss. Additionally, this may further reflect difficulty learning from punishment or 

failure, which may manifest as symptoms of impulsivity or impulsive sensation seeking. 

Specifically, individuals may continue to engage in risky situations with the potential for reward 

receipt despite evidence that these attempts may be futile or detrimental. 

 In summary, the findings presented in this dissertation support and add to the existing 

literature regarding the role of the ACC in emotion processing, emotion regulation, and reward 

processing neural circuitries (Figure 33). These roles primarily include abnormally lower ACC 

recruitment during the processing of emotions and rewards, as well as abnormally greater ACC 

recruitment during the regulation of emotions. More specifically, we observed three main 

findings. First, while both the rACC and cACC are implicated in circuitries related to emotion, 

the rACC appears to have a greater role in the processing of positive emotions while the cACC 

has a greater role in the processing and regulation of both positive and negative emotions. This is 

consistent with the literature suggesting that the rACC is generally characterized as more 

affective in nature, while the cACC is generally characterized as more evaluative or attentional 

in nature (Vogt, Finch et al. 1992, Bush, Luu et al. 2000). Second, the cACC appears to have a 

greater role in reward processing neural circuitry than the rACC. Third, abnormalities in the 

rACC appear to pertain more to activity, on its own, while abnormalities in the cACC appear to 

pertain more to FC between this and other regions, potentially implicating the cACC more in 



 153 

roles that involve modulation or regularization between regions in emotion and reward neural 

circuitries. Together, this suggests that there is a failure to recruit the rACC during the 

processing of predominantly happy emotional faces but greater recruitment of the ACC, as a 

whole, during more explicit emotion regulation. The combination of these processes likely 

reflects an ineffective neural mechanism to process and regulate emotions in OBP that likely 

involves aberrant connections between both the rostral and caudal ACC and the amygdala. 

Furthermore, there might be a laterality effect and a somatotopic organization of the ACC such 

that the right ACC is may be more involved when processing and regulating positive emotions 

while the left ACC may be more involved when processing and regulating negative emotions and 

stimuli pertaining to loss. Thus, our findings correspond with previous studies that implicate the 

rACC in more affective roles and the cACC in more attentional roles and altogether highlight the 

ACC as a key region that is important to the underlying pathophysiology predisposing to BD 

risk.  
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Figure 33: Neural Model of BD Risk - Anterior Cingulate Cortex 

 

6.2.1.2 Additional Neural Regions and Tracts 

While the majority of our contributions to the current model of BD risk pertain to the ACC, we 

observed several findings in other neural regions that also add to and support this model. Such 

observations were found for all other regions that we examined throughout our studies, including 

the amygdala, VS, vlPFC, OFC, and dlPFC. 

 Our main finding pertaining to the amygdala, as mentioned above, was that OBP showed 

greater bilateral amygdala-left cACC FC to fearful, happy, and neutral versus no faces during 
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emotion regulation. The most comparable findings in previous studies have shown greater 

amygdala activity when processing emotional faces (Phillips, Ladouceur et al. 2008, Olsavsky, 

Brotman et al. 2012, Tseng, Bones et al. 2015, Chan, Sussmann et al. 2016), specifically fearful 

faces (Olsavsky, Brotman et al. 2012), and lower amygdala-vlPFC FC to fearful faces during 

emotion regulation (Ladouceur, Diwadkar et al. 2013). Regarding its role in emotion regulation 

neural circuitry, the amygdala is involved in regulating internal emotional states, cognitively 

evaluating the emotional content of complex perceptual cues, and processing information about 

emotions that are conveyed by complex perceptual cues (Gallagher and Chiba 1996). Similarly, 

as mentioned above, the cACC is involved in implicit emotion regulation with specific roles in 

attentional task performance (Van Veen and Carter 2002, Haas, Omura et al. 2006, Margulies, 

Kelly et al. 2007, Kober, Barrett et al. 2008, Phillips, Ladouceur et al. 2008, Kim, Loucks et al. 

2011, Goodkind, Gyurak et al. 2013, Frank, Dewitt et al. 2014). In contrast to the lower 

connectivity between the amygdala and vlPFC, which may reflect the modulatory role that the 

vlPFC plays on amygdala activation in the context of emotional distracters (Ladouceur, 

Diwadkar et al. 2013), abnormally greater connectivity between the amygdala and cACC may 

suggest an inefficient compensatory mechanism of two neural regions with roles in emotion 

regulation during attentional control. Further, while lower amygdala-ACC FC has been shown 

while processing emotional faces (Manelis, Ladouceur et al. 2015), we alternatively show greater 

amygdala-ACC FC while regulating attention away from emotional faces. This parallels the 

findings presented above in which lower rACC activity was observed during emotion processing 

but greater rACC activity was observed during emotion regulation. This suggests that greater 

recruitment of the amygdala and ACC is necessary when difficult working memory or attentional 

tasks are added to the relatively simpler processing of emotional faces. 
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 A second additional finding pertained to the VS. We observed lower right VS-left cACC 

FC when experiencing loss in OBP compared with OCP and OHP. The VS has established 

connections with the ACC which may enable reward-based incentives that drive impacts on 

long-term strategic planning (Haber 2011). As mentioned above, previous studies have found 

that lower connectivity between these regions is related to increases in gambling behavior and 

reductions in behavioral strategies important for coping with reward-related decision-making 

tasks (Jung, Schulte et al. 2013, van Holst, Chase et al. 2014). The fact that lower FC between 

the VS and the vlPFC when processing the receipt of both reward and loss has also been shown 

in OBP suggests that the VS may have a primarily inhibitory role when evaluating reward-

related stimuli and forming associations between such stimuli and reward values (Manelis, 

Ladouceur et al. 2016), thus contributing to aberrant reward and loss processing in youth at risk 

for BD. 

 A third additional finding was that of greater FC between the right vlPFC and both the 

left and right OFC to reward in OBP compared with OCP and OHP. Greater vlPFC activity 

(Singh, Kelley et al. 2014) and greater OFC activity (Singh, Kelley et al. 2014) during reward 

processing are findings that have been established in previous studies of youth at risk for BD. 

The vlPFC is important for encoding values of choices and decision-making options (Walton, 

Behrens et al. 2011), while the OFC is important for encoding reward values, comparing values 

of different options (Boorman, Behrens et al. 2009), learning about the rewarding nature of 

stimuli, and rapid stimulus-reinforcement association learning (Rolls 2004). Less is known, 

however, about the relationship between these regions, the specific parts of these regions that are 

involved, and their implications for BD risk. In our studies, the specific parts of these regions 

that were functionally connected were the right pars orbitalis (BA47) and both the left and right 
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OFC (BA11). These specific regions are anatomically connected and have been shown to 

coactivate during reward tasks (Kelly, Uddin et al. 2010, de Schotten, Dell’Acqua et al. 2012, 

Yeterian, Pandya et al. 2012, Zald, McHugo et al. 2012, Snow 2016). Thus, we showed that 

greater FC between BA47 and BA11, specifically, are neural measures that distinguish youth at 

risk for BD from control groups. The specific mechanism by which this occurs may be an 

increased attempt to encode rewarding values of choice and decision-making options, suggesting 

a greater attunement to reward stimuli in OBP. 

In parallel with previous studies, our findings primarily implicated the right vlPFC in 

reward processing circuitry in OBP. Studies have shown that relatives of individuals with BD, as 

well as younger adults in early stages of the disorder, have abnormally increased right vlPFC 

gray matter volume (Hajek, Cullis et al. 2013). This is in contrast to adults with BD in whom 

smaller right vlPFC gray matter volume was associated with longer illness duration (Hajek, 

Cullis et al. 2013). These findings suggest that right vlPFC volumes may decrease as BD 

progresses (Kalmar, Wang et al. 2009). Over time, we may thus speculate that OBP who are 

going to develop BD in the future will have progressively reduced right vlPFC volume, and this 

may potentially lead to a reduction in activity and/or FC with the OFC as BD develops. 

 Another additional finding was that OBP had lower dlPFC activity when processing 

angry faces versus shapes compared with OHP. This directly correlates previous studies showing 

lower dlPFC activity during emotional face processing (Tseng, Bones et al. 2015). Furthermore, 

the dlPFC is a key component of neural circuitries involved in emotion processing and 

regulation, as it has many connections with other prefrontal cortical and subcortical structures 

such as the OFC, thalamus, dorsal striatum, hippocampus, and secondary cortical association 

areas such as the posterior temporal, parietal, and occipital areas (Procyk and Goldman-Rakic 
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2006). Together, our findings correspond with the existing literature and suggest that OBP are 

less able to recruit the dlPFC, and potentially other prefrontal cortical and subcortical regions, 

when attempting to process angry emotions. 

The final findings from our studies pertained to the right cingulum-cingulate gyrus and 

the forceps minor of the corpus callosum. As mentioned above, for the first time in the literature, 

we found that inverse WMT-activity relationships between right cingulum-cingulate gyrus length 

and cACC activity, as well as between forceps minor RD and rACC activity, when processing 

positive emotions distinguished OBP from OCP. The cingulum is the WMT that forms the white 

matter core of the ACC and has an essential role in emotion regulation (Papez 1937, Mufson and 

Pandya 1984, Wang, Jackowski et al. 2008, Bruni and Montemurro 2009). The rACC is located 

around the genu of the corpus callosum (Paus 2001), the part of the tract that gives rise to the 

forceps minor, which integrates emotion with language, attention, and sensorimotor functions 

(Bruni and Montemurro 2009, Sarrazin, d'Albis et al. 2015). This role is directly related to that of 

the rACC in integrating functions of emotion and cognition (Vogt, Finch et al. 1992, Devinsky, 

Morrell et al. 1995, Bush, Luu et al. 2000, Bishop, Duncan et al. 2004, Bissière, Plachta et al. 

2008). The related anatomical and functional properties of the cingulum, forceps minor, and 

ACC thus come together to form WMT-activity relationships that uniquely distinguish OBP 

from OCP. Specifically, lower fiber collinearity in these WMTs was associated with lower 

activity in the ACC when processing happy faces. This may indicate that, in youth at risk for BD, 

abnormal myelination and/or more obliquely oriented fibers in the cingulum and forceps minor 

may contribute to lower activity in the ACC by reducing the integrity of connections between 

regions that are important to positive emotional processing (Morgan, Mishra et al. 2009). We 

may further speculate that the above patterns of greater activity in, and FC with, the ACC during 
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emotion regulation may reflect altered fiber alignment in prefrontal WMTs. This may contribute 

to why the rACC does not appear to be recruited to a normal extent during emotion processing 

but is then recruited ineffectively during more explicit emotion regulation. Altogether, this may 

reflect a failed compensatory mechanism in OBP that distinguishes them from the potentially 

less disadvantaged OCP who show increased ACC recruitment with lower WMT collinearity. 

6.2.2 Relationships between Neural Measures and Symptomatology 

Symptoms of depression, mania, affective lability, and anxiety have been identified as the 

strongest dimensions of psychopathology associated with BD risk (Hafeman, Merranko et al. 

2016). It was thus important to relate significant neural findings to these symptoms to better 

understand the implications of these measures to the pathophysiology underlying risk for BD. In 

the studies laid out in this dissertation, our primary findings pertained to parent-reported 

affective lability and its relationship with the ACC. 

Our analyses highlighted two main findings relating affective lability severity to activity 

in the rACC. In our first study, we found that greater right rACC activity when regulating 

attention away from happy faces positively correlated with greater parent-reported affective 

lability severity. In our third study, we identified a significant interaction between parent-

reported affective lability severity and forceps minor RD on rACC activity to processing happy 

faces in OBP such that greater affective lability was associated with a greater inverse WMT-

activity relationship. Our analyses also found a relationship between affective lability severity 

and the cACC. In our first study, we showed that changes in bilateral amygdala-left cACC FC to 

fearful faces positively correlated with changes in parent-reported affective lability severity over 

an approximate 2-year follow-up in all offspring. Together, these findings suggest a relationship 
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between affective lability symptoms and abnormal activity and/or FC in both the rostral and 

caudal ACC during tasks of emotion processing and regulation. 

Affective lability is defined as “a predisposition to marked, rapidly reversible shifts in 

affective states, extremely sensitive to meaningful environmental events that might induce more 

modest emotional responses in normal individuals” (Siever and Davis 1991, Henry, Van den 

Bulke et al. 2008). Studies have postulated that one of the core abnormalities that is observed in 

individuals with BD is a hyperreactivity to environmental stimuli, which may lead to symptoms 

of affective lability (Henry, Van den Bulke et al. 2008). Affective lability has been shown to 

characterize individuals with BD during euthymic periods, suggesting that such emotional 

features characterize BD in between mood episodes (Henry, Van den Bulke et al. 2008). In 

addition, the stress reactivity to environmental factors that is characteristic of affective lability 

may also influence and increase the rate of relapses of depressive and manic episodes (Ellicott, 

Hammen et al. 1990). Individuals with BD may experience perpetual emotional lability because 

they feel emotions with higher intensities when faced with daily emotional stimuli (Henry, Van 

den Bulke et al. 2008). This global emotional hyperreactivity, even during euthymic periods, 

may facilitate relapses (Henry, Van den Bulke et al. 2008). Furthermore, affective lability may 

also underlie clinical states that are associated with BD, such as subclinical bipolarity, 

cyclothymia, ultra-rapid cycling, or even temperaments (Henry, Van den Bulke et al. 2008). 

Studies have also suggested that symptoms of affective lability may underlie 

psychobiological dysregulation that contributes to the development of psychiatric illnesses 

(Siever and Davis 1991). Correlations have been observed between affective dimensions and 

early age of onset for BD, suggesting that symptoms of affective lability may be associated with 

the genetic heterogeneity that underlies BD (Bellivier, Golmard et al. 2001, Bellivier, Golmard et 
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al. 2003, Henry, Van den Bulke et al. 2008). Additionally, symptoms associated with affective 

lability have been found in unaffected relatives of individuals with BD, suggesting that this 

dimension may be a clinical risk marker predisposing to the development of affective disorders 

(Clayton, Ernst et al. 1994, Henry, Van den Bulke et al. 2008). Indeed, affective and emotional 

lability has been shown to be strong risk factors for the development of BD (Hafeman, Merranko 

et al. 2016). 

In studies of BD, patients with early-onset BD have been shown to be more responsive to 

both positive and negative emotional stimuli than older patients (Leibenluft, Charney et al. 

2003). In our analyses, we specifically identify relationships between affective lability and 

activity in the rACC when processing and regulating attention away from positive emotional 

stimuli (i.e. happy faces). As previously described, the rACC is the “affective division” of the 

ACC with roles in processing emotional conflict, integrating emotion and cognition (Vogt, Finch 

et al. 1992, Devinsky, Morrell et al. 1995, Bush, Luu et al. 2000, Bishop, Duncan et al. 2004, 

Bissière, Plachta et al. 2008), and suppressing amygdala activity, leading to reduced emotional 

responsivity (Etkin, Egner et al. 2006). The finding of greater right rACC activity when 

regulating attention away from happy faces may reflect abnormal recruitment of the rACC to 

downregulate amygdala activity, leading to increased symptoms of affective lability. Similarly, 

modulation of the inverse relationship between forceps minor RD and rACC activity by affective 

lability severity likely suggests that abnormal myelination and/or more obliquely oriented fibers 

in the forceps minor may contribute to lower activity in the rACC by reducing the integrity of 

connections between regions that are important to positive emotional processing (Morgan, 

Mishra et al. 2009). Taken together, it is thus possible that abnormal rACC activity when 



 162 

processing and/or regulating attention away from positive emotions may represent a neural basis 

for affective lability severity as a clinical risk marker in youth at risk for BD.  

Furthermore, a relationship between affective lability and the cACC was also identified 

in our analyses. As previously stated, the cACC is a part of the central executive control network 

with a more specific role in attentional task performance (Van Veen and Carter 2002, Haas, 

Omura et al. 2006, Margulies, Kelly et al. 2007). In comparison to the findings pertaining to the 

rACC when processing and regulating attention away from positive emotions, the relationship 

between changes in affective lability severity and changes in bilateral amygdala-left cACC FC, 

over time, was found when regulating attention away from negative (i.e. fearful) emotions. 

Given that patients with BD may be more affectively labile and more responsive to either 

positive or negative emotions (Leibenluft, Charney et al. 2003), we may further speculate that 

the rACC is implicated more in the processing and/or regulation of positive emotions, while the 

cACC is implicated more in the regulation of negative emotions. Together, abnormal activity and 

FC in and between these divisions of the ACC are likely important markers of a predisposition to 

greater affective lability severity in youth at risk for BD.  

6.2.3 State-Dependent versus Trait-Dependent Neural Circuitries and Regions 

Another way in which these analyses contribute to our understanding of BD risk is by examining 

whether the neural circuitries of emotion processing, emotion regulation, and reward processing 

are primarily state-dependent or trait-dependent. State-dependent neural circuitries would be 

expected to be differentially affected by mood states, such as during euthymic, depressed, and 

manic episodes (Van der Schot, Kahn et al. 2010). Trait-dependent circuitries, on the other hand, 

would be expected to remain stable across these different affective states (Van der Schot, Kahn 
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et al. 2010). Differentiating state-dependent and trait-dependent neural circuitries and regions 

would allow us to better understand the underlying pathophysiology of BD, and BD risk, and 

how these mechanisms either change or remain stable throughout mood states. 

 Previous studies have examined the state- and trait-dependent nature of neural regions 

and symptoms associated with emotion processing, emotion regulation, and reward processing 

neural circuitries. State-dependent findings have included results pertaining to amygdala activity 

during emotion processing and regulation (Van der Schot, Kahn et al. 2010, Townsend and 

Altshuler 2012), dlPFC activity during emotion processing (Van der Schot, Kahn et al. 2010), 

ACC activity during cognitive tasks (Strakowski, Delbello et al. 2005), left amygdala-OFC FC 

when viewing sad stimuli and amygdala-OFC FC when viewing happy stimuli (Versace, 

Thompson et al. 2010), and activity in limbic subcortical structures when examining cerebral 

metabolism (Strakowski, Delbello et al. 2005). Trait-dependent findings have included results 

pertaining to OFC activity during emotion processing (Van der Schot, Kahn et al. 2010), right 

amygdala-OFC FC when viewing sad stimuli (Versace, Thompson et al. 2010), abnormal ventral 

ACC, OFC, and VS activity when processing happy and neutral stimuli (Liu, Blond et al. 2012), 

PFC activity during emotion processing and regulation (Van der Schot, Kahn et al. 2010, 

Townsend and Altshuler 2012), vlPFC activity during a Stroop task (Blumberg, Leung et al. 

2003), activity and choline concentrations in the striatum (Strakowski, Delbello et al. 2005), and 

symptoms of impulsivity (Swann, Pazzaglia et al. 2003, Swann, Dougherty et al. 2004, Najt, 

Perez et al. 2007, Peluso, Hatch et al. 2007, Swann, Lijffijt et al. 2009). 

 While the state- and trait-dependent natures of some of the above circuitries and regions 

overlap, several general themes can be noted. For example, regions such as the amygdala, ACC, 

and dlPFC tend to have more state-dependent properties during emotional processing and 
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regulation, while regions such as the vlPFC, OFC, and VS tend to have more trait-dependent 

properties during tasks pertaining to cognition or reward. The findings from our analyses directly 

parallel these broad themes. Because we were examining youth at risk for BD and not 

individuals who had already been diagnosed with BD, we were not able to examine neural 

structure and function in youth who were in different mood states (i.e. euthymic, depressed, or 

manic). We did, however, explore relationships between significant neural findings and 

symptoms. In doing so, we only found relationships between symptomatology (i.e. affective 

lability) and neural measures in emotion processing and regulation neural circuitry (i.e. right 

rACC activity when regulating attention away from happy faces, inverse relationships between 

right cingulum-cingulate gyrus length-cACC activity and forceps minor RD-rACC activity when 

processing happy faces, and changes in bilateral amygdala-left cACC FC when regulating 

attention away from fearful faces). Conversely, no relationships were found between 

symptomatology and neural measures in reward processing neural circuitry (i.e. right VS-left 

cACC FC to loss and right pars orbitalis-OFC FC to reward). Thus, our findings correspond with 

and contribute to the existing literature by suggesting that neural regions implicated in emotion 

processing and regulation neural circuitries, such as the ACC, are primarily state-dependent in 

nature, while neural regions implicated in reward processing neural circuitries, such as the VS, 

vlPFC, and OFC, are more trait-dependent. 

Possible implications for such findings include more targeted diagnostic and treatment 

interventions in youth with, and at risk for, BD. For example, interventions related to emotion 

processing and regulation neural circuitries may be more effective when patients are in a 

particular mood state, such as when a patient is depressed, manic, euthymic, or experiencing 

particularly high levels of a symptom such as affective lability. Interventions pertaining to 
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reward processing neural circuitry, on the other hand, may be effective at any time during the 

course of a patient’s illness because this circuitry is more reflective of traits that are intrinsic to 

BD and BD risk, regardless of mood state. 

6.2.4 Presence of Non-BD Psychopathology 

Another aspect of BD risk that was examined throughout these analyses was that of non-BD 

psychopathology. As previously discussed, OBP are at great familial risk for developing BD 

(Smoller and Finn 2003, Merikangas, Akiskal et al. 2007, Singh and Chang 2013, Phillips and 

Swartz 2014), but they are also at an increased risk for other non-BD mood and anxiety disorders 

(Chang, Steiner et al. 2000). While it is possible that these non-BD disorders may confound 

neural findings, these disorders are common in youth at risk for BD and were thus important 

additional factors to consider when performing our studies. By including both at-risk youth with 

and without these disorders and performing analyses on each group, separately, we attempted to 

determine the extent to which significant neural findings were confounded, or not, by present 

psychopathology. 

 In all of our studies, we repeated analyses of main findings separating youth into those 

with and without non-BD disorders. In the analysis examining activity and FC in emotion 

processing and regulation neural circuitries, group differences in greater bilateral amygdala-left 

cACC FC to neutral faces was only observed in at-risk youth who did not have non-BD 

disorders. Similarly, when examining activity and FC in reward processing neural circuitry, 

group differences in lower right VS-left cACC FC and greater right pars orbitalis-OFC FC were 

only observed in at-risk youth who did not have non-BD disorders. Likewise, when exploring 

WMT-activity relationships, group differences in right cingulum-cingulate gyrus length-cACC 
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activity and forceps minor RD-rACC activity when processing happy faces were also only 

observed in at-risk youth who did not have non-BD disorders. None of the main findings in any 

of these three studies were observed in at-risk youth who did have non-BD disorders. 

 There are several possible explanations for why these main findings were only observed 

in youth without non-BD psychopathology. One explanation is that these measures are potential 

markers of risk for the future development of BD. In support of this claim, we may speculate that 

OBP who have already developed a non-BD psychiatric disorder at the time of these studies are 

less likely to additionally develop BD. OBP without non-BD disorders, on the other hand, have 

yet to develop any psychiatric disorders, and they are still at great familial risk for developing 

BD. Thus, it is possible that these main neural findings are markers of risk for BD in these 

presently healthy at-risk youth. This claim would be further supported by the fact that worsening 

symptoms of affective lability were associated with several of these main findings, as described 

previously. 

A second explanation, however, is that these measures represent markers of resilience 

that protect against the development of BD. Support for this claim includes the fact that 

comorbidities in patients with BD are common. For example, in one study, 80% of children with 

BD had a comorbid diagnosis of ADHD (Chang, Steiner et al. 2000). Thus, it is also possible 

that OBP with non-BD disorders are more at risk for developing a comorbid diagnosis of BD in 

the future, while OBP without non-BD disorders represent a group of presently healthy offspring 

who will continue to remain resilient to a BD diagnosis. Indeed, in our sample of follow-up 

youth, 2 OBP have developed a diagnosis of BD since their first scan: one was previously in the 

sample of youth without non-BD disorders, and one was previously in the sample of youth with a 

non-BD disorder, having had previous diagnoses of MDD and an Eating Disorder. More 
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longitudinal data are thus needed to definitively determine whether these neural findings are 

markers of risk or resilience in at-risk youth. 

6.2.5 Potential Confounding Factors of Medications 

Another topic that is worth noting is that of medications. Medication exposure may be a potential 

confound in neuroimaging studies of BD and BD risk, as medications have direct effects on 

neural function in order to alter the course of disease and treat psychiatric symptoms (Hafeman, 

Chang et al. 2012). While a recent review determined that the effects of psychotropic 

medications do not appear to provide alternative explanations for differences in neural structure 

or function when comparing patients with BD to healthy controls (Hafeman, Chang et al. 2012), 

we nonetheless wanted to examine potential effects of medication on our findings. 

When examining activity and FC in emotion processing and regulation neural circuitries, 

we found that removing five medicated OBP and six medicated OCP from the analyses affected 

the significance of the findings that showed relationships with affective lability severity. 

Specifically, significance was reduced for the differences between right rACC activity when 

regulating attention away from happy faces and bilateral amygdala-left cACC FC when 

regulating attention away from fearful faces during EF-2-BACK performance in OBP versus 

OCP, as well as the relationship between change in the latter measure and change in affective 

lability over follow-up. When we compared affective lability severity in medicated and 

unmedicated OBP, however, we found that medicated OBP had greater symptom severity. Thus, 

by removing medicated youth from the analyses, we were no longer examining some of the most 

affectively labile OBP who were potentially at some of the greatest risk for developing BD in the 

future. This led us to hypothesize that greater right rACC activity when regulating attention away 
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from happy faces and greater bilateral amygdala-left cACC FC when regulating attention away 

from fearful faces may represent markers of BD risk in higher-risk OBP who are more 

affectively labile. We were not able, however, to determine the exact nature of the potential 

effects that medications had on these neural measures. 

 When examining activity and FC in reward processing neural circuitry, we did not find 

any significant differences in findings when we removed the six OBP and eight OCP taking 

antidepressant, antipsychotic, mood stabilizer, stimulant, and non-stimulant medications. Thus, 

the findings of right VS-left cACC FC to loss and right pars orbitalis-OFC FC to reward did not 

appear to be affected by medication effects. Similarly, when examining WMT-activity 

relationships in emotion processing neural circuitry, we did not find any significant differences 

in findings when we removed the six OBP and six OCP taking medications. Thus, the 

relationships of right cingulum-cingulate gyrus length-cACC activity and forceps minor RD-

rACC activity when processing happy faces also did not appear to be affected by medication 

effects. 

 In summary, medications affected only our main findings that pertained to emotion 

regulation neural circuitry, while medication effects were not observed for any main findings 

pertaining to emotion processing or reward processing neural circuitries. Review studies have 

generally found that psychotropic medications do not provide alternative explanations for 

differences in neural structure or function when comparing patients with BD to healthy controls 

(Hafeman, Chang et al. 2012). Thus, the few medication effects that were observed in our study 

of emotion regulation may reflect the high-risk nature of the offspring. By taking these high-risk 

individuals out of the analyses, we likely removed youth at risk for BD whose neural 

abnormalities differed the most from control groups. Therefore, the fact that medication effects 
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were observed in this analysis may, in fact, support our hypothesis that these neural measures are 

potential markers of risk for the future development of BD. The effects of medication in youth at 

risk for BD and other psychiatric disorders is complex, however, and warrants continued 

examination when studying the underlying pathophysiology of BD and BD risk. 

6.2.6 Influence of Age and Development 

6.2.6.1 Discussion of Typical Brain Development 

In neuroimaging studies that examine children and adolescents, it is important to consider the 

potential implications of brain development. Throughout childhood and adolescence, increases in 

white matter volumes (likely reflecting increasing myelination) occur globally with specific 

increases occurring in the frontal, parietal, and occipital cortices (Sowell, Trauner et al. 2002). 

Conversely, gray matter volumes peak at about 12 years of age in frontal and parietal cortices 

and then decrease from early childhood to post-adolescence in a nonlinear manner, likely 

reflecting the pruning of neural connections (Huttenlocher 1979, Reiss, Abrams et al. 1996, 

Giedd, Blumenthal et al. 1999, Courchesne, Chisum et al. 2000). Such developmental changes 

may be related to a refinement or increased efficiency in connections between prefrontal and 

subcortical regions throughout childhood and adolescence in typically-developing youth (Herba 

and Phillips 2004). This developmental perspective may shed light on important implications for 

emotion and reward circuitry in youth at risk for BD. 

For example, in a typically-developing brain, ventromedial areas of the PFC (e.g. ACC, 

OFC) develop relatively earlier than lateral PFC regions (e.g. vlPFC, dlPFC) (Fuster 2002). 

These former regions are primarily involved in the control of emotional behaviors, while the 

latter regions are more involved in higher executive functions (Fuster 2002). Additionally, the 
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explicit processing of emotional faces continues to develop from early childhood into 

adolescence (Camras and Allison 1985, Chung and Thomson 1995, De Sonneville, Verschoor et 

al. 2002). Together, these findings suggest that neural systems that are implicated in emotion 

processing and regulation neural circuitries may not be fully mature into adulthood (Phillips, 

Ladouceur et al. 2008). Additionally, this may contribute to the reason why children and 

adolescents are often unable to regulate their emotions, leading to behavioral disturbances that 

occur without insight or subjective awareness (Goodwin and Jamison 2007). Furthermore, 

studies have shown that the accumbens develops relatively earlier than PFC regions such as the 

OFC (Galvan, Hare et al. 2006). These findings suggest that, as subcortical systems mature, they 

may become disproportionately activated relative to top-down control systems that mature later 

in development (Galvan, Hare et al. 2006). This may bias adolescents toward seeking immediate 

versus long-term gains and, ultimately, may underlie risk-taking behavior (Galvan, Hare et al. 

2006). 

There are several considerations to note when examining children and adolescents at risk 

for BD. For example, youth with BD have been shown to develop decreased volumes in the 

amygdala, ACC, dlPFC, OFC, and nucleus accumbens (Blumberg, Fredericks et al. 2005, 

Dickstein, Milham et al. 2005, Gogtay, Ordonez et al. 2007). These studies have suggested that 

such abnormal patterns of cortical development may reflect affective dysregulation (Gogtay, 

Ordonez et al. 2007). Altogether, studies of brain development in youth highlight the fact that 

many structural changes are occurring throughout childhood and adolescents. Thus, while studies 

have suggested mechanisms that may underlie emotional dysregulation and impulsive or risk-

taking behavior in typically-developing youth, atypical brain development in offspring at risk for 

BD during these critical periods may predispose them to even more severe behavioral problems 
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that may then lead to detrimental outcomes, such as the development of mood or anxiety 

disorders. 

Alternatively, the fact that it is normal for children and adolescents to exhibit behaviors 

related to abnormal emotion and reward function may also suggest that abnormalities seen in 

offspring at risk for BD may reflect compensatory, rather than vulnerability, mechanisms. In this 

way, abnormalities that are observed in OBP that parallel those in typically-developing 

individuals may indicate that the way in which their brains are developing may be attempting to 

compensate for their genetic predisposition to psychopathy and, in fact, protect against the future 

development of psychiatric disorders. Longitudinal studies of neural structure and function that 

additionally examine developmental patterns in typically-developing and at-risk youth are 

necessary to fully understand how brain maturation leads to the development of, or protection 

against, BD in at-risk offspring. 

6.2.6.2 Additional Analyses Examining Effects of Age 

In all of our studies, we examined the effects of age and pubertal development on significant 

findings through correlation analyses. In doing so, we did not find any significant correlations 

between age and any significant neural or symptom measure in any of our three analyses. With a 

participant age range of 8-17 years, however, we wanted to further examine whether or not OBP 

showed similar patterns of neural and symptom measures with increasing age when compared to 

OCP and OHP. To do this, we explored age-by-group interactions for all significant findings in 

each study. For each finding, we performed a linear regression with the neural or symptom 

measure as the outcome measure and age, group, and an age X group interaction term as 

predictor measures (Tables 36-38). This was done separately for each group pair (i.e. OBP 

versus OCP, OBP versus OHP, and OCP versus OHP). 



 172 

 No significant age-by-group interactions were found for any of the main neural or 

symptom findings for our first study examining activity and FC in emotion processing and 

regulation neural circuitries. These findings included right rACC activity to happy faces during 

EF-2-BACK and EF-0-BACK performance, bilateral amygdala-left cACC FC to fearful, happy, 

and neutral faces during EF-2-BACK performance, left dlPFC activity to angry faces during the 

DFT, and CALS-P scores (Table 36). 

 

 
Table 36: Exp 1. Group-by-Age Interactions 

 

 

 
Similarly, no age-by-group interactions were found for any of the main nerual or 

symptom findings for our third study examining WMT-activity relationships in emotion 

processing neural circuitry. These findings included right cingulum-cingulate gyrus length, 

bilateral cACC activity when processing positive emotions, forceps minor RD, bilateral rACC 

activity when processing positive emotions, and CALS-P scores (Table 37). 
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Table 37: Exp 3. Group-by-Age Interactions 

 

 

 
For our second study examining activity and FC in reward processing neural circuitry, no 

age-by-group interactions were found for right VS-left cACC FC to loss during the reward task 

(Table 38). 

 

 
Table 38: Exp 2. Group-by-Age Interactions 

 

 

 
There were, however age-by-group interactions found for the other two main findings in 

this analysis. For right pars orbitalis-left OFC FC to reward, age-by-group interactions were 

found between OBP and OCP (F(3,88) = 2.722, p = 0.001 (0.004, corrected), R2 = 0.172; t = -

2.58, p = 0.012 (0.048, corrected)) (Figure 33). The relationship between age and right pars 
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orbitalis-left OFC FC to reward was inverse in OBP and positive in OCP. The relationship for 

OHP fell in between those of OBP and OCP. 

 

 

 

Figure 34: Age-by-Group Interactions for Right Pars Orbitalis-Left Orbitofrontal Cortex Functional 

Connectivity to Reward 

 

 
For right pars orbitalis-right OFC FC to reward, age-by group interactions were also 

found between OBP and OCP (F(3,88) = 7.705, p < 0.001 (< 0.001, corrected), R2 = 0.208; t = -

3.354, p = 0.001 (0.004, corrected)), as well as between OCP and OHP (F(3,98) = 3.322, p = 
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0.023 (0.092, corrected), R2 = 0.092; t = 2.23, p = 0.028 (0.112, corrected)) (Figure 34). Only the 

interaction between OBP and OCP survived Bonferroni corrections for 4 tests (p < 0.013), 

however. Similar to above, the relationship between age and right pars orbitalis-right OFC FC to 

reward was inverse in OBP and positive in OCP, and the relationship for OHP fell in between 

those of OBP and OCP. 

 

 

 

Figure 35: Age-by-Group Interactions for Right Pars Orbitalis-Right Orbitofrontal Cortex Functional 

Connectivity to Reward 
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There are several possible explanations for these findings. On one hand, these findings 

may suggest that FC between the right pars orbitalis and both the left and right OFC strengthens 

throughout development in OCP but weakens throughout development in OBP. This is 

particularly interesting given our findings that, in our current sample, OBP had increased FC 

between these regions compared with both OCP and OHP. Given these findings, in conjunction 

with the knowledge that the prefrontal cortex does not reach full maturity until the third decade 

of life (Gogtay, Giedd et al. 2004, O'Donnell, Noseworthy et al. 2005), we may postulate that, 

over time, right pars orbitalis-OFC FC will continue to weaken in OBP and continue to 

strengthen in OCP, causing these neural markers to converge to a pattern more similar to that of 

OHP. If this were the case, then this would suggest that the right pars orbitalis-OFC FC measures 

are more likely representative of resilient mechanisms that protect against the future 

development of psychopathology. 

On the other hand, we may also speculate that younger OBP are more at risk for BD than 

older OBP because they have more time to develop the disorder. In contrast, the older an 

individual becomes without having developed BD, the less likely they may be to ever develop 

the disorder. If this were true, then the younger, more at-risk offspring may be driving the 

differences in right pars orbitalis-OFC FC that are observed between OBP and both OCP and 

OHP. This would then suggest that these neural measures may, in fact, be markers of risk for the 

future development of BD. More longitudinal data is necessary to determine which hypothesis is 

more likely. 
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6.2.7 Differences between BD and Other Psychiatric Disorders 

It is worthy to mention differences in emotion and reward function between BD and other 

psychiatric disorders. For example, there are several differences to note between BD and MDD 

regarding emotion processing and regulation. In BD, structural and functional abnormalities in 

emotion circuitry lead to an oversensitive, but dysfunctional, neural system that identifies 

emotional significance and produces affective states with impairment in the regulation of 

subsequent emotional behavior (Phillips, Drevets et al. 2003). This results in mood lability, a 

greater tendency to enter into an affective state in response to environmental stimuli, and 

impaired emotional regulation (Phillips, Drevets et al. 2003). Conversely, in MDD, structural 

and functional neural abnormalities lead to a restricted emotional range with a bias toward the 

perception of negative emotions (Phillips, Drevets et al. 2003). This primarily results in 

symptoms of depressed mood and anhedonia (Phillips, Drevets et al. 2003). Taken together with 

our findings, these differences may contribute to why abnormal symptoms of affective lability, 

as opposed to symptoms of depression, were related to neural abnormalities that distinguished 

OBP from control groups. 

Additionally, there are distinct differences between BD and MDD in reward processing 

circuitry. For example, in MDD, neural abnormalities in reward processing (such as reduced 

activation in the VS and ACC (Pizzagalli, Holmes et al. 2009)) lead to a reduced ability to 

modulate behavior in response to intermittent rewards (Pizzagalli, Iosifescu et al. 2008, Vrieze, 

Pizzagalli et al. 2013), as well as blunted processing of incentive salience, incentive motivation, 

and reinforcement learning (Whitton, Treadway et al. 2015). This may lead to symptoms of 

anhedonia and reduced reward-seeking behaviors (Rawal, Collishaw et al. 2013, Whitton, 

Treadway et al. 2015). Specific findings that distinguish BD from MDD include heightened 
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activation in the left vlPFC during reward anticipation (Chase, Nusslock et al. 2013), as well as 

heightened reward-related activation, specifically in regions such as the VS (Caseras, Lawrence 

et al. 2013, Mason, O’sullivan et al. 2014, Trost, Diekhof et al. 2014)). This may lead to 

symptoms of mania or hypomania and greater tendencies to seek risks and rewards in BD 

compared with MDD (Whitton, Treadway et al. 2015). These differences between BD and MDD 

specifically parallel our findings of greater FC between the vlPFC and OFC during reward 

processing in OBP. 

6.2.8 Conceptualization of BD in Terms of Emotion and Reward Neural Circuitries 

BD has been conceptualized as a disorder of abnormalities in prefrontal cortical-amygdala-

centered emotion circuitry and prefrontal cortical-striatal-centered reward circuitry (Phillips and 

Swartz 2014). In particular, studies have highlighted the roles of functioning within and between 

the vlPFC and amygdala which contribute to emotion dysregulation (Hariri, Bookheimer et al. 

2000, Davis and Whalen 2001, Swanson 2003, Goldin, McRae et al. 2008, Phillips, Ladouceur et 

al. 2008), as well as the roles of functioning within the (primarily left-sided) vlPFC and OFC 

which contribute to heightened reward sensitivity (Knutson and Wimmer 2007, Schmidt, Cléry-

Melin et al. 2009, Sesack and Grace 2010, Grabenhorst and Rolls 2011). Taken together with 

studies hypothesizing that the left hemisphere is important for approach-related emotions 

(Davidson, Irwin et al. 2003), these left-sided neural findings in emotion and reward circuitries 

may predispose individuals with, and at risk for, BD to heightened emotion and reward 

processing, which may contribute to symptoms of mania or hypomania (Phillips and Swartz 

2014). Taken together, these findings suggest that BD can be conceptualized as a disorder of 

dysfunctional bilateral prefrontal cortical-amygdala emotion circuits and overactive left-sided 
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prefrontal cortical-striatal reward circuits that, together, result in emotional lability, emotional 

dysregulation, and reward sensitivity, all of which characterize BD (Phillips and Swartz 2014). 

Our findings contribute to this conception in several ways. First, we also observed 

abnormalities in the bilateral prefrontal cortex and amygdala in emotion circuitry. Specifically, 

we observed inverse relationships between bilateral rACC and cACC and prefrontal WMT 

structure when processing happy faces, greater right rACC activity when regulating attention 

away from happy faces, and greater bilateral amygdala-left cACC FC when regulating attention 

away from all emotional faces. Second, we also observed abnormalities in left-sided prefrontal 

cortical-striatal reward circuitry. Specifically, we observed FC between the right VS and 

the left cACC when processing loss, as well as between the right pars orbitalis and both the right 

and left OFC when processing reward. Additionally, differences in FC between the left pars 

orbitalis and both the right and left OFC were observed when comparing OBP to OCP. Thus, our 

findings parallel established conceptualizations of BD and further suggest that the ACC, and 

particularly the right rACC and left cACC, is a key region that is implicated in both abnormal 

emotion and reward circuitry in offspring at risk for BD. Abnormalities in the ACC, as well as 

other prefrontal cortical and subcortical regions, likely contribute to the emotional lability, 

emotional dysregulation, and reward sensitivity characteristics of BD that predispose individuals 

with, and at risk for, the disorder to greater symptoms of affective lability and mania. 

6.2.9 Summary of Contributions 

In summary, we contributed to the neural model of BD risk in several ways. First, we identified 

the ACC as a region with primary importance in emotion processing, emotion regulation, and 

reward processing neural circuitries. Specifically, the rACC appears to be implicated more in 
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processing and regulating positive emotions, and the cACC seems to have greater roles in 

processing and regulating both positive and negative emotions, as well as in processing loss. 

Second, we either found novel roles for, or supported existing literature regarding, other regions 

implicated in these circuitries, namely the amygdala, VS, vlPFC, OFC, and dlPFC. Third, we 

highlighted the importance of affective lability symptoms in youth at risk for BD and showed 

relationships between this symptom measure and activity in, and FC with, the ACC during 

emotion processing and regulation. Fourth, we provided additional support for the state-

dependent nature of emotion processing and regulation neural circuitries in contrast to the more 

trait-dependent nature of reward processing circuitry. Fifth, we examined the effects of present 

non-BD psychopathology in at-risk youth and developed several hypotheses regarding the 

implications of these findings. Sixth, we explored the potential confounding factors of 

medications and determined that the few medication effects that were observed pertained 

primarily to emotion regulation neural circuitry and may have, in fact, provided additional 

support for the hypothesis that these neural findings are potential measures of risk for BD. 

Finally, we examined the influence of age and development on our main findings and found that 

the effects of age on right pars orbitalis-OFC FC may implicate these findings as measures of 

either protection against, or risk for, the future development of BD. Overall, the analyses laid out 

in this dissertation contribute significantly to our current understanding of the pathophysiology 

underling BD risk. 
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6.3 IMPLICATIONS FOR THE MANAGEMENT OF BD 

There are several ways in which the findings from this dissertation may aid in the identification 

and management of patients with, and at risk for, BD. In this section, we will discuss current 

diagnostic and treatment strategies for BD and propose ways in which the findings presented 

above may improve upon these methods in at-risk youth. 

6.3.1 Diagnosis of BD 

6.3.1.1 Current Diagnostic Strategies for BD 

The absence of objective markers of pathophysiological processes that underlie BD, as well as 

the heterogeneity within and overlap between BD and other psychiatric illnesses, causes great 

difficulty when attempting to diagnose BD in clinical practice (Phillips and Kupfer 2013). On 

average, it takes between 5 and 10 years to properly diagnose BD after illness onset 

(Baldessarini, Tondo et al. 2007). One of the most frequent misdiagnoses in patients with BD is 

unipolar depression. Reasons for this include the facts that patients with BD often have a higher 

prevalence of depressive symptoms, have less clear histories of mania or hypomania, spend more 

time in depressive episodes than in either manic or hypomanic episodes, and preferentially 

recognize and seek treatment for depressive versus manic or hypomanic symptoms (Hirschfeld, 

Lewis et al. 2003, Judd, Schettler et al. 2003, Goodwin and Jamison 2007, Phillips and Kupfer 

2013). Studies have reported that only 20% of patients with BD are properly diagnosed with the 

disorder within the first year of them seeking treatment for depressive episodes (Hirschfeld, 

Lewis et al. 2003). The misdiagnosis of BD as unipolar depression can lead to serious 

consequences, such as the inappropriate prescription of drugs and poor clinical and functional 
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outcomes for patients (Hirschfeld, Lewis et al. 2003, Baldessarini, Salvatore et al. 2010, 

Goodwin 2012, Valentí, Pacchiarotti et al. 2012). It is thus very important to find ways to better 

diagnosis BD, particularly during its early stages, in order to prevent these consequences 

associated with misdiagnosis (Phillips and Kupfer 2013). 

Several strategies currently exist to help improve the diagnosis of BD, including changes 

to the DSM-V which may help physicians more accurately diagnose BD during standard clinical 

assessments (Phillips and Kupfer 2013). One such change is the focus on using more 

dimensional measures when defining BD, including subthreshold symptoms associated with BD, 

which have been associated with shorter times to future relapse (De Dios, Ezquiaga et al. 2012, 

Phillips and Kupfer 2013). In accordance with this change, new clinical rating scales have been 

developed that include assessments of subthreshold symptoms, such as the Bipolar Inventory 

Symptoms Scale and the Hypomania Checklist (Angst, Adolfsson et al. 2005, Bowden, Singh et 

al. 2007). Another strategy is the use of neuroimaging methods to identify biological measures 

and potential neural markers which may help inform the diagnosis of BD (Phillips and Kupfer 

2013). Using neuroimaging techniques to study structural and functional abnormalities in neural 

circuitries pertaining to emotion and cognition in at-risk populations has the potential to identify 

neural measures that distinguish BD from other, commonly misdiagnosed disorders, such as 

unipolar depression (Phillips and Vieta 2007, Craddock and Sklar 2013, Phillips and Kupfer 

2013). Additionally, relating these neural measures to subthreshold symptomatology may better 

characterize the dimensional nature of BD, allowing for diagnostic strategies that focus on the 

underlying pathophysiological processes of the disorder (Phillips and Kupfer 2013). This is in 

direct correlation with the proposal by the Research Domain Criteria (RDoC) of the US National 

Institute of Mental Health that the classification of psychiatric illnesses should be based on 
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dimensions of such pathophysiological processes rather than phenomenological observations 

(Insel, Cuthbert et al. 2010). 

Once these pathophysiological processes are better understood, pattern recognition 

approaches may be used to apply machine learning to the clinical diagnosis of BD. These 

approaches can aid in the development of algorithms to allow computers to classify patterns of 

neural activity which can then be used to help make decisions about clinical diagnoses (Haynes 

and Rees 2006, Phillips and Kupfer 2013). Several studies have applied the combination of 

pattern recognition with neuroimaging techniques to the diagnosis of BD. One study found that 

patterns of lower whole-brain neural activity to intense happy faces could distinguish BD type I 

from unipolar depression and healthy controls (Mourão‐Miranda, Almeida et al. 2012). Another 

study determined that blood flow to the subgenual ACC at rest could distinguish BD type I from 

unipolar depression (Almeida, Mourao-Miranda et al. 2013). A third study found that structural 

MRI could be used to distinguish BD from schizophrenia and healthy controls (Schnack, 

Nieuwenhuis et al. 2014). While these studies focused on patients who already exhibited the 

symptoms associated with a BD diagnosis, few studies have attempted to use pattern recognition 

approaches to identify youth at risk for developing the diagnosis in the future. One study found 

that machine learning approaches combined with activity during the presentation of neutral faces 

helped predict which youth at risk for BD were at higher risk for developing a psychiatric mood 

or anxiety disorder (Mourão-Miranda, Oliveira et al. 2012). In this study, however, none of the 

at-risk individuals went on to develop a diagnosis of BD (Mourão-Miranda, Oliveira et al. 2012). 

Thus, more work is necessary to determine how machine learning can be combined with 

neuroimaging techniques to examine youth at risk for BD and predict which individuals will 
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eventually develop BD, allowing for earlier interventions and overall better outcomes for these 

individuals. 

The identification of neural abnormalities in BD and risk for BD may also be combined 

with other techniques to aid in the diagnosis of the disorder. For example, lipid oxidative stress 

has been identified as a potential pathophysiological mechanism underlying WMT abnormalities 

in BD (Phillips and Kupfer 2013). In one study of BD, lower WMT collinearity was associated 

with increased serum measures of lipid oxidative stress (Versace, Andreazza et al. 2014). 

Elevated amounts of lipid oxidative stress have also been observed in neural regions important to 

emotion processing, emotion regulation, and reward processing neural circuitries, such as the 

ACC and prefrontal cortex, specifically BA10 (Wang, Shao et al. 2009, Andreazza, Shao et al. 

2010). Thus, detecting oxidative stress by peripherally analyzing serum measures and relating 

these measures to specific WMTs and neural regions implicated in BD and BD risk may provide 

additional mechanisms by which BD can be diagnosed earlier and with greater accuracy. 

6.3.1.2 Contribution of this Dissertation to Diagnostic Strategies for BD 

The work presented in this dissertation can contribute to current diagnostic strategies for BD in 

several ways. The first pertains to clinical assessments, which are already used in clinical 

practice to aid in the diagnosis of BD. As mentioned above, affective lability is one of the four 

symptoms identified as the strongest dimensions of psychopathology associated with BD risk 

(Hafeman, Merranko et al. 2016). In our analyses, we found that affective lability is significantly 

associated with neural measures that distinguish youth at risk for BD from youth at risk for other 

disorders, specifically greater rACC activity when regulating attention away from happy faces, 

greater bilateral amygdala-left cACC FC when regulating attention away from fearful faces over 

follow-up, and more inverse forceps minor RD-rACC activity relationships when processing 
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happy faces. Additionally, these affective lability findings were specifically parent-reported. The 

fact that parent-reported assessments of affective lability were associated with these neural 

measures, compared with child-reported assessments, may reflect the greater reliability of 

parental reports of child symptoms, as these are considered more useful than child reports in 

diagnosing BD in children (Youngstrom, Findling et al. 2004). Thus, our findings would lead us 

to make two recommendations: (1) incorporate assessments of affective lability into standard 

clinical practices, such as the CALS (Gerson, Gerring et al. 1996), and (2) prioritize using 

parental reports, rather than child reports, as these may be more indicative of neural 

abnormalities in the ACC, specifically, that distinguish youth at risk for BD from youth at risk 

for other psychiatric disorders. 

Another way in which the work presented in this dissertation can contribute to current 

diagnostic strategies for BD pertains to the application of a machine learning approach using 

pattern recognition. As mentioned above, several attempts have been made to use such 

approaches to enhance the accuracy of diagnosing BD, but no attempts have successfully led to 

the identification of at-risk individuals who are going to develop a BD diagnosis in the future. 

Thus, our suggestion is to develop a machine learning approach that distinguishes youth at risk 

for BD from youth at risk for other disorders and healthy controls that focuses on the findings 

presented in this dissertation. Possible approaches may include using Gaussian Process 

Classifiers (GPC), which assigns predictive probabilities of group membership to individual 

patients (Mourão-Miranda, Oliveira et al. 2012, Mourão‐Miranda, Almeida et al. 2012), or 

support vector machine (SVM) analyses, which use training and testing phases to predict group 

membership based on subject features, such as neural activity (Almeida, Mourao-Miranda et al. 

2013, Schnack, Nieuwenhuis et al. 2014). Using such approaches, patterns may be observed in 
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emotion processing and regulation neural circuitry (with specific focuses on rACC activity, 

dlPFC activity, and amygdala-cACC FC), as well as in reward processing circuitry (with specific 

focuses on VS-cACC and vlPFC-OFC FC), that may be used for the development of clinical 

markers of risk for BD in at-risk youth. 

A final way in which the work presented in this dissertation can contribute to current 

diagnostic strategies for BD pertains to the potential development of serum biomarkers. As 

described above, elevated amounts of lipid oxidative stress have been associated with 

abnormalities in both WMTs and the ACC. Coincidentally, the two main findings from our 

WMT-activity analyses were inverse relationships between the right cingulum-cingulate gyrus 

and cACC, as well as between the forceps minor and rACC. Thus, our findings would lead us to 

suggest developing biomarkers reflecting oxidative stress, which may be detected by peripherally 

analyzing serum measures, that are associated with these specific tracts and regions that 

distinguish youth risk for BD. Altogether, we believe that the findings presented here may be 

applied to the improved diagnostic accuracy of BD in individuals at risk for the disorder through 

the development of more targeted clinical assessments, machine learning approaches, and serum 

biomarkers. 

6.3.2 Treatment of BD 

6.3.2.1 Current Treatment Strategies for BD 

Treatment and management of BD is multi-faceted and complex. The two main focuses of BD 

treatment are acute stabilization, with the goal of bringing patients to a euthymic state, and 

maintenance, with the goals of preventing relapse, reducing symptoms, and enhancing overall 

functioning (Geddes and Miklowitz 2013). Even when treated, it has been reported that 37% of 
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patients with BD relapse into a depressive or manic episode within 1 year with 60% relapsing 

within 2 years (Gitlin, Swendsen et al. 1995). The identification of neural markers of BD and BD 

risk may provide biological targets for personalized treatment and for the development of new 

interventions for BD (Phillips and Kupfer 2013). The findings from this dissertation may thus 

also be used to improve upon such strategies for patients with, and at risk for, BD. 

  One of the primary ways to treat BD is with medications. Many medications target 

neurotransmitter and neurohormonal dysregulation (Geddes and Miklowitz 2013). For example, 

some medications target dopamine, which is associated with manic symptoms (Geddes and 

Miklowitz 2013). Antipsychotic agents block dopamine D2 receptors in attempts to reduce 

manic symptoms (Cousins, Butts et al. 2009, Cipriani, Barbui et al. 2011). Other medications 

target serotonin and glutamate, which are implicated more in depressive symptoms (Geddes and 

Miklowitz 2013). Selective serotonin reuptake inhibitors and atypical antipsychotics enhance 

serotonin activity (Stockmeier 2003), while medications such as valproate, lamotrigine, some 

antidepressants, and ketamine (used for rapid alleviation of symptoms) modulate glutamate 

transmission (Diazgranados, Ibrahim et al. 2010, Li, Frye et al. 2012, Zarate, Brutsche et al. 

2012). There are other targets that pertain to intracellular signaling. For example, lithium, 

valproate, and carbamazepine target inositol monophosphatase, which is implicated in manic 

depression, by reducing its concentration and increasing neuronal growth (Agam, Shamir et al. 

2002, Harwood 2005). Lithium also mediates neuroprotective effects by inhibiting GSK-3, an 

enzyme whose dysregulation impairs neural plasticity (Li, Frye et al. 2012, Andreazza and 

Young 2014). Protein kinase C activity is inhibited by lithium, valproate, and tamoxifen, which 

may help alleviate manic symptoms (Newberg, Catapano et al. 2008). Calcium channels are also 

associated with manic symptoms and are inhibited by lamotrigine and calcium channel blockers 
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(Andreazza and Young 2014). Some medications also regulate sleep and circadian rhythms, such 

as antipsychotics, lithium, and valproate, which can help stabilize mood (Malkoff-Schwartz, 

Frank et al. 1998, Frank, Kupfer et al. 2005, Harvey 2011). 

 In addition to medications, psychosocial treatments are key components of BD 

management. Indeed, treatment guidelines recommend integrating pharmacotherapy and 

psychotherapy in order to achieve an optimum management of BD (Goodwin and 

Psychopharmacology 2009, Yatham, Kennedy et al. 2013). Benefits of psychosocial 

interventions include: earlier identification of, and interventions for, warning signs of 

recurrences; increased illness acceptance; enhanced medication adherence; enhanced ability to 

cope with environmental stressors; stabilized sleep and wake routines; re-engagement with 

social, familial, and occupational roles; enhanced family relationships; and reduced misuse of 

drugs and/or alcohol (Geddes and Miklowitz 2013). 

There are several specific evidence-based models of psychotherapy that are used to treat 

BD. Cognitive-behavioral therapy is based on the theory that recurrences of mood disorders arise 

from pessimistic thoughts in response to life events and core dysfunctional beliefs about the 

patient’s self, world, and future (Beck, Rush et al. 1979). Sessions focus on modulation of these 

ways of thinking and can be used to treat both depressive and manic episodes (Lam, Hayward et 

al. 2005). Family-focused therapy is based on the association between relapses and both the 

criticism and hostility of caregivers (Hooley 2007). Sessions involve the patient and caregivers 

and incorporate psychoeducation as well as skills training in communication and problem-

solving (Miklowitz 2010). Interpersonal and social rhythm therapy attempts to modulate the 

relationship between sleep and mood disturbances by encouraging patients to maintain and 

regulate both daily routines and sleep and wake rhythms (Frank, Kupfer et al. 2005). Group 
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psychoeducation follows a predesigned curriculum that focuses on illness awareness, treatment 

adherence, early detection of warning signs, and regulating sleep and wake rhythms (Colom, 

Vieta et al. 2003). Functional remediation uses memory, attention, problem solving, reasoning, 

and organization exercises to target patients’ cognitive functioning (Torrent, Bonnin et al. 2013). 

Finally, systematic care management focuses on the combination of pharmacotherapy, group 

psychoeducation, and intensive monitoring of the patient by a nurse care manager (Geddes and 

Miklowitz 2013). 

 There are several other methods that are used for the management of BD. One is 

electroconvulsive therapy (ECT), a treatment that involves oxygenation, anesthesia, brief pulses 

of electrical stimulation, and continuous physiological monitoring to achieve rapid and short-

term improvement of severe symptoms (Husain, Rush et al. 2004, Health 2006). It is typically 

recommended only after an adequate trial of other treatment options has been deemed ineffective 

and/or when BD is considered to be potentially life-threatening (Health 2006). Such cases 

include a severe depressive episode, a prolonged or severe manic episode, and catatonia (Health 

2006). Another treatment is transcranial magnetic stimulation (TMS), a noninvasive procedure 

that uses magnetic fields to stimulate nerve cells and manipulate brain activity in spatially 

distinct cortical regions (Wassermann, Epstein et al. 2008). It has been used in patients with BD 

to treat bipolar depression (Dolberg, Dannon et al. 2002, Nahas, Kozel et al. 2003), and it has 

potentially comparable efficacy to ECT in treating catatonia (Wassermann, Epstein et al. 2008). 

As a generalization, TMS stimulation of the left prefrontal cortex is more effective at treating 

depressive symptoms (George, Wassermann et al. 1995, Pascual-Leone, Catala et al. 1996, 

Pascual-Leone, Rubio et al. 1996, George, Wassermann et al. 1997, Avery, Claypoole et al. 

1999), while TMS stimulation of the right prefrontal cortex is more effective at treating manic 
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symptoms (Grisaru, Chudakov et al. 1998, Michael and Erfurth 2004). A third method is 

transcranial direct current stimulation (tDCS), a noninvasive neurostimulation technique in 

which a weak direct current is applied on the scalp to induce shifts in membrane resting 

potentials and either depolarize or hyperpolarize neurons (Nitsche, Fricke et al. 2003). While this 

technique has primarily been a promising emerging therapy for major depression (Boggio, 

Rigonatti et al. 2008, Rigonatti, Boggio et al. 2008, Ferrucci, Bortolomasi et al. 2009, Ferrucci, 

Bortolomasi et al. 2009), one study found that this method can also improve depressive 

symptoms in patients with BD (Brunoni, Ferrucci et al. 2011). Together, ECT, TMS, and tDCS 

comprise several other methods for treating BD in addition to medications and psychotherapy. 

 There are a number of considerations to note when treating BD in children and 

adolescents in comparison to adults. First, no medications are approved by the US Food and 

Drug Administration for children under the age of 10 (Washburn, West et al. 2011). Medications 

used to treat mania in pediatric BD include lithium, antiepileptic drugs with mood stabilizing 

effects (including carbamazepine, divalproex sodium, lamotrigine, and topiramate), and second-

generation antipsychotics medications (including risperidone, olanzapine, aripiprazole, and 

quetiapine) (Hamrin and Iennaco 2010). Because over half of patients with pediatric BD do not 

respond sufficiently to one medication, it is common for youth with BD to be placed on more 

than one medication (Kafantaris, Coletti et al. 2001, Kafantaris, Dicker et al. 2001, DelBello, 

Kowatch et al. 2002, Washburn, West et al. 2011). As with adults, psychosocial treatments are 

necessary adjunctive treatments to pharmacologic interventions (McClellan, Kowatch et al. 

2007). Specific therapies that have been used in pediatric BD include psychoeducational 

treatment, family-focused therapy that has been adapted for adolescents, interpersonal and social 

rhythm therapy for adolescents, child- and family-focused cognitive-behavioral therapy, and an 
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additional therapy known as dialectical behavior therapy for adolescents, which is specifically 

designed to treat borderline personality disorder and particularly address emotional dysregulation 

(Linehan 1993, Goldstein, Axelson et al. 2007, Washburn, West et al. 2011). Regarding other 

therapies, ECT has been considered highly efficient for treating several psychiatric disorders in 

adolescents, including BD (Lima, Nascimento et al. 2013). TMS has been used less frequently 

(Walter, Tormos et al. 2001), and little is known about the use of tDCS in pediatric BD. Besides 

these considerations, treatment of BD is similar across children, adolescents, and adults. 

6.3.2.2 Contribution of this Dissertation to Treatment Strategies for BD 

There are two primary ways in which the work from this dissertation may contribute to the 

improvement of treatment strategies for BD in at-risk youth. First, we identified several potential 

candidates of neural markers that may be used to identify youth who are more likely to develop 

BD in the future, as described above. In practice, if these measures can help identify youth who 

are likely to develop BD, then interventions in the form of psychosocial therapies may be started 

early in these individuals, prior to illness onset. 

 One therapy that may be started early is psychoeducational treatment. The goals of this 

treatment are to increase knowledge and understanding of BD and its treatment, improve upon 

the management of BD symptoms and associated conditions, improve upon communication and 

problem-solving skills, and increase the sense of support for the individual and his or her family 

(Washburn, West et al. 2011). Additionally, at-risk youth can begin to develop coping skills that 

can help them better manage their emotions, improve upon their communication skills, and 

control their impulses (Washburn, West et al. 2011). They may also learn healthy habits that 

focus on maintaining proper sleep hygiene, nutrition, and exercise activities (Washburn, West et 

al. 2011). 
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 A second therapy that may be started early is family-focused therapy for adolescents. 

This treatment can involve the at-risk individual as well as parents and siblings (Washburn, West 

et al. 2011). This therapy has some goals that overlap with psychoeducational treatment, such as 

increasing awareness of coping skills, but also has a focus on issues pertaining to family, such as 

decreasing levels of familial expressed emotion and improving upon family problem-solving and 

communication skills (Washburn, West et al. 2011). The specific treatment components include: 

psychoeducation for the entire family about the symptoms, etiology, course, and treatment of 

BD; communication enhancement training, including the development of skills such as active 

listening, positive feedback, and constructive criticism; and problem-solving skills training to 

help identify and solve problems in daily life (Miklowitz, George et al. 2004, Washburn, West et 

al. 2011).  

 Dialectical behavior therapy for adolescents is another treatment that has components of 

both individual therapy and family skills training (Washburn, West et al. 2011). In individual 

therapy, patients focus on problem behaviors and are encouraged to work on skills with their 

coach (Goldstein, Axelson et al. 2007, Washburn, West et al. 2011). In family therapy, skills 

include psychoeducation, mindfulness, distress tolerance, emotion regulation, and interpersonal 

effectiveness (Washburn, West et al. 2011). Thus, psychoeducational treatment, family-focused 

therapy, and dialectical behavior therapy all have the potential to teach at-risk youth and their 

families valuable skills and habits that may help them prepare for and eventually manage BD if 

and when the disorder develops. 

 Child- and family-focused cognitive-behavioral therapy was specifically created for 

children between the ages of 8 and 12 years (Pavuluri, Graczyk et al. 2004, West, Jacobs et al. 

2009). In comparison to the aforementioned therapies, this therapy includes additional intensive 
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work with the patient’s parents that focuses on developing effective parenting techniques 

(Washburn, West et al. 2011). This intervention combines traditional cognitive-behavioral 

therapy methods with psychoeducation, interpersonal therapy, mindfulness, and positive 

psychology theories to address the potential impact of BD on a child’s life (West, Henry et al. 

2007, Washburn, West et al. 2011). Specific skills that can be learned and/or improved upon 

with this therapy include established routines, behavioral management, self-efficacy, reduced 

negative cognitions, social functioning, problem-solving, and social support (Washburn, West et 

al. 2011). Child- and family-focused cognitive-behavioral therapy is thus an additional valuable 

therapy that may be particularly useful in younger children who are determined to be at risk for 

developing BD. 

 Finally, interpersonal and social rhythm therapy for adolescents may also be helpful in 

at-risk youth. This treatment capitalizes on the knowledge that psychosocial stressors may 

disrupt social and sleep routines which may ultimately lead to the precipitation or exacerbation 

of BD (Washburn, West et al. 2011). Specific interventions for adolescents include stabilizing 

social and sleep routines through the exploration of relationships between stress and mood, as 

well as through an emphasis on addressing deficits in interpersonal functioning (Hlastala and 

Frank 2006, Washburn, West et al. 2011). Early establishment of proper sleep and wake routines 

may help regulate circadian rhythms and help alleviate some of the stressors that may eventually 

be associated with episodes of BD. 

The second primary way in which the work from this dissertation may contribute to the 

improvement of treatment strategies for BD in at-risk youth is through more targeted 

interventions for methods such as ECT, TMS, and tDCS. The primary findings from our analyses 

indicated abnormalities in the ACC which had significant relationships with symptoms of 
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affective lability. Thus, we may suggest that interventions such as ECT, TMS, and tDCS can 

focus on targeting the ACC, both in at-risk individuals with severe symptoms of affective lability 

and in individuals who have gone on to develop a formal diagnosis of BD. Using these methods 

to stimulate the ACC may aid in the alleviation of symptoms associated with BD, particularly 

affective lability. Based on the existing literature regarding current clinical guidelines, we further 

suggest that ECT is the method of choice for attempting such interventions, as this method 

currently appears to be more widely used for the treatment of BD than either TMS or tDCS. 

However, future studies can consider using any of these three techniques in order to attempt to 

find more effective therapeutic techniques for youth with, and at risk for, BD. In summary, we 

believe that the findings presented in this dissertation may be applied to the improvement of 

therapeutic strategies for BD in individuals at risk for the disorder through earlier psychosocial 

therapy and more targeted approaches for treatments such as ECT. 

6.4 LIMITATIONS 

There were several limitations in the work presented in this dissertation. Throughout all of the 

studies, sample size was limited, particularly when comparing subsamples of youth who either 

had or did not have a non-BD disorder and when examining follow-up data. Future studies 

should aim to replicate and validate our findings with larger sample sizes. While other clinical 

assessments could have been included, our primary aim was to determine measures of specific 

symptoms that, at subthreshold levels, may confer risk for BD (Hafeman, Merranko et al. 2016). 

While medication impacted some findings, such as those pertaining to the ACC in emotion 

regulation neural circuitry, these effects may, in fact, reflect the medicated status of the most 
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affectively labile and high-risk OBP. Furthermore, medication was not a predictor of group in 

additional elastic net regression analyses performed in the first study, and medication did not 

have any significant effects on any other findings. Nonetheless, further study is needed to 

determine the nature of relationships between medications and emotion regulation neural 

circuitry functioning. Additionally, while we showed that age did not significantly correlate with 

any structural or functional main finding, we did observe age X group interactions for the FC 

between the right pars orbitalis and both the left and right OFC. Thus, pubertal development, as 

well as other environmental effects such as childhood adversity, cannot be entirely ruled out as 

contributing factors in our results. When examining relationships between neural and symptom 

measures, as well as between WMT and activity measures, we assumed linear models. While 

nonlinear models could be considered, the interpretation of findings based on non-linear models 

is significantly limited in studies with such complex designs (Marsh, McGlynn et al. 1994). 

While most parents with non-BD psychiatric disorders were beyond the most common age of 

onset for BD, it is possible that some of these individuals may have been misdiagnosed or may 

still develop BD later in life. Every effort was made, however, to ensure the correct diagnoses for 

each offspring and parent involved in this study, including follow-up evaluations that were 

conducted at the time of each scan. Recent studies have debated the possible inflation of 

predictions in neuroimaging studies in individuals with psychiatric disorders (Whelan and 

Garavan 2014). In response, we used a well-validated approach that penalizes complex models 

using regularization, cross-validation, and sparsity enforcement in model fit. Relatedly, it can be 

argued that the generalizability of our results may be limited due to the ways in which lambda 

was fit and regression parameters were estimated in our elastic net models. In response, we used 

cross-validation strategies which have been shown to be effective in avoiding overfitting because 
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the training sample is independent from the validation sample (Arlot and Celisse 2010). Another 

limitation was that WMT length may, in part, be influenced by the tractography propagation 

mask and definition of end regions. Future studies can employ different approaches to examine 

WMT length in at-risk youth. Additionally, while we have speculated about possible distinct 

roles of the rostral and caudal divisions of the ACC and their unique roles in the pathophysiology 

underlying BD risk, future studies are necessary to determine directional associations that differ 

between these regions. Finally, at this point, we were only able to associate our main neural 

findings with group and then speculate as to the potential implications of these findings as neural 

markers of risk. Future studies that involve risk prediction tests are necessary to determine 

whether these neural findings are, in fact, neural markers that have predictive or diagnostic 

utility.  

6.5 FUTURE DIRECTIONS 

In light of the findings presented throughout this dissertation, there are several future directions 

that we wish to discuss. First, there is much more to be done regarding longitudinal follow-up. 

While we attempted to explore follow-up data for our subjects throughout several of our studies, 

we were only able to examine a subset of participants at this time. Once all subjects have 

returned for their second scans, we will be able to perform additional analyses with increased 

power to better understand how the main neural findings observed throughout these studies 

change over time and relate to worsening symptomatology. In addition, as these youth age into 

adulthood, we may be able to better discern which specific neural abnormalities predispose these 
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youth to worsening or new psychopathology, including BD, and which measures may protect 

against the development of psychiatric illnesses. 

There is also much that is left to understand regarding relationships between WMT 

structure and function, as well as their implications for BD risk. While we chose to initially focus 

on relationships between WMT structure and activity measures in emotion processing neural 

circuitry, we can additionally examine relationships between WMT structure and other 

functional measures such as FC, cortical thickness, and gray matter volume. We can also 

examine such relationships in other neural circuitries, namely emotion regulation and reward 

processing. Further, exploration of longitudinal changes in these structure-function relationships, 

over time, may elucidate more findings pertaining to BD risk.  

Additionally, there are many other approaches that we can take and analyses that we can 

perform to study BD risk. For example, we can use whole brain voxel-wise approaches to go 

beyond a priori ROI approaches and determine if other neural regions are additionally important 

to the abnormal processing and regulation of emotions and reward in youth at risk for BD. Such 

approaches may also identify abnormalities in regions, such as the medial prefrontal cortex, that 

are important to emotion or reward circuitry but that have not yet been identified in OBP. We 

can also use different modeling approaches to construct a normative model of emotion and 

reward neural circuitries. We can perform developmental studies to help determine exactly when 

differences between groups emerge and to help discern the contributing effects of environmental 

factors on our results. Additionally, we can run risk prediction tests in order to be determine 

whether the neural abnormalities identified throughout these analyses are risk factors for the 

development of BD. Furthermore, we can run mediation analyses to better understand 

relationships between some of our findings, such as the potential role of the connectivity 
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between the rACC and the amygdala in affective lability severity. Such future directions may 

help us better understand the implications of the findings presented here and further contribute to 

our comprehensive understanding of the pathophysiology that underlies the development of BD 

in at-risk youth. 

6.6 FINAL REMARKS 

In this dissertation, we examined activity, FC, and WMT structure in emotion processing, 

emotion regulation, and reward processing neural circuitries in youth at risk for BD. Our primary 

goals were to better understand the pathophysiology underlying BD risk and potentially identify 

neural markers that confer risk for the development of BD. Our findings primarily implicated the 

ACC as a key region involved in all three circuitries that helps distinguish youth at risk for BD 

from youth at risk for other psychiatric disorders and healthy controls. We also found that 

symptoms of affective lability, and relationships between this symptom measure and the ACC, 

additionally aid in the distinction between OBP and control groups. The results from our 

analyses additionally have potential implications for both the diagnosis and treatment of BD. 

Together, these findings offer insights into the underlying pathophysiology of BD risk and will 

hopefully contribute to improved outcomes for youth at risk for BD. 
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