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Electronic medical record (EMR) systems are capturing increasing amounts of data per patient. 

For clinicians to efficiently and accurately understand a patient’s clinical state, better ways are 

needed to determine when and how to display patient data. The American Medical Association 

envisions EMR systems that manage information flow and adjust for context, environment, and 

user preferences. We developed, implemented, and evaluated a prototype Learning EMR (LEMR) 

system with the aim of helping make this vision a reality.  

A LEMR system, as we employ the term, observes clinician information seeking behavior 

and applies it to direct the future display of patient data.  

The development of this system was divided into five phases. First, we developed a 

prototype LEMR interface that served as a testing bed for LEMR experimentation. The LEMR 

interface was evaluated in two studies: a think aloud study and a usability study. The results from 

these studies were used to iteratively improve the interface. Second, we tested the accuracy of an 

inexpensive eye-tracking device and developed an automatic method for mapping eye gaze to 

patient data displayed in the LEMR interface. In two studies we showed that an inexpensive eye-

tracking device can perform as well as a costlier device intended for research and that the  



v 

automatic mapping method accurately captures the patient information a user is viewing. Third, 

we collected observations of clinician information seeking behavior in the LEMR system. In three 

studies we evaluated different observation methods and applied those methods to collect training 

data. Fourth, we used machine learning on the training data to model clinician information 

seeking behavior. The models predict information that clinicians will seek in a given clinical 

context. Fifth, we applied the models to direct the display of patient data in a prospective 

evaluation of the LEMR system. The evaluation found that the system reduced the amount of 

time it takes for clinicians to prepare for morning rounds and highlighted about half of the 

patient data that clinicians seek.  
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1.0  INTRODUCTION 

Going beyond serving as a repository of patient data, electronic medical record (EMR) systems 

should assist clinicians in decision making by intelligently integrating and presenting patient 

data 1. Current EMR systems are capturing increasing amounts of such data and have few 

mechanisms, if any, to prioritize and present the data in clinically meaningful ways. As a result, 

a clinician’s comprehension of a patient’s condition may be incomplete or inaccurate because 

critical data in the EMR, such as an abnormal laboratory test result, may be overlooked 2. 

Subsequent clinical action or inaction may be inappropriate and result in adverse medical events 3–5. 

Thus, there is an urgent need for EMRs that better organize and display patient data, help 

identify patterns in the data, and aid more effectively in clinical assessment and management. 

The problem of presenting data that are helpful to the clinician can be addressed in 

different ways. One approach is to use pre-attentive features, such as color, to bring a clinician’s 

attention to specific information 6. Another approach is to alert clinicians with a notification or 

a popup 7. A third approach is to adapt the presentation of data in the EMR according to the 

context of use, such as the use condition-specific templates and user-specific profiles 8–10. 

These context-aware views focus attention on data that a clinician is predicted to use while 

reducing the prominence of less useful data 11. This dissertation concentrates on developing 

and evaluating a data-driven, learning electronic medical record (LEMR) system that observes 

clinician information seeking behavior and applies it to direct the display of patient data. 



More specifically, clinician information seeking behavior involves patient data (e.g., 

glucose levels, insulin dosing regimen) that are recorded in the EMR for a particular patient and 

are sought by a clinician in that patient for a specific task. For example, a clinician who is preparing 

to present at morning rounds a patient who has diabetes mellitus and is on insulin may seek glucose 

levels and the insulin dosing regimen. In a different patient who has kidney failure, glucose levels 

may be measured, but may not be sought by the clinician. Clinician information seeking behavior 

may vary by context. Context includes (1) EMR user type — a clinician, a nurse and a pharmacist 

may have different information seeking behaviors 12; (2) clinical task — a clinician has different 

information seeking behavior when performing differential diagnosis than when performing 

medication reconciliation; and (3) patient case — the same clinician when performing the same 

clinical task for different patients may have different information seeking behavior that are driven 

by differences in diagnoses and stage of disease.  

The work presented in this dissertation is EMR-centric. However, the basic concepts and 

methods could be applied in a wide range of other domains, such as operations control centers and 

online education.  

1.1 CURRENT METHODS 

Computerized clinical decision support provides clinicians and other healthcare workers with 

knowledge, information, and recommended actions in a range of settings for a variety of tasks 13. 

Examples of clinical decision support include info buttons 14, alerting systems 7, reminder systems 

15, and recommender systems 16. To be truly effective, decision support must address user needs, 

deliver support in a timely manner, fit into the users’ workflow, and maintain an effective 

2 
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knowledge base 17. Sittig et al.13 has outlined a list of grand challenges in clinical decision support. 

Three of the challenges are especially relevant to this dissertation research. They are to (1) 

summarize patient-level information, (2) prioritize and filter recommendations to the user, and 

(3) combine recommendations for patients with comorbidities. Patient-level summaries 

allow clinicians to gain rapid understanding of a patient’s state when a large amount of data 

may be present 18–20. Prioritizing and filtering data is a strategy to avoid clinician information 

overload. Comorbidities are the simultaneous presence of two or more diseases or conditions 

in a patient case. To provide a centralized and complete picture of a case, decision support 

systems should combine recommendations based on all of a patient’s comorbidities rather than 

considering each condition in isolation. Considering combinations is especially important when 

the management for one of a patient’s comorbidities conflicts with the management of another. 

Each of these issues becomes increasingly important as more patient data are captured by EMR 

systems and becomes available to health care providers 21. Addressing all these challenges is 

important in building effective clinical decision support systems.  

To meet these challenges, an effective clinical decision support system would likely need 

to be integrated closely with the EMR* system. EMR systems are increasingly common 22 and 

offer the potential to improve patient safety 23. However, due to clutter 24,25, information overload 

26,27, a mismatch between clinician workflow and EMR workflow 28,29, and additional issues, 

preventable adverse events are still prevalent 30. The American Medical Association has listed 

reducing the cognitive workload on health care providers as a top priority in improving EMR 

usability 31. A top priority states that EMRs “should support medical-decision making by providing 

* In this dissertation, EMRs and EHRs (electronic health records) are considered synonymous. 
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concise, context sensitive, and real-time data uncluttered by extraneous information.” A concise 

and context sensitive system ideally will present only the data that is necessary to deliver optimal 

care (now and into the future). To increase usability further, EMRs “should manage information 

flow and adjust for context, environment, and user preference” so that the display of data matches 

the clinician’s workflow 31.  

A 2007 Institute of Medicine report, The Learning Healthcare System: Workshop 

Summary, envisions EMR systems that provide “an intelligent integration of information about 

the individual with evidence related to that individual, presented in a way that lets the provider and 

the patient make the right decisions” 1. The need for this integration stems from the 

challenge clinicians face in aggregating, synthesizing, and identifying increasing amounts of 

data that are displayed by the EMR system 13,18,32. An EMR system that focuses the clinician’s 

attention on the patient data that she is likely to use could help reduce the time she needs to 

assess a patient’s condition 33, as well as improve decision making and reduce medical 

errors. This dissertation describes progress towards making such an EMR system a reality. 

1.2 PROPOSED APPROACH 

Let a Learning EMR (LEMR; pronounced lemur) designate a system that observes clinician 

information seeking behavior and applies it to direct the future display of patient data*. The LEMR 

system dynamically adapts the interface to highlight context-relevant patient data. Highlights are 

any presentation of data that guides the clinician to focus more on one subset of patient data relative 

* Other types of EMR-related learning tasks are possible as well, but we do not pursue them in this
dissertation. 
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to the remainder. Highlighted information should be personalized to the clinician who is using the 

EMR system, the purpose for which she is using it, and the clinical condition of the patient whose 

data is being viewed. Ideally, the system would function as if there was a team of clinical experts 

that behind the scene is able to efficiently decide for the current patient which data to highlight for 

a given clinician. Instead of having a team of experts, the LEMR system uses statistical models to 

identify the data to highlight. 

To learn clinician information seeking behavior, we build models that use patient data that 

are recorded in the EMR to predict which data items would be sought by clinicians (the target 

data) and, therefore, should be highlighted in a future patient case. The predictors are all the data 

items in the patient record and the targets are items that might be highlighted, with one distinct 

model for each item. Target data are not readily available in the EMR, so we collected them from 

clinicians in a laboratory setting with the LEMR system. Methods for inferring and collecting 

target data are one of this dissertation’s contributions. The LEMR system is intended to improve 

the efficiency of using the EMR and help reduce the risk of missing important patient data, due 

for example to information overload 26,27,34. The LEMR system accomplishes this by 

observing clinician information seeking behavior and applying it to direct the future display of 

patient data. In any context, a clinician uses a subset of the available patient data in the EMR 

35,36; the LEMR system seeks to identity the right subset of data and highlight it at the right time 

37,38.  
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1.3 HYPOTHESIS AND SPECIFIC AIMS 

Our hypothesis is that a LEMR system that highlights patient data that are likely to be sought by 

clinicians will yield the following results on a set of test cases:  (1) on average clinicians will 

use less time in preparing for a specified task (e.g., summarize a patient case at morning rounds), 

and (2) clinicians will judge that the system highlights all the patient data that they would seek in 

each case for the specified task.  

To evaluate the hypothesis, this dissertation performed the following specific aims: 

1. Develop a LEMR interface that is sufficient for the planned experiments.

2. Develop automatic eye-tracking for the LEMR interface: Develop an eye-tracking system

for the LEMR system that will automatically identify data that a clinician views in the LEMR 

interface. 

3. Observe clinician information seeking behaviors: In a set of patient cases, observe and

record data in each case that clinicians seek as relevant when performing a given clinical task. 

Use clinical information seeking data in conjunction with patient data to create a training data 

set for applying machine learning. 

4. Model clinician information seeking behavior and evaluate the models: Apply machine

learning methods to derive statistical predictive models from the training data set. Evaluate the 

performance of the models using precision, recall and area under the Receiver Operating 

Characteristic curve (AUROC). 

5. Apply models to direct the future display of patient data: On a separate set of evaluation

cases, apply high-performing models obtained in the previous Aim, and evaluate their 

performance with clinicians. In particular, measure clinician time in preparing for a specific 
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task (e.g., summarize a patient case for morning rounds) and clinician judgement that the 

system highlights data that they would use in each case for the specified task. 

The five specific aims are depicted in Figure 1. 
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Figure 1. Five specific aims of the LEMR system. A LEMR system observes clinician
 Figure 1. Five specific aims of the LEMR system. A LEMR system observes clinician 

information seeking behavior and applies it to direct the future display of patient data. This figure maps 

the five specific aims of LEMR system development to chapters of this dissertation. 
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1.4 EXAMPLE APPLICATIONS OF LEMR SYSTEMS 

To demonstrate the board applicability of LEMR system methods, this section presents five 

example applications of LEMR systems. The first two examples are of LEMR systems that 

highlight data, which are of special interest here because this dissertation presents the development 

and evaluation of such a system. We briefly describe how such a LEMR highlighting system might 

function in the intensive care unit and in an outpatient clinic. The next three examples demonstrate 

additional types of LEMR systems, including systems that provide clinical alerts, diagnostic 

suggestions, and clinical order suggestions. These examples illustrate how LEMR systems might 

help address alert fatigue 39, cognitive errors 40, and ordering appropriate medical tests 41.  

1.4.1 A LEMR system with in-place highlighting 

Clinicians in the intensive care unit analyze large amounts of patient data every day. When doing 

so, they must be careful to discern trends in a patient’s laboratory test results and vital sign 

measurements. Clinicians sometimes overlook new trends or test results because of cognitive 

limitations that result in information overload 27 and change blindness 42. Clinicians who analyze 

large amounts of patient data could benefit from an EMR that helps them focus appropriately.  

Different approaches can be used to focus user attention 43. For example, in reading 

literature a reader might use a yellow highlighter to highlight lines of text that they want to 

find again (see Figure 2; figure text from Fitzgerald (1991) 44). Highlighting done by one 

person can be used by another person to focus on particular sections of a document. A LEMR 

system uses highlighting to focus a clinician’s attention on particular test results, vital sign 

measurements, and other patient data, as shown in Figure 3.  
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Figure 3. Example of highlighting patient data to focus a clinician’s attention. This figure 

demonstrates how highlighting works using a fictitious list of laboratory tests results and vital sign measurements 

both without (top) and with (bottom) highlighting. In current EMR systems, these and other patient data are 

distributed across multiple tables, tabs, and screens, which increase the need for an aid to focus a user’s attention. 

Current EMR systems highlight abnormal patient data; the LEMR system is different because it highlights any 

data the clinician seeks, regardless of whether its value is normal or abnormal.  

Timestamp 08:00 
05-May-18

08:00 
04-May-18

08:00 
03-May-18

Blood Pressure 130/91 128/89 131/90

Temperature 38°C 38.2°C 38.4°C

Heart Rate 90 92 92

Respiratory Rate 16 17 16

Oxygen Saturation 97% 98% 97%

Hematocrit measurement 39.5% 43% 47%

Glucose measurement 230 mg/dL 312 mg/dL 291 mg/dL

... ... ... ...

Timestamp 08:00 
05-May-18

08:00 
04-May-18

08:00 
03-May-18

Blood Pressure 130/91 128/89 131/90

Temperature 38°C 38.2°C 38.4°C

Heart Rate 90 92 92

Respiratory Rate 16 17 16

Oxygen Saturation 97% 98% 97%

Hematocrit measurement 39.5% 43% 47%

Glucose measurement 230 mg/dL 312 mg/dL 291 mg/dL

... ... ... ...

Figure 2. Highlighting text is common when reading literature. 
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1.4.2 A LEMR system with a highlighted information display 

Clinicians in outpatient care must deal with a variety of patient conditions with histories sometimes 

dating back decades and medical records containing data collected in multiple care locations. 

Finding desired patient data among the large set of available data is difficult. Even when the 

clinician knows what patient data they desire, each page they visit and note they read still has a 

time cost. If desired data are spread among multiple screens, then the clinician must remember, 

write down, or revisit the data.   

The LEMR system described in Section 1.4.1 highlights patient data in place. 

Alternatively, context-relevant patient data could be highlighted through a dynamically populated 

highlighted information display (HID) in the LEMR interface. The HID could contain any type of 

patient data, rather than being data source-oriented. For example, in an EMR system that is source-

oriented, glucose levels are usually displayed with other laboratory test results and insulin dosing 

regimens are usually displayed with other medication orders. Clinicians using a source-oriented 

EMR system may have to switch between the laboratory test results screen and the medication 

order screen to appropriately adjust the patient’s insulin dosing regimen. A LEMR system that 

predicts a clinician will seek both glucose levels and insulin dosing regimens can place them 

together in the HID. 

Clinicians seek some patient data for nearly all patients (e.g., patient name, age, weight). 

These data items will always be displayed in the LEMR interface. There are other patient data that 

a clinician will seek for some patients but not for others (e.g., glucose levels, insulin dosing 

regimen, cholesterol measurements, cholesterol drug regimens). These data could be displayed in 

the dynamically populated HID, when a model of clinician information seeking behavior predicts 

that they will be sought as relevant for the current patient. For patient data a clinician seeks but is 
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not highlighted in the LEMR interface, a clinician could find them using either traditional means 

of EMR navigation or an EMR search engine that adds its results to the HID. Figure 4 shows such 

a LEMR design. 

Figure 4. Example of a highlighted information display (HID). The HID, shown with yellow 

background, displays patient data a clinician will seek for this case, as predicted by a statistical  model of clinician 

information seeking behavior. The data shown in the HID demonstrates that blood glucose levels may be 

highlighted with the insulin dosing regimen and that cholesterol laboratory tests may be highlighted with 

cholesterol drug regimens. The grey panels on the left are for traditional EMR navigation. 

Grant, Alan

Menu
HID
Results Review
Diagnoses
Orders
Medication list
Notes
Task list
Allergies
Histories
Microbiology
Procedures
Problem list
Overview
…

Age: 42     Sex: Male    Height: 181 cm     Weight: 77 kg

Blood glucose: 230 mg/dL
Lantus (insulin): 10 Units once daily

18-Mar-2018 to present
Blood pressure: 128/91 mmHg
Total cholesterol: 230 mg/dL
Low density lipoprotein (LDL): 137 mg/dL 
Triglycerides: 141 mg/dL
Crestor oral: 20 mg once daily

13-Jan-2018 to present
Lipitor oral: 10 mg once daily

22-May-2016 to 13-Jan-2018

Highlighted Information Display
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1.4.3 A LEMR alerting system 

Clinicians override up to 90% of the alerts they receive 45. To reduce alert override rates and alert 

fatigue, alerts should be raised judiciously. To be useful, alert triggering criteria should be 

clinician-specific because different users have different past experience with patient cases and 

clinical alerts.  

 A LEMR system is suited for learning which alerts are useful for different EMR users. 

Such a system can track the alerts a user has seen and overridden in the past, and observe the 

actions of similar users after they see the same alert. If a user has overridden an alert in the past, 

then the system could silence the alert and monitor the user’s behavior to verify their actions are 

consistent with the actions of other users who have seen the same alert. If the actions are consistent, 

then the user is likely already aware of the information contained in the ‘silenced’ alert. If the 

actions are inconsistent, then the user may not be aware of the information contained in the 

‘silenced’ alert, so the alert should trigger. For an explicit example, rifampin and isoniazid have a 

moderate drug-drug interaction that leads to an increase in the incidence of hepatotoxicity. These 

drugs are still used in combination along with frequent monitoring of liver enzymes 46. If an alert 

for this interaction were silenced for an ordering clinician who has overridden the alert in the past, 

and they frequently view the results of liver enzyme tests, then no further action is required because 

their actions are consistent with the observed actions of similar clinicians who have seen this alert 

(Figure 5, Scenario C). However, if an alert for this interaction were silenced for an ordering 

clinician who does not frequently view the results of liver enzyme tests, then the alert might trigger 

due to lack of follow up because their actions are inconsistent with the observed actions of 

similar clinicians who have seen this alert (Figure 5, Scenario B).  
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Figure 5. Scenarios for reducing alerts with a LEMR system. 

Scenario A Scenario B Scenario C

A clinician who has 
overridden an alert for 
combining rifampin and 
isoniazid.

A clinician who has 
overridden an alert for 
combining rifampin and 
isoniazid.

A clinician who has 
never overridden an 
alert for combining 
rifampin and isoniazid.

The clinician orders 
rifampin and isoniazid 
for the current patient. 

The clinician orders 
rifampin and isoniazid 
for the current patient. 

The clinician orders 
rifampin and isoniazid 
for the current patient. 

The moderate drug-
interaction alert is 
silenced because a 
personalized model 
predicts the ordering 
clinician is already 
aware of risks.

The moderate drug-
interaction alert is 
silenced because a 
personalized model 
predicts the ordering 
clinician is already 
aware of risks.

Drug-Interaction Alert
Combining rifampin and 
isoniazid leads to 
increased incidence of 
hepatotoxicity. 
If ordered, monitor liver 
enzymes frequently.

The ordering clinician 
frequently monitors 
liver enzymes, as 
similar clinicians do.

The ordering clinician 
does not frequently 
monitor liver enzymes, 
as similar clinicians do.

A ‘silenced’ alert is now 
triggered:

Drug-Interaction Alert
Combining rifampin and 
isoniazid leads to 
increased incidence of 
hepatotoxicity. 
If ordered, monitor liver 
enzymes frequently.

No alerts triggered.
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1.4.4 A LEMR diagnostic system 

All humans face cognitive biases, and clinicians are no exception. Some cognitive biases 

most prevalent in health care are anchoring, confirmation, and diagnostic momentum 40. 

Anchoring is the tendency to hold onto an initial impression, even after additional 

information has become available; confirmation bias is a tendency to look for evidence that 

conforms to one’s belief about a patient’s diagnosis while ignoring evidence that refutes it; 

and diagnostic momentum is the tendency for a particular diagnosis to become reinforced by 

subsequent health care providers after an initial provider attached the diagnoses to a patient (e.g., 

once a person is diagnosed with mild traumatic brain injury, subsequent visits to other health 

care providers may quickly yield the same diagnosis without the clinician fully considering all 

symptoms and the possibility of a more serious neurologic condition). 

One strategy for reducing errors due to cognitive biases is crowd wisdom 47. Under crowd 

wisdom, the biases of any one individual are offset by the opposing beliefs of other individuals 

within a large sample of people. Therefore, the aggregate answer of the large sample of people 

(the crowd) can be better than the expected answer of any one individual from within the crowd. 

A LEMR system could use crowd sourcing to lessen the effects of cognitive biases. To do so for 

patient diagnostics, the system would learn from the diagnoses assigned to many different patient 

cases. If for a patient case, an assigned diagnosis is not highly predicted by the LEMR system, 

then the system might alert the clinician to other diagnoses that are more highly predicted. To 

support the clinician’s diagnostic decision, the LEMR system may highlight patient data other 

clinicians would seek when managing patients with the more highly predicted 

diagnoses. Highlights could be in-place (Figure 3 in Section 1.4.1) or in a HID (Figure 4 in 

Section 1.4.2). The highlights might focus the clinician’s attention on a laboratory test result 



16 

that refutes the patient’s current diagnosis in favor of an alternative diagnosis that was 

included in the alert. In other words, alerts and highlights predicted using a model of the crowd 

could free a clinician from the patient data that initially suggested one condition (anchoring), and 

help them see other patient data that they were ignoring because those data were not relevant 

to the assumed diagnosis (confirmation bias and diagnostic momentum).  

1.4.5 A LEMR system to support order selection 

Providing good care includes ordering appropriate tests. Unnecessary testing causes patient 

discomfort or worse, increases health care costs, and can lead to false positive results 48. 

Clinicians may order unnecessary tests because they do not know current effectiveness data, 

because patients ask for them, or because of the practice of defensive medicine 49,50. These actions 

result in as many as 88% of patients receiving at least one unnecessary test during their first 24 

hours of emergency department care 48. Choosing Wisely® is a campaign to reduce 

unnecessary medical tests, treatments, and procedures 41.  

A LEMR system might help realize the goals of Choosing Wisely®. A system that observes 

clinician information seeking behavior could keep track of which laboratory, imaging, and 

microbiology test results are viewed (sought) and which are ignored (not sought). During 

computerized physician order entry, clinicians often are shown a list of available and relevant 

laboratory tests to order. Using a model of test result viewing (seeking), those tests that are unlikely 

to be viewed (sought) might not be included in a dynamically generated order set. They could still 

be ordered through the EMR by explicit entry, but doing so would involve the clinician explicitly 

deciding that those labs are worthwhile to order, even if the results are unlikely to be viewed 
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(sought). Besides viewing, other parameters, such as time since a test was last ordered, may be 

useful when predicting which tests to include in an order set. 

1.5 A LEMR SYSTEM AS AN INSTANCE OF A LEARNING HEALTH SYSTEM 

A learning health system (LHS) aims to “generate new knowledge as an ongoing, natural by-

product of the care experience, and seamlessly refine and deliver best practices for continuous 

improvement in health and healthcare” 51. LHSs are seen as an essential step in reducing the 17-

year delay between scientific discovery and their use in routine clinical practice 52. They are also 

a tool for achieving part of the most recent strategic plan for the National Institutes of 

Health: “timely dissemination and implementation of evidence-based practices” 53. 

A LHS consists of a three-step learning cycle (see Figure 6) 54. To initiate a LHS cycle, 

investigators or health care providers form a learning community that focuses on a health problem 

of interest. Once this is done, they aggregate their data and extract new clinical knowledge from 

it. The knowledge is used to influence performance of the clinical practices within the learning 

community. Finally, from clinical performance they generate new data to feed the next iteration 

of the learning cycle. This three-step cycle of data to knowledge, knowledge to performance, and 

performance to data is sometimes abbreviated as D2K, K2P, and P2D, respectively. The goal for 

subsequent learning cycles is continuous, rapid improvement addressing the health problem of 

interest.  
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Figure 6. The learning health system (LHS) learning cycle from Friedman et al. 54 

This health problem-centric view is the typical framing of the vision of a LHS. However, learning 

cycles need not focus exclusively on health problems and their management. They could also focus 

on developing and improving computerized clinical decision support. Clinical decision support, 

such as a readmission risk calculator, or the LEMR system presented in this dissertation, could 

provide clinicians, staff, and patients with information to enhance health care and health 55. 

These systems could be specific to a particular health problem or broadly applicable. An 

impediment to the development of clinical decision support is the need for data. 

Many clinical decision support systems model local data to provide clinicians with 

important information about the care of a patient. The data source is important because a model 

trained on one patient population may have subpar performance on a different patient 

population. Furthermore, model performance degrades over time due to calibration drift 56. 

To prevent performance loss, models must be periodically recalibrated on recently collected 

local data. 
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Therefore, to train a clinical decision support model and keep it calibrated, the system needs to 

continuously collect local performance data, use this data to update its knowledge base, and apply 

the new knowledge in practice to improve performance. These three steps match those of a LHS.  

A LEMR system is an instantiation of a LHS. It observes clinician information seeking 

behavior and applies it to direct the future display of patient data. A three-step learning cycle can 

be used to train and calibrate a LEMR system in a clinical setting: (1) the system continuously 

collects local performance data (i.e., it observes clinician information seeking behavior), (2) this 

data is used to generate knowledge (i.e., it models clinician information seeking behavior), and (3) 

the new knowledge is applied in practice with the goal of improving performance (i.e., it applies a 

model to direct the future display of patient data). These three steps (data, knowledge, 

and performance) are shown in Figure 7. 

Figure 7. LEMR as an instantiation of the learning health system. 

Learning EMR 
interface

P2D:
Performance 

to Data

D2K:
Data to 

Knowledge

K2P:
Knowledge to 
Performance

Model of 
information 

seeking behavior

Observe clinician 
information seeking 

behavior

Model clinician 
information seeking 

behavior

Apply a model to direct
the future display of 

patient data

Database of 
patient cases and
the data sought as 

relevant in each case
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1.6 DISSERTATION ROADMAP 

This dissertation is divided into eight chapters. Chapter 1 introduced the concept of a LEMR 

system with special emphasis on LEMR systems that highlight patient data. Chapter 2 describes 

relevant background information, reviews related prior work, and summarizes the contributions of 

this dissertation. Development of a LEMR system is divided into five parts that correspond to the 

next five chapters. Chapter 3 describes a prototype LEMR interface that we developed. It served 

as a test bed for LEMR experimentation. Chapter 4 describes the methods that we developed for 

using eye-tracking with the LEMR interface to automatically observe and capture clinician 

information seeking behavior. Chapter 5 explains how we enlisted the help of clinicians 

to manually indicate their information seeking behavior when performing a task with the 

LEMR interface, as well as an automatic observation method using eye-tracking. These data were 

applied for training the LEMR system. Chapter 6 describes how we applied machine learning 

methods to model clinician information seeking behavior. Chapter 7 presents an evaluation of 

the LEMR system. Chapter 8 summarizes this dissertation and discusses limitations, 

future work, and insights about LEMR systems. 

Figure 8 maps the chapters of this dissertation to the steps in the cycle of a LHS.   
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Figure 8. An overview of the chapters viewed in the context of a LHS. 
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2.0  BACKGROUND 

This chapter provides the background relevant to this dissertation, including an introduction to 

pertinent EMR topics; the application of eye-tracking technologies in computerized clinical 

decision support; the intensive care unit (ICU) environment, which is the clinical setting of this 

this dissertation work; the patient cases used in the experiments; and a brief overview of the 

supervised machine learning methods that were used. The chapter concludes with a summary of 

gaps in prior work and a synopsis of this dissertation’s scientific contributions. 

2.1 ELECTRONIC MEDICAL RECORDS 

In this era of Meaningful Use 57, EMRs — with at least basic functionality — have become 

pervasive throughout the United States 22. EMR systems are used to collect clinical data, to 

integrate data from multiple sources, and to support medical decision making 58. While these 

functionalities are important, more sophisticated EMR capabilities are needed in order to further 

realize the promise of improved quality of care 59.   

The switch to EMRs from paper-based patient reports has clear advantages in terms of 

information exchange, legibility, and accessibility 60,61. Some studies have found that EMRs 

improve quality of care 62, while other studies offer mixed opinions 61,63. Implementation of new 



information technology can result in unintended consequences 34, such as new risks for medication 

errors 64 and increases in mortality 65. Some studies have concluded that clinicians feel that 

current EMR systems reduce their ability to stay aware and informed, resulting in reduced 

performance 63. Reasons for these views include missing information, over-reliance on 

potentially erroneous information, and orders not being seen 63. EMRs take clinician gaze away from the 

patient and onto the computer monitor 66, resulting in reduced patient centeredness 61. Furthermore, 

current EMR systems often require the review of multiple screens to achieve a clinical task, due to a 

mismatch between clinical workflow and the way in which information is displayed 67. 

Some of the issues surrounding EMR system design can be attributed to their focus on billing 

68. This focus has been driven by United States government regulations and insurance company 

requirements 68. To address persisting issues, hospitals need to consider usability concerns, such as 

tradeoffs between unique needs of different users and system consistency, starting at 

implementation 69. To classify the functionality of EMR systems, Ball et al. 70 turned to the Gartner 

generations model for computer-based patient record systems. Under this model, the “collector” EMR 

system is the first of four generations of EMR systems. In this generation, the healthcare data that have 

traditionally been in paper format are now electronic. The second generation is the “documenter” EMR 

system, where structured data can be processed for basic clinical decision support — like alerts — and 

for generating reports. The third generation is the “helper” system, where data are structured and 

standardized — with the application of standard terminologies — and most healthcare operations and task 

management are done through the system. Finally, a fourth generation EMR system is called the 

“partner.” In this generation, the EMR provides contextual support to clinicians — for example, 

providing decision support and workflow capabilities that are specific to the clinician and to the 

current clinical task. These context-aware systems are anticipated to lead to substantial improvements in 

healthcare 71. 

23 
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2.1.1 EMR interfaces 

Research into the display of patient data in EMRs has progressed in various directions including 

graphical summaries 72, methods to summarize and display temporal data 73, and the context 

specific integration of data using either systems-based 74 or disease-based 75–77 approaches. Three 

general strategies have been used when determining how an EMR system will group and display 

data 78. The first and most common approach is to group data based on its source 79. For 

example, laboratory tests results will be displayed together in a table because their source is a 

laboratory information system. The second approach is to use a graphical timeline 80. While 

looking at a timeline, a healthcare provider can more easily understand the course of events. The 

third strategy is to group information by context. A review of context-aware EMR systems is 

provided in the next section.  

2.1.2 Context-aware EMR systems 

In this dissertation, clinical context refers to the situation surrounding an interaction between a 

clinician and the EMR system. It includes the type of clinician (e.g., physician, pharmacist, nurse), 

that clinician’s specialty (e.g., cardiology, radiology, pediatrics), the clinician’s role (e.g., 

attending, trainee, consulting), and the current channel of care (e.g., intensive care unit, general 

ward, outpatient).  It also incorporates the patient case that is being accessed, including all the 

electronically available information about that patient case (e.g., history, demographics, past and 

current laboratory test results). Finally, it includes the purpose for which the clinician is accessing 

the patient’s record (e.g., new admission, daily rounding review, patient handoff).  
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For this review of context-aware EMR systems, we only consider adaptive systems that 

use patient-specific details to adapt the display in a context-aware manner. Therefore, template 

screens, user customizable views, time-based views, and patient summary systems are not 

included. A summary of representative context-aware EMR systems is shown in Table 1.  

Table 1. Summary of EMR systems that adapt the display of a patient case in a context-aware manner. 

Author, Year System 
name 

Knowledge 
base 

Knowledge source Adaptive focus 

Pickering et al., 
2010 81

AWARE Rules Expert knowledge Available data 

Suermondt et al., 
1993 76

PWS Bayesian belief 
network 

Medical literature, 
Expert knowledge 

User query 

Zeng et al., 1999 82 QCIS Bayesian belief 
network 

Medical literature, 
Expert knowledge 

User query 

Hsu et al., 2012 75 AdaptEHR Bayesian belief 
network 

Biomedical ontologies, 
Graphical disease models 

Concepts extracted 
from clinical notes 

Ambient Warning and Response Evaluation (AWARE) is an ICU system that organizes patient 

information in organ systems-based information packages. AWARE uses a rule base to search for 

pre-identified high value information. The rules were developed from expert knowledge 81,83. 

When evaluated, AWARE reduced time to task completion and medical error in the assessment of 

ICU patients who are thought to be experiencing acute bleeding 81,84. 

Physician Workstation (PWS) is an early attempt at creating patient-specific, context-

aware EMR displays. PWS represents a patient state as a physiological Bayesian network. To use 

the system, a clinician would first select a patient problem or medication to view. Next, a program 

called Radarserver queries the Bayesian network to identify the patient data that influence or are 

influenced by the selected item. Finally, the returned patient data are displayed to the user. In 
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addition to querying functionality, Radarserver also functions as an alert system. If a new patient 

event causes a worrisome change to the model, clinician users are notified via an alert message. 

PWS requires a manually created global physiological model to function. This model includes 

parameters, arcs, and relationships 76,85. 

Querying Clinical Information System (QCIS) is a query-based system in which a user 

selects concepts of interest and relevant coded patient information is retrieved and displayed. 

Relevance is determined through a rule-based traversal of a semantic network. The network and 

rules were created from existing knowledge bases, on-line information sources, domain 

experts, and medical literature 77,78,82. 

Adaptive EHR (AdaptEHR) aggregates and extracts findings and attributes from free-text 

clinical reports, maps findings to concepts in available knowledge sources, and generates a tailored 

presentation of the record based on the connectedness of different patient data. The available 

knowledge sources are biomedical ontologies and graphical disease models 75. 

AWARE and the other existing integrated systems use rules to identify which of 

the potentially thousands of available data items are relevant in specific clinical contexts 78. 

Rules are usually manually constructed from disease models, ontologies, and expert opinion. 

Such rule-based systems have several advantages. They are likely to be clinically 

informative and appropriate, since they are based on clinical knowledge, and they can be 

readily programmed and applied to patient data that are available in electronic form. 

However, construction of rules is tedious and time-consuming. Moreover, rules have limited 

coverage of the large space of clinical conditions, and a rule-based display may not adequately 

portray the context of a patient whose condition presents in an unusual way or a patient who 

has multiple clinical problems 86.  
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To our knowledge, AWARE is only one of these systems to currently be commercially 

available. This lack of translation is a cautionary tale for the difficulty of developing a context-

aware EMR system. We do not know what became of three of the four systems. If these systems 

were discontinued because of the difficulty of adapting expert-driven rule bases, then the LEMR 

system’s data-driven approach may be able to overcome this limitation.  

2.2 EYE-TRACKING 

Eye-tracking technologies use cameras that monitor a participant’s eyes in order to determine 

where he or she is looking. There are two common types of eye-tracking equipment. The first is a 

head mounted unit that resembles a pair of glasses. These are not ordinary glasses though. They 

contain a pair of cameras. One camera records pupil and corneal reflection position while the other 

camera records the scene in front of the wearer. These two recordings are integrated in order to 

determine gaze location. The second type of eye tracker is a remote, external device. Eye-tracking 

devices of this type usually take the form of a sensor bar mounted on the bottom of a computer 

monitor. Thus, they are easier to setup, but can only be used in a fixed location, which typically 

means on a computer monitor. These sensors are able to map eye gaze onto positions (coordinates) 

on the computer monitor.  

Eye-tracking has a long history of use in usability studies 87 and consumer sciences 88. The 

use of eye-tracking for evaluating health information technology has been limited until very 

recently. The next section provides a review of representative work in this field.  
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2.2.1 Application of eye-tracking in health information technology research 

During the past decade, health information technology research has incorporated the use of eye 

gaze data with increasing frequency. Eye-tracking devices are used to better understand clinical 

reasoning 89 and to evaluate usability 90. Table 2 provides a summary of some studies that apply 

eye-tracking for various purposes, including patient safety, understanding workflow, and system 

evaluation.  
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Table 2. Studies that utilize eye-tracking technology in health information technology. Each study 

listed is described by using either a head-mounted or remote eye-tracking device. Head-mounted devices are worn 

by the study participant, whereas remote devices are usually mounted below a computer monitor.  

Author, 
Year 

Title Eye- 
tracking 
device 

Objective Results 

Henneman 
et al., 2008 
91

Providers do not 
verify patient 
identity during 
computer order 
entry 

Head-
mounted,  
ASL 
Mobile Eye 

Determine 
frequency of 
verifying patient ID 
during computerized 
provider order entry 
(CPOE) 

Medical providers 
often miss ID errors 
and infrequently 
verify patient ID 
with two identifiers 
during CPOE. 

Eghdam et 
al., 2011 130 

Combining usability 
testing with eye-
tracking technology: 
evaluation of a 
visualization support 
for antibiotic use in 
intensive care 

Remote, 
unknown 

Observe the visual 
attention and scan 
patterns of system 
users 

Navigation paths 
were close to 
expected. Eye-
tracking is a useful 
addition to usability 
studies.  

Forsman et 
al., 2013 131 

Integrated 
information 
visualization to 
support decision 
making for use of 
antibiotics in 
intensive care: 
design and usability 
evaluation 

Remote, 
Tobii X120 

Evaluate a prototype 
visualization tool 
that aids decision 
making of antibiotic 
use in the ICU 

Visual attention 
when completing 
the tasks differs 
between specialists 
and residents, who 
focus on the tables 
and on exploring 
the GUI, 
respectively.  

Nielson et 
al., 2013 132 

In-situ eye-tracking 
of emergency 
physician result 
review 

Remote, 
Tobii T60 

Determine the time 
spent by physicians 
looking at lab results 
and fixating on 
specific values in a 
live clinical setting 

Average time 
viewing individual 
lab result screen 
was 13.9 seconds, 
with 9.9 seconds 
fixated on 
particular lab 
values.   
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Table 2 (continued). 

Author, 
Year 

Title Eye- 
tracking 
device 

Objective Results 

Wright et 
al., 2013 100 

Eye-tracking and 
retrospective verbal 
protocol to support 
information systems 
design 

Head-
mounted, 
ASL 
Mobile Eye 

Development of 
principals to support 
better organization 
and prioritization in 
the presentation of 
electronic health 
data 

Preliminary results 
described basic 
usability concerns, 
importance of 
laboratory 
information 
displays, and a 
desire to see 
information in big 
picture format.   

Barkana et 
al., 2014 133 

Improvement of 
design of a surgical 
interface using an 
eye-tracking device 

Remote, 
SMI 500 

Evaluate a proposed 
surgical interface in 
terms of gaze 
fixations 

Fixation counts 
showed that 
displaying 8 CT 
scans was 
redundant, so they 
reduced the number 
to 2. This reduced 
time to task 
completion.   

Brown et 
al., 2014 96 

What do physicians 
read (and ignore) in 
electronic progress 
notes? 

Head-
mounted, 
ASL 
Mobile Eye 

Identify how 
physicians distribute 
their visual attention 
while reading 
electronic notes 

Physicians directed 
very little attention 
to medication lists, 
vital signs, or 
laboratory results 
compared with the 
impression and plan 
section of 
electronic notes. 

Doberne et 
al., 2015 94 

Using high-fidelity 
simulation and eye-
tracking to 
characterize EHR 
workflow patterns 
among hospital 
physicians 

Remote, 
Tobii X2 
60 

Characterize typical 
EMR usage by 
hospital clinicians as 
they encounter a 
new patient 

Found two different 
information 
gathering and 
documentation 
workflows among 
participants.    
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Table 2 (continued). 

Author, 
Year 

Title Eye- 
tracking 
device 

Objective Results 

Gold et al., 
2015 93

Feasibility of 
utilizing a 
commercial eye 
tracker to assess 
electronic health 
record use during 
patient simulation 

Remote, 
Tobii X1 
Light 

Understand factors 
associated with poor 
error recognition 
during an ICU based 
EMR simulation. 

Improved 
performance was 
associated with a 
pattern of rapid 
scanning of data 
manifested by 
increased number 
of screens visited, 
mouse clicks, and 
saccades.  

Moacdieh 
& Sarter, 
2015 24

Clutter in electronic 
medical records: 
examining its 
performance and 
attentional costs 
using eye-tracking 

Remote, 
ASL D-6 

Assess the effects of 
clutter, in 
combination with 
stress and task 
difficulty, on visual 
search and noticing 
performance.  

Clutter degraded 
performance in 
terms of response 
time and case 
awareness, 
especially for high 
stress and difficult 
tasks.  

Rick et al., 
2015 92

Eyes on the clinic: 
accelerating 
meaningful interface 
analysis through 
unobtrusive eye-
tracking 

Remote, 
SMI RED-
m 

Observe and report 
clinician 
experiences using 
their EMRs.  

Clinician time was 
predominated by 
searching behavior 
indicating that the 
organization of the 
EMR system was 
not conducive to 
clinician workflow. 

Weibel et 
al., 2015 134 

Lab-in-a-box: semi-
automatic tracking 
of activity in the 
medical office 

Remote, 
SMI RED-
m 

Create a portable 
multimodal data 
collection system to 
help characterize 
clinical workflow in 
the medical exam 
room.   

Created Lab-in-a-
Box and 
ChronoSense, 
which semi-
automatically 
annotates hours of 
clinician-patient-
EMR interaction.  
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With respect to patient safety, Henneman et al. 91 looked at the frequency that providers verify 

patient identification during computerized physician order entry and found that they rarely follow 

the recommended two identifier verification. Rick et al. 92 found that physician time using 

the EMR is predominantly spent in searching and concluded that the system that they were 

evaluating was not conducive to physician workflow. Regarding workflow, Gold et al. 93 

found that experienced physicians exhibit a pattern of rapid data scanning that increased the 

likelihood that they will recognize errors in simulated ICU patient cases.  

Better understanding of clinical workflow is frequently the objective of eye-tracking 

studies. Doberne et al. 94 found that different physicians utilize different EMR information 

Table 2 (continued). 

Author, 
Year 

Title Eye- 
tracking 
device 

Objective Results 

Fong & 
Hoffman, 
2016 95

Identifying visual 
search patterns in 
eye gaze data; 
gaining insights into 
physicians visual 
workflow 

Head-
mounted, 
unknown 

Propose and test an 
algorithmic 
approach to 
identifying search 
patterns from eye 
gaze data.  

The search patterns 
found provide more 
insight into 
duration and 
directionality of 
area of interest 
transitions, than 
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gathering strategies. Fong & Hoffman 95 developed a method for identifying visual search 

patterns and used it to understand physician visual workflow. Brown et al. 96 analyzed how 

physicians read progress notes and found that they spend most of their time reading the 

impression and plan section, even when the other sections contain more content. The 

observation by Brown et al. that different parts of a patient’s record receive different levels of 

physician attention, suggest that the display of a patient’s record should reflect these 

differences and highlight the patient data a clinician is going to dedicate his or her attention to.  

2.2.2 Barriers to adoption 

Various barriers prevent large scale eye-tracking adoption. Two of the largest barriers are cost and 

resource intensive gaze mapping. The combined cost of an eye-tracking device and a license for 

data analysis software can be over ten thousand dollars. This high cost of entry limits the number 

of researchers who can afford the devices. Eye-tracking data analysis (gaze mapping) can also be 

costly because some amount of manual annotation is usually required. Depending on the desired 

granularity of the results, five minutes of eye-tracking recordings can take as much as three hours 

to annotate 97. Analysis software provides an automated means to do these annotations. The 

software also provides additional analysis options for studies that have fixed information on the 

computer screen. For example, if a participant is asked to look at an image on the computer screen, 

the software can generate a heat map that shows the duration users spent looking at different areas 

of the image. A heat map is good for situations where the researcher is interested in seeing what 

grabs a participant’s visual attention and what is ignored. At a higher level of detail, a researcher 

can use the analysis software to outline areas of interest in an image. Once outlined, the eye gaze 

path between areas of interest can be automatically coded. However, this only works well for up 

33 
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to a few static images. If the participant is not viewing static images (e.g., they are scrolling through 

a webpage), then manually marking areas of interest becomes exceedingly time consuming 

because new markings must be made every time the image changes.  

Fortunately, progress has been made in addressing these barriers. In terms of eye-tracking 

device cost, new lower cost technologies have been developed. The lower costs open new markets, 

such as applications in video games. These devices do not offer all the features of a research-grade 

eye-tracking device. For instance, the Tobii EyeX (cost: $139) does not have a fixed sampling rate 

and is not compatible with the Tobii Pro software suite. Nevertheless, it may be useful for some 

studies. The next section describes an automatic approach that uses an eye-tracking device to 

determine which patient data has been viewed by a user in an EMR interface. 

2.2.3 Automatic eye gaze point-to-graphical element mapping 

As stated above, mapping or annotating the data from an eye-tracking study is a big barrier to its 

use. Two studies have addressed this issue for studies of web-based systems by developing 

methods for automatically mapping the eye gaze data from an eye-tracking device to graphical 

elements of a website 98,99. The WebEyeMapper and WebLogger system 98 records both the eye 

gaze data from a remote eye-tracking device and a detailed event log of a participant’s web 

browsing session (which is called browser instrumentation). After the recording session, the eye 

gaze data are converted into fixations and mapped to the graphical elements that were present at 

each time point throughout the session. The WebGazeAnalyzer system 99 functions in a similar 

manner, but is also able to map eye gaze onto individual lines of text. 

Besides automatic mapping, both the WebEyeMapper and WebLogger system and the 

WebGazeAnalyzer system provide exact playback of each study session. Exact playback is useful 
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when the research team is interested in replaying the study session (e.g., Wright et al. 100); however, 

if playback is not required, then a less detailed browsing log will suffice. The less detailed log 

stores the names and locations of each onscreen element at every page refresh, but not images or 

video of the elements. Gaze data are then mapped to the stored element locations to determine the 

names of elements being viewed. Additional automatic gaze mapping details are 

provided in Section 4.2.1. 

2.3 CLINICAL ENVIRONMENT 

We intend for the LEMR system to be applicable in virtually any clinical environment. However, 

to focus the early development and evaluation, this dissertation concentrates on a single clinical 

environment and two common clinical conditions in that environment, namely, acute respiratory 

failure and acute kidney failure.   

2.3.1 Intensive Care Unit 

Patient care in the ICU is complex, has large amounts of data per patient, and involves time-

pressured decision-making. About six million adults are admitted to ICUs each year in the United 

States and one in five Americans who die, do so while in the ICU 101. Information overload is 

a problem in this environment. A Canadian study estimated that the care of critically ill patients 

in the ICU generates a median of 1,348 individual data points per day 21. Such an environment is 

the ideal location to investigate a LEMR system 33.  



2.3.2 Acute respiratory failure 

Acute respiratory failure (ARF) accounts for 25–40 % of ICU admissions and carries a mortality 

rate of 30% or more 102. Common types of ARF include those caused by disorders of the airways 

(e.g. chronic obstructive pulmonary disease) and those caused by disorders of the alveoli (e.g. 

pneumonia).  Mechanical ventilation is used to support patients with ARF. 

2.3.3 Acute kidney failure 

There are more than 200,000 cases of acute kidney failure (AKF) in the United States each year. 

It is a common complication in critically ill patients 103 and has a mortality rate of approximately 

50% 104. AKF usually develops due to kidney injury caused by toxins or reduced blood flow 105. 

Treatment of patients with AKF includes a limited diet, diuretics, and dialysis. 

2.4 PATIENT DATA 

This section describes the patient data used in this dissertation. It includes a description of (1) the 

full data set of de-identified patient cases from which we extracted ARF and AKF cases and (2) 

the representation of that data in the LEMR system. 

2.4.1 HIDENIC data set 

The HIgh DENsity Intensive Care (HIDENIC) data set is a comprehensive collection of EMR data 

on thousands of patients who were hospitalized in ICUs at the University of Pittsburgh Medical 

36 
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Center (UPMC) from July 2000 through December 2014 106. HIDENIC contains structured data 

including demographics, physiological measurements collected at the bedside such as vital signs, 

laboratory tests, and medication and fluid administration records. These data are combined with 

unstructured data, from a clinical data warehouse 107, in the form of a variety of clinical text 

reports such as history and physicals, progress notes, operative and procedure notes, and 

radiology, EKG, and EEG reports. 

HIDENIC data was extracted from an ICU EMR system. It is a limited data set where 

actual calendar dates were retained and all other patient identifying information were removed. 

The data have been prepared for research use, including the mapping of medications and laboratory 

tests to standard terminologies. 

2.4.2 Representing a patient state 

As defined in Section 2.1.2, a clinical context includes all the electronically available information 

about a patient case. HIDENIC contains patient data from admission until discharge.  In the LEMR 

system, patient cases are time sliced into successive days during the patient’s stay in the ICU. Each 

successive day includes selected patient data that was available from the patient’s day of ICU 

admission until a selected day t (see Figure 9). 
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Figure 9. Successive days of a patient case are time sliced into patient states. A patient state includes all 

the available patient data from day of admission until selected day t. 

The data available in HIDENIC includes both atemporal variables (e.g., demographics and co-

existing medical conditions) and temporal variables (e.g., time-stamped laboratory results, 

medication administrations, and procedures). To create a uniform representation of each patient 

state, we use a vector space representation of these variables. Atemporal variables, such as gender, 

are included as their scaler values. Temporal variables are summarized using a combination of 

features. For instance, each scalar laboratory test is represented with up to 36 features including 

maximum value, most recent value, and slope between the two most recent values. Medications 

are represented with up to four variables that describe details such as whether the medication is 

currently active and how long it has been active. Procedures are represented in a similar manner 

to medications. The full list of features is available in Section 6.2.1.  



39 

2.5 SUPERVISED MACHINE LEARNING METHODS 

This section provides a brief, selective introduction to machine learning methods that are relevant 

for this dissertation. One type of machine learning is called supervised learning. In supervised 

learning, a model P(y | x) captures the relationships between predictor variables in x and target 

variables in y. To learn the relationships, a learning algorithm is supplied with a data set that 

consists of training samples that contain both predictor variables (x) and target variables (y) for 

each sample. After training, the model can estimate the probability of the target variables given 

the values of the predictor variables. For this dissertation, the predictor variables are a vector space 

representation of a clinical context (including data in the EMR of the current patient case being 

viewed) and the target variables are the data items (e.g., blood glucose levels) that a clinician is 

predicted to seek as relevant while viewing the current case. We apply a machine-learned model 

to predict and highlight the patient data that a clinician is expected to seek in a current clinical 

case. 

In developing a LEMR system, we collected a large training data set that includes many 

patient cases with target values assigned according to clinician information seeking behavior. We 

use this data set to train and test the performance of three supervised machine learning algorithms: 

logistic regression, support vector machine, and random forest. 

Logistic regression is a regression model that uses a logistic function to predict the 

probability of a discrete target variable (traditionally, a binary variable) 108.  Regression models 

use an update function called gradient decent to update model parameters and reduce error when 

modeling the training cases. As described in Section 2.4.2, patient states (which are part of a 

clinical context) are represented with many variables. For logistic regression, we address the issue 
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of high dimensionality using Lasso. The Lasso technique drives the weights of variables with little 

or no predictive value toward zero. 

Support vector machine is a technique that maximizes the separation of two classes by a 

hyperplane and is usually well suited for classification problems with many predictor variables 

— high dimensionality 109. The probability of the target can be derived using the distance of 

predictive features (in a high dimensional space) from the hyperplane. 

Finally, random forest classifiers combine the output of multiple decision (classification) 

trees to predict the probability of the target variable. Decision trees use a tree-like structure to 

model a relationship between predictor variables and a target variable 110.  

2.6 GAPS IN PRIOR WORK 

This section summarizes the gaps in prior work that we see as impeding the development of LEMR 

systems.  

Gap A. Clinical coverage of context-aware EMR systems will be limited if they use rule 

bases as their only mean of determining interface adaptions. To increase coverage of context-aware 

EMR systems across the wide range of clinical contexts, we need to supplement or replace expert-

driven, rule-based systems with data-driven systems.  

Gap B. To switch from expert-driven to data-driven context-aware EMR systems, we need 

a method for large scale observation of clinician information seeking behavior during EMR system 

use. It is not known how best to observe and collect this type of data, but a set of this data is needed 

for LEMR system development.  
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Gap C. Eye-tracking is one method for observing clinician information seeking behavior; 

however, eye-tracking devices used for EMR system observation studies in the past are expensive 

and mapping eye gaze to elements of the EMR interface is time consuming. It is not known how 

well inexpensive devices and automatic eye-gaze-to-graphical-element mapping will work with 

an EMR interface. 

Gap D. It is not known which machine learning methods work best for modeling clinician 

information seeking behavior.  

Gap E. Since data-driven context-aware EMR systems — like the LEMR system — are 

novel, it is not known how well models can predict clinician information seeking behavior, nor 

what the impact will be of clinicians using EMR systems that highlight relevant patient data.  

2.7 CONTRIBUTIONS 

This dissertation investigates the following questions: 

A. How do we develop context-aware EMR systems that are data-driven rather than

expert-driven?

A data-driven approach to developing context-aware EMR systems requires data on clinician

information seeking behaviors for many different patient cases, these data need to be

modeled, and the models applied to direct the future display of patient data. This dissertation

explores each of these tasks.

B. What approaches are best able to observe clinician information seeking behavior?

The proposed LEMR system uses supervised machine learning methods. Supervised machine

learning requires a training data set consisting of predictor variables and target variables.
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Predictor variables are constructed from patient data. Target variables are assigned values 

based on observations of clinician information seeking behavior. There are several possible 

methods to obtain clinician information seeking behavior. For each method, we must consider 

the tradeoffs between observation accuracy and obtrusiveness on the clinician. One method is 

to ask a clinician (during training sessions) to manually select the patient data they seek in a 

clinical case. Another approach is to use eye-tracking technology. Eye-tracking devices can be 

used to estimate the patient data a clinician is viewing. If we assume that clinicians dwell longer 

in viewing information that they seek, then eye-tracking could be applied to automatically 

estimate clinician information seeking behavior. 

C. Will an inexpensive eye-tracking device and an automatic gaze mapping method work

with an EMR interface?

The use of inexpensive eye-tracking devices and automatic gaze mapping methods in

conjunction with the LEMR interface are developed and evaluated in this dissertation. This

advancement is a step towards allowing eye-tracking for clinical decision support, which will

enable a plethora of new capabilities.

D. Among a set of state-of-the-art machine-learning methods, which is the best method to

apply to model clinician information seeking behavior when preparing for morning

rounds?

Little existing work has been done to understand which supervised machine learning models

and predictor variables work well when predicting clinician information seeking behavior.

Research that helps answer this question is important for advancing LEMR system

development.
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E. Will the LEMR system reduce the time it takes for clinicians to review patient

information, without reducing their awareness of the case relevant information (in a

given clinical context, such as preparing to present a patient case at morning rounds)?

Ideally, the LEMR system will reduce cognitive load on clinicians and result in reduced

occurrence of preventable medical errors. Since cognitive load is difficult to directly measure,

we instead focus on measuring the time it takes for a clinician to perform a given clinical task,

namely, time to task completion. Tasks, such as preparing to present a patient case at morning

rounds, are common clinical activities and reducing time to task completion frees up more

clinician time for other care activities (patient interaction, consideration of how best to treat

the patient, etc.). It may also result in greater clinician satisfaction with the EMR system. In

addition to measuring time to task completion, we will also measure the extent to which the

patient data highlighted in the LEMR system for each case includes all the data that clinicians

self-report as seeking in those cases in preparing for morning rounds.
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3.0  DEVELOPING A LEMR INTERFACE 

This chapter describes the design, development, and implementation of the LEMR interface that 

was used in the experiments presented in this dissertation. It includes the rationale for developing 

a LEMR interface, initial requirements, preliminary design and evaluation, and the primary 

interface design used for the primary studies (Sections 5.3 and 7.1) presented in this dissertation.  

3.1 RATIONALE FOR DEVELOPING A LEMR INTERFACE 

To develop a LEMR system, we needed a way of displaying patient data, that is, the 

display capability of an EMR system. We also needed the ability for a clinician user to select the 

patient data that he or she sought in each clinical context. It would have been ideal to use the EMR 

system that study participants used for clinical activities (i.e., the local EMR system). First, using the 

local system would eliminate a burn in period, which is the time a participant spends learning 

and becoming familiar with the system within the experimental setup. The downside to a burn in 
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period is that it is time spent without collecting the principal data.  Second, using the local 

system would increase the external validity of the results. Unfortunately, the local system was 

not available for adaptation.  

We considered modifying open source EMR software for study purposes. The two 

systems we reviewed were the VistA system, which is used in all Veteran Affairs Hospitals 111, 

and the OpenMRS system, which is used in many low resource settings 112. VistA has the benefit 

of being a fully functional EMR system; unfortunately, it is implemented in MUMPS, 

which is a programing language that has fallen out of popular use. Furthermore, the VA is in 

the process of replacing Vista. OpenMRS, on the other hand, is growing in usage 113. However, 

it lacks much of the functionality of commercial EMR systems that are in current use. Ultimately, 

we decided that it was simpler to build an in-house system that has sufficient EMR display 

functionality to support our proposed research. An advantage of doing so is that we have deep 

understanding and complete control of the system and user interface, allowing for rapid 

prototyping and addition of functionalities as needed.  

3.2 LEMR INTERFACE REQUIREMENTS 

Once the decision was made to build an in-house LEMR interface, we developed a minimum set 

of software requirements for the LEMR system. These requirements were simply (1) screens to 

display patient data, (2) ability for clinicians to manually record their information 

seeking behavior, and (3) capability to highlight patient data that clinicians are predicted 

to seek as relevant. 



46 

3.3 PRELIMINARY LEMR INTERFACE DESIGN 

To address the first requirement, we built the graphical user interface as a web browser application. 

Applications that use the web browser have gained popularity in recent years because of various 

advantages including platform independence, the ability to access the system from anywhere, 

adaptability to mobile applications, and relative ease of development and maintenance.  

The second requirement follows from the need to have training data to train a LEMR 

system. A target variable (e.g., glucose target) is assigned the value yes when that variable’s 

corresponding data item (e.g., blood glucose level) is recorded for a patient case and a clinician 

seeks it. To collect a large training data set, the method for observing clinician information seeking 

behavior must not be overly burdensome for the clinicians providing the target values. In this 

preliminary LEMR interface, the simplest observation method was for clinicians to manually select 

(by clicking on) the patient data that they sought in each patient case. 

For the third requirement, the LEMR interface needed a clear and intuitive way to indicate 

which patient data are highlighted in each patient case. The use of web components and styling 

provide multiple easy options for highlighting.  

The LEMR system is implemented as client-server software and consists of four 

components. The client consists of a user interface and the server consists of three components 

that include a database for storing patient and other data, a repository of statistical models, and a 

communication module that connects the client with the server. The LEMR system can function 

in two modes. In the training mode, the system enables a user to select data items that are pertinent 

to a task for the current patient case (see Figure 10a). In the evaluation mode, the system highlights 

data items that are predicted to be sought by the user and collects user responses to study questions 

(see Figure 10b). 
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Figure 10. Components of the LEMR system. 
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On the server side, patient cases are stored in a MySQL database, which is queried to provide data 

shown in the user interface. The same database stores information seeking activities that are 

captured during the training mode and responses to study questions during the evaluation mode. 

The repository of statistical models contains predictive models that are derived offline using 

Scikit-learn 114. During the evaluation mode they are applied to a current patient case to predict 

data items that are likely to be sought by the user. The communication module is implemented 

in Django Web Framework 115 and enables the flow of data from the database to the user 

interface and vice-versa.  

The LEMR user interface displays patient cases in a compact manner and is implemented 

in a web browser using HTML, CSS and JavaScript. A screenshot of the preliminary LEMR 

interface with highlighting is shown in Figure 11. Panel A, the patient demographics toolbar, 

allows the user to move between patients and gives a summary of the current patient’s 

demographic information and admitting diagnosis. Panel B contains quick access tabs for 

navigating among the various types of patient information, including laboratory test results, 

medication orders, and clinical text reports (e.g., history & physical examination (H&P) notes, 

progress notes, and operative procedure notes). Currently the “Labs/Vitals/Meds” tab is selected. 

This EMR interface uses times-series plots to display this structured clinical information 

(laboratory test results, vital signs, medication orders, and intake and output data). Panel C, the 

time range selector, is used to define time ranges of data to display. Below the time-range selector 

is the procedures axis, which is labeled with the defined times. Black diamonds on this axis 

represent procedures (surgeries, biopsies, etc.) that the current patient has had. Hovering over a 

diamond gives more details on that procedure. Panel D, the highlighted information display (HID), 

shows detailed time-series plots of the highlighted patient data. These plots have a labeled y-axis 
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and blue bands to indicate the normal range. Panel E displays all available results, including those 

found in the HID, using plots with condensed y-axes. These plots give a notion of trends over time 

and are arranged by group type (basic chemistry, cardiac chemistry, etc.). The buttons across the 

top of this panel list all the different group types and can be used to jump to a specific type. For 

both Panel D and Panel E, different colors are used to indicate when a value is within or outside 

of the normal range (blue = below; green = within; red = above; black = no defined normal range). 

For a patient case, the patient data highlighted in the HID are the patient data that a clinician is 

predicted to seek for a given clinical case. The HID can be populated with items by both automatic 

and manual means. For automatic population, the LEMR system uses stored statistical models to 

Figure 11. Screenshot of the preliminary LEMR interface. A) demographics toolbar; B) quick 

access tabs; C) time range selector; D) Highlighted Information Display (HID); E) all data display. Both D and 

E are scrollable. 
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predict the probability that each data item (e.g. blood glucose levels) is going to be sought. The 

patient data that have predicted probabilities above a set threshold are placed in the HID. To make 

manual changes to the contents of the HID, a user clicks on the blue buttons (with white arrows) 

next to the name of each data item. There are buttons to move patient data into the HID and buttons 

to remove patient data from there. When a user adds new patient data to the HID, the change is 

captured in the training data set where a target value of yes is given to a target variable added to 

the HID and a target value of no is given to a target variable removed from the HID. Each target 

variable is assigned a maximum of one target value per patient case.  

3.4 PRELIMINARY LEMR INTERFACE THINK ALOUD STUDY 

During LEMR interface development, we met with ICU clinicians to elicit feedback on the 

interface and proposed LEMR system modeling strategy. One method we used to elicit feedback 

was a think aloud protocol 116. In a think aloud study, an evaluator uses the interface to work 

through a series of tasks and, while doing so, they speak their thoughts out loud. Feedback from 

the think aloud study was used to refine the interface design.  

3.4.1 Methods 

We conducted a think aloud protocol with an ICU clinician — denoted by C1 — with the goal of 

identifying new ways to improve the LEMR system. This study took place in C1’s office on 

11/7/2014. The prototype LEMR interface was loaded with three de-identified ICU patient cases 

from the HIDENIC data set 106. Patient data were highlighted based on feedback from a clinician 
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who reviewed the same cases while being tasked to identifying changes in clinical condition or 

emergence of a new clinical problem (see Section 5.1). These highlighted patient data would 

appear in the HID as if the models predicted them. C1 talked out load about his thoughts and 

actions while using the prototype to assess each patient’s clinical condition.  

3.4.2 Results 

C1 expressed several concerns with the display of highlighted patient data. First, he did not like 

the mix of both colors and symbols when representing a test result value as abnormally low (blue 

squares), normal (green circles), or abnormally high (red triangles).  Instead, he suggested the use 

of different colors (as was shown in Section 3.3, Figure 11). C1 also noted that the differing y-

axes between highlighted and non-highlighted patient data was confusing. He suggested that they 

be made consistent and be free for adjustment by the user. Third, C1 believed that the data on drip 

medication concentrations should be displayed as histograms rather than scatter plots, as was done 

for other laboratory tests and medications. Finally, C1 discovered a software bug that caused the 

ranges of the y-axis in the graphs of some laboratory tests and medications to be inconsistent, with 

higher positions on the y-axis not necessarily corresponding to higher values.   

Regarding other interface aspects, C1 expressed concern regarding how a clinician might 

interpret highlighted patient data. Specifically, he believed that clinicians almost always consider 

only one to three time-series of laboratory tests and medications at a time. As a result, C1 suggested 

that the LEMR should have an option whereby tests and medications are grouped and then 

displayed in separate tabs. Moreover, he suggested that another window be incorporated into the 

LEMR system design, whereby clinicians can explore correlations between test results and 

medications without explicitly moving them into the HID. 



52 

Two comments were made about the proposed LEMR system modeling. C1 wanted to 

ensure that the models were not going to be weighted too strongly towards one’s own information 

seeking behavior. Doing so could reinforce the potential biases of a clinician. 

Second, C1 suggested that the LEMR should incorporate time series outlier detection into 

its models. Specifically, the system should be able to classify whether a time series is normal or 

abnormal within the last 𝑛𝑛 (user specified) hours. Outlier detection could be used as a standalone 

method for identifying data to highlight or could be incorporated as predictor variables in training 

data sets for a LEMR system. 

This study provided important insights into issues an ICU clinician may have when using 

this prototype. We updated the LEMR interface based on the suggested interface changes and 

clarifications.  The modeling suggestions are tabled for future consideration and study. Next, we 

performed a multi-participant usability study on the updated LEMR interface.  

3.5 PRELIMINARY LEMR INTERFACE USABILITY STUDY 

We performed a usability study to gather usability data in the LEMR interface from multiple ICU 

clinicians, while they performed a simulated patient review task. In addition to identifying 

strengths and weaknesses of the LEMR interface, we asked each participant for their thoughts on 

the concept of a LEMR system.  
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3.5.1 Methods 

Four medical fellows were recruited from UPMC’s Department of Critical Care Medicine to 

participate in the study. The study was approved by the University of Pittsburgh Institutional 

Review Board (ID PRO14020588). It took place in meeting rooms at the University of Pittsburgh 

School of Medicine in February of 2014. Each participant used the prototype to review three to 

five selected patient cases. For each case, participants were shown the patient’s EMR data from 

ICU admission to a selected day during that patient’s ICU hospitalization. The participants were 

asked to familiarize themselves with the case as if they were the attending clinician. No data were 

displayed in the HID for the initial examination of each patient case. Next, the clinicians were 

shown an additional day of the patient’s data that was meant to simulate rounding on the 

subsequent day. For each case’s additional day, the HID was populated with laboratory tests that 

a clinician on the research team predetermined to be useful when identifying a change in the current 

patient’s clinical condition or emergence of a new clinical problem. The study participants were 

asked to use the features of the prototype to add and remove items from the HID until the 

highlighted items represented the patient data that they thought another clinician who was looking 

at the same case would want to use when assessing the last 24 hours of that case, given that they 

had been following the patient since ICU admission.  

During the review of each patient case, screen tracking software recorded all the on-screen 

actions and an audio recording captured each participant’s think aloud comments. After a 

participant reviewed the allotted patient cases, additional time was allocated for a semi-structured 

interview. We asked the participants about their perceptions regarding the LEMR system concept 

in general and the LEMR interface specifically. The questions are listed in Table 3. The interviews 

were coded independently by two researchers before meeting to create a consensus. The coding 
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was used to identify general themes in the responses. Each participant also completed the System 

Usability Scale 117 based on his or her interactions with the prototype.  

Table 3. Interview questions used during a usability study of the LEMR interface. 

1) Please share your thoughts on the premise behind this work, independent of the specific
system that you just used.

i) Please describe the applicability of this idea to your work, particularly in terms of
clinical utility.

ii) What would your reaction likely be if you were told that this technique was going to
be integrated into your clinical work? Would you be enthusiastic? Worried? Why?

iii) Do you have any concerns with this sort of approach, and if so, what are they?

iv) What impact, if any, do you think such a system would have on quality of care?

v) What impact, if any, do you think such a system would have on the amount of time
that you spend rounding on a given day?

vi) What factors might contribute to the success or failure of such a system?

2) The system that you used is an early prototype implementation of this approach. I’d like to
get your impressions of it:

i) What do you like about the prototype?

ii) What do you not like about the prototype?

iii) How could the prototype be improved?

iv) Would you use such a system, if it were available to you?

3) Is there anything else that you might like to tell me?
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3.5.2 Results 

The participants identified many benefits and a few concerns of the LEMR system concept and 

LEMR interface. They were enthusiastic about the concept of a LEMR system and thought that 

designing something that utilizes current behaviors is important. They thought that a fully 

developed LEMR system would probably improve the quality of care. Three participants identified 

as positive the LEMR’s potential to adapt to different specialists and thought it was applicable 

because not all types of clinicians look at the same type of information. Reduction of information 

burden was also mentioned as important. One participant would like to use any system that is able 

to highlight the most relevant information without slowing him down. Three of the participants 

liked the timeline approach to displaying information.  

One concern that participants had with the system was about feasibility. They thought that 

the ICU setting would be difficult because clinicians there must address every organ system and 

abnormality. Another concern was implications of integration into workflow. They warned that a 

system that focuses too much on commonly sought patient data could cause an over reliant 

clinician to miss out on rare things that happen. Finally, there were a few design concerns including 

the color scheme. Three different colors were used to represent low, normal, and high test results. 

One of the participants said that abnormal results should be the same color regardless of whether 

they are abnormally high or abnormally low (i.e., red for both). Also, two participants mentioned 

that they did not like having to hover over a data point to get an exact test result value.  

The System Usability Scale composite score for the four participants was 79. The 

scale ranges from 0 to 100 and any score above 68 is generally considered to be above average 

usability 118.
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This study provided important feedback on the usability of the LEMR interface and on the 

concept of a LEMR system. Design suggestions from the participating ICU clinicians, such as 

always showing exact test result values, were included in future versions of the LEMR interface. 

The positive interview responses highlighted the potential benefits of this line of work. 

3.6 PRIMARY LEMR INTERFACE DESIGN 

The LEMR interface was continuously improved in response to user feedback and experimental 

needs. This section describes the LEMR interface used during the primary collection of training 

data (Section 5.3) and during the primary LEMR evaluation study (Section 7.1).  

Figure 12 is a screenshot of the LEMR interface that was used in the primary studies 

described in this dissertation. The single column of laboratory tests results, vital sign 

measurements, and medication orders from the preliminary LEMR interface was replaced with six 

columns: one column for vital sign measurements, ventilator settings, and input and output 

measurements; one column for medications; and four columns for the different laboratory test 

results, which are still organized by laboratory group. The right side of the screen is reserved for 

the different types of free text notes, reports, and a procedure list. On the lower right side of the 

screen, a blue box provides instructions to the participant on the current experimental task.  

For the LEMR system evaluation study (Section 7.1), three different versions of the 

prototype interface were used: the control interface (shown in Figure 12) was used in all three 

arms of the evaluation study, the highlights interface (shown in Figure 13, top) was used in Arm 2 

and Arm 3 of the evaluation study, and the highlights-only interface (shown in Figure 13, bottom) 

was used in Arm 3 of the evaluation study. On the highlights interface, patient data predicted to be 
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sought as relevant by models of clinician information seeking behavior are highlighted (in-place) 

with a yellow background. On the highlights-only interface, patient data predicted to be sought as 

relevant are highlighted and patient data not predicted to be sought as relevant are hidden. The 

rational for these three versions of the interface is provided in the methods section of the 

evaluation study (Section 7.1.1).  

Additional interface screenshots and feature descriptions are provided in Appendix D, 

which contains the slides of the presentation that introduced participants of the evaluation study to 

the study objectives and the LEMR interface. 

In conclusion, we designed and developed a LEMR interface to use in a research setting. 

Beyond the research reported in this dissertation, this LEMR interface is readily adaptable to 

various areas of research, including clinical decision making, information needs, and human 

computer interaction. Open source software for the LEMR interface is available at 

(https://github.com/ajk77/LEMRinterface) or see Appendix B.  

https://github.com/ajk77/LEMRinterface
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Figure 12. Primary LEMR interface. 
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Figure 13. Primary LEMR interface with model-based highlighting. The top screenshot shows the 

highlights version of the LEMR interface, which has in-place, yellow highlighting of patient data. The bottom 

screenshot shows the highlights only version of the interface, in which only the highlighted patient data appears.  



4.0  DEVELOPING AUTOMATIC EYE-TRACKING FOR THE LEMR 
INTERFACE 

This chapter presents two studies that explore the use of eye-tracking technologies in clinical 

decision support 119. The first study evaluates the use of an inexpensive eye-tracking device; most 

prior work has used expensive devices. The second study evaluates an automatic method for 

analyzing eye-tracking data for use in machine learning; manual mapping of gaze points to 

graphical elements in an interface is time consuming and often impractical to perform. The results 

from these studies provide support for the use of eye-tracking technologies in the clinical setting 

for observing how clinicians use the EMR and for recording their information seeking behavior.  

4.1 EVALUATING AN INEXPENSIVE EYE-TRACKING DEVICE 

As discussed in Section 2.2.2, eye-tracking devices designed for research are expensive. Newer 

devices designed for video games are far less expensive than older eye-tracking systems. In the 

context of the LEMR system, if eye-tracking proves to be an acceptable approach for observing  
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clinician information seeking behavior, a less expensive device makes widespread adoption 

much more likely. We conducted a study to determine if an inexpensive eye-tracking device 

has acceptably similar accuracy when compared to a more expensive device designed for 

researchers. More specifically, our hypothesis was that the accuracy of the inexpensive Tobii 

EyeX device ($139 in March 2016) is not inferior to the moderately priced Tobii X2-30 eye-

tracking device ($4,900 in March 2016). 

4.1.1   Methods 

We recruited one undergraduate student, seven graduate students and two post-doctoral researcher 

associates, to participate in a study that took place in March of 2016. Four of the participants 

wore corrective lenses (glasses), five had uncorrected eyesight, and one had corrective eye surgery. 

One participant who wore corrective lenses was excluded from the study due to difficulty in 

calibrating the eye-tracking device.  

Each participant took part in two experiments where an experiment used one of two eye-

tracking devices. For each experiment, the participant was instructed to sit in front of a computer 

monitor that was equipped with one of the eye-tracking devices. The monitor was adjusted to 

ensure that the participant was comfortable and the eye-tracking device had a clear view of the 

participant’s eyes. Once situated, the participant used the six-point Tobii EyeX Engine calibration 

program to calibrate the device. Next, the participant was instructed to stare at a small (7x7 pixel) 

red box as it appeared for one-second durations in 50 random onscreen locations. Then, we 

switched to the other eye-tracking device for the second experiment. The order of the devices 



varied by participant, where half was tracked by the inexpensive EyeX first and half was 

tracked by the more expensive X2-30 first.  

 Data collected during the study included the gaze points measured by the eye-tracking 

devices and the onscreen coordinates of each randomly generated box. We used this data to 

calculate the absolute error between the median location of all the gaze points measured while 

a box was onscreen and the coordinates of that box. Absolute error is used because an average 

of non-absolute (positive and negate) errors would underestimate the true error. We report 

the average error of each trial run and compare the errors of the two eye-tracking devices 

using a paired sample t-test. 

The inexpensive device is considered to be not inferior to the moderate-cost device if the 

upper bound of the 95% confidence interval of the difference in error (inexpensive device minus 

moderate-cost device) is no greater than one percent of screen height, which is approximately 11 

pixels. A difference of this magnitude could be accounted for with a slight increase in the size of 

each graphical element displayed in the LEMR interface (see Chapter 3). If the 95% confidence 

interval includes values greater than 11 pixels, then each graphical element would need to be 

increased by a larger amount, resulting in a loss of information display density that could 

compromise the utility of the interface. In this situation, we would conclude that the inexpensive 

device was not as accurate. 
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4.1.2   Results 

For each participant, the average error was calculated both in two dimensions (diagonal error) 

and in single dimensions (horizontal error and vertical error).  Results are shown in Table 4 

and in Figure 14. Using a two-sided paired sample t-test, there was not a statistically 

significant difference between the error of the two eye-tracking devices in either the vertical or 

the diagonal directions (p-values: 0.313 and 0.768, respectively). The upper bounds of the 

95% confidence intervals for the difference show that the average error for the lower cost device 

is likely no more than 9 pixels greater in the vertical direction and 5 pixels greater diagonally ― 

magnitudes that are less than one percent of screen height. There was a statistically 

significant difference in the horizontal error; however, it was the inexpensive device that had 

less error than the more expensive device (p-value: 0.008).  

These results support the claim that the inexpensive EyeX device is not inferior to the more 

expensive X2-30 device. Other than accuracy, the more expensive device has features that may be 

desirable to other investigators. It has a consistent refresh rate of 30 Hz, as opposed to the Tobii 

EyeX’s inconsistent refresh rate of about ~58 Hz. The X2-30 is also compatible with Tobii 

Pro Studio, which offers a wide range of data analyses. Nevertheless, for the experiments 

described in this dissertation, the EyeX device is a good choice.  
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Table 4. Average errors of two eye-tracking devices. Each error cell is the average of absolute median 

errors across fifty gaze points for each participant. 

Horizontal error 
(in pixels) 

Vertical error 
(in pixels) 

Diagonal error 
(in pixels) 

Participant EyeX X2-30 EyeX X2-30 EyeX X2-30 
1 8 9 21 10 23 15 
2 13 17 32 17 36 27 
3 9 10 16 17 19 22 
4 10 21 21 19 24 30 
5 16 15 22 12 30 21 
6 5 10 14 11 16 16 
7 9 14 12 14 16 22 
8 8 14 16 22 19 29 
9 11 16 14 21 20 28 

Average 9.9 13.9 18.6 15.7 22.6 23.3 
Difference (95% CI) -4 (-6.8, -1.4) 2.9 (-3.2, 8.7) -0.7 (-6.6, 5.1)

Figure 14. Difference in error of two eye-tracking devices (EyeX minus X2-30). Error bars indicate 

two-sided 95% confidence intervals. The shaded area indicates error values below the non-inferiority margin (11 

pixels). Since, the upper limit of each error bar is below the non-inferiority margin, the data support that the EyeX 

device is not inferior to the X2-30 device. 
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4.2 EYE-TRACKING FIDELITY TEST 

To use the data produced by the Tobii EyeX for machine leaning, we developed and implemented 

a method to automatically map eye gaze coordinates produced by the device to graphical elements 

displayed in the LEMR interface. Section 2.2.2 describes mapping methods that utilized web 

browser implementations. Since our intended use of the eye-tracking data does not require video 

playback of study sessions, we implemented a limited web browser method that stores less 

information. It uses a mapping algorithm that ranks patient data by the amount of gaze that they 

have received from the user. The assumption is that the longer a graphical element is cumulatively 

viewed in the interface, the more likely that element was sought by the clinician. Our hypothesis 

was that when a study participant uses the LEMR interface to answer a question about a patient 

case, the patient data the participant had to look at to correctly answer the question will be ranked 

as most gazed upon by the mapping algorithm. 

4.2.1 Methods 

In this section, we describe an automatic gaze point-to-graphical element mapping method and its 

evaluation.  

Automatic gaze point-to-element mapping 

We developed an easy-to-use automatic eye gaze point-to-graphical element mapping method that 

stores minimal information about the onscreen interface layout (i.e., it stores the names and 

locations of each graphical element that depicts patient data). On each page refresh, the method 

uses the JavaScript function getBoundingClientRect() to determine the location of each element; 
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element names, locations, and a timestamp are recorded in a text file. Simultaneously, the data 

streaming from the eye-tracking device (x-coordinate, y-coordinate, and timestamp) are recorded 

in a second text file. Next, these files are overlaid using the timestamp information (as shown in 

Figure 15). Once this overlay is made, we calculate the mapping by counting the number of gaze 

points that fall within each graphical element across time. We call this the Gaze Point (GP) method. 

Eye-gaze-to-graphical-element mapping via the GP method does not account for the error 

of the eye-tracking device. To account for this error, we developed a probability distribution-

based approach, the Distributed Gaze Point (DGP) method, which allocates a portion of each 

gaze point to each of the elements that lie within the surrounding 100x100 pixel area. 

Allocations are made based on a bivariate normal distribution that was fit to the error of 

the eye-tracking device. Therefore, the portion of a gaze point that is allocated to an element is an 

estimate of the probability the participant was actually viewing that element. We rank the viewed 

elements by the sum of the gaze probabilities allocated to the element across an interaction.  

Open source eye gaze tracking and analysis software is available online at 

(https://github.com/ajk77/EyeBrowserPy) or see Appendix B. 

https://github.com/ajk77/EyeBrowserPy
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Figure 15. Overlay of graphical elements and eye gaze data. 
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Experimental evaluation 

We recruited five graduate students and one post-doctoral researcher to participate in a study that 

was conduction in May of 2016. Each participant was instructed to perform a data retrieval task 

for twelve different patient cases. The cases were displayed in the LEMR interface (see Section 

3.6). The interface was instrumented to store element names and locations, as described previously. 

Figure 16 shows what the graphical element for creatinine measurements looked like. To 

account for some of the eye-tracking device error, each element had a 15-pixel margin.  

During the study, the participant was asked to sit in front of a computer monitor that had the EyeX 

device attached. We adjusted the monitor to ensure that the participant was comfortable and the 

eye-tracking device had a clear view of the participant’s eyes. Once the participant was situated, 

they used the six-point Tobii EyeX Engine calibration program to calibrate the eye-tracking device 

to the computer monitor. After calibration, the participant was asked to begin performing the case 

tasks.  

The tasks for the first four cases were to find the most recent value of specified laboratory 

tests. As shown in Figure 16, the most recent value is the value listed to the right of the test name. 

The tasks for the next four cases were to find the date of the most recent value of specified 

Figure 16. The display of a laboratory test. Each green point represents a creatinine test result, arranged 

in chronological order from left to right. Hovering over a point creates a tooltip that provides more data about that 

result. The value listed in the top row (2.1) corresponds to the value of the most recent test result.  
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laboratory tests. To find the date, a participant must hover over the data point with the curser and 

read the details in the resulting pop-up tool tip. The tasks for the final four cases were to 

determine the trend in the values of specified laboratory tests. Figure 16 shows creatinine trending 

downward. The exact wording of each task is listed in Table 5. Note that there are two tasks for 

cases 4, 8, and 12.  

Table 5. The participant tasks for each patient case in eye-tracking fidelity tests. 

Case Participant Tasks 
1 Last Value of Glucose (Basic Chemistry) 
2 Last Value of Platelets (CBC) 
3 Last Value of WBC (CBC) 
4 Last Value of Glucose (Basic Chemistry) & of pHa (Blood Gas) 
5 Date of Last Glucose (Basic Chemistry) 
6 Date of Last Platelets (CBC) 
7 Date of Last Bands ABS (Diff) 
8 Date of Last Glucose (Basic Chemistry) & Lymphs ABS (Diff) 
9 Trend of Hct (CBC) 
10 Trend of WBC (CBC) 
11 Trend of RBC (CBC) 
12 Trend of Platelets (CBC) & of Phosphate (Basic Chemistry) 

We applied the DGP automatic gaze point-to-element mapping method to each patient case. The 

output from the method is a ranked list of the graphical elements that the participant viewed the 

most. The mapping method was considered accurate for a patient case if the top ranked elements 

were the elements that needed to be viewed to correctly answer the case task. For example, the 

element containing glucose levels needed to be viewed for Case 1, so the automatic mapping would 

be accurate only if glucose was ranked as most viewed.  



70 

4.2.2   Results 

Across the twelve patient cases, the automatic gaze point-to-element mapping was 88% accurate. 

Table 6 shows case by case results, where there are six participants and each case requires 

participants to look at either one or two elements (laboratory tests). Results are summed across the 

six participants. Correct elements refers to the number of times that the top ranked element (based 

on the automatic eye gaze-to-graphical element mapping) was the element needed to perform case 

tasks. For example, Case 1 had one element was needed for the task and the top ranked element 

was the correct element for 3 of the 6 participants, resulting in an accuracy of 0.50.  

Table 6. Performance of an automatic eye-tracking system across six participants. 

Case Elements 
Needed 

Correct 
Elements 

Total 
Elements 

Accuracy 

1 1 3 6 0.50 
2 1 4 6 0.67 
3 1 5 6 0.83 
4 2 9 12 0.75 
5 1 6 6 1.00 
6 1 6 6 1.00 
7 1 6 6 1.00 
8 2 11 12 0.92 
9 1 6 6 1.00 
10 1 6 6 1.00 
11 1 6 6 1.00 
12 2 11 12 0.92 

Totals 79 90 0.88 

If manually performed, mapping individual gaze points to graphical elements would be a tedious 

process and an impractical process for large scale or real-time clinical applications. the automatic 

mapping method had good accuracy (88%). Accuracy seemed to improve as participants became 
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familiar with the LEMR interface, from 69% on the first four cases to 98% on the last eight. The 

first four cases might also have been more difficult, because the lab value field is at the edge of 

the box containing it, and thus, more easily confused with elements outside of the box. This 

hypothesis could be evaluated in the future by repeating the experiment with a randomized 

ordering of the cases and case tasks. Even at current accuracy, the automatic mapping method has 

potential to save time and resources on eye-tracking data analysis and opens the possibility of large 

scale and real-time application of eye-tracking in clinical settings.   

4.3 A DISSCUSSION ON EYE-TRACKING IN THE EMR 

We found an inexpensive eye-tracking device to have non-inferior accuracy when compared to a 

more expensive device. The decreasing cost of eye-tracking devices is ushering in a new era of 

eye-tracking-based research and human computer interaction. As costs continue to decline, it 

seems likely that eye-tracking is included as a standard device in computer monitors, just like a 

camera is a standard device in smart phones.  

Efficient processing of eye gaze data is as important as cost when considering the use of 

an eye-tracking device. This chapter described how a user’s eye gaze can be automatically mapped 

to different patient data displayed in the LEMR interface. The same mapping methods would work 

for any instrumented interface.  

Eye-tracking is described in two more sections of this dissertation. Section 5.2 evaluates 

using eye-tracking to observe clinician information seeking behavior when they are preparing for 

morning rounds (pre-rounding). Section 5.3 describes the use of eye-tracking to observe clinician 

information seeking behavior for a set of patient cases for training the LEMR system. 
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5.0  OBSERVING CLINICIAN INFORMATION SEEKING BEHAVIORS 

This chapter describes methods for observing clinician information seeking behavior that are 

needed for data-driven, context-aware LEMR systems. In the context of a LHS, the methods 

described in this chapter constitute the first part of a LHS loop: practice to data. In other words, 

this chapter presents methods of converting practice (a clinician using the EMR for a patient case) 

to data. 

A LEMR system uses observations of clinician information seeking behavior as training 

data for constructing statistical models that predict clinician information seeking behavior. In a 

training data set, a target variable (or simply target) is any patient data item that a clinician can 

potentially seek as relevant for a specific task in a specific patient. Thus, any observation, 

measurement, action, or other information that is related to a patient, recorded in the EMR, and  
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sought by a clinician becomes a target. A target, in a given context, takes only two values; it is 

assigned the value yes if it appeared in the EMR and a clinician sought it for the given task, and it 

is assigned the value no if it appeared in the EMR but a clinician did not seek it. It is not defined 

if it was not measured for the patient. For example, for a patient with diabetes mellitus, glucose 

target = yes denotes that the target variable glucose target was assigned the value yes because 

glucose was sought by a clinician. Consider a different patient who has kidney failure and glucose 

levels are recorded but are not sought by a clinician. Then, glucose target = no denotes that the 

target variable glucose target was assigned the value no because glucose was not sought by a 

clinician. Finally, glucose target = undefined denotes that glucose levels were not recorded for a 

patient and, therefore, do not appear in the EMR.  

This chapter presents both manual and automatic methods of observing clinician 

information seeking behavior. Manual observation methods (i.e., manual selection) are used 

during LEMR system development and for observing any fine-tune adjustments users make to 

LEMR interfaces. The automatic observation method (e.g., eye-tracking) tested in this 

chapter is illustrative of possibilities for automatic training of LEMR systems. 

5.1 PRELIMINARY MANUAL COLLECTION OF A TRAINING DATA SET 

We developed and implemented a manual method for observing clinician information seeking 

behavior and evaluated it with a single clinician participant who used it  to assign target values 

on a set of patient cases. These cases are used as a training data set in a preliminary modeling 

study (Section 6.1). 



74 

5.1.1 Methods 

A clinician participant used the preliminary LEMR interface (Section 3.3 Figure 11) to view the 

EMR records of 59 patient cases in April 2014. The cases were selected randomly from the 

HIDENIC data set (described in Section 2.4.1). For each case, the participant imagined that he was 

the attending who was taking care of the patient. He read the clinical reports and examined the test 

results to determine the patient’s clinical course since admission to the ICU. Then, for the last day 

for which patient data was displayed, he used features of the prototype to populate the HID with 

laboratory tests that were useful in providing evidence about (1) possible changes in the clinical 

condition of the patient, and (2) the emergence of a new clinical problem. Any test that he moved 

into the HID was considered relevant and was given a target value yes. Any test that the participant 

did not move into the HID was considered not relevant and was given the target value no. These 

labs with assigned target values are the targets in this training data set of 59 patient cases.  

5.1.2 Results 

Across the 59 patient cases, 36 distinct laboratory tests were identified as relevant for at least one 

patient case and 21 distinct tests were identified as relevant for more than one patient case. These 

relevant tests tended to be from basic chemistry (11), complete blood count (7), blood differential 

(6), and liver function (5). The minimum, median, and maximum number of tests identified as 

relevant for a patient case are 2, 7, and 14, respectively. 
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5.2 OBSERVING CLINICIAN INFORMATION SEEKING BEHAVIOR WITH EYE-

TRACKING 

We wanted to evaluate the extent to which eye-tracking technologies can accurately determine the 

patient data a clinician seeks when using the LEMR interface to complete a clinical task. To 

sufficiently evaluate using eye-tracking for this purpose, we chose preparing for morning rounds 

(pre-rounding) to be the task because it is a common activity and it requires the clinician to view 

a diverse set of patient data. 

We investigated the extent to which the patient data a clinician views (as captured by an 

eye-tracking device) can function as a proxy for his or her information seeking behavior. If the 

patient data observed by eye-tracking sufficiently matches self-reported (manually selected) 

relevant information, then this automatic observation method can be applied when collecting 

a training data set (Section 5.3).  

 Our hypothesis was that when preparing to present a patient case at morning rounds, the 

patient data a clinician gazes longest at will be the same data the clinician manually reports as 

seeking in the case.  

5.2.1 Methods 

This section describes the study participants, experimental design, and data analysis. This study 

was approved by the University of Pittsburgh Institutional Review Board (ID PRO16030092). 
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Participants 

Four critical care fellows from UPMC were recruited between July 2015 and August 2015. Each 

participant participated for four to five hours and their time was compensated at a rate of $100 

per hour.   

Experimental design 

Each participant participated in one study session in which they were asked to review ten patient 

cases. For each case, the participant was asked to follow a two-step protocol. In the first step, the 

participant was presented with a patient case and asked to use the available patient data to prepare 

for presenting the case at morning rounds. During this step, an eye-tracking device and the 

automatic mapping method described in Section 4.2.1 were used to record the patient data viewed 

by the participant (eye-tracking data set). Once the participant decided that they were prepared to 

present the case, they were asked to start the second step of the protocol. In this step, the participant 

was asked to select the patient data they used when preparing to present the current case at morning 

rounds (manual selection data set). Selections were indicated using features of the LEMR interface 

and are considered the gold standard of clinician information seeking behavior. Eye gaze was not 

recorded during this step.  

Data analysis 

In addition to the automatic mapping methods described in Section 4.2, namely, GP and DGP, we 

also tested augmenting the mapping method with two different fixation algorithms: Dispersion-

Threshold Identification (I-DT) and Area-of-Interest Identification (I-AOI) 100. These algorithms, 

rather than considering individual gaze points, combine consecutive gaze points into fixations 

when they meet certain criteria. Both algorithms have a time threshold (duration) parameter. For 
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I-AOI, this means that a certain number of consecutive gaze points must map to the same patient

data variable before that variable is considered fixated on. In addition to a duration parameter, I-

DT has a distance threshold (dispersion) parameter. For this algorithm, consecutive gaze points 

are mapped to the same fixation when they are within a certain distance of each other. We tested 

these two fixation algorithms across various parameter settings for their duration (2, 3, 4, and 5 

consecutive gaze points) and dispersion (20, 30, 40, 50, 60, 70, and 80 pixels) thresholds. 

After the study data were collected, we compared the automatically collected eye-tracking 

target values against a gold standard (manually selected target values) using Area Under the Curve 

(AUC) of the Receiver Operator Characteristic (ROC) curves and of the Precision Recall (PR) 

curves. To perform the analysis, time spent viewing each graphical element in each case was used 

as the classification measure (i.e., the curves are produced by varying the viewing time threshold). 

5.2.2 Results 

We recruited four University of Pittsburgh Medical Center (UPMC) ICU fellows as study 

participants. All four participants wore corrective lenses. The AUC-ROC and AUC-PR results for 

the four participants averaged across all ten patient cases are shown in Table 7. Only the best 

preforming I-AOI and I-DT parameter settings are shown. The GP and DGP mapping approaches, 

which are based on individual gaze points rather than fixations, performed the best. With nearly 

identical performance, it does not appear that DGP offered any benefit over GP. The two fixation 

algorithms resulted in reduced performance; this result may be due to the exclusion of valid gaze 

points that did not meet the fixation inclusion criteria. 
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When comparing methods of observing clinician information seeking behavior, we found that eye-

tracking worked well for two participants and not well for the other two participants. This result is 

complicated by the fact that eye-tracking performed poorly for some participants. More analyses 

are needed, to know when, for which users, and for which patient data eye-tracking should be used 

for collecting LEMR training data.  

We hoped that eye-tracking could replace manual selection as the primary method for 

observing clinician information seeking behavior. With the results obtained, we decided to use 

both manual selections and eye-tracking when collecting a LEMR training data set (Section 5.3).  

5.3 PRIMARY COLLECTION OF A TRAINING DATA SET 

Thus far, this chapter has presented a manual method and an eye-tracking method for collecting 

LEMR training data. In this section, we describe the use of these methods to collect larger sets of 

training data, which are used in a machine learning study (Section 6.2) and in the LEMR 

evaluation study (Section 7.1). 

Table 7. Averages across all ten cases of each mapping method tested. 
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 Participant 1 Participant 2 Participant 3 Participant 4 Average 
AUC AUC AUC AUC AUC 

ROC PR ROC PR ROC PR ROC PR ROC PR 

DGP 1 0.73 0.82 0.76 0.86 0.57 0.57 0.58 0.78 0.66 0.76 
GP 1 0.72 0.82 0.74 0.85 0.56 0.58 0.57 0.77 0.65 0.75 
I-AOI 2 0.66 0.78 0.72 0.83 0.55 0.55 0.54 0.76 0.62 0.73 
I-DT 3 80 0.50 0.64 0.52 0.67 0.55 0.54 0.55 0.74 0.53 0.65 



79 

5.3.1 Methods 

We describe the protocol for observing clinician information seeking behavior including the 

participants, LEMR interface, patient cases, experimental design, and data analysis. This study 

was approved by the University of Pittsburgh Institutional Review Board (ID PRO16100190). 

Participant sessions occurred between August 2017 and October 2017. 

As presented at the beginning of this chapter, the patient data a clinician seeks as relevant 

when preparing a case for morning rounds are assigned the target value yes. Data that was recorded 

for a patient but not sought by a clinician are assigned the target value no.  

Participants, LEMR interface, and patient cases

The recruited participants were ICU fellows and attending clinicians from the University of 

Pittsburgh in the Department of Critical Care Medicine. Each participant was compensated 

$100 per hour of participation. They used the LEMR interface (see Section 3.6) to complete a 

series of tasks for about 20 cases. The cases loaded into the interface were randomly selected 

from a set of ICU patient cases that (1) were admitted between June 2010 and May 2012 and (2) 

had a diagnosis of either acute kidney failure (AKF; ICD-9 584.9 or 584.5; 93 cases) or acute 

respiratory failure (ARF; ICD-9 518.81; 85 cases). Case data were extracted from a research 

database 106 and a clinical data warehouse 107, as described in Section 2.4.1. The cases were de-

identified to create a limited data set that included dates and times related to the events. 
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Experimental design 

Data collection occurred in a meeting room where a participant sat in front of a laptop computer 

that was pre-loaded with 30 patient cases. The first four cases were common across all participants 

(there are called burn-in cases) and the remaining 26 cases were different for each participant so 

the resulting training data set would include different patient cases. Each participant reviewed and 

annotated as many cases as they could during one to two sessions that lasted a total of four to six 

hours. 

The participants reviewed and annotated the cases using the interface shown in Section 

3.6, Figure 12. The case review procedure included the following tasks (see Figure 17).   

Task 1. For this task a random day between day two of admission to the ICU and the day before 

discharge from the ICU was selected as the “past patient stay”. All available EMR data 

up until 8:00 am on the day selected for the past patient stay was displayed to the 

participant. Structured data were shown in graphical time series plots and free-text 

notes were shown in a separate area in the interface. The participant was instructed to 

“use the available information to become familiar with the patient case as if they are 

one of your own patients.”  After becoming familiar with the case, the participant 

clicked on a button to advance to Task 2. 

Task 2. An additional day (from 8:00 am on the day selected for the past patient stay to 8:00 am 

on the next day i.e., “current time”) of the patient’s EMR data was added to the display. 

The participant was prompted with “24-hours have passed” and directed to “use the 

available information to prepare to present the case during morning rounds.” After 

preparation was complete, the participant clicked on a button to advance to Task 3. 
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Task 3. In the interface, each available data item (e.g., glucose levels, insulin dosage regimen) was 

accompanied with a check box. Clicking on the area associated with an item toggled 

the check box. The participant was directed to “select the information you consider 

pertinent when preparing to present this case at morning rounds.” The participant 

selected relevant data items by toggling the accompanying check box to the checked 

state. 

Two data sets of information seeking behavior were collected. The manual selection data set was 

collected during Task 3 when participants manually selected data items that were relevant to the 

task. The eye-tracking data set was collected during Task 2 when clinicians were preparing to 

present the case at morning rounds (see Section 5.2 for more details on eye-tracking). A 

target variable was assigned the value yes, if its associated data item was selected (or was gazed 

upon for at least 250 milliseconds), and no, if the associated data item was not selected (or was 

not gazed upon for at least 250 milliseconds).    

Figure 17. Case review protocol for observing clinician information seeking behavior. During this 

protocol, two training data sets are collected: an eye-tracking data set and a manual selection data set. 
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Participant agreement 

To gauge agreement among participants, we calculated an intra-class correlation coefficient (ICC) 

120. ICC ranges from 0 to 1, where values less than 0.50, between 0.50 and 0.75, and 0.75 and 0.90

are indicative of poor, moderate, and good reliability, respectively 106. ICC was computed on the 

first four (burn-in) cases based on a single rater, absolute-agreement, two-way mixed-effects 

model (R Project; Psych package in CRAN; ICC3 method). Four cases were reviewed by all 

participants and, thus, were used for the ICC calculation. To increase the power of the ICC 

calculation, we aggregated across all data items to calculate a single ICC score. While the time to 

task completion for the burn-in cases is longer because users are not yet familiar with the interface, 

we speculated that the data items selected (target value is yes) by the participants were less affected 

by burn-in because relevant patient data should be the same regardless of the time it takes for a 

participant to use the interface. 

5.3.2 Results 

Participant characteristics 

Table 8 summarizes the 11 critical care clinicians who participated in this study. 

Table 8. Participant characteristics when collecting the primary training data sets 

Gender 
distribution 

Experience distribution Years of experience 
Mean (range) 

Male Female Fellows Attendings Since medical school In the ICU 
7 4 9 2 5.3 (3.0-10.0) 1.8 (0.3-7.0) 



83 

Patient cases 

A total of 178 patient cases were reviewed by the clinician participants between August and 

October of 2017. Of these patient cases, 52% had AKF, 48% had ARF, the average age was 60, 

and the median ICU day at the time of review was 7. These numbers do not include the four burn-

in cases that were reviewed by all participants.  

Case targets 

Each case had target values assigned manually via manual selections and automatically via eye-

tracking. Across the 178 patient cases, 109 different data items were manually selected, with an 

average of each item being selected 32 times and a maximum of 152 times. Using eye-tracking 

across 147 patient cases, 115 different data items were viewed, with an average of each item being 

viewed 35 times and a maximum of 120 times. Gaze data was not collected for the other 31 cases 

because the participant was not sitting within the eye-tracker’s tracking range.  

Participant agreement 

The aggregate ICC score (agreement) of the 11 participant’s manual selections on the first four 

burn-in cases is 0.40 (95% CI 0.36 to 0.45). This is poor agreement, suggesting that models trained 

on this data will start off as being very noisy.  
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5.4 A DISSCUSSION ON OBSERVING CLINICIAN INFORMATION SEEKING 

BEHAVIOR 

We developed and evaluated two different methods for observing clinician information seeking 

behavior. The manual selection method requires participants to click on the patient data they seek. 

This method works well enough for LEMR system development in a research setting, but it is not 

practical for observing clinician information usage in the real world. In real clinical settings, an 

implemented LEMR system would use automatic observation methods.  

The automatic observation method using eye-tracking is promising for observing clinician 

information seeking behavior because it does not require any additional work from clinicians. 

Unsurprisingly, users manually selected a subset of the patient data that they viewed. In this 

dissertation we use manual selections as the gold standard for clinician information seeking 

behavior; however, clinician information viewing patterns might be more closely aligned with 

their information seeking behavior, than a clinician’s manual judgement of their own behavior.   

Tests show that clinicians have low agreement when it comes to what patient data they 

seek as relevant when preparing the same cases for morning rounds. The disagreement comes 

mainly from some clinicians being more selective and others being more liberal in the type and 

number of data items they choose. This suggests that the gold standard is a silver standard at best. 

Such disagreements will reduce the performance of models trained from it.  

The manual targets collected in Section 5.3 were used to train models in the machine 

learning study described in Section 6.2. These trained models were applied in the LEMR 

evaluation study described in Section 7.1. The training data collected from eye-tracking were also 

applied to train models. Both sets of models (manual selection and eye-tracking) are 

prospectively evaluated using a gold standard collected during the evaluation study (Section 7.1). 
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6.0  MODELING CLINICIAN INFORMATION SEEKING BEHAVIOR 

This chapter focuses on developing statistical models for modeling clinician information seeking 

behavior using training data that was collected as described in Chapter 5. Thus the data collected 

as described in Chapter 5 is used to generate knowledge in the form of predictive models. These 

models predict for a given context (e.g., user-task-case: an ICU fellow-preparing to 

present morning rounds-for a patient with acute kidney failure) what patient data clinicians 

will seek as relevant. Three different machine learning algorithms are used to train the 

models. In the context of a LHS, the models described in this chapter constitute the second 

part of the LHS loop: data to knowledge. In other words, this chapter presents methods of 

converting data (collected from clinicians using the EMR) to knowledge (models of 

clinician information seeking behavior). 

Chapter 5 described methods for observing clinician information seeking behavior and 

the application of those methods to assign target values to patient cases. Those target variables 
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were combined with predictor variables constructed from the same patient cases. A 

predictor variable denotes any patient data item and includes observations, 

measurements, actions, or other information that are recorded in the EMR. Examples 

of predictor variables in an ICU EMR include demographics, diagnosis, vital sign 

measurements, ventilator settings, intake and output, laboratory test results and 

medication administrations. A predictor value is the value that a predictor variable takes in 

a patient. Consider a patient with diabetes mellitus in whom glucose levels are recorded in the 

EMR. Then diagnosis = diabetes mellitus denotes that the predictor variable diagnosis has the 

value diabetes mellitus and glucose = 85, 100, 90, 105 mg/dL denotes that the predictor variable 

glucose consists of a series of glucose levels over a period of time.  

We use the term variables to denote raw patient data items that are recorded in the EMR 

(e.g., glucose levels) and the term features to denote functions of those variables (e.g., most 

recent measurement of the glucose levels). Predictor variables include simple 

atemporal variables (e.g., diagnosis), as well as more complex variables that represent 

multivariate time series data (e.g., glucose). We construct features from predictor variables as 

described below: 

• For each atemporal variable such as diagnosis and demographics, we generate a single 

feature that is assigned a single value for a patient for the duration of ICU stay (e.g., gender 

= male).

• For each medication variable, we generate several features to summarize the time series of 

administered doses. For example, for an insulin dosing regimen we generate 4 features that 

include 1) an indicator of whether the patient is currently prescribed insulin, 2) the time 

since its first administration to the current time, 3) the time since its most recent 

administration to the current time, and 4) its dose at the most recent administration. 
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• For each laboratory test result and vital sign, we generate an extensive set of features. For 

example, for glucose that consists of a time series of glucose levels, we generate 36 

features that include the first glucose level during the ICU stay, the most recent level, the 

highest and lowest levels until current time, the difference between the most recent two 

levels, and so on. 

• Current clinician user was represented by a set of 11 binary features; one for each clinician 

who provided training data. For a patient case, a current user feature was assigned the value 

1 if the corresponding clinician reviewed and annotated that case; otherwise the feature 

was assigned the value 0. 

Target variables are treated like atemporal predictor variables when they are translated into 

features. Thus, the glucose target (i.e., whether glucose levels are sought in a given 

context) is translated into a single target feature (which we simply call target) in contrast to 

the glucose predictor which is expanded into a set of glucose features. 

A patient instance (or simply instance or sample) is a vector of (predictor) feature values 

and corresponding target values that are derived from data from a subinterval of a patient’s ICU 

stay that is defined from the point of admission to the ICU to the current day and time. The 

vector of feature values summarizes the clinical evolution of the patient’s condition from the 

time of admission to the ICU to the current day. A data set (e.g., a training data set) is a 

collection of patient instances.  

To train a predictive model for glucose target, for example, we train on all 

feature values and corresponding glucose target values (yes or no) of a data set of instances to 

predict if the glucose level is sought after. By changing the target, a predictive model is 

trained for each laboratory test, medication, ventilator setting, and vital sign. In 

this data representation, the temporal aspects of the predictor variables are implicitly 

summarized in the vector of feature values and such a representation enables standard machine 

learning methods to be applied. 
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Section 6.1 and Section 6.2 describe a preliminary machine learning study to test 

these methods and a larger machine learning study that trained the models applied in the 

LEMR evaluation study (Section 7.1), respectively.  

6.1 PRELIMINARY MODELING OF A SMALL MANUALLY COLLECTED 

TRAINING DATA SET 

To test the feasibility and accuracy of using supervised machine learning to model clinician 

information seeking behavior using the LEMR interface, we used the data collected as described 

in Section 5.1 to train and evaluate penalized logistic regression models.  

6.1.1 Methods 

The data consisted of 59 patient cases and 21 target variables. All target variables were laboratory 

tests that were selected as relevant for at least three of the cases. This was a preliminary study that 

occurred before the observation study described in Section 5.3. With a limited sample size (59 

cases), we constructed a smaller set of features than what was described at the beginning of this 

chapter. The smaller set of features included, as follows, five demographic features (age, sex, 

weight, height, and body mass index), two features for each of the 190 distinct laboratory tests (the 

most recent value and a Boolean value for whether that test result had appeared within the last 24 

hours of available patient data), and one feature that stored the number of days since the patient’s 

admission to the ICU. In total there were 386 predictive features for every patient case. 
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A LEMR system uses a model of information seeking behavior to direct the future display 

of patient data. To test the feasibility and accuracy of such models, we trained 21 penalized logistic 

regression models that each predict if a specific laboratory test was sought as relevant by the 

reviewing clinician for a patient case. The models used were implemented in the Scikit-learn 

Python package 114 and each model is evaluated individually using leave-one-out cross-fold 

validation. For example, to train a predictive model for the glucose target, we trained on all feature 

values and corresponding glucose target values for 58 of the instances and use the predictive 

features from the 59th instance to predict if the glucose level is sought after for that instance. We 

compare the model’s prediction to the glucose target value for that instance to determine if the 

prediction was correct. This is repeated leaving out a different patient instance until all training 

samples have been left out once. The results are then averaged to determine model performance 

for glucose target. By changing the target, a predictive model is trained for each laboratory test. 

Performance was measured using the Area Under the Receiver Operating Characteristic curve 

(AUROC). 

6.1.2 Results 

We trained penalized logistic regression models to decide when specific laboratory tests would be 

sought by clinicians for each of the 59 patient cases. There were 21 models in all, one for each of 

the tests that were give a target value of yes for at least three patient cases in the training data set. 

The AUROC values for those models and the number of positive training samples in their data sets 

are shown in Table 9. The average AUROC is 0.73. The top seven tests shown in the table have 

an average AUROC of greater than or equal to 0.80. 
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Table 9. Performance of logistic regression models when predicting clinician information seeking 

behavior.  

95% CI 
Target variable AUROC Lower Upper Number 

positive 
Bilirubin Total 0.92 0.83 0.97 5 
Liver Alanine 
 Aminotransferase 

0.91 0.72 0.98 4 

Liver Aspartate 
 Transaminase 

0.91 0.72 0.99 4 

PTT Coagulation 0.84 0.71 0.92 9 
Lactate 0.83 0.58 1.00 2 
Phosphorus 0.82 0.62 0.94 11 
White Blood Cell 0.80 0.67 0.91 8 
INR Coagulation 0.79 0.63 0.89 11 
Hematocrit 0.77 0.59 0.89 37 
Sodium 0.75 0.61 0.86 18 
Glucose 0.73 0.55 0.87 12 
Chloride 0.73 0.59 0.82 2 
Blood Urea Nitrogen 0.73 0.56 0.85 22 
Hemoglobin 0.71 0.54 0.83 33 
Platelets 0.70 0.53 0.82 28 
Lymphocytes Absolute 0.64 0.26 0.95 2 
Neutrophils Absolute 0.64 0.27 0.95 2 
Red Blood Cell 0.57 0.25 0.97 3 
Magnesium 0.56 0.27 0.89 5 
Potassium 0.52 0.37 0.68 11 
Calcium 0.47 0.28 0.83 5 
Average 0.73 
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The results from this study suggest that it is possible to predict clinician information seeking 

behavior for a patient case (within a given clinical context). Result generalizability is limited by 

sample size and by having a single clinician provide all the training data. These limitations are 

addressed in the next section.  

6.2 PRIMARY MACHINE LEARNING EVALUATION ON A TRAINING DATA SET 

Following the encouraging results obtained from using data that was annotated by a single 

clinician, we performed a similar study with data derived from a group of clinicians to evaluate 

the feasibility and accuracy of using supervised machine learning to model clinician information 

seeking behavior. The models are trained and evaluated on the training data collected in Section 

5.3 and are applied in the LEMR evaluation study, Section 7.1.  

This section describes the evaluation of the performance of different models when used to 

predict clinician information seeking behavior when preparing for morning rounds. This study 

determines which types of machine learning algorithms and predictor variables work best in 

support of the LEMR system task.  

We hypothesized that machine learning models of clinician information seeking behavior 

that are trained and cross-validated on the manual selection training data set collected in Section 

5.3 will have a precision of at least 0.67 when recall is 0.8. We chose these thresholds, because we 

wanted to apply well performing models in the LEMR evaluation study. If poor performing models 

were applied in the evaluation study, then the utility of having highlights would be negatively 

affected. At this chosen level of performance, a LEMR system would highlight four out of every 

five data items a clinician seeks and two out of three highlighted data items would be sought.  
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6.2.1 Methods 

We describe the training of models of clinician information seeking behavior, preprocessing of 

data and machine learning algorithms, and learning rate calculations.  This study was approved by 

the University of Pittsburgh Institutional Review Board (ID PRO17030147) and occurred between 

November 2017 and February 2018. 

Training models of clinician information seeking behavior 

Before training models of clinician information seeking behavior, we preprocessed the patient 

cases and target values from Section 5.3 into a representation suitable for machine learning. As 

presented at the beginning of this chapter, each training data sample consists of a patient case that 

is comprised of a vector of values for predictor variables and is augmented with values for target 

variables. A separate model is trained for each target variable (in this case, any laboratory test, 

medication order, ventilator setting, or vial sign). We applied and evaluated three different 

machine learning algorithms, namely, lasso logistic regression, support vector classifier, and 

random forest classifier. Additionally, we calculated the learning rates for the best performing 

models and used them to estimate the sample sizes needed to train them. 

Preprocessing of data and machine learning algorithms 

A patient case described in terms of patient data consists of complex multivariate time series data 

that include laboratory test results, medication administrations, vital sign measurements, and 

simpler variables such as demographics and co-morbidities. From a patient case, we construct a 

patient instance that consists of a feature vector and a corresponding target. In a patient instance, 

the feature vector summarizes the clinical evolution of the patient’s condition from the time of 
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admission to the ICU to the current day. Table 10 shows the full list of features that are 

constructed from each predictor variable type, where an X in the table signifies a feature was 

included in the vector of values for a predictor variable type. For laboratory tests and 

ventilator settings, the features constructed will vary depended on whether the test or setting was 

ordinal (e.g., peripheral blood smear), nominal (e.g., urine color), or interval (e.g., 

temperature). Using this data representation, the temporal aspects of time series data are 

implicitly summarized in the vector of predictor values; this has the advantage that standard 

machine learning methods can be applied. Open source preprocessing software is available 

online at (https://github.com/ajk77/PatientPy) or see Appendix B. 

https://github.com/ajk77/PatientPy
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Table 10. Variable expansion for machine learning. An X signifies a feature was included in the vector 

of values for a predictor variable type.  

Feature name RT. 
Laboratory 

tests 
Ventilator 

settings Med. Proc. Mic. 

Or. No. In. In. No. In. 
Event ever occurred B X X X X X X X X X 
[First, last, second to last] value F X X X X 
[First, last, second to last] value 
is category [1, 2, 3, 4] B X X 

[Days, inverse of days] since 
last value F X X X X X X X X X 

New event ordered B X X X X X X 
Days since last change in value F X X X X X X X 
Number of different values I X X X X X X 
Variation in event frequency F X X X X X X X 
[Apex, nadir, baseline] value F X X X 
Difference between last value 
and [first, second to last, apex, 
nadir, baseline] 

F X X X 

Percentage change between last 
value and [first, second to last, 
apex, nadir, baseline] 

F X X X 

Slope between last value and 
[first, second to last, apex, 
nadir] 

F X X X 

Flag is [High, Low, Abnormal, 
null] B X X X X 

Absolute value of the slope 
between last value and second 
to last value 

F X X X X X X 

[Mean, max, min] in last 30 
hours F X X X X X X 

Note. An X signifies a feature was included in the vector of values for a predictor variable type. 
RT. = result type. B = Boolean. F = float. I = integer. Or. = ordinal. No. = nominal. 
In. = interval. Med. = medication orders. Proc. = procedures. Mic. = microbiology. Brackets indicate 
sets of variables. 

Vital 
signs 
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Table 10 (continued). 

Feature name RT. 
Med. Proc. Mic. IO Dem. 

Days since first value F X X X 
Ongoing event B X 
Number of sequential days of 
event I X 

Recency of sequential days F X 
Daily [urine, oral, intravenous, 
blood products, everything else, 
other/unknown, net] 

F X 

Length of stay [urine, oral, 
intravenous, blood products, 
everything else, other/unknown, 
net] 

F X 

Age F X 
Height F X 
Weight F X 
Body mass index F X 
Is female B X 
Is Caucasian B X 
Length of stay (days) F X 
Note. An X signifies a feature was included in the vector of values for a predictor 
variable type. RT. = result type. B = Boolean. F = float. I = integer.  
Med. = medication orders. Proc. = procedures. Mic. = microbiology.  
IO = intake and output. Dem. = demographics. Brackets indicate sets of variables. 
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Target variables. A target variable, as described at the beginning of Chapter 5, is any patient data 

that a clinician can potentially indicate as being relevant and includes diagnosis, demographics, 

laboratory test results, medication administrations, and vital sign measurements. Every target 

variable is binary and for a patient is assigned the value yes (if it was measured and the participant 

selected it) or no (if it was measured but the participant did not select it). A variable is not defined 

if it was not measured. To train a predictive model for glucose target, for example, we train on 

the vector of predictor values and corresponding glucose target values of a set of patient cases to 

predict if the glucose level is sought after. By changing the target variable, a predictive model is 

trained for each laboratory test, medication, ventilator setting, and vital sign. 

In the manual selection data set collected in Section 5.3, 80 EMR variables were measured 

in at least 20 patient cases and were sought (i.e., target=yes) in at least 5 of those cases. These are 

the target variables for which a model was trained in this study.  

Missing values. Missing values were imputed using two different methods. In the first 

method, they were imputed with the median. In the second method, continuous predictor variables 

were imputed via linear regression and discrete predictor variables were imputed via logistic 

regression. To impute a feature value using regression, all cases not missing that value are used as 

training data. In the training data, the target feature is the feature that needs to be imputed, and all 

other features are used as predictor features. If a predictor feature contains missing values, those 

values are temporarily imputed with the median when training and applying a regressive imputer. 

Both imputation methods were applied, creating two distinct data sets (a median imputed 

data set and a regression imputed data set). We train models on each data set separately and 

compare performance. Open source imputation software is available online at 

(https://github.com/ajk77/RegressiveImputer) or see Appendix B. 

https://github.com/ajk77/RegressiveImputer
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Feature selection.  Feature selection was performed in two steps. First, for each set of 

features constructed from a single data item variable (e.g., blood glucose levels being expended 

into a set of features that include the most recent measurement, the slope between the two most 

recent measurements, etc.), we test to see if the set is predictive of the target by itself. We test this 

by cross-validating models. Any set of features with an area under the Receiver Operator 

Characteristic (AUROC) curve of less than 0.6 is removed. The features that remain after the first 

step are reduced further using recursive feature elimination and cross-validation (RFECV in the 

Python Package scikit-learn). The final set of features is used for model construction. Feature 

selection is target specific, so it was done separately for each of the target variable. Open source 

feature selection software is available online at 

(https://github.com/ajk77/PatientPyFeatureSelection) or see Appendix B.  

Machine learning algorithms. Three different machine learning algorithms were applied: 

lasso logistic regression 108, support vector classifier 121, and random forest classifier 122. Models 

were constructed by applying these algorithms using leave-one-out cross-fold validation. The 

imputation and feature selection steps were performed within the cross folds, as show in Figure 

18. Results are reported as AUROC with 95% confidence intervals estimated by bootstrapping. 

The scikit-learn 114 implementation of each algorithm was used. 

https://github.com/ajk77/PatientPyFeatureSelection
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Figure 18. A flowchart that shows the training and evaluation of models of clinician information 

seeking behavior. 
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Learning rate calculation 

Since obtaining target labels is expensive, we wanted to measure the learning rate of models to 

estimate the number of training cases that would be needed to reach optimal model performance. 

To calculate the learning rate of models, we trained each model with varying numbers of training 

cases. In particular, each model was trained with 25, 50, 75, and 100 percent of its respective 

training set. Resulting AUROCs are reported using box and whisker plots.   

6.2.2 Results 

Description of data set 

The data set was assembled from 178 patient cases and 1,875 data items from 9 domains (Table 

11). The total number of features in the final data set was 6,935. The data set consisted of 178 rows 

(one row for each patient case), 6,935 feature columns, and 80 target columns. Forty-one percent 

of data values were missing. Feature selection resulted in reducing the 6,935 features to an average 

of 88 features per target variable. 

Performance of models 

As mentioned in Section 6.2.1, models were trained to predict 80 distinct targets. These targets 

were chosen because they were measured for at least 20 patient cases in the training data set. Table 

12 shows model performance for each target variable, including, a count of how many cases the 

target was selected as relevant (target = yes), the number of cases the target was measured, 

precision, recall, AUROC, a 95% confidence interval for the AUROC, and which model (lasso 

logistic regression or random forest classifier) and which imputation data set (median or 

regression) led to the highest AUROC score. Logistic regression and random forest models 
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dominated support vector classifier for all models with AUROC performance of greater than 0.7, 

so we removed support vector classifier from consideration. Nineteen of the 80 models had 

performance meeting the criteria specified in the hypothesis (precision of at least 0.67 when recall 

is 0.80).  

Learning rates 

Learning rate calculations were performed by training all models in Table 12 at four training set 

sizes: 25, 50, 75, and 100 percent of each model’s respective data set. The median AUROCs for 

the varying training set sizes are shown in Figure 19. Overall, the median AUROC increases as 

the number of training cases increases, but only slightly for the largest and next largest training set 

sizes. 

Table 11. Data items and the number of features constructed from them. 

Domain Data 
item 
type 

Number of 
data items 
of this type 

Number of features 
per data item  
of this type 

Number of features from 
data items of this type,  
before feature selection 

Laboratory test results Ordinal 94 19 1786 
Nominal 26 28 728 
Interval 519 36 18684 

Vital sign measurements Interval 14 36 504 
Ventilator settings Nominal 4 24 96 

Interval 5 32 160 
Medication Nominal 796 9 7164 
Procedures Nominal 394 4 1576 
Microbiology Nominal 10 4 40 
Input and output Interval 1 14 14 
Demographics Mixed 1 7 7 
Participant Nominal 11 1 11 



101 

Table 12. Performance of models of clinician information seeking behavior. Rows are ordered by 

best AUROC performance. 

Target variable Count of 
target=yes 

Number 
of cases 

Precision Recall AUROC AUROC 
95% CI 

Model & 
data set 

red blood cells 18 165 0.92 0.61 0.94 0.86-0.99 Rf-r 
magnesium sulfate 9 99 0.29 0.44 0.83 0.71-0.93 LR-r 
ventilator status 15 131 0.44 0.27 0.83 0.74-0.92 Rf-r 
PEEP 9 24 0.73 0.89 0.83 0.64-1.00 Rf-r 
pH 46 137 0.63 0.48 0.77 0.70-0.84 Rf-m 
bicarbonate (blood 
gases) 11 108 0.50 0.09 0.75 0.62-0.86 Rf-m 
vancomycin 37 80 0.62 0.81 0.74 0.64-0.82 Rf-m 
anion gap 19 118 0.42 0.26 0.74 0.63-0.83 Rf-r 
oxygen saturation 103 177 0.70 0.76 0.74 0.68-0.80 Rf-m 
bilirubin total 36 110 0.52 0.61 0.73 0.64-0.80 Rf-m 
lactate 50 117 0.57 0.74 0.73 0.65-0.81 LR-r 
piperacillin-tazobactam 24 50 0.64 0.58 0.73 0.61-0.84 Rf-m 
norepinephrine 17 39 0.58 0.65 0.72 0.58-0.85 Rf-r 
chloride 106 178 0.74 0.79 0.71 0.65-0.78 Rf-m 
alkaline phosphatase 14 109 0.20 0.07 0.71 0.62-0.80 Rf-m 
potassium chloride 28 136 0.31 0.18 0.71 0.62-0.79 Rf-m 
heparin 38 102 0.58 0.58 0.71 0.62-0.79 LR-m 
glucose 114 175 0.77 0.77 0.71 0.64-0.78 LR-m 
aspirin 15 47 0.41 0.47 0.71 0.56-0.84 LR-r 
fentanyl 18 89 0.50 0.28 0.70 0.58-0.80 Rf-r 
fraction of inspired O2 95 151 0.74 0.88 0.69 0.61-0.77 Rf-m 
central venous pressure 31 111 0.46 0.42 0.69 0.60-0.78 Rf-r 
calcium 41 163 0.45 0.32 0.68 0.59-0.76 Rf-m 
magnesium 74 173 0.56 0.55 0.68 0.62-0.75 Rf-m 
respiratory rate 121 178 0.73 0.84 0.68 0.61-0.75 Rf-r 
famotidine 26 84 0.43 0.35 0.68 0.58-0.78 Rf-r 
blood urea nitrogen 114 177 0.72 0.88 0.68 0.60-0.76 Rf-m 
Note. LR = lasso logistic regression. RF = random forest classifier. m = median imputed data set. r = regression 
imputed data set. Model and data set were selected on the basis of AUROC. Precision and recall are reported 
using a classification probability threshold of 0.5. Models meeting the criteria in the hypothesis, at any 
threshold, are bolded. Models meeting a relaxed criteria of precision >= 0.67 and recall >= 0.5, at any 
threshold, are italicized. 
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Table 12 (continued). 

Target variable Count of 
target=yes 

Number 
of cases 

Precision Recall AUROC AUROC 
95% CI 

Model & 
data set 

partial thromboplastin 
time 15 108 0.22 0.27 0.68 0.55-0.79 LR-m 
ventilator mode 71 148 0.60 0.70 0.67 0.59-0.73 Rf-m 
partial pressure of CO2 31 138 0.42 0.26 0.67 0.58-0.75 Rf-m 
neutrophils 24 156 0.35 0.25 0.67 0.56-0.78 Rf-m 
temperature 144 178 0.83 0.97 0.67 0.57-0.75 Rf-r 
intake and output 81 178 0.62 0.67 0.66 0.59-0.73 Rf-m 
glomerular filtration 
rate 19 166 0.30 0.32 0.66 0.54-0.77 LR-r 
phosphate 69 170 0.51 0.62 0.65 0.57-0.71 Rf-m 
aspartate 
aminotransferase 25 113 0.39 0.44 0.65 0.55-0.76 LR-m 
alanine 
aminotransferase 23 111 0.42 0.22 0.65 0.55-0.74 Rf-m 
INR 62 125 0.62 0.61 0.65 0.56-0.73 LR-m 
platelets 116 166 0.78 0.72 0.65 0.56-0.72 LR-m 
creatinine 132 177 0.77 0.89 0.65 0.58-0.72 Rf-r 
blood pressure 151 178 0.86 0.97 0.65 0.56-0.75 Rf-m 
dextrose 5% in water 17 50 0.33 0.29 0.65 0.52-0.77 Rf-r 
ampicillin-sulbactam 9 22 0.40 0.44 0.65 0.46-0.85 Rf-m 
potassium 121 178 0.76 0.78 0.64 0.57-0.72 LR-m 
albumin 19 114 0.33 0.26 0.64 0.53-0.76 Rf-r 
venous saturation of 
oxygen 9 41 0.50 0.22 0.64 0.43-0.83 Rf-m 
bicarbonate 
(chemistry) 104 178 0.64 0.74 0.64 0.57-0.71 Rf-m 
white blood cells 132 166 0.81 0.91 0.64 0.56-0.72 Rf-r 
sodium 128 178 0.76 0.94 0.64 0.56-0.72 Rf-m 
venous pH 5 43 0.29 0.40 0.64 0.33-0.90 LR-m 
partial pressure of O2 30 137 0.39 0.30 0.64 0.54-0.75 Rf-r 
Senna 10 46 0.29 0.40 0.64 0.50-0.77 LR-m 
prothrombin time 12 125 0.13 0.17 0.64 0.52-0.76 LR-m 

hemoglobin 123 166 0.79 0.76 0.63 0.55-0.71 LR-m 
Note. LR = lasso logistic regression. RF = random forest classifier. m = median imputed data set. r = regression 
imputed data set. Model and data set were selected on the basis of AUROC. Precision and recall are reported 
using a classification probability threshold of 0.5. Models meeting the criteria in the hypothesis, at any 
threshold, are bolded. Models meeting a relaxed criteria of precision >= 0.67 and recall >= 0.5, at any 
threshold, are italicized. 
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Table 12 (continued). 

Target variable Count of 
target=yes 

Number 
of cases 

Precision Recall AUROC AUROC 
95% CI 

Model & 
data set 

bilirubin direct 16 88 0.67 0.12 0.63 0.50-0.76 Rf-m 
albuterol-ipratropium 15 61 0.33 0.4 0.63 0.49-0.77 LR-r 

heart rate 152 178 0.87 0.97 0.62 0.52-0.72 Rf-m 
ionized calcium 30 132 0.37 0.33 0.62 0.52-0.71 LR-m 
midazolam 9 54 0.29 0.44 0.62 0.42-0.82 LR-m 
Propofol 17 46 0.47 0.53 0.61 0.47-0.75 Rf-r 
base solution 50 87 0.61 0.68 0.61 0.52-0.70 Rf-m 
pantoprazole 16 45 0.5 0.44 0.61 0.46-0.76 Rf-r 
insulin (Humulin & 
Novolin) 36 81 0.60 0.50 0.61 0.50-0.72 LR-r 
insulin aspart 
(Novolog) 11 29 0.50 0.55 0.6 0.41-0.78 Rf-r 
sodium chloride 0.9% 65 154 0.53 0.52 0.59 0.52-0.66 LR-r 
ventilator tube status 38 130 0.39 0.32 0.59 0.51-0.68 Rf-m 
metoprolol 19 62 0.31 0.21 0.58 0.46-0.70 Rf-r 
vancomycin, trough 13 43 0.30 0.23 0.57 0.40-0.74 Rf-m 
ammonia 12 42 0.33 0.25 0.57 0.39-0.74 Rf-m 
hematocrit 7 166 0.07 0.14 0.56 0.35-0.74 LR-r 
chlorhexidine topical 20 92 0.17 0.15 0.56 0.45-0.66 LR-m 
metronidazole 16 33 0.56 0.56 0.55 0.38-0.73 Rf-m 
furosemide 28 76 0.44 0.39 0.54 0.42-0.66 Rf-r 
troponin 10 62 0.25 0.1 0.52 0.34-0.70 Rf-m 
band neutrophils 13 85 0.12 0.23 0.52 0.38-0.66 LR-r 
insulin glargine 
(Lantus) 13 22 0.58 0.54 0.50 0.25-0.74 LR-r 
acetaminophen 12 72 0.25 0.08 0.47 0.34-0.61 Rf-r 
Lorazepam 9 40 0.19 0.33 0.45 0.28-0.62 LR-m 
fibrinogen 6 23 0.33 0.17 0.41 0.19-0.65 Rf-m 
hydrocortisone 10 20 0.44 0.40 0.40 0.18-0.65 LR-m 
Note. LR = lasso logistic regression. RF = random forest classifier. m = median imputed data set. r = regression 
imputed data set. Model and data set were selected on the basis of AUROC. Precision and recall are reported 
using a classification probability threshold of 0.5. Models meeting the criteria in the hypothesis, at any 
threshold, are bolded. Models meeting a relaxed criteria of precision >= 0.67 and recall >= 0.5, at any 
threshold, are italicized. 
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Figure 19. Learning rates of models of clinician information seeking behavior. 

6.3 A DISSCUSSION ON MODELING RELEVANT INFORMATION 

This chapter presented the training of models of clinician information seeking behavior. The target 

variables (e.g., blood glucose levels, insulin dosing regimen) a clinician seeks varies by context. 

As described in Chapter 1, context includes EMR user type, clinical task, and patient case. 

The models trained in Section 6.2 focus on the context of intensivists (user), preparing for 

morning rounds (task), for patients with AKF or ARF (cases). 

Sufficient sample sizes were available for building models to predict 80 different target 

variables and, despite relatively small training sets, AUROC performance was at least 0.70 for a 

quarter of the models. These encouraging results are bolstered by the learning rate results. All but 
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one model with at least 120 training samples had an AUROC greater than 0.60, and most models 

showed an upward trend in AUROC values as the number of training samples increased.  

The hypothesis in Sections 6.2 was that models would have a precision of at least 0.67 

when recall was 0.80. We planned on applying any model that reached this level of 

performance in the evaluation study (Section 7.1). When considering any classification 

probability threshold, 19 models did reach this level of performance. To increase the number of 

models applied during the evaluation study, we relaxed the performance requirements to 

include any model with a precision of at least 0.67 and a recall of at least 0.50. Twenty-

five models met these requirements and were prospectively applied in the evaluation study, where 

we evaluate the impact the LEMR system has on clinicians while they prepare for morning 

rounds.  
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7.0  APPLYING MODELS TO DIRECT THE FUTURE DISPLAY OF
PATIENT DATA 

This chapter focuses on the evaluation of the LEMR system. The predictive models that 

were developed in Chapter 6 are prospectively applied to a new set of patient cases to predict 

which data will be sought as relevant. These predicted data are highlighted for some LEMR 

users and not for others, as twelve clinician participants prepare to present eighteen patient 

cases for morning rounds. We measure time to task competition and compute precision and 

recall of the highlighted data. In the context of a LHS, the application of models described 

in this chapter constitute the third part of the LHS loop: knowledge to performance. In 

other words, this chapter presents methods of converting knowledge (models of 

clinician information seeking behavior) to performance (applying a model to direct the 

future display of patient data). 



107 

7.1 PRIMARY LEMR SYSTEM EVALUATION 

Using the predictive models developed in Section 6.2, we prospectively evaluate the LEMR 

system. This evaluation (1) tests if the LEMR system highlights reduce the time it takes for a 

clinician to prepare for morning rounds and (2) assesses the adequacy of the information 

highlighted (precision and recall). Additional results are reported, including (3) an evaluation of 

each model that was applied, (4) a comparison between models trained on a data set in which the 

targets were manually determined and models trained on a data set in which the targets were 

determined using eye-tracking, (5) the clinical impact of concealing patient data that are not 

predicted by models, and (6) an assessment of acceptance and use of the LEMR system by the 

participants. 

We hypothesized, that LEMR system will yield the following results on a set of test cases: 

(1) on average clinicians will use less time in preparing to present a patient case at morning rounds,

and (2) clinicians will judge that the system highlights all of the data that they would seek in each 

case for the specified task.   

7.1.1 Methods 

This section describes the participants, patient cases, study design, the LEMR interface, study 

tasks, models of clinician information seeking behavior applied to determine highlighting, data 

collection, and the data analysis design. This study was approved by the University of Pittsburgh 

Institutional Review Board (ID PRO17050016). Participant sessions occurred between February 

2018 and May 2018.  
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Participants 

A total of 12 critical care specialists (intensivists) were recruited from the University of Pittsburgh 

in the Department of Critical Care Medicine. Participant characteristics are summarized in 

Table 13.  

Patient cases 

Eighteen patient cases were selected that (1) were admitted to University of Pittsburgh Medical 

Center ICUs between June 2012 and December 2012 and (2) had a diagnosis of either acute kidney 

failure (AKF; ICD-9 584.9 or 584.5; 9 cases) or acute respiratory failure (ARF; ICD-9 518.81; 9 

cases). The cases were de-identified (De-ID™ Software) to create a limited data set in which all 

protected health information except for dates and times related to the events were removed. These 

cases were admitted to the ICU in the seven months after the training cases (Section 5.3). 

Study design 

The evaluation consisted of three arms that included a control arm (Arm 1) and two intervention 

arms (Arm 2 and Arm 3). In Arm 1, the procedure for reviewing the case was similar to the 

procedure used in the training phase. In Arm 2, the selected models were applied to the case and 

patient data that were predicted to be relevant were highlighted. In Arm 3, patient data was 

highlighted as in Arm 2 and, in addition, data that were not predicted to be relevant were removed 

from the interface. 

Table 13. Participant characteristics for the primary LEMR evaluation. 

Gender 
distribution 

Experience distribution Years of experience 
Mean (range) 

Male Female Fellows Attendings Since medical school In the ICU 
9 3 12 0 5.4 (3.0-11.0) 1.6 (0.6-4.0) 
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Time to task completion when preparing to present a case at morning rounds was measured 

in all three arms, and we compared average time to task completion for Arm 1 (the control arm) to 

both intervention arms. To control for user effects on time to task completion, a fractional factorial 

design was used to assign 12 participants to one of three arms for each of the 18 patient cases. The 

assignment of cases to participants is shown in Figure 20.  

In addition to measuring time to task completion, Arm 1 was used to collect data items that 

were sought by the participants for the 18 cases. These manually indicated items constitute a gold 

standard and was used to evaluate model performance. In Arm 3 (where patient data not predicted 

to be relevant was removed from the interface), we include extra tasks to evaluate the clinical 

impact of having some data hidden.   

Figure 20. Fractional factorial study design for the primary LEMR evaluation. Every case is 

viewed by all participants, but different cases have different combinations of participants assigned to the three 

different arms. The case order is randomized. Cases are divided evenly between the two diagnoses. 
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Matching this study’s three arms, there were three versions of the LEMR interface. The control 

version is the same as was used when collecting training data (Section 5.3); The highlights version 

of the interface is the same as the control version, except patient data predicted to be relevant were 

highlighted in-place, by changing the background color behind relevant data to yellow. The 

highlights only version of the interface highlights the same patient data as the highlights version 

and also hides patient data not predicted to be relevant; hidden data cannot be accessed 

and resulting blank space is compressed. Screenshots of the interface are shown in Figures 12 

and 13 in Section 3.6. A slideshow presentation was used to introduce participants to the study 

objectives and the LEMR interface. The slides are shown in Appendix D. 

Participant tasks 

Evaluation patient cases were displayed in the LEMR interface and participants evaluated the cases 

by following instructions to complete the following tasks. In Arm 1, participants completed Tasks 

1, 2, 3 and 4 in order; in Arm 2, participants completed Tasks 1, 2 and 3 in order; and in Arm 3, 

participants completed Tasks 1, 2, 3, 5 and 6 in order. An overview of the tasks that constitute the 

case review procedures for the three arms is shown in Figure 21, and details of the tasks are given 

below. 

Task 1. For this task a random day between day two of admission to the ICU and the day before 

discharge from the ICU was selected as the “past patient stay”. All available EMR data 

up until 8:00 am on the day selected for the past patient stay was displayed to the 

participant. Structured data were shown in graphical time series plots and free-text 

notes were shown in a separate area in the interface. The participant was instructed to 

LEMR  interface



111 

“use the available information to become familiar with the patient case as if they are 

one of your own patients.” All arms use the control version of the interface for this 

task. After becoming familiar with the case, the participant clicked on a button to 

advance to Task 2. 

Task 2. An additional day (from 8:00 am on the day selected for the past patient stay to 8:00 am 

on the next day i.e., “current time”) of the patient’s EMR data was added to the display. 

The participant was prompted with “24-hours have passed” and directed to “use the 

available information to prepare to present the case during morning rounds.” For Arm 

1, Arm 2, and Arm 3, the control version, the highlights version, and the highlights 

only version of the LEMR interface are used, respectively. After preparation was 

complete, the participant clicked on a button to advance to Task 3. 

Task 3. The participant was prompted with “now that you are up to date with this patient’s 

problems and latest data, please present the patient as if you were presenting during 

morning rounds, including pertinent positives and negatives, as well as your assessment 

and management plan for the day. Try to make it concise.” The presentation was 

recorded with an audio recorder. After finishing the presentation, the participant clicked 

a button that either advanced to Task 4 (if in Arm 1), advanced to the next patient case 

(if in Arm 2), or advanced to Task 5 (if in Arm 3).  

Task 4 (only for Arm 1). In the interface, each available data item (e.g., glucose levels, insulin 

dosage regimen) was accompanied with a check box. Clicking on the area associated 

with data toggled the check box. The participant was directed to “select the information 

you consider pertinent when preparing to present this case at morning rounds.” The 
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participant selected relevant data items by toggling the accompanying check box to the 

checked state. The participant clicked a button to advance to the next patient case. 

Task 5 (only for Arm 3). The participant was shown the case using the highlights interface version 

― i.e., the hidden data were revealed ― and was prompted with “additional 

information is now being displayed. Considering the additional information, if you 

would like to revise your presentation, please do so now.” Revisions to the rounding 

presentation were recorded using an audio recorder. After finishing the revisions (or 

opting not to revise), the participant clicked on a button to advance to Task 6. 

Task 6 (only for Arm 3). The participant was prompted with “if you revised your presentation, rate 

the clinical impact those revisions would have on patient care.” Clinical impact was 

selected on a three-point scale: “no impact”, “minor impact”, and “major impact”, and 

included a fourth option labeled “no revisions”. The participant clicked a button to 

advance to the next patient case.  

Figure 21. Case review tasks for the primary LEMR system evaluation. 

Past patient 
stay

Task 1
Become 

familiar with 
the case

Task 2
Become up 
to date with 

case

Task 3
Present 
morning 
rounds

Task 4
Select 

pertinent 
information

Task 5
Revise 

rounding 
presentation

Task 6
Rate clinical 

impact of 
revisions

Current time

Arm 1

Arm 2

Arm 3

Highlights Highlights

Highlights only Highlights HighlightsHighlights only

Manual 
gold standard

Rating of 
LEMR impact

Time to task 
completion



113 

After all cases were reviewed, participants completed a modified Unified Theory of Acceptance 

and Use of Technology (UTAUT) questionnaire. The UTAUT is a theory that aims to explain the 

acceptance and use of information systems and information technology innovations and 

subsequent usage behavior 123. According to the UTAUT theory there are four key constructs: 1) 

performance expectancy, 2) effort expectancy, 3) social influence, and 4) facilitating conditions. 

The modified UTAUT questionnaire that was used in the evaluation study is provided 

in Appendix C.  

Models of clinician information seeking behavior applied to determine 

highlighting 

In Section 6.2, we described the training of models of clinician information seeking behavior. This 

study provides a prospective evaluation of those models. To compare and contrast the two studies, 

five of the participants participated in both studies, the training study cases were admitted to the 

ICU in the 17 months before the cases in this study, the training study interface was the same as 

the control version used in this study, and the training study tasks were the same as the tasks for 

Arm 1 in this study. 

In the training study, sufficient sample sizes were available for building models to predict 

clinician information seeking behavior of 80 different target variables (i.e., data items). Of these 

models, 25 of them met the selection criteria of having a precision of at least 0.67 and a recall of 

at least 0.50. The best performing models were retrained on the entire training data set (178 cases) 

and applied to the 18 cases of this study. Any target with a predicted probability greater than 0.5 

was highlighted in the highlights and highlights only versions of the LEMR interface.  



114 

Data collection 

Data collected during the tasks included time to task completion during Task 2, a list of pertinent 

(i.e., context relevant) data items in Task 4, and, based on data revealed in Task 5, a rating of the 

LEMR system clinical impact in Task 6.  

Data analysis 

We performed six analyses to evaluate the LEMR system. They are described below. 

(1) To evaluate the impact of LEMR system highlights on time to task completion when

preparing for morning rounds. This evaluation was performed using a one-way ANOVA with post 

hoc analysis. A Bartlett test of homogeneity of variance was performed before performing 

ANOVA to verify that the variance did not differ between groups. The post hoc analysis was 

performed using Tukey’s Honest Significant Difference test which also assumes homogeneity of 

variance. All three tests were performed in the R statistical computing language using the 

following functions: Bartlett.test() from the stats package, aov() from the stats package, and 

HSD.test() from the agricolae package.  

(2) To evaluate the adequacy of highlighted patient data. First, we compared and

summarized the number of patient data items displayed, highlighted, and manually selected in each 

case during Task 2 through Task 4. Note that patient data were manually selected in Task 4 if a 

clinician considered it pertinent when preparing a case for morning rounds. Next, we assumed the 

selected data were the same data clinicians sought as relevant, which allowed us to use this set of 

manual selections as a gold standard for calculating precision and recall of the highlights. Finally, 

we compared the performance of model-based highlighting to the performance of random 

highlighting. To generate a 95% confidence interval for the precision and recall of random 

highlights, we randomly selected (in each case) h data items (where h is the number of items 
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highlighted by the models) from a set of n data items (where n is the total number of displayed 

items). Of the n data items, the number of positive items was the average number of items manually 

selected in each case. Then, precision and recall were calculated by evaluating the number of 

positive items randomly selected. This process was repeated 1,000 times for each case in a to 

estimate confidence intervals.  

(3) To evaluate the performance of each model that was applied in this study. Performance

is reported using precision and recall.  

(4) To compare the performance of models trained on different training sets (manual

selection vs. eye-tracking) and with different levels of personalization (general vs. semi-

personalized). Model training and selection were described in Section 6.2. Model performance 

was compared using Wilcoxon signed rank test. To determine if models trained on the manual 

selection data set perform better than models trained on the eye-tracking data set, the AUROCs of 

the models for each data item were tested against an alternative hypothesis: the mean AUROC for 

manually trained models is greater than the mean AUROC for eye-tracking trained models. This 

test was conducted twice, once for generalized models and a second time for semi-personalized 

models. Semi-personalized models were trained and evaluated using only the data from the five 

clinicians who participated in both the training (Section 5.3) and evaluation (Section 7.1) studies. 

Personalization is achieved through the inclusion of five Boolean variables, where the variable 

corresponding to a participant is set to true if that participant provided the manually selected target 

labels. To determine if personalization changes model performance, Wilcoxon signed rank test 

was performed a third time to compare the AUROC performance of manually trained generalized 

models to manually trained semi-personalized models against a two-sided, alternative hypothesis. 
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Wilcoxon signed ranked tests were performed using the R function wilcox.test() from the stats 

package.  

(5) To estimate the clinical impact of clinicians not seeing any of the patient data that were

not highlighted by the model. Impact is reported as summary statistics from the ratings that 

participants provided in Task 6. 

(6) To evaluate user acceptance and use of the LEMR system. Participants answered

relevant questions from the unified theory of acceptance and use of technology (UTAUT) model. 

The results are reported using box-and-whisker plots.    

7.1.2 Results 

Results are reported for six different analyses. The first two analyses reported are to the study 

hypothesis and include impact on time to task completion and adequacy of highlighted patient 

data.  

Impact on time to task completion 

Time to task completion was measured when participants were preparing to present each of the 18 

patient cases at morning rounds (Task 2). The Bartlett test of homogeneity of variances showed no 

statistically significant difference in the variance of time to task completion for the three arms 

(Bartlett's K-squared = 2.1683, df = 2, p-value = 0.3382); therefore, both ANOVA and Tukey’s 

tests are appropriate. The ANOVA test showed a statistically significant difference in time to task 

completion among the three arms of this experiment (Table 14). Summary statistics of the time to 

task completion in each arm are shown in Table 15, and the pairwise results of Tukey’s Honest 

Significant Difference test are shown in Table 16. The times in Arm 1 and Arm 2 were not 
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statistically significantly different; thus, the data do not support that in-place highlighting saves 

time when preparing for morning rounds. In contrast, the times in Arm 3 were statistically 

significantly smaller than the times in Arm 1 (α = 0.1; p-value = 0.0912); thus, the data suggest 

that clinicians used less time when preparing to present morning rounds if viewing a case in 

Arm_3.   

We found that clinicians take less time to review data when less data are available to review 

(i.e., when data are hidden in Arm 3). While this result is unsurprising, it does not provide a sense 

of whether the highlights are beneficial or not, because we do not know if the highlighted patient 

data was adequate in satisfying the needs of clinicians. In the next section we present an evaluation 

on the adequacy of highlighted patient data.  
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Table 14. ANOVA comparing time to task completion in the three arms of the evaluation study. 

Source SS df MS F Sig. 
Between 40,356 2 20,178 3.821 0.0234 
Within 1,124,869 213 5,281 
Total 1,165,225 215 

Table 15. Mean time to task completion in the three arms of the evaluation study. 

Arm Mean time to task 
completion (sec) 

std n Min Max Q25 Q50 Q75 

1 140.4 76.9 72 9.1 513.3 95.1 128.3 181.6 
2 146.4 75.3 72 22.9 362.2 94.8 125.2 190.3 
3 114.9 65.3 72 21.5 334.6 71.1 100.6 154.5 

Table 16. Results of Tukey’s Honestly Significant Difference post hoc test on time to task completion. 

Arm 1 is a control arm, using the plain LEMR interface. Arm 2 is an intervention arm, where patient data predicted to 

be relevant are highlighted in the LEMR interface. Arm 3 is also an intervention arm, where, in addition to the 

highlights of Arm 2, patient data are removed from the LEMR interface if not predicted to be relevant.  

Comparison (arms) Difference (95% CI) p-value Is significant 
1 – 2 -6.0 (-34.6, 22.5) 0.8718 No 
1 – 3 25.5 (-3.1, 54.1) 0.0912 At α = 0.1 
2 – 3 31.5 (3.0, 60.1) 0.0265 At α = 0.05 
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Adequacy of highlighted patient data 

First, we analyzed the data to determine if the right proportion of available data were highlighted. 

Figure 22 shows the number of data items available for each of the 18 patient cases, the number 

of data items highlighted for each case, and the minimum, maximum, and average number of data 

items manually selected as relevant for each case. We anticipated that the number of items selected 

was substantially smaller than the number of items available, because the LEMR system is based 

on the premise that there is a subset of all available patient data that is context-relevant and will 

be sought by clinicians when reviewing a case. Supporting this premise, we found that the cases 

had, on average, 108.9 data items available, and participants selected (sought as relevant) 22.6 of 

those items.  

Next, we examined if the number of highlighted data items matched the number of items 

sought as relevant for each case. We found the number of highlighted items to be within the range 

of the number of items selected (sought as relevant) by participants for 14 of the cases (averaged 

highlighted = 15.1 and average selected = 15.7). The remaining four cases were within two and 

three items of the maximum, and two and five items of the minimum number of items selected for 

each patient case (average highlighted = 14.5 and average selected = 17.4).  

Finally, we examined the precision and recall of the highlighted data. Table 17 shows these 

performance metrics computed in two ways. First, it shows precision and recall when only 

considering the patient data for which a predictive model was available. In other words, if the 

model performance for a data item did not make the inclusion thresholds in Section 6.2, then that 

item did not have a model in the evaluation study and, therefore, is not considered in the first 

analysis. Second, we report precision and recall when considering all available patient data. We 

call these two analyses, ‘model active patient data’ and ‘all patient data’, respectively.  
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Figure 22. Summary of targets displayed, highlighted, and manually selected during the 

evaluation study. Participants selected the data they considered pertinent when preparing to present each case at 

morning rounds. We assume that selected (pertinent) data are the data clinicians sought as relevant.  
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The results show that the models do not identify all the patient data that the participants seek when 

preparing for morning rounds. The standard of “all the patient data” is a high bar that this 

experiment was very unlikely to achieve. On the opposite end of the performance spectrum is 

randomly selecting data to highlight. To ensure that the models were informative and performing 

better than chance, we randomly selected data to estimate precision and recall confidence intervals 

for random performance. The resulting intervals are shown in Table 18. The confidence 

intervals do not overlap with the model performance reported in Table 17, providing support that 

the models are performing better than random.  

Table 17. Overall performance of models applied during the evaluation study. 

Precision (95% CI) Recall (95% CI) 

Model active patient data 0.52 (0.49, 0.54) 0.77 (0.75, 0.80) 

All patient data 0.52 (0.49, 0.54) 0.43 (0.41, 0.45) 

Table 18. Mean and confidence interval estimates of random selection. 

Precision (95% CI) Recall (95% CI) 

Random highlights of all patient data 0.15 (0.00, 0.33) 0.14 (0.00, 0.29) 
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Evaluation of each model 

As was shown in Section 6.2, model performance varies greatly between target variables. Precision 

and recall performance of each model applied to highlight data in this study is shown in Figure 23. 

Comparison of models trained on different data sets 

The results of the Wilcoxon signed rank tests show that the AUROCs of models trained on 

manually selections and the AUROCs of models trained on eye-tracking selections are not 

statistically significantly different for both general models (W = 2198, p-value = 0.690) and semi-

personalized models (W = 852, p-value = 0.310). These results show promise for using eye-

tracking as an automatic means of training LEMR system models.  

The results of the Wilcoxon signed rank tests also show that there is no statistically 

significant difference between the AUROCs of manually trained general models and manually 

trained semi-personalized models (W = 688, p-value = 0.283). These results indicate that 

personalized models do not perform better; however, the sample size for this test was small and 

included data for only five participants. The AUROC performance of all 80 models trained in 

Section 6.2 and their performance when applied to the manual selection gold standard collected in 

this study are shown in Appendix E.   
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Figure 23. Performance of models applied during the evaluation study. All counts are positive 

values; false positives and false negatives are plotted negatively to show contrast with true positives and true 

negatives.    

-60 -40 -20 0 20 40 60 80

red blood cells (   – ,   – )

PEEP (   – ,   – )

ampicillin-sulbactam (   – , 0.00)

   insulin glargine (Lantus) (0.33, 0.33)

chloride (0.11, 0.42)

ventilator mode (0.50, 0.30)

metronidazole (0.75, 0.46)

lactate (0.38, 0.82)

piperacillin-tazobactam (0.91, 0.67)

bicarbonate (0.31, 0.73)

base solution (0.50, 0.74)

glucose (0.31, 0.71)

oxygen saturation (0.50, 0.52)

respiratory rate (0.27, 0.94)

potassium (0.34, 0.85)

blood urea nitrogen (0.45, 0.73)

hemoglobin (0.43, 0.84)

fraction of inspired O2 (0.55, 0.96)

platelets (0.48, 0.97)

white blood cells (0.75, 0.66)

sodium (0.57, 0.83)

heart rate (0.63, 0.86)

temperature (0.63, 0.95)

creatinine (0.88, 0.75)

blood pressure (0.89, 0.93)

Performance of models 
target (precision, recall)

True positive False positive False negative True negative Not measured



124 

Acceptance and use of LEMR system 

After completing all case tasks, participants completed a modified version of the unified theory of 

acceptance and use of technology (UTAUT) questionnaire.  The results of the questionnaire are 

shown in Figure 24. For performance expectancy, effort expectancy, attitude, and self-efficacy, 

the higher the score the better; for anxiety, the lower the score the better. Overall, participants had 

a slightly positive feeling on their expected performance when using the LEMR system, a more 

positive feeling on the effort required to use the LEMR interface, and they are at ease (i.e., not 

anxious) when using it. 

Table 19. Clinical impact of not seeing the patient data that were not highlighted in the evaluation 

study. 

I did not revise 1. No impact 2. Minor impact 3. Major impact

Counts 33 (45.8%) 6 (8.3%) 20 (27.8%) 13 (18.1%) 

Clinical impact

A summary of self-rated clinical impact of not seeing patient data that were not highlighted 

is shown in Table 19. In summary, in over half the cases (54.1%), the participants when shown 

the hidden data did not revise their rounding presentation, or the revision had no clinical 

impact. However, in 18.1% of the cases, the participants made a revision to their rounding 

presentation that would have had a major impact on clinical care of the patient. It may be the 

case that the revisions causing a major impact in patient care where due to just a few data 

items that did not have a model; further assessment is needed. 
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Figure 24. Results from a modified Unified Theory of Acceptance and Use of Technology 

(UTAUT) questionnaire.  
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7.2 A DISSCUSSION OF APPLYING MODELS TO DIRECT THE FUTURE 

DISPLAY OF PATIENT DATA 

The results reported in this chapter show that a LEMR system that applies models to direct the 

display of patient data may reduce the time it takes for clinicians to prepare for morning rounds. 

Average time to task completion was less when model output was used to highlight data that are 

predicted to be sought as relevant and to hide data that are not predicted to be sought as relevant. 

Hiding data comes at the risk of hiding data that are relevant. To investigate this issue, we 

calculated precision and recall of the highlights and found overall recall to be 43%. At this recall 

level, the system is missing five or six out of every ten data items a clinician seeks. Encouragingly, 

however, even with this modest level of recall, not seeing the hidden data only had a major clinical 

impact for 18% of the cases and had no impact for over half of the cases. The results also show 

prospects for improvement. When considering only the 25 data items that had an active model 

during the study, recall increases to nearly 80%. This result suggests that with more training data 

and more models meeting inclusion threshold, the overall recall is likely to increase.  

The second part of evaluating model performance is precision. Results showed a precision 

of 52%, meaning about half of the highlighted data were sought as relevant. Model performance 

was substantially better than randomly selected highlights.  

To increase model coverage of data items and contexts, a fully developed LEMR system 

would be trained on tens of thousands of cases. To collect thousands of training cases, automatic 

methods for observing clinician information seeking behavior are needed. The current study 

supports that eye-tracking may be a viable, automatic alternative to manually labeled training data, 

as shown by performance that was not significantly worse than manually trained models.  
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Personalization of the models did not seem to improve performance. This may be due to 

lack of training data for each individual user or due to higher variance in performance because of 

a smaller evaluation set (i.e., data from five participants instead of twelve).  

In conclusion, our hypothesis was that the LEMR system will yield the following results 

on a set of test cases: (1) on average clinicians will use less time in preparing to present a patient 

case at morning rounds, and (2) clinicians will judge that the system highlights all the information 

that they would use in each case for the specified task. This hypothesis was partially supported by 

our results. Addressing part 1, time to task completion was less when models were applied to 

determine which data to highlight and which data to hide, but was not reduced when only 

highlighting. It is important to emphasize that we do not expect a working LEMR system to ever 

completely ‘hide’ information as in Arm 3, which was introduced for the purpose of 

experimentation. In a clinical setting, clinicians will always retain access to all the information 

they would otherwise have access. Highlighting in some situations might be done in-place, as it 

was in Arm 2, and, at other times, be done as an optional HID (highlighted information display). 

Addressing part 2, the models did not highlight all the information clinicians would use, but 

compared to random, performed substantially better.  
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8.0  DISSCUSSION 

Reducing cognitive load is a top priority in improving EMR usability 31. The LEMR (learning 

electronic medical record) system presented in this dissertation observes clinician information 

seeking behavior and applies it to direct the future display of patient data. Patient data are 

highlighted if statistical models predict that a clinician will seek them as relevant; thus, 

highlighting provides concise and context sensitive data that are uncluttered by extraneous 

information. The LEMR system has a major advantage over other context sensitive EMR systems 

in that it is data-driven rather than expert-driven. This distinction potentially enables the LEMR 

system to be more readably adaptable to different contexts and to changes in care practices.   

The LEMR system exemplifies a LHS (learning health system) approach to EMR system 

design (as described in Section 1.5). When clinicians use a LEMR system in clinical practice, the 

system observes clinician information seeking behavior, which is an example of practice to data. 

The data are then used to train a model of clinician information seeking behavior — a form of data 

to knowledge. The knowledge of the model is applied to direct the future display of patient data — 

an instance of knowledge to practice. How clinicians seek information using the directed display is 

then observed, so the learning cycle can continue indefinitely to drive improvement. 

The development of this system was divided into five phases. First (in Chapter 3), 

we developed a prototype LEMR interface that served as a test bed for LEMR experimentation. 

The LEMR interface was evaluated in two studies: a think aloud study and a usability study. The 

results from these studies were used to iteratively improve the interface.  
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 Second (in Chapter 4), we evaluated the accuracy of an inexpensive eye-tracking device 

and developed an automatic method for mapping eye gaze to patient data displayed in the LEMR 

interface. In two studies we showed that an inexpensive eye-tracking device can perform as well 

as a costlier device intended for research and that an automatic mapping method accurately 

captures the patient information a user is viewing.  

Third (in Chapter 5), we collected observations of clinician information seeking behavior 

in the LEMR system. In three studies we evaluated both manual and automatic methods for 

collecting the observations to train the system. In the last of those studies, we used both manual 

selection and (automatic) eye-tracking methods to assign target values to the patient data that 

clinicians sought as relevant in a set of 178 patient cases.  

Fourth (in Chapter 6), we applied machine learning to the training data to model clinician 

information seeking behavior from a manual set of training cases. In total, there were enough 

training data to train models for 80 different data items (i.e., target variables). Twenty-five of 

these models met the performance criteria for inclusion in the evaluation study.  

Fifth (in Chapter 7), we applied the models to direct the display of patient data in a 

prospective evaluation of the LEMR system. The evaluation found that, when the models were 

applied to highlight data predicted to be sought and hide data not predicted to be sought, the 

system reduced time to task completion for clinicians who are preparing to present cases at 

morning rounds. More work is needed before the models adequately highlight all the patient data 

clinicians seek, but at current performance the study clinicians assessed that differences 

(between their rounding presentation when only seeing the highlighted data and their revised 

presentation when seeing all data) do not have a major clinical impact on patient care in over 80% 

of the cases. 

 LEMR systems are an important area of computerized clinical decision support. As such, 

they should be evaluated by the same criteria as other clinical decision support systems. Ideally, a 

LEMR system would anticipate user needs, deliver support in a timely manner, fit into the user’s 
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workflow, and maintain an effective knowledge base. These are four important features of 

effective clinical decision support in general 17. The LEMR system also addresses three grand 

challenges of clinical decision support as described by Sittig et al. 13: it summarizes patient 

level data, prioritizes and filters recommendations (highlights) to the user, and 

combines recommendations (highlights) for patients with comorbidities.  

The remainder of this chapter is divided into three parts: (1) insights into LEMR systems 

that were gained while completing this dissertation, (2) future work inspired by this dissertation 

research, including its limitations, and (3) concluding remarks.   

8.1 INSIGHTS INTO LEMR SYSTEMS 

This section lists insights into LEMR systems that were gained while completing this dissertation. 

The list is not exhaustive, but presents key concepts that may help further develop LEMR systems. 

What data are highlighted 

Insight 1. There are three conditions in which context-relevant patient data are highlighted for an 

EMR user.  

Condition 1: The user knows a data item is relevant. In this condition, the 

LEMR system should focus on ease of access: highlighting to save time and cognitive 

effort. It should reduce the number of clicks required to retrieve data and display 

together the different data a clinician combines in making a decision. Doing so will 

reduce screen switching time, will reduce the memory load on the user, and will reduce 

the need for writing details down on paper.  
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Condition 2: The user does not know a data item is relevant. In this scenario, 

the LEMR system should focus on increasing situational awareness: highlighting to 

focus attention on relevant, overlooked data. The overlooked data may be an ignored 

laboratory test result, an unnoticed negative trend across temporal results, an imaging 

study that the clinician did not know was available, or any of many other aspects of 

patient data. Data may be overlooked due to reasons such as anchoring to a certain 

diagnosis or experiencing information overload. Highlighting to focus attention on 

relevant, overlooked data may result in the clinician considering new or alternative 

diagnoses and associated treatment plans.  

Condition 3: The user forgets a data item is relevant. In this situation, as in the 

second one, the LEMR system should use highlighting to focus attention on relevant, 

overlooked data.  

Insight 2. With three conditions of highlighting patient data, three different methods are applied to 

determine which data to highlight. 

In condition 1, a model is applied to predict when the user knows a data item is 

relevant. This model is a clinician-specific model that is personalized to a clinician’s 

own information seeking behavior in different contexts. Personalization is desirable 

because it will make the EMR interaction more seamless.  

In condition 2, two models are applied: a clinician-specific model and a general 

model. The clinician-specific model predicts the data the current clinician user will seek. 

The general model predicts the data a population of similar clinicians would seek in the 

same context (crowd wisdom 47). Data that are not predicted to be sought as relevant by 

the clinician-specific model but are predicted to be sought in the general model could 
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be assumed by the system to be data items that the current clinician user may not know 

are relevant.  

In condition 3, the data items that are highlighted are those predicted by the 

clinician-specific model to be sought by the current user in the current case, but which 

the user has not yet viewed upon reaching the end of viewing the case. This form of 

highlighting would occur toward the end of viewing a case, compared to the highlighting 

described for conditions 1 and 2, which occurs at the beginning of case viewing. Such 

late highlighting has the advantage of being relatively non-directive; data items are only 

highlighted when they are believed relevant (by the system) and not viewed by the user 

(according to eye tracking or other methods). 

Combinations of the above conditions may be useful to investigate as well. One 

possibility involves combining conditions 2 and 3. Here both the clinician-specific and 

the general model are applied to predict data seeking behavior and the union of the data 

items predicted by these two models is combined using set union to produce set U. The 

data in U that is not viewed by the clinician would be highlighted toward the end of 

viewing the case in order to emphasize data items that the user either did not know or 

remember are relevant. 

Insight 3. A clinician cannot be over reliant on highlighting when seeking data they know to be 

relevant.  

If the clinician knows a data item is relevant, over-reliance on LEMR-system 

highlighting is not a concern because the clinician knows what data they seek; therefore, 

if data they seek are not highlighted, then they will use traditional EMR navigation to 
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find it. Traditional EMR navigation is how most clinician information seeking currently 

occurs.   

If the clinician does not know a data item is relevant or forgets a data item is 

relevant, then there is a risk of over-reliance because the clinician may assume the 

system highlights all relevant patient data. However, using current EMR systems, 

clinicians are missing relevant data, which may lead to problems, including treatment 

delays 2,26,30. The highlights provided by a LEMR system could help reduce such delays. 

Thus, there appears to be a tradeoff between costs (e.g., over-reliance) and benefits (e.g., 

reduction of treatment delays) in using a LEMR system. However, the use of late 

highlighting, as described above for condition 3, may reduce the costs of highlighting, 

by making it less directive and intrusive of the usual clinical workflow. Additional issues 

about the timing of data highlighting are discussed in the next insight as well. 

When are data highlighted 

Insight 4. Relevant data are those data necessary for making a clinical decision well, when the user 

is making that decision; therefore, the current task of the EMR user must be taken into 

account. 

EMR systems store many data because clinicians use many different types of data 

when making different types of clinical decisions. Which data are relevant depends on 

the decisions being made. Data relevant to one treatment decision (ordering insulin) may 

not be relevant to a second treatment decision (perform a spontaneous breathing trial), 

even if both treatment decisions are for the same patient at the same time. The LEMR 

system should highlight the data relevant to a decision while that decision is being made, 

then highlight the data relevant to the next decision while that decision is being made. 
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Doing otherwise, highlighting different relevant data for many decisions at the same time, 

might confuse EMR users and add cognitive burden, due to interruption and multi-

tasking, as the user starts thinking of other decisions that need to be made. This insight 

comes with the acknowledgement that some tasks are very broad and may have a large 

set of relevant data, e.g., differential diagnosis.   

Insight 5. Since current task is needed to determine when to highlight data, the current EMR task 

should be determined as part of the training data. 

Some tasks are easily captured by an EMR system, as for example if a user starts 

to place an order for insulin, then then system can infer that the current task is “ordering 

insulin.” Other tasks, particularly when reviewing patient data, may be less obvious to 

capture. The LEMR system may do so through a combination of active user specification 

(such as clicking on the current task from a list of potential tasks), interaction with LEMR- 

system highlighting, or estimation using machine-learning-driven prediction of the task; 

the model would estimate the current task, based on the data being sought and the EMR 

actions being taken.  

Where are data highlighted 

Insight 6. Where to highlight relevant data depends on what and when they are highlighted. 

Relevant data may be highlighted in different places, for example, in-place by 

changing a data item’s background color, in a HID (highlighted information display) where 

relevant data are shown together, near other data that are relevant to a decision, or in an 

alert. In-place highlighting is the most subtle and may work well for ensuring a data item 

(e.g., downward trending blood urea nitrogen results) are not overlooked when the clinician 

is assessing other laboratory test results. A HID is useful for consolidating data relevant to 
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a decision in one place. Decision relevant data may be grouped in electronic “cards” where 

each card is for a single decision or task. Which cards to display could be determined using 

either a model of the tasks a user will perform next or through user specification of the 

tasks they wish to complete currently. Neighborhood highlights will show relevant data 

next to another piece of relevant data. For example, if a clinician is on the medication 

ordering screen and evaluating warfarin dosing, the results of bleeding tests could be 

displayed next to the warfarin dosing regimen. Finally, highlighting can be achieved 

through alerting. Alerting is interruptive and should only be used when the model has high 

certainty that a relevant data item was overlooked. This point illustrates, however, that 

highlighting can (and we believe should) be viewed quite broadly. 

Insight 7. Combinations of highlighting methods may be used. 

The appropriate method for highlighting a data item may depend on the condition 

in which it is highlighted. If the system predicts that a clinician knows a data item is 

relevant for a task, then perhaps it should be highlighted in a HID with all the other data 

relevant for that task. On the other hand, if the system believes that a user forgot to view 

data that are relevant for a task, then it may be most appropriate to notify the clinician once 

it becomes probable that the item will not be viewed in the near term. 

How are training data collected 

Insight 8. A LEMR system works interactively with users and continuously observes clinician 

information seeking behavior. 

Currently, clinicians interact with an EMR system to retrieve the data they seek. 

Interaction details, such as page visits, are usually captured as meta-data 124,125. These meta-

data can function as high-level observations of clinician information seeking behavior, and, 



136 

therefore, can be used when training LEMR system models of clinician information 

seeking behavior.  

In addition to interactions like those with current EMR systems, clinicians will 

interact in new ways with LEMR systems. The new interactions will be captured as more 

comprehensive meta-data. For the first of three examples, if a LEMR system displays in 

its HID a series of cards ― where each card contains the patient data relevant to a single 

clinical decision or task ― the use of those cards will be observed by the system. Some 

cards may be dismissed with no action. Other cards may be used as is. A few cards may be 

missing a data item needed for the decision and a user may manually add the item to the 

card using system functionalities, such as a search bar.  

For the second example, the LEMR system may sometimes highlight context-

relevant data in the same ‘neighborhood’ together. The example provided in Insight 6 was 

displaying the results of blood clotting tests next to a patient’s warfarin dosing regimen. 

To determine if model predictions are correct and data are appropriately displayed together, 

the system could solicit feedback from the user. In this example, the names of the blood 

clotting tests could be present, but the results could be blurred out. The user can clear the 

blur by clicking on it. So if the user clicks to reveal a test result, then the test was 

appropriately highlighted. If the user does not click to reveal, then the test was not 

appropriately highlighted. This is active learning and it, or similar methods, will 

occasionally be applied selectively to model predictions with low certainty. 

For the third and final example, this dissertation presented how eye-tracking may 

be used to infer clinician information seeking behavior. Eye-tracking may also prove useful 

when determining when a clinician forgets data are relevant (i.e., an item was predicted to 
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be sought, but was never viewed). In the long run, we think eye tracking is likely to be the 

most practical way to obtain extensive and detailed training data for the type LEMR system 

described here. It seems plausible that eventually eye tracking will become highly accurate 

and sufficiently inexpensive to incorporate routinely into computer display monitors. At 

that point, the potential for using eye tracking for LEMR training would be high.  

8.2 FUTURE WORK TO ADDRESS LIMITATIONS 

This dissertation research has explored the initial design, implementation, and evaluation of a 

LEMR system. Before such a system is ready for clinical use, current limitations must be addressed 

with future work. 

LEMR interface 

The LEMR system was developed in conjunction with a LEMR display interface. This interface 

had limited functionality that prevents it from being classified as a full EMR system. Namely, the 

interface does not have data input functionality — it only displays patient data. This was sufficient 

for LEMR system experiments reported here, but future work needs to involve real EMR systems 

that are being actively used.   

The LEMR system could be tightly integrated with an existing commercial EMR or it could 

be a standalone interface providing clinicians with a second way of accessing the patient data they 

seek. Imagine a LEMR tablet device that can be carried around during rounds or to a patient’s 

bedside. The lightweight LEMR interface would adapt to show the clinician just the data they are 

predicted to seek. A LEMR interface could also be useful to clinicians who want remote EMR 
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access on their mobile phones. When a clinician is at home and gets a phone call about a treatment 

decision, a LEMR interface on their phone could show the patient data they are likely to need to 

efficiently make the decision; nevertheless, at all times the user could access any of the EMR 

data. A final possibility is to develop a LEMR Fast Healthcare Interoperability Resources 

(FHIR) application 126. FHIR has the potential to revolutionize the healthcare information 

technology space, as EMR vendors open app stores. A LEMR system could be made available as 

an app. 

To address issues raised in Section 8.1, more experiments are needed to determine when 

and where to highlight patient data to maximize effectiveness and user acceptance.  

Eye-tracking 

Inexpensive and automatic eye-tracking is a promising method for observing clinician information 

seeking behaviors. A limitation is that this dissertation applied eye-tracking in a laboratory setting 

on an in-house interface. It is important to determine how to apply the technology in a hospital and 

to determine if the results will hold up in a dynamic environment.  

If eye-tracking reaches widespread adoption, like the cameras that are now found on almost 

every laptop and mobile phone, then we will enter a new era of eye-tracking for clinical 

decision support 119. For example, if data seen (as captured by an eye-tracking device) is a 

reasonable approximation for what information a clinician knows about a patient case, then 

perhaps we can estimate which diagnoses a clinician has considered for a case and which 

diagnoses the clinician has not considered. If based on characteristics of a patient case, an 

unconsidered diagnosis is more likely than a considered diagnosis, then the LEMR system can 

highlight for the clinician data that are suggestive of the unconsidered diagnosis.  



139 

Observing 

In this dissertation, the primary means of observing clinician information seeking behavior was a 

manual process. This is a limitation that needs to be addressed through the continued development 

of automatic labeling methods. We have discussed the promise of eye-tracking and, in Section 8.1, 

discussed using EMR and LEMR meta-data. Additional methods should be developed and studied. 

To address issues raised in Section 8.1, we believe that at least three lines of observational 

research should be pursued. The first is descriptive research into clinician information seeking 

behavior: (a) how often are patient data sought; (b) how does information seeking vary between 

contexts (clinicians, tasks and patient cases); and (c) how much data are known to be relevant, not 

known to be relevant, and forgotten that they are relevant? Second, research into determining the 

discrepancies between the data a model predicts a clinician will seek and the data they actually 

seek. Third, research into methods of determining what is the current clinical task.  

Modeling 

The models trained for this dissertation address a problem that is a bit unusual: what patient data 

will be sought as relevant. The dissertation applied traditional model learning methods, including 

logistic regression, support vector machines, and random forests. While these methods produced 

positive results, more sophisticated approaches, such as hierarchical learning 127, are applicable to 

model a wider range of clinical contexts (different types of clinicians, performing different clinical 

tasks, for any patient case). Hierarchical modeling will allow gathering and using training data 

across a hierarchy of contexts, including across hospitals, clinical departments, specific wards, and 

even specific clinicians. LEMR models to predict information seeking for a given clinician will be 

trained using all the available data, with the data more specific to the clinician given greater weight. 
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To get to a wider range of clinical contexts, larger training sets are needed. Modestly sized 

training sets are a limitation of this dissertation that will be addressed in future work. 

Eventually, a method for observing clinician information seeking behavior will be implemented 

in a clinical environment, so obtaining a plethora of training data will be an ongoing, natural 

by-product of the care experience.  

LEMR system evaluation

We evaluated the LEMR system on time to task completion. While it is important to address the 

time clinicians spend using an EMR system, this is not a measure of whether LEMR system will 

make patient care safer. The gains in patient safety are in insuring that a clinician does not overlook 

important information (e.g., miss an important test result 2 or overlook international travel of 

the patient to a region with Ebola 128), and it still needs further investigation. The current 

LEMR system highlights data predicted to be sought as relevant by intensivists who are 

preparing to present patient cases for morning rounds. The patient cases each have either AKF 

or ARF as a diagnosis upon ICU admission. The limitations of this initial work suggest 

additional types of evaluations.  

The evaluation study (Section 7.1) has several limitations. (1) We only tested one means 

of highlighting: in-place (both with and without hiding surrounding data). Other approaches such 

as HID’s, neighborhood highlighting, and alerting, as well as a combination of highlighting 

methods, should be explored.  (2) Our experimental context was limited. Future work should 

seek to add different types of clinicians, additional clinical tasks, and more patient cases. (3) 

We did not measure the LEMR system’s impact on clinician cognitive load. Additional 

experiments should be conducted to test (a) if the LEMR system highlights affect clinician 

cognitive load, (b) 
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if clinicians using the LEMR system succumb to automation bias and become over reliant 

on highlighting 129, and (c) if the LEMR system highlights improve medical decision making.  

8.3 CONCLUSIONS 

Learning electronic medical systems, like the LEMR system, are a LHS approach to improving 

EMRs. This dissertation shows that LEMRs can reduce the time it takes for clinicians to use EMRs 

while highlighting about half of the patient data they seek. Highlighting patient data was explored 

in the data-rich ICU environment. The LEMR system may prove to be equally or more useful in 

other clinical environments, like ambulatory care, where many of the patients have chronic 

conditions and decades of history recorded in an ambulatory EMR.    

Regular automated observation of clinician information seeking behavior opens many 

possibilities for supporting clinical decision support, including intelligent alerts, automated 

documentation, and LEMR system highlights.  

The current dissertation describes an initial investigation of LEMR systems. The potential 

impact of LEMR systems on the future of EMR systems in particular and clinical care more 

broadly seems substantial. We hope that this dissertation research proves useful in helping realize 

that potential. 
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APPENDIX A. LIST OF CONDUCTED STUDIES 

To test the hypothesis and complete the specific aims in Section 1.3, we conducted a series 

of studies. Table 20 provides a high-level overview of each of them. 

Table 20. List of studies conducted. 

Section Date 
Conducted 

Purpose Summary of Results 

Developing a LEMR Interface 
3.4 11/7/2014 Elicit feedback on a 

prototype LEMR interface 
and the LEMR concept. 

Potential issues were identified, and 
interface changes were made to address 
the issues. An individual’s inefficiencies 
could be lessened by the LEMR and the 
addition of outlier detection may be 
beneficial. 

3.5 2/5/2015-
2/10/2015 

Elicit feedback on the 
LEMR system concept and 
test the usability of a 
prototype interface.  

Participants were enthusiastic about an 
EMR that learns from user behavior and 
provided design recommendations.   

Developing Automatic Eye-Tracking for the LEMR Interface 
4.1 3/24/2016- 

3/28/2016 
Evaluate two different eye-
tracking devices.  

The accuracy of an inexpensive eye-
tracking device performs at least as well 
as a more expensive one.  

4.2 5/2/2016 Evaluate a method that 
maps eye-tracking data to 
graphical elements in the 
LEMR interface.   

This mapping method has high accuracy 
after participants become familiar with 
the LEMR interface.  
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Table 20 (continued). 

Modeling Clinician Information Seeking Behavior 
6.1 1/16/2015- 

1/30/2015 
Test the feasibility and 
accuracy of LEMR models 
using a preliminary data 
set.  

Model performance suggests that we 
can predict the laboratory tests that a 
clinician will seek as relevant.  

6.2 11/1/2017-
2/2/2018 

Train models of clinician 
information seeking 
behavior for the primary 
LEMR evaluation study.  

Models were developed for data items 
with enough training data. The 25 best 
performing models were applied in the 
LEMR evaluation study. 

Applying a Model to Direct the Future Display of Patient Data 
7.1 2/8/2018-

5/6/2018 
Evaluate LEMR system 
impact on time to task 
completion and the 
adequacy of highlights 
during a primary LEMR 
evaluation study. 

The LEMR system required less 
clinician time to use when applying 
models to highlight and hide patient 
data. The models predicted nearly half 
of the sought-after patient data, which is 
significantly better than random.   

Observing Clinician Information Seeking Behaviors 
5.1 4/8/2014 Collect a preliminary 

training data set of labelled 
EMR cases.  

A clinician manually labeled the 
laboratory tests that he used when 
assessing 59 patient cases.   

5.2 8/15/2016-
9/7/2016 

Test using eye-tracking as 
an automatic approach for 
observing clinician 
information seeking 
behavior.  

Eye-tracking performance was 
moderate; thus, the primary training data 
set will be collected using both manual 
and eye-tracking methods.  

5.3 8/15/2017-
10/17/2017 

Collect a primary training 
data set of labeled EMR 
cases.  

176 cases were manually labeled by 11 
critical care fellows. 147 of the cases 
were also automatically labeled via eye-
tracking.  
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APPENDIX B. SOFTWARE DEVELOPED 

LEMRinterface: A web interface written using the Bitnami Django Stack that displays EMR data 

in a temporal fashion.  

(https://github.com/ajk77/LEMRinterface) 

EyeBrowserPy: Eye (gaze) tracking in your browser, plus area of interest analysis software. 

(https://github.com/ajk77/EyeBrowserPy) 

PatientPy: Patient state construction from clinical databases for machine learning. 

(https://github.com/ajk77/PatientPy) 

RegressiveImputer: Impute missing values via a regression model. 

(https://github.com/ajk77/RegressiveImputer) 

PateintPyFeatureSelection: Feature selection for constructed sets of features, such as the 

temporal expansions used in PatientPy.  

(https://github.com/ajk77/PatientPyFeatureSelection) 

https://github.com/ajk77/LEMRinterface
https://github.com/ajk77/EyeBrowserPy
https://github.com/ajk77/PatientPy
https://github.com/ajk77/RegressiveImputer
https://github.com/ajk77/PatientPyFeatureSelection
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APPENDIX C. SURVEYS AND QUESTIONNAIRES 

Figure 25. System usability scale (SUS) used in the usability study (Section 3.5). 
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Figure 26. Modified unified theory of acceptance and use of technology (UTAUT) model used in the 

evaluation study (Section 7.1). 
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APPENDIX D. INTRODUCTORY PRESENTATION FOR THE PRIMARY LEMR 

EVALUATION  
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APPENDIX E. PERFORMANCE OF MODELS FOR EIGHTY DATA ITEMS 

Table 21. AUROC performance of models for eighty data items. 

Model type Semi-personalized General Semi-personalized 

Training data set 
178 case  

manual selection 

178 case 
manual 

selection 

147 case 
eye-tracking 

178 case 
manual 

selection 

147 case 
eye-tracking 

Evaluation data set 
(gold standard) 

leave-one-out on 
training data set 

68 case manual selection 26 case manual selection 

Target AUROC 
red blood cells 0.94 – – – – 
magnesium sulfate 0.83 – – – 0.44 
ventilator status 0.83 0.42 0.47 – – 
PEEP 0.83 – – – – 
pH 0.77 0.66 0.76 0.46 0.58 
bicarbonate (blood gases) 0.75 0.33 0.59 0.9 0.46 
vancomycin 0.74 0.47 0.57 – 0.60 
anion gap 0.74 – – – – 
oxygen saturation 0.74 0.66 0.48 0.69 0.44 
bilirubin total 0.73 0.89 0.71 0.67 0.72 
lactate 0.73 0.79 0.53 0.78 0.57 
piperacillin-tazobactam 0.73 0.67 0.69 0.76 0.67 
norepinephrine 0.72 0.79 0.49 – 0.67 
chloride 0.71 0.44 0.59 0.51 0.50 
alkaline phosphatase 0.71 0.64 0.50 0.7 0.42 
potassium chloride 0.71 – – – – 
heparin 0.71 0.34 0.56 0.35 0.65 
glucose 0.71 0.45 0.46 0.52 0.54 
aspirin 0.71 0.48 0.85 – 0.85 
fentanyl 0.70 0.51 0.74 – 0.30 
fraction of inspired O2 0.69 0.75 0.78 0.75 0.79 
central venous pressure 0.69 0.48 0.50 – – 
calcium 0.68 0.31 0.56 – – 
magnesium 0.68 0.48 0.60 0.29 0.55 
respiratory rate 0.68 0.62 0.5 0.78 0.71 

See next page for table notes
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Table 21 (continued). 

Model type Semi-personalized General Semi-personalized 

Training data set 
178 case  

manual selection 

178 case 
manual 

selection 

147 case 
eye-tracking 

178 case 
manual 

selection 

147 case 
eye-tracking 

Evaluation data set 
(gold standard) 

leave-one-out on 
training data set 

68 case manual selection 26 case manual selection 

Target AUROC 
famotidine 0.68 0.5 0.29 – 0.40 
blood urea nitrogen 0.68 0.38 0.39 0.85 0.35 
partial thromboplastin time 0.68 0.63 0.50 – – 
ventilator mode 0.67 0.66 0.72 0.79 0.76 
partial pressure of CO2 0.67 0.98 0.70 0.94 0.76 
neutrophils 0.67 0.29 0.44 0.33 0.38 
temperature 0.67 0.51 0.36 0.53 0.70 
intake and output 0.66 0.45 0.68 0.53 0.70 
glomerular filtration rate 0.66 0.47 0.35 – – 
phosphate 0.65 0.49 0.58 0.61 0.52 
aspartate aminotransferase 0.65 0.78 0.56 0.69 0.59 
alanine aminotransferase 0.65 0.8 0.64 0.74 0.58 
INR 0.65 0.61 0.71 0.76 0.76 
platelets 0.65 0.66 0.54 0.49 0.64 
creatinine 0.65 0.58 0.50 0.14 0.60 
blood pressure 0.65 0.57 0.50 – – 
dextrose 5% in water 0.65 0.64 0.52 – 0.61 
ampicillin-sulbactam 0.65 0.83 0.59 0.82 0.88 
potassium 0.64 0.42 0.57 0.62 0.63 
albumin 0.64 0.72 0.30 0.86 0.64 
venous saturation of oxygen 0.64 – – – – 
bicarbonate (chemistry) 0.64 0.68 0.44 0.56 0.64 
white blood cells 0.64 0.58 0.50 – – 
sodium 0.64 0.38 0.59 0.49 0.53 
venous pH 0.64 – – – – 
partial pressure of O2 0.64 0.79 0.48 0.95 0.69 
Senna 0.64 – – – – 
prothrombin time 0.64 0.3 0.5 0.4 1.00 
Targets that are bolded or italicized were applied in the evaluation study (Chapter 7.1). The version applied 
was the general model trained on the manual selection data set. The 68 case manual selection data set 
consists of multiple participants evaluating the same 18 patient cases. The 26 case manual selection data set 
is a five-participant subset of the 68 cases. 
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Table 21 (continued). 

Model type Semi-personalized General Semi-personalized 

Training data set 
178 case  

manual selection 

178 case 
manual 

selection 

147 case 
eye-tracking 

178 case 
manual 

selection 

147 case 
eye-tracking 

Evaluation data set 
(gold standard) 

leave-one-out on 
training data set 

68 case manual selection 26 case manual selection 

Target AUROC 
hemoglobin 0.63 0.47 0.42 0.42 0.57 
bilirubin direct 0.63 0.50 0.49 – 0.54 
albuterol-ipratropium 0.63 0.27 0.48 – 0.5 
heart rate 0.62 0.55 0.48 0.67 0.56 
ionized calcium 0.62 0.31 0.59 0.42 0.56 
midazolam 0.62 0.41 0.50 – – 
Propofol 0.61 0.68 0.58 – 0.72 
base solution 0.61 0.67 0.38 0.83 0.44 
pantoprazole 0.61 0.56 0.72 – 0.81 
insulin (Humulin & Novolin) 0.61 0.59 0.84 – 0.85 
insulin aspart (Novolog) 0.60 – – – – 
sodium chloride 0.9% 0.59 0.59 0.68 0.64 0.74 
ventilator tube status 0.59 0.42 0.27 0.30 0.72 
metoprolol 0.58 0.12 0.49 – 0.26 
vancomycin, trough 0.57 0.61 0.40 – 0.41 
ammonia 0.57 – – – – 
hematocrit 0.56 – – – – 
chlorhexidine topical 0.56 0.54 0.66 – 0.28 
metronidazole 0.55 0.74 0.45 0.85 0.31 
furosemide 0.54 0.05 0.51 – 0.56 
Troponin 0.52 0.52 0.95 – 0.98 
band neutrophils 0.52 0.50 0.39 – 0.63 
insulin glargine (Lantus) 0.50 0.46 0.58 0.30 0.38 
acetaminophen 0.47 0.19 0.80 – – 
Lorazepam 0.45 0.47 0.28 – 0.33 
fibrinogen 0.41 – – – – 
hydrocortisone 0.40 0.44 0.95 – 0.54 
Targets that are bolded or italicized were applied in the evaluation study (Chapter 7.1). The version applied 
was the general model trained on the manual selection data set. The 68 case manual selection data set 
consists of multiple participants evaluating the same 18 patient cases. The 26 case manual selection data set 
is a five-participant subset of the 68 cases. 
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