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QUANTITATIVE STUDY ON REGULATORY MECHANISMS OF CELL 

PHENOTYPE TRANSITION 

Jingyu Zhang, PhD 

University of Pittsburgh, 2018 

Cells in a multicellular organism share the same set of genome and can assume multiple 

phenotypes. Uncovering mechanisms of regulating cell phenotype changes has become an 

important and active research area. This dissertation presents a collection of my combined 

computational and experimental efforts on studying cell phenotype transitions. 

Chapter I gives a literature overview on cell phenotype conversion and regulation. One 

can identify four generic modules that function coordinately to regulate cell phenotypes. The 

whole system forms a highly interconnected network and involves a large number of molecular 

species for epigenetic, transcriptional and translational regulations. 

Chapter II addresses how a cell interprets temporal and strength information of signals 

and makes cell fate decision. I performed an integrated quantitative and computational analysis 

on how extracellular TGF-β signal is transmitted intracellularly to activate SNAIL1 expression. I 

demonstrated how quantitative information of TGF-β is distributed through upstream divergent 

pathways then crosstalk at various places and converge on to SNAIL1. This crosstalk network 

interprets the duration of TGF-β signal and is robust against stochastic fluctuations.  
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functionand phenotype changes. In eukaryotic cells, the expression level of a gene is determined 

by both transcription factors and the local environment, such as histone modifications and three-

dimensional chromosome structure. I used EMT in human cell line and neural cell differentiation 

process in mouse as model systems, respectively. Through performing combined analysis of data 

of gene expression, epigenetic modification and chromosome conformation, I examined how the 

local environment and transcriptional factor regulation is coupled. I discovered that genes co-

regulated by a common transcription factor (TF) has tendency to be close both sequentially and 

spatially. The local spatial organization bridged by TFs is cell type specific. Reorganization of 

DNA local conformation has impact on gene co-regulation during cell phenotype transition.  

The final chapter gives a brief summary of the conclusion from my computational and 

experimental researches in this dissertation. In this chapter, I also introduced the future work in 

investigating the relationship between chromosome conformation and gene regulation during cell 

type transition. 

Chapter III and IV focus on co-regulation of multiple genes that orchestrate cell 
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1.0 INTRODUCTION 

1.1 CELL PHENOTYPE TRANSITION PLAYS KEY ROLE IN LIFE OF 

MULTICELLULAR ORGANISMS 

Multicellular organisms contain cell types that share the same set of genome but are 

phenotypically different. Start from the beginning of the multicellular organisms, transitions 

among different cell types are essential in organism development, growth, life cycle, senescence 

and death. The regulation mechanisms of cell phenotype transition have been an active research 

topic for long time1,2, and abundant information has been accumulated. Basically, a cell type 

transition is under precise control in magnitude, both temporally and spatially3-5. Signals that 

trigger cell type transition can be various, including cytokines6, chemicals, temperature7, or other 

stresses8,9. After receiving signals, cells switch on a first wave of responses to interpret the types, 

duration and strength of signals10,11. These responses can be turned on within seconds and prime 

cells for further reactions. In the next several steps, the information from stimulating signals is 

relayed downstream through a signal transduction network and alternate multiple aspects of 

cells, such as primary and secondary metabolisms, cell cycles, cell shapes and movements. 

Eventually, the changes are further reinforced and the new phenotype is fixed. Fig. 1 

schematically summarizes the overall cellular process of sensing, relaying, and responding to 

stimulating signals. 

1 



Cell phenotype transition is in general not a one-zero process, but contains multiple 

intermediate states. These intermediate states can exist stably, until additional cue is received for 

further change. For example, in nervous system development, cyclopamine induces embryonic 

stem cells (ESCs) to neural progenitor cells (NPC), a stable cell phenotype. Further signals can 

induce NPC cells to fully differentiated cortical neural cells12. Epithelial to mesenchymal 

transition (EMT), a process that we will discuss in detail later, is another example that involves 

intermediate states. Our previous computational and experimental studies revealed how an EMT 

regulatory network leads to different states13. Recently the potential roles of intermediate EMT 

states on cancer metastasis and fibrosis development have received great attention14.  

Events of a cell phenotype transition processes span a broad range of time scales and 

involve a large number of molecular species. For example, at the early signal receiving and 

transduction stage, post-translational modifications can take place in seconds. While approaching 

the final stage of cell type transition, it normally takes days or longer for establishing epigenetic 

modification and chromosome structural reorganization. The complexity of a cell phenotype 

transition process requires combinations of traditional molecular cell biology and quantitative 

systems biology approaches, which is the focus of studies presented in this dissertation. 

In the remaining part of Introduction, I will first discuss the signal crosstalk in TGF-β 

induced EMT. A key part of cell phenotype transitions is switch of transcriptional activities of 

groups of genes. Therefore in the second part I will provide general discussions on layered 

regulation of gene expressions. 
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Figure 1 Schematic of the overall signal reception, transduction, and response process of a generic cell phenotype 

transition process. Intracellular and extracellular signals are relayed via four basic units and regulated by positive 

and negative feedback loops. 
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1.2 SIGNAL TRANSDUCTION PATHWAYS OF EMT INDUCED BY TGF-Β, SHH, 

AND WNT AND THEIR CROSSTALKS 

A well-documented example of cell phenotype transition under different signal regulation is 

epithelial to mesenchymal transition (EMT). Epithelial cells are differentiated cells characterized 

by uniform cell shape, apical-basal polarity, strong cell-cell adherent junctions and cell-matrix 

hemidesmosomes, and limited mobility. Based on these characteristics, epithelial cells normally 

form single-cell-layered tubes or sheets to cover body, organs, or compose glands 15,16. On the 

contrary, mesenchymal cells have front-back polarity and loose cell attachment. They typically 

have much higher mobility, which is closely related to their regeneration function17,18. A 

majorfunction of mesenchymal cells is to compose and give rise to other types of cells, such as 

cells in lymphatic, circulatory, or some connective tissues19,20. 

In 1968, Hay noticed that during chicken embryotic development epithelial cells undergo 

differentiation and dedifferentiation several times, as well as migrate a relatively long distance 

within the body. All of these processes require inter-conversion between epithelial and 

mesenchymal cell phenotypes, called epithelial-to-mesenchymal transition (EMT) and its reverse 

process, mesenchymal-to-epithelial transition (MET)21. Subsequent studies showed that EMT 

and MET are fundamental in amniotes’ gastrulation and neural crest formation, and generation of 

body patterns. Specifically, during mammalian embryotic development, several rounds of EMT 

companied by MET take place, which are generally assigned as primary, secondary and tertiary 

EMT based on the developmental stages22. The primary EMT occurs in early embryonic 

development, such as parietal endoderm formation, mesoderm formation, and neural crest 

delamination. Signal molecules that initialize and regulate the primary EMT include the 

transforming growth factor-β (TGF-β) superfamily (e.g. BMP, Nodal, et. al.), the WNT 
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family23,24 and the fibroblast growth factor (FGF) family25. Two members of the SNAIL family, 

SNAIL1 and SNAIL2, are important during human early embryotic development for repressing 

E-cadherin and weakening cell-cell junction26. Mesodermal cells generated from the primary 

EMT later undergo MET and form the secondary epithelial structures, such as the notochord and 

the somites. The transit epithelial structures go through the secondary EMT and give rise to more 

differentiated structures, such as endocardial progenitors and connective tissues. Some of the 

epithelial or mesenchymal structures from the secondary EMT-MET process complete their final 

differentiation and maintain their phenotypes, provided there is no additional abnormal inducing 

signal. Others continue on a tertiary EMT (and MET), again controlled by multiple signaling 

pathways, and eventually give rise to complex organs, such as lung27 and heart28. 

In wound healing, the initial input signals are from injury. Transcription factors such as 

ERK, SLUG, SNAIL29-31 are activated to promote conversion of epithelial cells to a partial EMT 

state. Partial EMT cells also have loose cell-to-cell connection, which allow them to migrate to 

wounding site. This process is reversible, so the partial EMT cells return back to the epithelial 

phenotype after the injury site has been healed and the EMT triggering signal has been 

withdrawn. 

Studies also support that EMT and MET take place during metastasis. Some hypothesis 

regards cancer as an over healing wound32 or an abnormal development process33, while there are 

features specific for cancer progression. Invasion and metastasis are decisive steps in cancer 

progression and the major cause for cancer-related mortality34. At cellular level, EMT or partial 

EMT leaves cells loosely connected to others, and enables them to depart from the primary 

location and migrate along the circulatory system to a secondary location, where the migratory 

cells go through MET to epithelial cells again, proliferate and form a secondary tumor35. 
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Though EMT in breast cancer was first observed in 1890s, it did not attract attention in 

the carcinoma biology community along almost the whole past century. Only during the past 

decades many crucial signaling pathways and core regulatory elements that induce or contribute 

to EMT have been uncovered22,36. Like in embryotic development, metastasis in cancer 

progression can also be induced by various signaling molecules or cytokines37, such as proteins 

in the TGF-β superfamily38, hedgehog (HH) family, WNT family39, and interleukin (IL) family40, 

etc.. Stressful microenvironments, such as hypoxia41 or free radicals42, also trigger EMT43. 

1.2.1 Multiple signal transduction pathway and their crosstalks 

A plethora of stimuli activates multiple signal transduction pathways, which then converge to a 

core regulatory network composed by transcription factors (such as SNAIL1/2, ZEB1/2, TWIST) 

and miRNAs (such as miR34 and miR200 families)44. The latter further interact with other 

regulatory elements to instruct a cell to choose of the several possible cell fates. For example, 

SNAIL1 can bind to P53, a major regulator protein that induces senescence or apoptosis, and 

trap the free P53 in cytosol. Thus, SNAIL1 inhibits the choice of senescence or apoptosis45. The 

above flow-of-information is not unidirectional, but at every stage there exist negative and 

positive feedbacks to previous stages, and form a closed network. 

The TGF-β, sonic hedgehog (SHH) and WNT pathways are three well-studied signal 

transduction pathways that can induce EMT. Below we will give a review on how these three 

pathways participate in signal processing during EMT, and how the knowledge has been applied 

on carcinoma treatment. Especially we hope to provide a perspective on the signaling network 

based on systems biology approaches, and insights on biomedical interventions of EMT. 



7 

1.2.1.1  TGF-β pathway  TGF- β is a type of secretive protein that affects both the cell 

secreting the protein (autocrine) and its neighboring cells (paracrine). The proteins are secreted 

as inactive precursors, and are cleaved proteolytically by the latency-associated peptide (LAP) 

before they can combine with the receptors on the cell surface46. In human cancer cells, three 

TGF-β isoforms (TGF-β1, TGF-β2 and TGF-β3) have been discovered, which share over 70% 

homological sequence. There are two types of transmembrane TGF-β receptors (TGFBR). 

Generally, the type II TGFBR (TGFBR-II) molecules recognize and bind to TGF-β. Next, the 

complex recruits other TGFBRs and forms a complex with a stoichiometry of two molecules of TGFBR-

I, two molecules of TGFBR-II and one molecules of TGF-β. Formation of the complex activates the 

phosphorylation function of the intracellular part of TGFBRs to relay the TGF-β signals downstream of 

the pathway47. 

Paradoxically, TGF-β functions as both tumor repressor and oncogene. More specifically, 

in normal cells or even some pre-cancer cells, TGF-β promotes proliferation arrest and thus 

represses tumor growth. However, in advanced malignant carcinoma cells, TGF-β promotes 

EMT and tumor metastasis. These seemingly contradictory functions come from the two parallel 

TGF-β pathways48,49. 

SMAD-dependent TGF-β pathway: The more canonical TGF-β pathway depends on 

activationand deactivation of a SMAD family. In this pathway, signaling is cooperatively 

regulated by three types of SMADs in this family. The receptor-regulated SMADs (R-SMADs), 

such as SMAD2 and SMAD3, receive signals transmitted from the membrane signal receptors, 

and are phosphorylated50. Then two molecules of phosphorylated R-SMADs come together and 

recruit a common-mediator SMAD (co-SMAD) to form a trimmer, which can be transported 

from cytosol into nucleus51-53. In nucleus, the complex binds to DNA-sequence-specific 
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transcription factors, individually or with other co-activators, to active transcription of target 

genes54, such as snail155,56, snail257,58, and other oncogenes. The inhibitory SMADs (I-SMAD), 

such as SMAD6 and SMAD759, have opposite function from R-SMADs and co-SMAD. They 

negatively regulate the activity of R-SMADs and co-SMADs through interfering 

phosphorylation of R-SMAD60, or competing with them61, thus compose a negative feedback 

loop at the early step of TGF-β induced SMAD-dependent pathway62,63. 
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Figure 2 Crosstalk among the TGF-β, SHH, and WNT signaling pathways converging to the core regulation unit. 

(A) TGF-β pathway (proteins in pink). (B) SHH pathway (proteins in orange). (C) WNT pathway (proteins in green) 

In the inserted regulation networks, point arrows represent activation, blunt ones represent inhibition, and dashed 

lines represent indirect links. 

  



 
10 

TGF-β-induced SMAD activation has been widely considered as a tumor promotion 

event, especially in highly malignant cancer cells. On the other hand, many reports documented 

that TGF-β-induced activation of SMADs also suppresses tumor formation and development by 

blocking cell cycle and arresting cell growth64 in breast cancer cell lines65, liver cancer cells66, 

and normal epithelial cells67. Mutations on smad2 and smad4 have been reported in colorectal 

cancer68, pancreatic ductal adenocarcinoma69, or hepatocellular cancer70. These mutations 

implicate the potential antitumor function of SMADs71,72. Moreover, depending on cell types, 

TGF-β induced SMAD signals can also induce apoptosis as a safety mechanism to prevent 

transformed cell from EMT or metastasis73,74. 

The diverse roles of SMAD activation come from how SMAD2/3 and SMAD4 

heterotrimeric complex perform its function. Some of the targeted genes can be activated by 

SMAD trimer only at a low basal level. More efficient activation of these genes requires binding 

of the trimer to other sequencing-specific activators75. For example, the SMAD2/3/4 complex 

recruits CBP/P300 as the co-activator to activate p1576 or p2177, which inhibit cells from 

progression of cell cycles78. On the other hand, if the heterotrimer recruits EMT promoting 

transcription factors as the co-activator, such as TWISTs, it can up-regulate oncogenes 

expression79. This cofactor-dependent gene expression pattern explains why TGF-β functions 

differently in cells of different type and cell stage, and on the existence of other stimuli. 

SMAD independent pathway: Other than the SMAD-dependent pathway, TGF-β receptors also 

relay the signals through a group of additional signal proteins, such as PI3K/AKT, 

MEK/ERK1/280, RHO-A and JNK/P3881. The SMAD-independent pathways are more 

complicated than the SMAD-dependent pathway, since crosstalks among the signaling proteins 

form a more intricate molecule-molecule interaction network. For instance, TGF-β can induce 
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AKT phosphorylation and activate phosphatidylinositol 3-kinase (PI3K) rapidly, which possibly 

contributes to SMAD2-induced EMT82. Studies on keratinocyte cells show that the PI3K/AKT 

pathway helps to complete the TGF-β induced SMAD-dependent EMT83. Furthermore, 

PI3K/AKT antagonize TGF-β-induced apoptosis and growth arrest84,85, and bias TGF-β treated 

cells to undergo EMT. Similarly, the TGF-β induced ERK/MAPK pathway contributes to EMT 

induction, since ERK is required for removing cell adheren junctions to increase cell mobility. 

TGF-β also activates RHO-like GTPases in the RHO pathway, which have multiple functions in 

cytoskeletal organization, apoptosis, and EMT86, as well as the RHO-A-dependent signaling 

pathway, to promote mesenchymal characteristics in epithelial cells through inducing stress fiber 

formation81,87. Another TGF-β induced SMAD-independent pathway is the JNK/P38 pathway. 

JNK itself can phosphorylate R-SMAD directly, thus turns on the EMT program. Both JNK and 

P38 can synergistically work with SMADs to promote TGF-β induced apoptosis81,88. 

Put all of the above together, at pro-oncogenic stage, TGF-β has opposing effects on 

tumor development. SMAD-independent pathways mostly inhibit tumor suppressors89, while the 

SMAD-dependent pathway promotes cell cycle arrest or apoptosis to stop tumor growth at the 

pre-tumor stage. In malignant cells, when the amount of cofactors of oncogenes is much higher 

than that for apoptosis or growth arrest, TGF-β functions more as an EMT-inducer through both 

SMAD-dependent and SMAD-independent pathways. Therefore in cancer progression, the 

relative balance between SMAD-dependent and -independent signal transduction likely plays a 

critical role on determining cell fates81. 

Drugs targeted to TGF-β pathway: Based on its cancer-promotion function, TGF-β is a 

potential drug target for clinic therapy. Moreover, giving the fact that TGF-β pathway involves in 

DNA damage repairment90, inhibition of TGF-β signals may enhance the efficacy of 
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radiotherapy and chemotherapeutic drugs91. Popular clinical treatments that are targeted to 

blocking TGF-β signals include trapping TGF-β ligands, blocking the receptor kinases signaling, 

using antisense oligunucleotides to decrease the translation of TGF-β protein, and using peptide 

aptamers to block the transduction pathway92. For example, to trap TGF-β molecules from 

binding to TGFBRs, 1D1193 and GC-1008 (Fresolimumab) have been generated as TGF-β 

neutralization monoclonal antibodies and used in treatment of melanoma94 and glioblastoma95. 

AP12009 (Trabedersen) is designed to inhibit TGF-β2 expression and has been used to treat 

pancreatic cancer96. Small chemical molecules are developed to block TGF-β signaling by 

inhibiting the phosphorylation function of TGFBRs, among them SB431542 is widely used to 

inhibit TGFBR-I in breast cancer therapy97,98. Development of peptide aptamer drugs is a new 

direction that is still at its early stage. Some peptide aptamers target R-SMADs or co-SMAD has 

been discovered and tested in cell lines99. Since they target specific proteins, using peptide 

aptamers might be a better clinic therapy strategy considering the dual roles of TGF-β. By 

blocking only one sub-pathway under TGF-β signals, one can possibly suppress the tumor- 

promotion function of TGF-β without removing its anti-tumor benefits. 

Therapeutic blockage of TGF-β signaling is tricky due to the pleiotropic effects of TGF-β 

on tumor progress. As a secretive protein, controlling the TGF-β signaling microenvironmen 

near carcinoma is as important as controlling the intracellular TGF-β signaling pathway. 

Moreover, TGF-β signal has important regulatory functions on normal cell physiology. Blocking 

of TGF-β pathway completely is detrimental to normal cells and thus not recommended. 

Therefore, while significant progress has been made on developing drugs that target the TGF-β 

signaling pathways, clinically these drugs should be used with caution and perhaps only in 

certain cancer types. 



13 

1.2.1.2  SHH pathway engages in EMT and crosstalks to TGF-β  In addition to the TGF-β 

pathway, the HH pathway has been reported to induce EMT in lymphatic and gastric tumors100, 

pancreatic cancer101, breast cancer102, etc., individually or cooperated with other pathways. 

Like the TGF-β pathway, the HH pathway starts from the secretive hedgehog proteins, a 

family of glycoproteins. The precursors of HH proteins undergo many steps of post-translational 

modification and cleavage before maturation, which are secreted as oligomers or soluble 

multimers, and can diffuse over various distances between tissues in body before being 

removed103. Three mammalian HH proteins have been identified in the HH family recently, sonic 

hedgehog (SHH), Indian hedgehog (IHH) and desert hedgehog (DHH). While these three HH 

proteins share some redundant functions, each of them also has evolutionally specified roles. For 

example, sonic hedgehog (SHH), the most common and understood one, is crucial in embryo 

development, cancer progression, and body patterning104,105. 

The off and on states of SHH pathway: The canonical SHH pathway can be generally 

divided into three parts, the signal reception elements, the signal transmission elements, and 

downstream transcription factors. In the absence of SHH, the pathway is at an ‘off’ state. HH-

Patched protein (PTC), which is the transmembrane receptor element, binds to smoothened 

protein (SMO) to inhibit SMO activation. In the cytosol, activated protein kinase A (PKA) binds 

to other kinases including glycogen synthase kinase 3β (GSK3β) and other factors to 

phosphorate glioma- associated oncogene homologs (GLIs). In the absence of HH signals, GLIs 

have only low basal level expression, and the proteins assume a repressor form. That is, GLIs 

repress the expression of their target genes. When SHH is present, the pathway switches to an 
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 “on” state. SMO proteins are released and phosphorylated to promote the activation of GLIs106-

108. Some GLI proteins (e.g. GLI2) are truncated at the carboxy-terminal by the proteasome and

turn to the activator form109,110, which then activate the expression of their target genes. 

Regulation of GLI proteins and crosstalk to the TGF-β pathway: GLI proteins are the 

major transcription factors in the SHH pathway. A high level of GLI proteins indicates activation 

of the SHH pathway111. Three GLI proteins have been identified in mammals, GLI1, GLI2 and 

GLI3. Though they share long homologue sequence and also similar DNA-binding sequence, 

they play quite different roles in development, EMT, and cancer promotion. Besides the DNA 

binding domain, GLI1 has only the activator domain and can be activated by SHH. GLI2 and 

GLI3 have both the repressor domain and the activator domain. However, in most contexts, SHH 

activates GLI2112, while it is unclear SHH activates or represses GLI3113. 

Activated GLI1 and GLI2 can directly promote the expression of a group of genes by 

physically binding to their promoter region, including oncogenes and genes that are involved in 

the EMT process114, such as bmi1115, nanog116, snail1117,118. Based on the fact that expression of 

GLI1 can be regulated by the E-box119, positive feedback loops may exist between GLI1 and its 

target transcription factors that contain E-box at the promoter region of their genes, such as 

SNAIL1. Furthermore, GLI proteins can also be up-regulated by SMAD proteins120,121. Actually, 

the TGF-β/SMAD/GLI2 axis has been suggested to be essential for cancer metastasis122. 

Consequently, the SHH pathway and the TGF-β pathway crosstalk to each other and 

coordinately induce EMT. GLI proteins are also involved in several positive or negative 

feedback loops within the SHH signaling pathway. For example, the activated form of GLI2 can 

directly bind to the promoter region of gli1 to up-regulate GLI1 protein expression, while GLI1 
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 can also induce GLI2 expression directly or indirectly, so the two form a positive feedback 

loop112,123. On the other hand, GLI1 induces PTC, and PTC inhibits GLIs to form a negative 

feedback loop112. 

Clinical observation and interventions of SHH signaling pathway in cancer: There 

are clinical reports on abnormal activation of the SHH signaling pathway in different types of 

cancer. For example, in thyroid cancer, SHH is expressed in 64% of PTC tissues but only in 17% 

of non- cancerous tissues, and GLI1 is expressed in 48% and 9% of these two different tissues, 

respectively124. Activation of the SHH pathway is related to promotion of the EMT process in 

lung cancer cell line125, renal cell cancer126, and gastric cancer100. Based on these observations, 

blocking SHH signaling is a popular strategy in cancer therapy. Indeed inhibition of SHH 

signaling can reduce the proliferation rate of non-small-cell-lung-cancer cells significantly127. 

Similar phenomenon has also been observed in breast cancer128. 

A basic strategy of intervening the SHH pathway is blocking the SHH receptor or other 

major players downstream in this pathway113. In pancreatic cancer therapy, combination of two 

SMO inhibitors, gemcitabine and cyclopamine, completely abrogated pancreatic cancer cells 

metastasis while also significantly reduced the size of primary tumor129. Cyclopamine, 

vismodegib, or other SMO inhibitors have been used widely in clinic for medulloblastoma130, 

ovarian cancer131, and pancreatic cancer132 treatment. Given the importance of GLI1/2 in the 

SHH pathway on promoting EMT and metastasis, blockade of GLI1/2 is a candidate for cancer 

treatment. For example, small chemical molecules, GANT58 and/or GANT61, which block 

GLI1/2 function, arrest tumor growth in prostate cancer cell133. Compared to blocking the  
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upstream regulators in the SHH pathway, an advantage of targeting GLI proteins is that GLI 

proteins serve as a signaling hub of multiple pathways that are activated in cancer cells, such as 

the TGF-β, WNT, and SHH pathways. 

1.2.1.3  WNT pathway in cancer progress and EMT  The WNT pathway is another signaling 

pathway that crosstalks to the TGF-β pathway and promotes EMT. Two major converging 

elements between the WNT and TGF-β pathways are the tumor repressor GSK3β, and the 

activator β-CATENIN (Fig. 2C). 

Figure 3 Systems biology studies on core EMT network (A) Core regulatory network of TGF-β induced EMT 

revealed by experimental studies. Point arrows represent activation, and blunt ones represent inhibition; and (B) 

mathematically-predicted bifurcation diagram. Also shown are the corresponding dose-response (D-R) curves that 

are more familiar to experimentalists. Notice that the D-R curves are different for cells starting from different 

phenotypes and treated with increasing (blue curve) and decreasing (purple curves) exogenous TGF-β, respectively. 

This history-dependent hysteresis is a signature of bistable dynamics. The predicted bifurcation diagram has been 

experimentally confirmed in MCF10A cells. Adapted from142,144. 
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WNT is a large signal family, and the WNT proteins are highly conserved from fruit fly 

to human134. In homo species, 19 discovered WNTs compose a very intricate network, which is 

essential in development, stress response, or cancer. Abnormal activation or mutations in the 

WNT pathway has been reported in many cancers, such as intestinal neoplasms, breast cancer, 

prostate cancer, and lung cancer135. 

The canonical WNT pathway starts from reception of signal molecules on cell 

membrane. GSK3β is a major downstream regulator of the receptor. Without WNT signal, 

GSK3β keeps its active form, which can phosphorylate its target proteins (e.g. β-CATENIN136) 

for further degradation. When the WNT signaling pathway is activated, GSK3β is 

phosphorylated to an inactive form. Thus, functional β-CATENIN is accumulated in cytosol and 

further is transported into nucleus. In nucleus, together with TCF/LEF, β-CATENIN binds to the 

promoter region of target genes, such as snail1, and activates their transcription23,137. 

Furthermore, SNAIL1 can also form a positive feedback with β-CATENIN by interacting with 

the β-CATENIN physically138 or increase the amount of free β-CATENIN indirectly through 

EMT process139. Inactivation of GSK3β can also increase SNAIL1 expression directly following 

two steps: in nucleus, it is phosphorylated by GSK3β; then SNAIL1 can be transported from 

nucleus to cytosol, where it can be phosphorylated again by GSK3β for final degradation140. 

The WNT pathway affects and is affected by several signaling pathways, including SHH 

and TGF-β. GSK3β affects GLI proteins both positively and negatively. On one side, GSK3β 

phosphorylates GLI proteins for degradation141. On the other side, GSK3β phosphorylates 

SUFU, a scarf protein for GLI proteins, and releases free GLI proteins142. GSK3β also stabilizes 

GLI mRNA indirectly, leading to increase of the amount of GLI proteins143. Subject to TGF-β 

treatment, the WNT pathway can be activated by SMAD-independent pathways. For instance, in 
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human lung fibroblast cells, TGF-β1 can inactivate GSK3β by activating the mitrogen-activated 

protein kinase (MAPK) pathway and phosphorylating ERKs144. GSK3β can be inhibited by the 

ARK pathway, and the latter can be activated by TGF-β1 in some cell lines. In addition, GSK3β 

negatively affects the TGF-β pathway by phosphorylating SMAD3 with its cooperator, AXIN, 

and triggers its ubiquitination and degradation when TGF-β is absent145. 

Clinical observation and interventions of the WNT signaling pathway in cancer: Based on 

the well documented close relationship between WNT signaling aberrance and cancers, intensive 

efforts have been put on designing drugs that specific target to the WNT pathway146. However, 

no drug has been approved for clinical usage yet147. Special caution has to be taken since the 

WNT pathway has important functions in almost every aspect of mammalian cells, such as 

proliferation and regeneration. 

Beside target-specific small molecules, a group of widespread-used drugs or compounds 

have been proven to help in cancer treatment as they also block the WNT pathway. For instance, 

Aspirin affects and blocks the WNT pathway as a non-steroidal anti-inflammatory drug (NSAID) 

at many levels, such as facilitates β-CATENIN degradation136. Vitamins, such as retinoids, 

vitamin D, etc., show effects in colorectal cancer and breast cancer probably through interacting 

with β-CATENIN and TCFs146. 

 

1.2.2 Systems biology in signaling crosstalk and drug discovery 
 
 
As we discussed above, the crosstalk network among TGF-β, SHH, and WNT signaling 

pathways is complex. In addition, some of the signals, such as TGF-β, have opposite roles as 

both cancer repressor and promoter, depending on cell types and cancer stages. Similarly, some 

of the regulators can both turn on ‘off’ and ‘on’ their target genes. For example, GLI proteins can 
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both negatively and positively regulate expression of themselves. Another typical example is 

GSK3β, which can covalently modify both oncogene proteins (e.g. SNAIL1) and tumor 

repressors (SUFU) for degradation142. Furthermore, all of these signaling pathways have 

essential roles in both normal cell life cycle and in cancer development. 

Due to the above-mentioned molecular biology complexity, a naive drug-design strategy 

based on simply blocking certain pathway likely has serious side effect to normal cells and 

patients. Cancer therapy and anti-tumor drug discovery are thus difficult, time consuming, and 

face three basic challenges. 

1. Which of the proteins/regulators to target for clinic and commercial consideration?

2. How to select chemicals that are suitable for therapy from the gigantic data pool?

3. How to design treatments that target to specific population of tumors in patients?

Currently computational and system biology studies become indispensible on revealing 

the molecular mechanism and addressing the three challenges. These studies engage widely in 

current molecular biology, and provide systematic and integrative perspective on understanding 

the biological implications underlying individual experimental results. In the next we will use a 

series of recent studies of us to illustrate how we can advance our understanding of the EMT 

regulatory mechanism through combined mathematical modeling and experimental studies. 

With increasing reports on new signals and pathways leading to EMT, one might have 

the impression that EMT can be induced easily. Actually EMT is tightly regulated at multiple 

levels, and pathological EMT is a rare event in a healthy body. Furthermore, EMT is not a ‘to be 

or not to be’ question. Instead, EMT proceeds through a wide spectrum of intermediate states 

generally referred as the partial EMT state148,149. Tian et al.150 mathematically analyzed the core 

EMT regulatory network (Fig. 3a), and proposed a sequential two-step mechanism, as 
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summarized in Fig. 3b. A SNAIL1/miR34 double negative feedback loop and a ZEB1/miR200 

feedback loop form two binary switches. In epithelial cells, both miR34 and miR200 are highly 

expressed, while SNAIL1 and ZEB1 express only at basal levels. With an intermediate 

concentration of TGF-β (exceeding a threshold value Ca), miR34 is degraded and the level of 

Snail1 increases. Snail 1 further inhibits transcription of miR34151, partially upregulates 

epithelial markers such as E-cadherin and downregulate mesenchymal makers such as Vimentin 

and N-cadherin. At this stage, the ZEB1/miR200 switch has not been reverted, and cells exist in 

a partial EMT state. Experimentally, if now one reduces the exogenous TGF-β to a lower level 

(below a threshold value Ca’ < Ca), cells returns to the epithelial state. That is, the Epithelial-to-

partial EMT transition is reversible under TGF-β treatment. When the exogenous TGF-β level 

exceeds a second threshold (Cb > Ca), miR200 is degraded and the level of ZEB1/2 increases. 

ZEB further inhibits transcription of miR200151, works together with SNAIL1 and other factors 

to upregulate epithelial markers and downregulate mesenchymal makers, so cells undergo a full 

EMT. At this stage cells express autocrine TGF-β, which maintains cells in the mesenchymal 

state even when the exogenous TGF-β is removed. That is, the full EMT is irreversible under 

TGF-β treatment. Subsequently, Zhang et al. performed quantitative experimental studies using 

the human mammary MCF10A cell line, and confirmed all model predictions. Therefore, the 

studies reveal how different cell phenotypes emerge out of the interactions among the 

transcription factors and microRNAs, and provide clues for biomedical intervention to regulate 

the conversion between them. 

The above-mentioned model clearly does not provide a complete picture on EMT but 

rather should be considered as a starting point. It only considers a small core network without 

explicitly considering many other key EMT players such as TWIST. Actually, there are many 
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more positive feedback loops formed by various regulating elements. These feedback loops can 

also form multiple stable switches, which may function either in synergy or in sequence to give 

rise to possibly a combinatorial number of partial EMT states, consistent with the notion of a 

quasi- continuum EMT spectrum. Further experimental studies can also analyze whether the 

revealed two-step mechanism is general for different cell types and cell lines, and if not (, which 

is very likely), what are the differences and common themes. While there are many possible 

directions for expanding the modeling efforts, below we discuss three of them. 

First, the model can be systematically expanded to include other involved molecular 

species. Using a more coarse-grained Boolean network modeling framework, recently Steinway 

et al. studied a more complex network of EMT including crosstalks among the TGF-β, SHH, and 

WNT pathways, and tested model predictions experimentally150. Expansion of an ordinary 

differential equation based model like ours can more faithfully describe the temporal and steady 

state dynamics of the system. 

Second, the field awaits further methodology developments on incorporating high 

throughput data into detailed dynamics modeling. The past decade has observed an explosion of 

accumulation of “omics” data sets, such as transcriptomics, epigenomics, proteomics, and 

metabolomics. Typically a high throughput data set provides a global view of a system or 

process under study, although at relatively low resolution both in temporal features and in data 

quality compared to a more focused study like the ones discussed above. Bioinformatics tools 

have been widely used to analyze the omics data. For example, Nam, et al. used PATHOME, 

analgorithm based on entire pathway information, to connect the WNT and AMPK pathways at  
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HNF4a-WNT5A in gastric carcinogenesis, and further predict WNT5A as a suitable therapy 

target152. Given the importance of including dynamics into pharmaceutical development153,154, 

the challenge is how to combine these global and focused levels of studies. 

Third, we may observe more examples of integrating computational and systems biology 

approaches in new drug discovery, especially in screening druggable structure of targeted 

proteins and selecting drug candidates155. Computational structure biology has already been used 

widely in drug candidate screening. For example, Baken et al. analyzed a pharmacophore model 

(PM), and selected seven compounds for further experimental screening out of over two millions 

of candidates156. The procedure can be more efficient and effective by placing drug discovery in 

the context of network dynamics. 

In summary, EMT is a complex process and many pathways crosstalk extensively to 

initialize and regulate EMT. Therefore integrated computational and experimental approaches 

are necessary to tackle the molecular and cellular regulation mechanisms, and optimize 

biomedical intervention strategies. 

1.3    GENE REGULATION IS MUTUALLY DEPENDENT ON CHROMOSOME 

STRUCTURE DYNAMICS DURING CELL TYPE TRANSITION 

In multicellular organisms, cells continuously receive internal or environment signals, such as 

signals from development, senescence, or in response to stress, illness, et.al.. Cells must adjust 

accordingly in response to these signals to survive or to perform the specific function for the 

organisms157-160. The intrinsic part of cell responses is tuning gene expression. Genes are 
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information written in the form of DNA sequences. To maintain the stability of DNA, in 

eukaryotic cells, DNA chains form double helix and bind with structure proteins (e.g. histones) 

to form chromatins. Thus, regulation of gene expression can be achieved at distinct levels161. 

Binding of regulatory factors, such as transcription factors (TFs) to specific DNA site regulates 

transcription activities of individual genes. In contrast, alternation of the spatial organization and 

epigenetic modification patterns of an extended region of a chromosome can have impacts on a 

large number of genes. The two scales of regulation are mutually dependent on each other. A 

large-scale modification starts from the alteration of single gene expression level and proceeds 

through successive steps, which may involve more genes. On the other hand, regulation on a 

targeted gene is controlled by both specific regulators and large-scale chromosome 

modifications. Therefore, it is important to understand the coupling mechanisms of gene 

regulation at distinct hierarchies. In this section, we will first review gene regulation through 

chromosome conformation, epigenetic modifications and TF binding. Then, we will brief 

introduce current technology progressions that help us to investigate gene regulation 

mechanisms. 

1.3.1 Regulation of gene expression takes place at three distinct layers 

In eukaryotic cells, DNA double helix binds to structure proteins, such as histones, to for stable 

chromatin structures. First, 147 base pairs wrap with eight histone proteins to form an 11 nm- 

diameter core nucleosome structure. The DNA thus assumes a bead-on-a-string structure, which 

then undergoes chemical modification, recruits additional structural proteins, and further folds 

into three-dimensional hierarchical chromosome structures. The three-dimensional DNA packing  
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affects its local accessibility to regulatory elements such as TFs. In this section, we will review 

two levels of regulation on chromosome accessibility, and gene-TF reactions that interplay with 

DNA spatial structure and dynamics. 

1.3.1.1  Conformational change of chromosomes coordinates global gene expression  

Transformation of chromosome spatial structure is both the reason and consequence of 

gene regulation during cellular transition. Condensed chromosome regions prevent 

binding of regulatory factors or RNA polymerase physically, while low packing level 

generally indicates a higher local accessibility. Thus, an effective way of regulating multiple 

spatially colocalized genes is controlling the chromosome density of an extended area. A/B 

compartment is a typical example of this type of gene regulation162. 

A/B compartments are computationally deduced from Hi-C data, which reflect packing 

density of relatively large lengths of chromosomes162. DNA within an A compartment is more 

loosely packed compared to that in B compartment. In other word, genes on A compartment have 

high possibility to bind with TFs and RNA polymerases. Loci within the same compartment tend 

to be closer spatially than the loci in different compartments162,163. A/B compartments are 

conserved under most mild stimulation164,165, but switches between A-B compartments are 

observed in cell type transition165 and coordinates large group of genes expression166. 

Euchromatin and heterochromatin are similar to A/B compartments, but are directly observed 

under optical microscope after staining nuclear regions with aniline dyes. Compared to 

heterochromatin, euchromatin is lighter stained, which indicates a lower density167,168. 

Heterochromatin is clustered at nucleolus and periphery of a nucleus, while euchromatin fills the 

remaining space in the nucleus. Switches between euchromatin and heterochromatin were 
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observed in many cell transition processes, such as in differentiation from ESC to neural cell169. 

Conversions between A/B compartments or euchromatin/heterochromatin have impact on 

multiple genes contained in the regions. They coordinate and maintain expression pattern 

changes of cell type specific genes. 

Topologically associating domains (TADs) are smaller chromosome structure units. TAD 

structures are maintained by DNA and structure proteins, such as cohesion, CTCF, and so on170. 

DNA segments within one TAD have higher frequency to interact with each other than DNA 

segments belonging to different TADs 171. Structural TADs are relatively conserved among 

cells172. Destroy of conserved TAD boundary is associated to many severe diseases, such as 

polydactyly173. Some TADs are more flexible that can be changed during cell phenotype 

transition, such as by the promoter-enhancer-TFs structure, or by eRNA-promoter-enhancer 

structure174,175. Several TADs may also form a metaTAD structure, whose structure changes are 

even more obvious in cell type transition176. 

1.3.1.2  Epigenetic modification affects local accessibility of chromosomes  Cells with the 

same genetic materials assume different cell types largely because of epigenetic 

modification177,178. Two types of epigenetic modification are typically considered, DNA 

methylation and histone modification. Regulation of both of them involves collaboration among 

groups of enzymes for reading, writing, and erasing the covalent modification marks179. 

Epigenetic modifications change local DNA structure and thus play a significant role in 

regulating a group of co-localized genes. 
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DNA methylation: DNA methylation is catalyzed by DNA methyltransferases, and is 

highly associated with inactive genes180. For example, DNA methylation on CpG islands in 

promoter regions is related to low gene expression level181,182. However, the importance of 

methylation at promoter regions on gene inactivation is questioned182,183. A major function of 

DNA methylation is to condense local chromatin. Regions of DNA with elevated level of 

methylation become more condensed and thus less accessible. Also, methylated DNA recruits 

proteins that help on maintaining tight chromatin structure181,184. 

Presence of DNA methylation affects histone modification. It provides recognizable sites 

for histone modification writers185. In turn, histone modification marks also have impact on DNA 

methylation183,186. For example, some of them (e.g., H3K4me1) are pioneers for gene activation 

by losing DNA structure from methylation. We will introduce them in detail below. 

H3K9: Different levels of methylation at lysine 9 on histone 3 have distinct functions. 

Monomethylation (H3K9me1) is often found at promoter regions of active genes. Functions of 

H3K9me2/3 have been overlooked previously, since its distribution is mostly in ‘gene 

deserts’187. H3K9me2 is a prominent character of X chromosome X inactivation188. One of the 

two copies of X chromosome in female cell has to be inactivated mainly through epigenetic 

modification to keep the gene product balance189-191. H3K9me3 is mainly associated with 

heterochromatin regions187,192. Especially during cell type transition, H3K9me3 regulates 

formation of heterochromatin and thus prevents access of TFs and other regulators. Genes that 

have to be inactive in the new cell type are therefore shielded192. Acetylation of H3K9 (H3K9ac) 

at promoter regions indicates gene activation. The most important function of H3K9ac is to 

promote transition from transcription initiation to elongation193. 

H3K4: All kinds of modification at lysine 4 on histone 3 are marks of active genes. 
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Monomethylation of H3K4 (H3K4me1) is considered as the pioneer histone mark for enhancer 

activation194. Collaborating with DNA demethylation, the function of H3K4me1 is to ‘open’ the 

tight chromatin region. H3K4me1 recruits epigenetic modification and other DNA regulatory 

proteins and labels local chromatin regions for active regulators of genes195,196, so the DNA 

sequence is available for regulator binding or further histone  modification197. Recent studies 

showed that H3K4me1 also participates in gene activation maintenance by fine-tuning gene 

transcriptional activities198-200. Trimethylation (H3K4me3) is another major epigenetic 

modification at the same site. It can be found widely distributing at promoter region near 

transcription start site (TSS) and is associated to gene activation201. Regulation and function of 

H3K4me3 is important for cell development, since it recruits additional proteins to open the 

chromatin and/or directly start the preinitiation of transcription202. Moreover, combination of 

H3K4me3 and H3K27me2, another repressive mark, H3K27me2, on promoters of bivalent genes 

are important for stem cells to keep pluripotency and flexibility203. 

H3K27: Methylation and acetylation on H3K27 have opposite effects. As mentioned 

before, H3K27me2 is a repressive mark that can be found in many bivalent gene203. H3K27me3 

is tightly associated to promoter regions of inactive genes with PRC2 repression function204. 

Since one lysine can not be modified by both methylation and acetylation simultaneously, 

H3K27ac is considered an antagonizing modification to H3K27me2/3. Similar to other 

acetylation modification, H3K27ac is associated with chromatin open state and gene activity. 

H3K27ac can be found on both promoter and enhancer r egions of active genes205. 
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Table 1 Summary of histone modification characters. 

Site Modification Function to gene Distribution 

H3K9 me1 Active Promoter 

me2/3 Repressive Non-gene region 

ac Active Promoter 

H3K4 me1 Active Enhancer 

me3 Active TSS 

ac Active Promoter 

H3K27 me2 Repressive Bivalent genes’ promoters 

me3 Repressive Promoters 

ac Active Enhancer, proximal and distal TSS 

  Transcription factors determine expression levels of individual genes:  The above 

two mechanisms are involved in relatively large regions on chromosomes, thus affect 

many linearly or spatially clustered genes. For an individual gene, initiation of its 

transcription is determined by binding between promoter and transcription initiation 

complex (TIC). The latter is composed of TFs and RNA polymerase. TF binding to the 

promoter changes the 3D DNA structure near the TSS region and thus prepares the 

region for RNA polymerase binding. TFs can also bind to enhancer regions of the targeted 

gene and drag enhancers to the promoter region. The chromatin structure near the TSS is 

then changed, which significantly affects the transcription efficiency of the targeted gene206. 

TFs can be further classified as active or repressive TFs. If a gene needs to be activated in 

response to cell type transition and the chromatin sites are prepared for docking TFs, an active 

TF is recruited and binds to the target DNA sequence to promote gene expression. Some TFs 

bind to the targeted sequence transiently to initiate the transcription process. After other factors 

take over the role for gene activation, these TFs dissociate from the DNA sequence. Some active 
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TFs can stay on the targeted DNA sites until the genes need not to be transcriptionally active. 

SNAIL1 is such an example that activates many EMT related genes, such as ZEB1 and MMP9, 

by binding to their promoter regions directly207. In contrast, repressive TFs are involved to 

silence some genes that are originally active. A repressive TF functions by recognizing and 

binding to a target DNA site to change the 3D conformation of the local chromatin, and prevent 

RNA polymerases from binding to the DNA. 

Besides directly changing the binding affinity between DNA and RNA polymerase, many 

TFs, such as SNAIL1, also regulate individual genes by changing the epigenetic modification 

marks near TSS sites. By binding to the E-box (5′-CACCTG-3’), SNAIL1 can recruit LSD1 and 

CoREST as well as other histone modification writers, such as HDAC1/2 and PRC2. These 

enzymes can remove acetylation modification from H3/H4 or add trimethylation modification to 

H3K27, respectively208,209. By modifying the histone epigenetic marks, SNAIL1 represses many 

epithelial genes, such as cdh1210,211. 

Regulation of gene expression normally requires cooperation of several different TFs. For 

example, in SNAIL1-induced ZEB1 and MMP9 activation, EGR-1 and SP-1 are involved as the 

co-regulator207. The genes change their transcription state only when all TFs are recruited. As 

mentioned previously, enhancers also play a key role in gene regulation. One gene can have 

multiple enhancers, with some of the distal enhancers located as far as hundreds of kb away from 

the TSS. For gene activation, a TF binds to its specific enhancer and changes the 3D structure of 

DNA near the gene TSS site. The enhancers, promoter, and the TSS form a hub-like structure 

bridged by TFs. During cell type transition formation of this hub is initially dynamic and 

transient, then this hub structure is reinforced by some mechanisms to maintain the cell fate. For  
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example, if the targeted gene is constitutively expressed in the new cell type, in some situation, 

the TF is not required any more. Instead, the enhancer itself produces enhancer RNAs that knits 

the promoter – enhancer regions together stably. 

1.3.2 High-throughput technique and data pool at a glance 

Numerous biochemical technology have been developed to elucidate the mechanisms underlying 

gene regulation, such as chromosome conformation capture (3C) to detect long-range 

chromosome interaction212, chromatin immunoprecipitation (ChIP) to observe DNA-protein 

interaction213, methylated DNA immunoprecipitation (MeDIP) to observe DNA methylation 

status183, reverse transcription PCR and qPCR to detect gene expression level. However, each of 

them can only reveal limited information on specific aspects of chromosome structures and gene 

regulation. A complete scenario is still kept in black. With technology improvement, especially 

new-generation sequencing technique, large-scale, high-throughput observation came to utility. 

For example, RNA-seq combines reverse transcription and sequencing, which allows detecting 

genome-wise gene expression levels. Similarly, combination of traditional biochemistry methods 

with next-generation sequencing technology makes it much easier and unbiased to observe 

events taking place in cells. In this section, I will have a brief introduction about the current 

technologies that are performed in detecting chromatin interaction, histone modification and TF- 

gene regulation, as well as advances in computational approaches. 

Technology in chromatin interaction: Studying interactions among chromatin loci is 

one of the most active research fields currently. From the locus-locus interactions, we can deduce 

information related to gene expression, such as TAD structures, A/B compartments, et. al. The 

4C technique combines the 3C technology with chip/microarray technology, and can generate 
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high-throughput datasets on the whole genome214. Later, with sequencing technology, 

chromosome conformation capture carbon copy (5C) was developed215. However, this method 

asks for oligonucleotide pairs matched to every ligation site from 3C, which is an astronomical 

number. Thus, this method is limited from entire genome investigation. Hi-C162 is a more 

powerful method that uses blunt-end adaptor instead of designed oligonucleotides, which makes 

it possible to capture chromatin interaction genome-wide. Currently, Hi-C technology is the most 

popular one to detect chromatin interactions. Analyses of Hi-C results lead to identification of 

TAD structures, which elucidate the spatial relationship among genes. Computational algorithms 

have been developed to extract from Hi-C data, information such as TF binding sites. 

Current technology in epigenetic modifications: Epigenetic modification is another 

active research area in understanding cell development, differentiation, or other cell fate 

decision. ChIP-seq, which mates traditional ChIP technique with sequencing techniques, is 

powerful tool to investigate targeted epigenetic modification marks genome-wide. For example, 

ChIP-seq can directly read the histone-modified DNA sequences and quantify local epigenetic 

mark levels216. Similarly, using methylation DNA specific antibodies, IP-seq technique can 

reveal the DNA methylation status, such as mCpG217, MBP218. 

Current technology in gene accessibility and TF: ChIP-seq, which combines ChIP 

with sequencing and read the output peaks, is used to detect transcription factors binding 

sequences or binding states219. CHIP-seq can reveal cell type specific TF binding sites, and 

predict tissue or cell type specific enhancers, promoters, and other factors220. 

Accessible promoter region is a prerequisite for TF-DNA binding. HiC data or histone 

ChIP-seq data allows indirect speculation on DNA accessibility. Some direct methods are also 

often used. Two of them, assay for transposes accessible chromatin (ATAC)-seq and DNase1- 
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seq are the most popular techniques currently. Both of them are based on activities of DNA 

cutting enzymes. ATGC-seq uses a modified hyperactive transposase to cut the exposed DNA221, 

while DNaseI-seq use DNAaseI to cut the open chromatin regions222. Researchers normally 

choose one of them based on their experimental design: ATGC-seq requires a small amount of 

fresh samples. DNase1-seq use large number of fixed samples but can get higher resolution. 

        Computational technology improvement:  Improvement of biochemistry or sequencing 

technology offers only generation of the high-throughput data. Advances in computational 

methods to read, store, interpret, calculate, and comprehensive analyze the big data are equally 

important. The data mass for seq data is easily to reach TB, and analysis of the data has 

tremendous requirements on memory and resource. Progresses in computer science, informatics 

and improvement in data mining algorithms make efficient analysis of high-throughput data 

possible223,224. Development of machine learning algorithms further adds predictive power. For 

example, one can use Hi-C and DNase1 input data to train the code and predict possible TF 

binding sites in other cells. 
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2.0 PATHWAY CROSSTALK ENABLES CELLS TO INTERPRET TGF-β DURATION 

The detection and transmission of the temporal quality of intracellular and extracellular signals is 

an essential cellular mechanism. It remains largely unexplored how cells interpret the duration 

information of a stimulus. In this paper, we performed an integrated quantitative and 

computational analysis on TGF-β induced activation of SNAIL1, a key transcription factor that 

regulates several subsequent cell fate decisions such as apoptosis and epithelial-to-mesenchymal 

transition. We demonstrate that crosstalk among multiple TGF-β activated pathways forms a 

relay from SMAD to GLI1 that initializes and maintains SNAILl expression, respectively. 

SNAIL1 functions as a key integrator of information from TGF-β signaling distributed through 

upstream divergent pathways. The intertwined network serves as a temporal checkpoint, so that 

cells can generate a transient or sustained expression of SNAIL1 depending on TGF-β duration. 

Furthermore, we observed that TGF-β treatment leads to an unexpected accumulation of GSK3 

molecules in an enzymatically active tyrosine phosphorylation form in Golgi apparatus and ER, 

followed by accumulation of GSK3 molecules in an enzymatically inhibitive serine 

phosphorylation in the nucleus. Subsequent model analysis and inhibition experiments revealed 

that the initial localized increase of GSK3 enzymatic activity couples to the positive feedback 

loop of the substrate Gli1 to form a network motif with multi-objective functions. That is, the 



34 

 motif is robust against stochastic fluctuations, and has a narrow distribution of response time 

that is insensitive to initial conditions. Specifically, for TGF-β signaling, the motif ensures a 

smoothelay from SMAD to GLI1 on regulating SNAIL1 expression 

2.1 INTRODUCTION 

Cells live in a state of constant environmental flux and must reliably receive, decode, integrate 

and transmit information from extracellular signals such that response is appropriate157,225-227. 

Dysregulation of signal transduction networks leads to inappropriate transmission of signaling 

information, which may ultimately lead to pathologies such as cancer. Therefore, a central 

problem in systems biology has been to untangle how quantitative information of cellular signals 

is encoded and decoded. In general cells respond to one or more properties of a stimulus, such as 

its identity, strength, rate of change, duration and even its temporal profile228-234. There are 

extensive studies on the dose-response curves to reveal how cells respond differentially to a 

signal with different strength. In comparison, how cells respond to the temporal code of signals 

is less studies, and its physiological relevance receives much attention recently since most 

extracellular signals exist only transiently and cellular responses show dependence on signal 

duration235-239. 

Transforming growth factor-β (TGF-β) is a secreted protein that regulates both transient 

and persistent cellular processes such as proliferation, morphogenesis, homeostasis, 

differentiation, and the epithelial-to-mesenchymal transition (EMT)37,47,49,75,240. Because it plays  
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essential roles in developmental and normal physiological process, and its dysregulation is 

related to cancer, fibrosis, inflammation, Alzheimer’s disease and many other diseases, the TGF- 

β signaling pathway has been probed extensively as a potential pharmaceutical target241,242. 

Several quantitative studies have expanded our knowledge on how the TGF-β-SMAD 

signaling pathway transmits the duration and strength information of the signal243-247. 

TGF-β can activate both SMAD -dependent and multiple SMAD -independent pathways, 

which then converge onto some downstream signaling elements. It is unclear how cells transmit 

and integrate information of the TGF-β signaling distributed among these parallel pathways. 

Addressing this question requires studies beyond the TGF-β/SMAD axis as in earlier work, 

where quantifying SMAD proteins serves as the fundamental readout243-245. Here we focused on 

expression of SNAIL1, which is such a downstream target and plays a key role in regulating a 

number of subsequent processes. Our results confirmed that crosstalk between the SMAD- 

dependent and independent pathways is key for cells to decode and transmit temporal and 

contextual information from TGF-β. We posit that the mechanism may be a central mechanistic 

signal transduction process as many signaling pathways share the network structure. 

 
 
 

2.2 RESULTS 
 
 

2.2.1 Network analysis reveals a highly connected TGF-β signaling network 
 
 
Through integrating the existing literature, we reconstructed an intertwined TGF-β-SNAIL1 

network formed with SMAD-dependent and -independent pathways (Supplementary Fig. 10). 

For further studies we then identified a coarse-grained network composed of a list of key 

molecular species (Fig. 4, and Supporting text for details). Along the canonical SMAD pathway, 
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TGF-β leads to phosphorylation of SMAD2 and/or SMAD3 (pSMAD2/3), followed by nuclear 

entry after recruiting SMAD4 and forming the complex. The complex acts as a direct 

transcription factor for multiple downstream genes including SNAIL1 and I-SMAD62,243. I- 

SMAD functions as an inhibitor of pSMAD2/3, thus closes a negative feedback loop. TGF-β 

also activates GLI1, a key component of the Hedgehog pathway, both through transcriptional 

activation by pSMAD2/3, and through suppressing the enzymatic activity of glycogen synthase 

kinase 3 (GSK3). The latter is constitutively active on facilitating GLI1 and SNAIL1 protein 

degradation in untreated epithelial cells122,248, thus suppressing GSK3 is expected to lead to GLI1 

and SNAIL1 protein accumulation. Other non-SMAD signaling pathways, such as MAPK, ERK, 

et.al., may also impact on SNAIL1 expression but to a less extent62,249. We represented them as 

‘others’ in the model without further explicit treatment within the period of TGF-β treatment 

studied here. Therefore, the network integrates multiple feed-forward loops that converge at the 

regulation of SNAIL1 transcription. In the following sections, we will examine the functional 

roles of individual pathways in the network using several human cell lines. 
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Figure 4 TGF-β induced signaling crosstalk network converges to SNAIL1.Reconstructed literature-based pathway 

crosstalk for TGF-β induced SNAIL1 expression. The node “Others” refer remaining SNAIL1 activation pathways 

that have minor contributions to the time window under study and thus are not explicitly treated. 

  



 
38 

 
 
 
Figure 5 The SMAD proteins induce the first wave of SNAIL1. Canonical SMAD-dependent pathway for TGF-β 

activation of SNAIL1 highlighted from the network in Fig. 4. Two-color immunofluorescence (IF) images of 

pSMAD2/3 and SNAIL1 of MCF10A cells induced by 4 ng/ml TGF-β1 at various time points. The scale bar is 10 

μm and is the same for other IF images in this paper. (C) Distributions of nuclear pSMAD2/3 and SNAIL1 

concentrations quantified from the IF images. Red vertical lines indicate the mean value of the distributions at time 

0, and blue vertical lines represent that at 12 h (for pSMAD2/3) or at 48 h (for SNAIL1), respectively. The number 

marked in each figure panel is the number of randomly selected cells used for the analysis. Throughout the paper we 
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report fold changes of concentration and amount relative to the mean basal value of the corresponding quantity. (D) 

Effects of early (added together with TGF-β) and late (48 h after adding TGF-β) pSMAD inhibition on the SNAIL1 

mRNA level in MCF10A cells. (E) Thorough parameter space search confirmed that with the model in panel A one 

can fit the pSMAD2/3 dynamics, but not the two-wave SNAIL1 dynamics. The experimental data are shown as 

violin plots with the medians given by black bars. Solid curves are computational results with parameter sets 

sampled from the Monte Carlo search, and the red curves are the best-fit results. (F) Fold change of SNAIL1 mRNA 

levels in MCF7 and A549 cells measured with quantitative RT-PCR after TGF-β1 treatment. (G) Fold change of 

SNAIL1 mRNA levels measured with quantitative RT-PCR at 72 h after TGF-β1 (T) treatment. For early inhibition 

(T+I) the inhibitor was added at the time of starting TGF-β1 treatment. For late inhibition (T-/+I) the inhibitor was 

added 48 h (for MCF7) and 24 h (for A549) after starting TGF-β1 treatment, respectively. The inhibition results 

were compared to the TGF-β treatment (T) result at the same time point. 

2.2.2 The canonical TGF-β/SMAD pathway initializes a transient wave of SNAIL1 

expression. 

First we examined the TGF-β/SMAD/SNAIL1 pathway (Fig. 5A) by treating human MCF10A 

cells with recombinant human TGF-β1, and performing multicolor immunofluorescence (IF) 

using antibodies directed against pSMAD2/3, SNAIL1. As expected from the pSMAD/I-SMAD 

negative feedback loop, pSMAD2/3 proteins accumulated in the nucleus transiently, peaking at 

around 12 hours after TGF-β1 treatment, followed by a decrease by 24 hours (Fig. 5B & C). We 

confirmed the transient pSMAD2/3 dynamics by sampling 1100-2600 cells at each time point 

(Fig. 5C). The result is also consistent with reports in the literature243,245,250. Nuclear SNAIL1 

concentration rose concurrently with pSMAD2/3 (Fig. 5B & C), then there was a transient dip at 

24 hours, followed by another increase then a persistent elevation for one week13. 
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Next, we investigated the function of phosphorylated SMAD2/3 on promoting snail1 

transcription during TGF-β treatment. In addition to adding TGF-β, we treated MCF10A cells 

with an inhibitor LY2109761, which prevents SMAD2/3 phosphorylation through inhibiting 

TGF-β receptor kinase activity (Fig. 5D). Without the inhibitor, the SNAIL1 mRNA showed the 

two-wave dynamics consistent to that of the protein. When the inhibitor was added concurrently 

with TGF-β treatment, the SNAIL1 mRNA level was reduced to ~ 9% of that of the control 

experiment (without inhibitor) by day 3. This result is consistent with previous observation that 

directly blocking SMAD2/3 phosphorylation or pSMAD activation at the early stage of TGF-β 

treatment depletes snail1 expression significantly (1-4), and indicates that indeed pSMAD2/3 are 

required for SNAIL1 initial activation. However, the SNAIL1 mRNA level remained ~ 70% 

when the inhibitor was added 48 hours after initiation of TGF-β treatment (when nuclear 

pSMAD2/3 concentration has dropped to a minimum). Furthermore we constructed a 

mathematical model that contains only the TGF-β/SMAD/SNAIL1 pathway, and performed a 

thorough parameter space search using a multi-configuration Monte Carlo algorithm 

(Supplementary Fig. 11). The search revealed regions of the parameter space that quantitatively 

reproduced the transient pSMAD2/3 dynamics, but not the two-wave dynamics of SNAIL1 

expression (Fig. 5E). This computational result further confirmed that pSMAD2/3 is less 

essential for the second wave of SNAIL1. 

Furthermore, this SNAIL1 dynamics is not cell type specific as equivalent two-wave 

dynamics were seen for SNAIL1 mRNA in MCF7 and A549 cells (Fig. 5F). Similar to that of 

MCF10A, it is more effective on inhibiting SNAIL1 mRNA by adding LY2109761 together with 

TGF-β than later (Fig. 5G). The impact of SMAD phosphorylation inhibitor on A549 is less than 

that on MCF10A or MCF7 at either early or late inhibition, which could be due to the higher 
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level of EMT-related factors in A549251. In total, these results reveal that pSMAD2/3 is essential 

for the early phase of SNAIL1 activation, but is less important for the secondary phase elevation 

and persistence of SNAIL1 expression/localization. 

2.2.3 GLI1 contributes to activating the second wave of SNAIL1 

The regulatory network suggests that GLI1 may be responsible for the second wave of SNAIL1 

(Fig. 6A). To test this hypothesis, we performed microscopy studies of SNAIL1-GLI1 using 

MCF10A cells. The distribution of SNAIL1 found in this study (Supplementary Fig. 12A) was 

consistent with those from the pSMAD2/3-SNAIL1 studies. Elevated and sustained expression 

of GLI1 under TGF-β treatment (Fig. 6B & C) was clearly evident. More interestingly GLI1 also 

showed an unexpected multi-phasic dynamic. Around 8 hours after TGF-β treatment, cytosolic 

GLI1 concentration started to increase. At 12 hours when SMAD activities decreased toward 

basal levels there was a clear accumulation of GLI1 in the nucleus, which continued to increase 

through day 2. Notably, at this time point cells expressing a high level of nuclear SNAIL1 

consistently showed high nuclear GLI1 concentrations (Supplementary Fig. 12A). Expanding the 

mathematical model of the network to Fig. 5A also reproduced the temporal dynamics of 

pSAMD2/3 and SNAIL1 (Supplementary Fig. 12B), supporting the role of GLI1 as the activator 

of the second wave of SNAIL1. 

If GLI1 is mainly involved only in the later maintenance of SNAIL1 expression, it is 

reasonable to predict that inhibiting GLI1 activity, either at the onset of or at some subsequent 

time after TGF-β treatment, would have minimal effect on the pSMAD2/3 induced initial wave 

of SNAIL1 expression. However, GLI1 inhibition would severely reduce the second wave of 

SNAIL1 expression. Indeed this was what observed experimentally. When GLI1 inhibitor 
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GANT61 was added together with TGF-β at the beginning of the experiment, the SNAIL1 

mRNA level was reduced to be 55% (at 12 h and 24 h), 12% (at 48 h) and 7% (at 72 h) 

compared to that without inhibition at the corresponding time points (Fig. 6D). In another 

experiment adding the inhibitor 48 hours after TGF-β treatment also reduced the mRNA level 

measured at 72 h to be 25% (Fig. 6E). These results are qualitatively different from those with 

the SMAD inhibitor (Fig. 5D). 

To confirm that GLI1 activation is not restricted to the MCF10A cell line, we also 

examined MCF7 and A549 cells with TGF-β treatment. We observed similar increased and 

sustained GLI1 expression, albeit with initial slight downregulation before 12 h, possibly due to 

cell line specific activation of some GLI1 inhibition pathways (Fig. 6F). Furthermore, early and 

late GLI1 inhibition lead to a reduction of the SNAIL1 mRNA level to be 13% and 22% for 

MCF7 cells, and to a less extent of 57% and 66% for A549 cells, respectively (Fig. 6G). 

Additionally, increased GLI1 expression after TGF-β treatment has been found for multiple liver 

cancer cell lines252. In toto these results support the role of GLI1 as a signaling relay from 

pSMAD2/3 to SNAIL1. 
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Figure 6 GLI1 is a major contributor to activate the second wave of SNAIL1 expression (A) TGF-β activates the 

GLI1/SNAIL1 module partly through pSMAD2/3. (B) IF images on protein levels of GLI1 (in the free form). Red 

and blue vertical lines indicate the mean values of the distributions at time 0 and at 48 h, respectively. (C) 

Distributions of nuclear GLI1 concentrations quantified from the IF images. (D) Experimental alidation of the 
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results for early (added together with TGF-β) GLI1 inhibition on the SNAIL1 mRNA level in MCF10A cells. (E) 

Experimental validation of the results for late (48 h after adding TGF-β) GLI1 inhibition on the SNAIL1 mRNA 

level in MCF10A cells. (F) Fold change of GLI1 mRNA levels measured with quantitative RT-PCR at different time 

points after combined TGF-β1 treatment in MCF7 or A549 cells. (G) Fold change of SNAIL1 mRNA levels 

measured with quantitative RT-PCR at 72 h after combined TGF-β1 and GLI1 inhibitor GANT61 treatment in 

MCF7 or A549 cells. For early inhibition (T+I) the inhibitor was added at the time of starting TGF-β1 treatment. For 

late inhibition (T-/+I) the inhibitor was added 48 h (for MCF7) and 24 h (for A549) after starting TGF-β1 treatment, 

respectively. TGF-β treatment group (T) is shown as a positive control. 
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Figure 7 TGF-β induced temporal switch between active and inhibitive phosphorylation forms of GSK3 proteins 

(A) IF images showed that inhibiting GSK3 enzymatic activity alone increased SNAIL1 accumulation but did not 

recapitulate TGF-β induced GLI1 nuclear translocation. (B) Quantification of the IF images of MCF10A cells at 

different time points after TGF-β treatment. Red vertical lines indicate the mean value of the distributions at time 0, 

and blue vertical lines represent that at 8 h (for GSK3AA) or at 12 h (for GSK3D), respectively. (C) IF images 

showing GSK3AA localization at the endoplasmic reticulum center (ERC). 
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2.2.4 GSK3 in a phosphorylation form with augmented enzymatic activity accumulates at 

endoplasmic reticulum and Golgi apparatus. 

Next, we hypothesized that GSK3 is fundamental to the observed multi-phasic GLI1 dynamic 

(Fig. 6B). Most published studies suggest that GSK3 is constitutively active in untreated cells, 

facilitating degradation of SNAIL1 and GLI1; TGF-β treatment leads to GSK3 phosphorylation 

and inactivation, which leads to an accumulation of SNAIL1 and GLI1141,253. Initially we

tested whether the above mechanism is sufficient to explain the multi-phasic GLI1 dynamics. We 

treated MCF10A cells in the absence of TGF-β with a GSK3 activity inhibitor. Given the above 

mechanism, one should expect the GSK3 inhibitor to promote both GLI1 and SNAIL1. In our 

experiment, SNAIL1 did increase in the nucleus and even more in the cytoplasm due to 

inhibition of GSK3-dependent SNAIL1 degradation, but there was no noticeable change in GLI1 

expression in either nucleus or cytoplasm (Fig. 7A), suggesting additional signaling mechanisms 

may be involved. Besides the inhibitory serine phosphorylation (S21 in GSK-3α and S9 in GSK-

3β), previous studies showed that tyrosine (Y279 in GSK-3α and Y216 in GSK-3β) 

phosphorylation leads to augmented enzymatic activity of GSK3254. As a convenience when 

discussing the three forms of GSK3, we refer the enzymatically active unphosphorylated form 

and the more active tyrosine phosphorylated form as “GSK3A” and “GSK3AA”, respectively, and 

the inactive serine phosphorylation form as “GSK3D”. Also we reserve “GSK3” for the total 

GSK3. As expected, microscopy studies showed an increased concentration of GSK3D peaking 

around 12 hours after TGF-β treatment (Fig. 7B, Supplementary Fig. 13A). Large cell-to-cell 

variations in the concentration of GSK3D were observed, however, the abundance of cytosolic 

and nuclear GSK3D were essentially equivalent (the expression ratio was close to one) for cells 
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without TGF- β treatment (Supplementary Fig. 13B). This observation corroborates earlier report 

that the serine phosphorylation does not affect GSK3 nuclear location255. TGF-β treatment led to 

transient deviation of this ratio from equivalence, reflecting additional active and dynamic 

regulation of GSK3 including covalent modification, location and protein stability. Specifically 

prior to inhibitory serine phosphorylation we observed transient GSK3AA accumulation in the 

perinuclear region peaking at eight hours (Fig. 7B, Supplementary Fig. 13A). Close examination 

of higher magnification confocal images revealed that the GSK3AA formed clusters in the 

endoplasmic reticulum (ER) and Golgi apparatus, but not associated with actin filaments 

(Fig.7C). Given that a function of active GSK3 is to modify target proteins post-translationally, 

our observation suggests an unreported role for GSK3AA accumulating at the ER and Golgi 

apparatus as to modify newly synthesized proteins before their release to the cytosol. Specifically 

previous studies showed that in mammalian cells a scaffold protein SUFU binds to GLI to form 

an inhibitory complex; SUFU phosphorylation by GSK3β prevents the complex formation, and 

exposes the GLI1 nuclear localization sequence142. This mechanism explains the observed 

increase of free GLI1 in the cytosol followed by nuclear translocation (Fig. 6B). Since the two 

phosphorylation forms, GSK3AA and GSK3D, coexist within single cells at defined time points, 

we performed co-immunoprecipitation and found that the probability of having the two GSK3 

phosphorylation forms in one molecule was rare (Supplementary Fig. 13C). 

Contrary to our observation that TGF-β regulates GSK3AA dynamics, other studies posit 

that GSK3AA is not regulated by external cues256. To resolve this paradox, we measured the 

relative amount of different GSK3 forms through silver staining (Fig. 13D). Among the three 

forms, the overall percentage of GSK3D increased from a basal level of 37% to 65% at 12 h after 

TGF-β treatment. In contrast, only a small fraction of GSK3 molecules assumed the GSK3AA 
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form and its overall abundance was stable over time (from ~10% basal level to ~13% at 8 h then 

back to ~10% at 12 h after TGF-β treatment). Essentially GSK3AA did not change in abundance 

but did change in localizations (homing to the ER and Golgi apparatus) to form a high local 

concentration, which imbue an important role in TGF-β signaling. 

2.2.5 A temporal and compartment switch from active to inhibitory GSK3 

phosphorylation smoothens the SMAD-GLI1 relay and reduces cell-to-cell 

heterogeneity on GLI1 activation. 

Based on the above results, we constructed an expanded network for TGF-β induced SNAIL1 

expression (Fig. 8A), which integrates a role for GSK3 and its temporal change of enzymatic 

activities in the cytosol and nucleus (Supplementary Fig. 13E). The model reproduces the 

multiphasic dynamics of GLI1 as well as that of pSMAD2/3 and SNAIL1 (Fig. 14A). 

To understand the function of the early nuclear accumulation of GLI1 induced by 

GSK3AA, it is important to recognize that GLI1 has a positive-feedback loop, and this network 

motif (Fig. 8B, left panel without the part in green) has characteristic sigmoidal shaped temporal 

dynamics, with the substrate concentration increasing slowly at first then accelerating with time 

until it approaches saturation (Fig. 8B, right panel, red curve). The response time, tR, defined as 

the time taken to reach a target concentration value [X]R, is highly sensitive to initial substrate 

concentration [X]0: in fact a slight increase in the initial concentration, Δ[X], can significantly 

shorten the response time (Fig. 8B, right panel, blue curve). In contrast, one can accelerate the 

response time with an expanded network (Fig. 8B including the green part) that the signal 

triggers a fast conversion of the substrate from a preformed inhibitory form (XI) to active form 
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X, effectively a boost of [X]0 to [X]0 + Δ[X] . For a fixed Δ[X] a greater acceleration is seen in 

cells with lower initial concentrations (Fig. 8B, right panel, inlet figure). Consequently despite 

variations of their initial concentration [X]0, most cells within a population can reach [X]R by a 

targeted time point tT in a series of temporally regulated events such as cell differentiation and 

immune response. Indeed, many examples of this modified feedback loop motif exist. Figure 

S2.5B gives some examples involving members of intrinsically disordered proteins and 

inhibitors of DNA binding proteins, β-catenin and the STING motif for immune responses. In 

the present scenario the accelerated GLI1 dynamic ensures sufficient accumulation of GLI1 

before nuclear pSMAD2/3 level decreases, essentially analogous to a relay race when the first 

runner can only release the baton after the second runner has grabbed it. Later when the GLI1 

and SNAIL1 concentrations start to increase, the GSK3AGSK3D conversion became necessary 

to reduce the rates of their degradation catalyzed by active GSK3. Interestingly, this conversion 

takes place concurrently with maximal concentration of nuclear pSMAD2/3, which activates 

GLI1 and SNAIL1 transcription. Furthermore, the small initial concentration boost does not 

affect another major function of the positive feedback loop, which is to robustly buffer temporal 

and strength fluctuations of signals (Supplementary Fig. 14C)257. 

To test the functional roles of GSK3 suggested above, we performed a series of GSK3 

activity inhibition experiments. First, we pretreated MCF10A cells with GSK3 inhibitor 

SB216763, washed out the inhibitor then added TGF-β1 (Supplementary Fig. 14D). We 

predicted that the treatment would slow down GLI1 nuclear accumulation, and at later times 

decrease the overall increase of GLI1 and SNAIL1 compared to cells without GSK3 inhibitor. 

Indeed this was observed (Fig. 8C, TGF-β +/- GSK3_I). More interestingly, the scatter plots 

(Fig. 8D) show the distributions with and without the inhibitor are similar in cells with high 
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GLI1, but in the presence of the inhibitor there is a population of non-responsive cells with low 

GLI1 and SNAIL1. This observation is consistent with model predictions that the GSK3-induced 

boost of initial GLI1 concentration leads to acceleration in the GLI1 and SNAIL1 dynamics, and 

this boost is more evident for cells with lower level of initial nuclear GLI1 (Fig. 8E). In a 

separate experiment (Supplementary Fig. 14E), we did not wash out GSK3 inhibitor while 

adding TGF-β. In this case the inhibitor had opposite effects on GLI1 and SNAIL1 protein 

concentrations: it slowed down the initial release and translocation of GLI1 needed to accelerate 

the GLI1 accumulation, but also decreased GLI1 and SNAIL1 degradation that becomes pre-

eminent when the proteins were present at high levels. Compared to the samples grown in the 

absence of the GSK3 inhibitor, we also observed slower and more scattered GLI1 nuclear 

accumulation and SNAIL1 increase on day 2, but by day 3 the overall levels of GLI1 and 

SNAIL1 were actually higher than the case without the inhibitor (Fig. 8D, TGF-β + GSK3_I). 

2.2.6 The SMAD-GLI1 relay increases the network information capacity and leads to 

differential response to TGF-β duration 

Our results show that TGF-β1 signaling is effected through pSMAD2/3 directly with fast pulsed 

dynamics concurrently with a relay through GLI1 which has a much slower dynamics. The 

signaling ported by these two channels converges on SNAIL1 with a resultant two-wave 

expression pattern. To further dissect the potential functional interactions between these two 

pathways, we performed mathematical modeling and predicted that the two distinct dynamics 

allows cells to respond to TGF-β differentially depending on stimulus duration (Fig. 9A). Short 

pulses of TGF-β only activate pSMAD2/3 and the first wave of transient SNAIL1 expression. 

When the signal duration is longer than a defined threshold value, activation of GLI1 will lead to 
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Figure 8 The GSK3 phosphorylation switch smoothens the SMAD-GLI1 relay.(A) Proposed expanded network for 

TGF-β induced SNAIL1 expression. (B) left: Schematic of a generic positive feedback loop network. Also shown in 

green is an additional reservoir of the molecules in inactive form (XI) that can convert quickly into the active form 
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(X) upon stimulation. Right: The response time tR is sensitive to the initial concentration, [X]0 v.s. [X]0 + Δ[X]0 . 

The inlet figure shows the dependence of ΔtR on [X]0 with Δ[X]0 fixed. (C) Box plots of GSK3 inhibition 

experimental data. (D) Scattered plots of GSK3 inhibition experimental data. Red points are the center of the 

scattered plots and each ellipse encloses 97.5% of the data points. Both were drawn with the R package, 

car::data.ellipse. (E) Computational simulation of SMAD, SNAIL1 and GLI1 behavior with (solid line) or without 

(dotted line) initial boosting in cells with high basal GLI1 level (left panels) or low basal GLI1 (right panels). 

 
 
 
the observed second wave of SNAIL1 expression. We confirmed the predictions with MCF10A 

cells (Fig. 9B). Both TGF-β1 pulses with duration of two hours and eight hours activated 

pSMAD2/3 and the first wave of SNAIL1 expressions. However, only the eight-hour but not the 

two-hour pulse activated sustained GLI1 and the second wave of SNAIL1 expression, similar to 

those with continuous TGF-β1 treatment. 

Clearly cellular responses have different temporal profiles depending on the TGF-β 

duration, and one can use the information theory to quantify their information content232,233. In 

this study we utilized a more intuitive understanding of network function from an information 

encoding viewpoint. Consider the pSMAD complex, which has three coarse-grained states, High 

(H), Medium (M), and Low (L), and each of GLI1 and SNAIL1 has two states, H and L (Fig. 

9C). Then one can use three 4-element states, (L, L; L, L), (H, L; L, L), (H, M; L, H) to roughly 

describe the case without TGF-β and the two hour and eight hour pulse results in Fig. 9B, where 

each number in a state represents in the order the 12 h and 48 h concentrations of pSMAD2/3 

and GLI1, respectively. The three states are part of a temporally ordered state space, and encode 

information of TGF-β duration roughly as not detectable, short, and long. The same information 

is encoded by the SNAIL1 dynamics as (L, L), (H, L), and (H, H), reflecting SNAIL1 as an 

information integrator of the two converging pathways. 
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Further modeling suggests that components in the network function cooperatively to 

encode the TGF-β information (Supplementary Fig. 15B). Increasing or decreasing the nuclear 

GSK3 enzymatic activity tunes the system to generate the second SNAIL1 wave with a higher or 

lower threshold of TGF-β duration, respectively, while changing the cytosol GSK3 enzymatic 

activity has the opposite effect. Upregulation of GLI1, or downregulation of I-SMAD, both of 

which have been observed in various cancer cells, also decrease the threshold for generating the 

second SNAIL1 wave. Therefore cells of different types can share the same network structure, 

but fine-tune their context-dependent responses by varying some dynamic parameters, and for a 

specific type of cells dysregulation of any of the signaling network components may lead to 

misinterpretation of the quantitative information of TGF-β signal. 

We have shown that the SNAIL1 dynamics is TGF-β1 duration dependent. To further 

confirm that cells respond differentially to TGF-β1 with different duration, we measured the 

mRNA levels of another four genes, all of which respond to TGF-β1 (Supplementary Fig. 

15C)258,259. Gene FN1 codes for the cell motility related protein fibronectin. Its expression is 

activated even by the 2-h TGF-β1 pulse, and increases with longer TGF-β1. Gene CTGF, whose 

product is an extracellular matrix protein and related to cell motility, is activated at similar extent 

by both 2-h and 8-h TGF-β1 pulses, and its expression level increases by additional 14 folds with 

continuous TGF-β1 treatment. Expressions of genes MMP2 and CLDN4, coding proteins related 

to mesenchymal extracellular hallmark and cell migration, increase only slightly (less than two 

folds) with either 2h or 8h TGF-β1 pulse, compared to the more significant change under 

continuous TGF-β1 treatment. Therefore, these downstream genes also show differential 

expression patterns depending on TGF-β1 duration, and cells activate different response 

programs correspondingly. 
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2.3 DISCUSSION 

TGF-β is a multifunctional cytokine that can induce a plethora of different and mutually 

exclusive cellular responses. A significant open question is how cells interpret various features of 

the signal and make the cell fate decision. TGF-β can activate a number of pathways 

interconnected with multiple crosstalk points. Our studies reveal that this interconnection is 

essential such that components of the network can function coordinately and appropriately to 

interpret the temporal (time and duration) information from TGF-β. 

2.3.1 pSMADs are major inducers for the first wave of SNAIL1 expression. 

The two-wave dynamic of TGF-β-induced SNAIL1 expression has been observed in several 

cellular systems260,261, supporting the underlying relay mechanism discovered in this work. The 

first wave is fundamentally induced by pSMAD2/3, as evidenced from our SMAD inhibition 

experiments, and similarity between the dynamics of pSMAD2/3 and the first wave of SNAIL1. 

SNAIL1 may act as cofactor of pSMADs to induce other early response genes79. At later times 

the nuclear concentrations of pSMAD2/3 decrease though continue to contribute to SNAIL1 

activation at a lower level. 

2.3.2 GSK3 fine-tunes the threshold of the GLI1 checkpoint and synchronizes responses of 

a population of cells 

The functional switch from pSMAD2/3 to GLI1 relays information from TGF-β signaling 

beyond the initial induction of SNAIL1, and this relay is facilitated by a second relay from the 

active to the inactive phosphorylation form of GSK3 proteins. Active regulation of the 

abundance and nuclear location of GSK3AA form has been observed in neurons263. In contrast to 
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Figure 9 The TGF-β-SNAIL1 network permits detection of TGF-β duration and differential responses. (A) Model 

predictions that the network generates one or two waves of SNAIL1 depending on TGF-β duration. The red line 

overlaid on the heatmap is a sampling time of the short-time TGF-β induction. The green line represents the long- 

time TGF-β treatment. (B) Single cell protein concentrations quantified from IF images of cells under pulsed and 

continuous TGF-β treatments. The solid lines divide the space into coarse-grained states with respect to the 

corresponding mean values without TGF-β treatments (= 1). (C) Schematics of how cells encode information of 

TGF-β duration through a temporally ordered state space. 

 
 
 
these earlier reports we observed an accumulation of GSK3AA in the ER and Golgi apparatus. 

Mechanistically this may be caused by redistribution of cytosolic GSK3AA, or a simple 

accumulation of de novo synthesized and phosphorylated GSK3 proteins. The overall 

consequence is an increase in local GSK3 enzymatic activity, which forms part of the GSK3 

switch that smooths the pSMAD2/3-GLI1 transition and the duration threshold of TGF-β pulse 

that generates the second wave of SNAIL1. 

This seemingly simple process, which accelerates the response time through transient and 

minor increases in the initial concentration of a molecular species subject to positive feedback 

control, may have profound biological functions. Positive feedback loops are ubiquitous in 

cellular regulation, with a major function to filter both the strength and temporal fluctuations of 

stimulating signals and to prevent inadvertent cell fate change. This network, however, may have 

an inherently slow response time, and the response is highly sensitive to the initial concentration 

of the substrate that lead to large cell-to-cell variation of temporal dynamics. This variation and 

slow dynamic may be problematic for processes such as neural crest formation and wound 

healing where precise and synchronized temporal control is crucial for generating collective 

responses of multiple cells. The expanded network shown in Fig. 8B allows transient increase of 
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the initial substrate concentration, and solves the seemingly incompatible requirements for the 

simple positive feedback motif on robustness against fluctuations as well as fast and 

synchronized responses. It assures that despite a possible broad distribution of basal expression 

levels of the protein, cells are activated within a designated period of time at the presence of 

persistent activation signal, without sacrificing the filtering function of the feedback loop. 

2.3.3 Cells use TOSS formed by a composite network to increase information transfer 

capacity. 

Cells constantly encounter TGF-β signals with different strengths and duration, and must 

respond accordingly. It is well documented that biological networks reliably transmit information 

about the extracellular environment despite intrinsic and extrinsic noise in a subtle and functional 

way. However, quantitative analyses using information theory reveal that the dynamic of each 

individual readout is quite coarse with one or few bits232,233. This is a paradox. However, our 

results suggest that cells use multiple readouts to generate a TOSS with an expanded capacity to 

encode signal information and generate a far more subtle response system. For example, the 

SMAD motif has a refractory period due to the negative feedback loop and thus can accurately 

encode the duration information of TGF-β only within a limited temporal range. The GLI1 motif 

encodes information of longer TGF-β duration, which then saturates. This TOSS may be further 

expanded, such that the SNAIL1 motif itself possibly encodes information of longer TGF-β 

duration and relays to other transcription factors such as TWIST and ZEB, and leads to stepwise 

transition from the epithelial to the mesenchymal phenotype depending on the TGF-β duration13.  
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Therefore although each motif has limited information coding capacity, a combination of motifs 

can code and transmit detailed signaling information. This is analogous to the design of a 

computer composed of many binary logic gates. 

As with other signaling process, TGF-β signaling is context dependent, and the dynamic 

and regulatory network vary between cell types244,264. For the three cell lines we examined our 

results identify GLI1 as a major relaying factor for the TGF-β signaling. The inhibition 

experiments show that other possible peripheral links have minor contributions to SNAIL1 

activation, while their weights may grow at time later than we examined. Consequently the 

present work has focused on the early event of TGF-β activation of SNAIL1, which is within 72 

hs for MCF10A cells. Nevertheless, the relay mechanism and the corresponding network 

structure identified here can be general for transmitting quantitative information of TGF-β and 

other signals. It is typical that an extracellular signal is transmitted through a canonical pathway 

with negative feedbacks and multiple non-canonical pathways, and these pathways crosstalk at 

multiple points, and Supplementary Fig. 15D gives some examples including IL-12, DNA 

double strand breaking, and LPS. Therefore, the mechanism revealed in this work is likely 

beyond TGF-β signaling. 

 

2.3.4 Network temporal dynamics is a key for effective pharmaceutical intervention. 

 
 
Upregulation of GLI1, and GSK3 and the responsive SMAD family has been reported in 

pathological tissues of fibrosis265 and cancer262, and all three have been considered as potential 

drug targets. The present study emphasizes that in cell signaling timing is fundamental for 

function. The same network structure may generate drastically different dynamics with different 
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parameters, as observed for different cell types. Consequently, effective biomedical intervention 

needs to take into account the network dynamics. We have already demonstrated that adding the 

inhibitors at different stages of TGF-β induction can be either effective versus not effective on 

reducing SNAIL1 (by inhibiting pSMAD2/3), both effective (by inhibiting GLI1), and even 

opposite (by inhibiting GSK3). Actually, one may even exploit this dynamic specificity for 

precisely targeting certain group of cells while reducing undesired side effects on other cell 

types. 

In summary through integrated quantitative measurements and mathematical modeling 

we provided a mechanistic explanation for how cells read TGF-β duration. Several uncovered 

specific mechanisms, such as expanding information transmission capacity through signal 

relaying, and reducing response times of positive feedback loops by increasing initial protein 

concentrations, may be general design principles for signal transduction. 

2.4 METHODS 

Cell Culture 

MCF10A cells were purchased from the American Type Culture Collection (ATCC) and were 

cultured in DMEM/F12 (1:1) medium (Gibco) with 5% horse serum (Gibco), 100 µg/ml of 

human epidermal growth factor (PeproTech), 10 mg/ml of insulin (Sigma), 10 mg/ml of 

hydrocortisone (Sigma), 0.5 mg/ml of cholera toxin (Sigma), and 1x penicillin-streptomycin 

(Gibco). MCF7 cells were purchased from ATCC and cultured in EMEM medium (Gibco) with  



 
60 

10% FBS (Gibco), 10 mg/ml of insulin, and 1x penicillin-streptomycin. A549 cells were 

purchased from ATCC and were cultured in F12 medium (Corning) with 10% FBS and 1x 

penicillin-streptomycin. All cells were incubated at 37 °C with 5% CO2. 

TGF-β induce and inhibitor treatment 

Cells for TGF-β induction and inhibitor treatment were seeded at ~60-70% confluence without 

serum starvation. For TGF-β treatment, 4 ng/ml human recombinant TGF-β1 (Cell signaling) 

was added into culture medium directly. For inhibition experiment, 4 µM of LY2109761 

(Selleckchem), 20 µM of GANT61 (Selleckchem), and 10 µM of SB216763 (Selleckchem) were 

used to inhibit SMAD, GLI and GSK3, respectively. The medium was changed every day during 

treatment to keep the reagent concentration constantly. For reproducibility, we used cells within 

10th -15th generations, same patches of reagents, serum, and tried to perform each group of 

experiments (e.g., those in Fig. 5C) together. 

Immunofluorescence Microscopy and Data Analysis 

Cells were seeded on four-well glass-bottom petri dishes at ~60% confluence overnight and 

treated with reagents (TGF-β1 and/or inhibitors). Three independent experiments were 

performed in every treatment. At designated time points, cells were harvested and stained with 

specific antibodies following procedure modified from the protocols at the Center of Biological 

Imaging (CBI) in the University of Pittsburgh. In general, cells were washed with DPBS for five 

minutes for three times followed by 4% formaldehyde fixation for 10 minutes at room 

temperature. Cells were then washed three times with PBS for five minutes every time. PBS with 

0.1% TritonX-100 (PBS_Triton) was used for penetration. BSA of 2% in PBST was used for 

blocking before staining with antibodies. The first antibodies, anti-pSMAD2/3 (Santa Cruz), 

anit-SNAIL1 (Cell signaling), anti-GLI1 (Santa Cruz) were diluted by PBST with 1% BSA. 
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Samples were incubated with the first antibodies at 4°C overnight. Then cells were washed three 

times with 10 minutes for each before being incubated with the secondary antibodies, anti-mouse 

Alexa Fluor 647 (Abcam), anti-rabbit Alexa Fluor 647 (Abcam), anti-gaot Alexa Fluor 647 

(Abcam), anti-mouse Alexa Fluor 555 (Abcam), anti-rabbit Alexa Fluor 555 (Abcam), anti-gaot 

Alexa Fluor 555 (Abcam), anti-mouse Alexa Fluor 488 (Abcam), anti-rabbit Alexa Fluor 488 

(Abcam), anti-gaot Alexa Fluor 488 (Abcam), for one hour at room temperature. After antibody 

incubation, cells were washed with PBS_Triton for five minutes and stained with DAPI (Fisher) 

for 10 minutes at room temperature. Cells were washed with PBS_Triton for five minutes three 

times and stored in PBS for imaging. Photos were taken with Nikon A1 confocal microscopy at 

CBI. The microscope was controlled by the build-in software, Nikon NIS Elementary. All 

photos, except the photo for GSK3AA subcellular localization, were taken with plan fluor 40x 

DIC M/N2 oil objective with 0.75 numerical aperture and 0.72 mm working distance. The scan 

field were chosen randomly all over the glass-bottom area. For identifying the GSK3AA 

subcellular localization, plan apo λ 100x oil objective with 1.45 NA and 0.13 mm WD was used. 

The 3D model of GSK3AA overlapped with ERC and DAPI were reconstructed from 25 of z-

stack images in 11.6 µm and videos were produced also by NIS Element software. To minimize 

photobleaching, an object field was firstly chosen by fast scan, then the photos were taken at 

2014 × 2014 pixel or 4096 × 4096 pixel resolution, for generation large data or for photo 

presentation, respectively. CellProfiller was used for cell segregation and initial imaging analysis 

as what described in Carpenter et.al. 266. 

Image Correction. To keep identical background through all images, background correction was 

performed before further image processing. For each image fluorescent intensities in space 

without cells were used as local background. Photos that have obviously uneven illumination and 
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background fluorescence were removed from further processing. Otherwise the mean 

background fluorescent intensity was obtained through averaging over the whole image, and was 

deducted uniformly from the image. 

Image Segmentation. Cell number and position were determined by nuclear recognition with 

DAPI. The global strategy was used to identify the nuclear shape, and the Otsu algorithm was 

used for further calculation. Clumped objectives were identified by shape and divided by 

intensity. Next, using the shrank nuclear shape as seed, cell shape was identified by the 

Watershed algorithm. For identifying the clusters of GSK3AA formed around a nucleus, the 

nuclear shape was shrank manually by 3 pixels and used as a new seed to grown the boundary 

with the watershed method until reaching background intensity level. All parameters were 

optimized through an iterative process of automatic segmentation and manual inspection. 

Image quantification. Averaged fluorescence density and integrated fluorescence intensity were 

calculated automatically with CellProfiler. The amount of the GSK3AA form was quantified as 

the sum of intensities of pixels belonging to the cluster formed around a nucleus. Concentrations 

of all other proteins were quantified by the average pixel intensity within the nucleus or cytosol 

region of a cell. Next, the quantified results were examined manually, and those cells with either 

cell area, nuclear area, or fluorescent intensity beyond five folds of the 95% confidence range of 

samples from a given treatment were discarded, which account for less than 1% of the cells 

analyzed. Immunofluorescence data were further processed and plots were generated using 

customized R codes and Matlab codes. 

Quantitative PCR 

Cells were seeded in 12-well plastic bottom cell culture plates and treated as described above. 

Three parallel experiments were performed in every treatment. Total RNA was isolated with the 
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TRIZOL RNA isolation kit (Fisher), and mRNA was reversely transcribed with the RNAscript II 

kit (ABI). The stem-loop method was used for microRNA reverse transcription. The qPCR 

system was prepared with the SYBR green qPCR kit with designed primers and performed on 

StepOnePlus real-time PCR (ABI). 

Immunoprecipitation and silver staining 

Immunoprecipitation was performed with SureBeads magnetic beads (Bio-Rad) following a 

protocol modified from the one provided by the manufacture. We washed beads with PBS with 

0.1% Tween 20 (PBS_Tween) for three times, then harvested cells by RIPA (Thermo) with 

proteinase and phosphatase inhibitor (Roche). Samples were pre-cleaned with 100 µl of 

suspended Protein G per 450 µl of lysis mixture. Antibodies targeting GSK3 (Cell Signaling), 

GSK3AA (Santa Cruz), and GSK3D (Santa Cruz) were added into every 100 µl of bead mixture 

respectively. The mixture was rotated at 4 °C for 3 hours. Beads that were conjugated with 

antibodies were washed with PBS_Tween. An amount of 100 µl of pre-cleaned lysis buffer was 

added into conjugated beads and rotated at 4 °C overnight. Targeted proteins were eluded from 

beads by incubating with 40 µl 1x Laemmli buffer with SDS at 70 °C for 10 minutes. For the 

samples an amount of 5 µl was used for western blot assay, and an amount of 30 µl was loaded 

for SDS-PAGE (Bio-Rad) and followed by silver staining (Fisher). 

Network reconstruction and coarse-graining 

The full network from TGF-β1 to SNAIL1 (Supplementary Fig. 10) was generated with IPA 

(Qiagen®). Specifically, all downstream regulators of TGF-β1 and upstream regulators of 

SNAIL1 in human, mice and rat were searched and added to the network. Then, direct or indirect 

relationships between every pair of regulators were searched and added to the network. After 

obtaining the whole network, regulators that have been reported to be activated later than 
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SNAIL1 were removed. Examination of the network reveals that the network can be further 

organized into three groups: the TGF-β-SMAD-SNAIL canonical pathway, the TGF-β-GSK3-β- 

catenin pathway that has the most number of links, and others. We further noticed that GLI1 is a 

central connector of TGF-β, SMAD, GSK3 and SNAIL1. We performed western blot and IF 

studies on β-CATENIN and found that neither its concentration nor its location changes 

significantly on day 3, therefore we removed β-CATENIN from the network. In addition, 

previous studies report that the SMAD-GLI axis plays important role in TGF-β induced EMT 122. 

Therefore we further grouped the network as the SMAD module, the GLI module, and the GSK3 

module, as well as the remaining ones that we referred as “Others”, and reached the network 

shown in Fig. 5A. Those molecular species not explicitly specified in Fig. 5A either have their 

effects implicitly included in the links, for example the link from TGF-β to GSK3, or are 

included in the links of “Others”. This treatment is justified since our various inhibition 

experiments indeed showed that the three factors we identified affect SNAIL1 expression the 

most. These “other” species may contribute to snail1 activation at a time later than what 

considered in this work. Therefore we emphasize the network in Fig. 5A is valid only within the 

time window we examined, i.e., within three days after TGF-β1 treatment for MCF10A cells. 
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2.5    SUPPLEMENTARY MATERIALS AND FIGURES 

2.5.1    Mathematical modeling 

Canonical TGF-β/pSMAD2/3/SNAILl pathway (Fig. 5A) 

We used the following ordinary differential equation (ODE) model in Fig. 5 and Fig. 11. 

TGF-β/SMAD2/3 module 

[Smad]'=(kpsmad0+kpsmad*TGF)* Smadall-[Smad]
Jpsmad0+(Smadall-[Smad])

1

1+ SmadI
Jdpsmad1

- dpsmad* [Smad]
Jdpsmad+[Smad]

, (1) 

[SmadI]'=kSmadI*[Smad]-kdSmadI*[SmadI], (2) 

where [Smad] and [SmadI] are the concentrations of pSMAD2/3 and inhibitory SMAD, 

respectively. 

SNAIL-miR-34 module 

It is expanded from our previous model13 by considering transcription activation of SNAIL1 by 

pSMAD2/3 and TGF-β, and degradation of SNAIL1. 

[snail]n
' = k0snail+ksnail0* [Smad]2

Jsnail0
2 +[Smad]2

1

1+[SNAIL]
Jsnail2

-kdsnail*[snail]-kdSR1*[SR1] , (3) 

[miR34]n
' = k034+ k34

1 + �SNAIL
J134

�
2 - kd34*[miR34]-�1-λs�*kdSR1*[SR1], (4) 

[SNAIL]'= kSNAIL*[snail]-kdSNAIL*[SNAIL], (5) 

[miR34]=[miR34]t-[SR1],  (6) 

[snail]=[snail]t-[SR1],  (7) 

[SR1]=Ks*[snail]*[miR34],  (8)
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where [snail], [miR34], [SNAIL], [snail], [SR1] are the concentrations of total SNAIL1 

mRNA, miR-34, SNAIL1 protein, free SNAIL1 mRNA and miR-34-SNAIL1 mRNA complex, 

respectively.  

 

Canonical TGF-β/SMAD/SNAILl pathway with GLI1 (Fig. 6, Fig. 12)  

Taking into account the GLI1 self-activation and GLI1 mediated expression of SNAIL1 mRNA, 

we added another ODE for GLI1 and revised the ODE of SNAIL1 mRNA. 

[GLI]n
' = kgli0+kgli1* [Smad]2

Jgli1
2 +[Smad]2  +kgli2* [GLI]n

4

[GLI]n4+Jgli2
4 -dgli*[GLI]n  (9) 

[snail]t
'= k0snail+ �ksnail0* [Smad]2

Jsnail0
2 +[Smad]2 + ksnail1* [GLI]n

4

[GLI]n
4+Jsnail1

4 � 1

1+[SNAIL]
Jsnail2

-kdsnail*[snail]-kdSR1*[SR1]     

  (10) 

where [GLI]n is the concentration of nuclear GLI1. We used this ODE model to generate 

results in Fig. 6 and Fig. 12. 

 

Model for the GSK3/GLI module (Fig. 8A) 

Since the process involves many steps and a detailed model would require many parameters to 

determine, instead we used two phenomenological time-dependent functions to qualitatively 

mimic the dynamics of the enzyme activities of cytosol GSK3 and nuclear GSK3 we 

experimentally measured (shown in Fig. 7B),  

AGSK
C (t)=kGSKc*TGF* �1-exp �- t

a1
�� *exp �- t-b1

a1
�  (11) 

AGSK
n (t)=1-kGSKn*TGF* �1-exp �- t

a2
�� *�exp �- t-b2

a2
��  (12) 
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Figure S13E shows the relative enzymatic activity. We played with different choices of 

the parameters, and found the results are insensitive to the choices provided there is an early 

pulsate increase of cytosol GSK3 enzymatic activity followed by a decrease of nuclear GSK3 

enzymatic activity. 

Furthermore, the basal pool of cytosol GLI1 is considered, which is by sequestered in the 

cytosol by SUFU but could translocate to the nuclear after SUFU is inactivated by the cytosol 

enzyme GSK3 activity. We used a revised ODE of nuclear GLI1 concentration derived with the 

quasi-equilibrium approximation (see below) 

[GLI]t
'≈ kgli0+kgli1* [Smad]2

Jgli1
2 +[Smad]2  + kgli2* [GLI]n

4

[GLI]n
4+Jgli2

4 -dgli*[GLI]n*AGSK
n   (13) 

 

Derivation of GLI ODE  

We assumed the quasi-equilibrium approximation for the GLI nuclear and cytosol shuttling, the 

GSK3 regulated binding/unbinding between Sufu and GLI in the cytosol, and obtained the 

following equations,  

K2*[GLI]c*[Sufu]=(K1+AGSK
C )*[GLIsufu] (14) 

[GLIsufu]=Sufumax-[Sufu] (15) 

Thus we have 

[GLIsufu]=Sufumax-(K1+AGSK
C )* [GLIsufu]

K2*[GLI]c
 (16) 

That is, 

[GLIsufu]= 1

1+
(K1+AGSK

C )
K2*[GLI]c

Sufumax (17) 
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Also we have 

[GLI]c=K3*[GLI]n,  (18) 

thus 

[GLIsufu]= K3*K2*[GLI]n

K3*K2*[GLI]n+(K1+AGSK
C )

Sufumax (19) 

The total level of GLI1 is the sum of the three forms, GLISuFu, GLIc and GLIn, 

[GLI]t=[GLI]c+[GLI]n+[GLIsufu]= �K3*[GLI]n+[GLI]n+ K2*K3*AGSK
n

K3*K2*[GLI]n+(K1+AGSK
C )

Sufumax�. (20) 

Thus, we obtained the relation among [GLI]n, [GLI]t and AGSK
C  

 [GLI]n=f�AGSK
C ,[GLI]t� , (21) 

The total concentration of GLI1 is given by,  

[GLI]t
'= kgli0+kgli1* [Smad]2

Jgli1
2 +[Smad]2  + kgli2* [GLI]n

4

[GLI]n
4+Jgli2

4 -dgli*[GLI]c*AGSK
C -dgli*[GLI]n*AGSK

n  (22) 

Given that our data shows that [GLI]c is low throughout the process, we neglected the 

degradation term of [GLI]c 

[GLI]t
'≈ kgli0+kgli1* [Smad]2

Jgli1
2 +[Smad]2  + kgli2* [GLI]n

4

[GLI]n
4+Jgli2

4 -dgli*[GLI]n*AGSK
n  (23) 

 

TGF-β pulse 

Since TGF-β1 can enter to cells through endocytosis, washing the extracellular TGF-β1 does not 

stop the signaling immediately. Therefore, we modeled the effective TGF-β1 concentration by 

the following equation, 

[TGF](t)=TGF0*exp� -dtgf*�t-TGFDuration�*Heaviside�t-TGFDuration� �.   (24) 
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Full model  

By considering all the modules, the full model is as following, 

[Smad]'=�kpsmad0+kpsmad*[TGF]�* Smadall-[Smad]
Jpsmad0+�Smadall-[Smad]�

1

1+ [SmadI]
Jdpsmad1

 - dpsmad* [Smad]
Jdpsmad+[Smad]  

 (25) 

[SmadI]'=kSmadI*[Smad]-kdSmadI*[SmadI] (26) 

[GLI]t
'= kgli0+kgli1* [Smad]2

Jgli1
2 +[Smad]2  + kgli2* [GLI]n

4

[GLI]n
4+Jgli2

4 -dgli*[GLI]c*AGSK
C -dgli*[GLI]n*AGSK

n  (27) 

[snail]t
'= k0snail+ �ksnail0* [Smad]2

Jsnail0
2 +[Smad]2 + ksnail1* [GLI]n

4

[GLI]n
4+Jsnail1

4 � 1

1+[SNAIL]
Jsnail2

-kdsnail*[snail]-kdSR1*[SR1]      

  (28) 

[miR34]n
' = k034+ k34

 1 + �SNAIL
J134

�
2 - kd34*[miR34]-�1-λs�*kdSR1*[SR1]   (29) 

[SNAIL]'= kSNAIL*[snail]-kdSNAIL*[SNAIL]*AGSK
n   (30) 

AGSK
C (t)=kGSKc*[TGF]* �1-exp �- t

a1
�� *exp �- t-b1

a1
�  (31) 

AGSK
n (t)=1-kGSKn*[TGF]* �1-exp �- t

a2
�� *�exp �- t-b2

a2
��,  (32) 

[GLI]n=f([GSK]c,[GLI]t)  (33) 

[miR34]=[miR34]t-[SR1]   (34) 

[snail]=[snail]t-[SR1]   (35) 

[SR1]=Ks*[snail]*[miR34]  (36) 
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We used this ODE model to generate results in Fig. 9A and Supplementary Fig. 15B. In 

the above equations we chose a Hill coefficient of 2 for Smad and SNAIL1 based on their 

dimeric binding. We used a value of 4 for GLI1 for sufficient nonlinearity. To keep the model 

consistent, we used 4 in all our equations regard to GLI1.  

 

Parameter space searching  

Step 1: Calculate single cell distributions of experimental observables. We calculated histograms 

of the distributions from the single cell experimental data. Suppose that we have N observables 

measured in M time points, we have an N × M dimensional distribution of the data. Since we 

used fixed cells and we had no information on the temporal correlation, we treated the 

distributions from different time points as independent, i.e., P=∏ Pi
M
i=1 . 

Step 2: Define pseudo-potentials from the parameterized distribution. We defined a 

pseudo-scalar-potential function U(x1,x2,…,xM)=-Teff(lnP-lnPmax). The constant Teff is an 

effective temperature, which we chose Teff=1. The constant term lnPmax sets the potential to be 

zero at the peak position of the distribution, and does not affect the parameter space search 

results. This pseudo-potential is just an auxiliary scalar function for the following application of 

the Metropolis algorithm. If a mathematical model can faithfully describe the system dynamics, 

with given initial conditionals and non-adjustable parameter set of ζ, we should be able to find 

distributions of the parameter set λ (to take into account cell-to-cell heterogeneity), and generate 

the corresponding distributions of (x1, x2, … xM) reproduce U. That is, for a specific set of λ, 

xi=xi(x0; λ, ζ), i=1,…M, and U(x1,x2,…,xM)≡V(λ). Unlike U, the function form of V can be very 

complex, but fortunately we do not need to know its explicit function form to perform the 

following Metropolis sampling. 
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Step 3: Obtain model parameter distributions that reproduce the distributions of 

experimental observables. Now it is clear why we define the pseudo-potential. We performed 

Monte Carlo random walks along the pseudo-potential V in the λ space using the Metropolis 

algorithm, just as how the algorithm is typically applied along real physical potentials. At each 

step with a set of λ, we generated a trial move λ’ = λ + δλ. We propagated the ODEs to obtain 

V(λ) and V(λ’), then use the Metropolis criteria to decide whether to accept the new move. If 

V(λ’)≤V(λ) accpet this step and update the parameter set λ= λ'. If V(λ’)≥V(λ), accept this step 

with a probability exp(-(V(λ’)-V(λ))/T) with T = 1. 

In our model, there is no feedback between the SMAD2/3 module and the SNAIL1/miR-

34 module, thus we used a two-step to search the parameter space for the TGF-β/SMAD2/3 

module,  

1. Search the parameter space (nine parameters) in the SMAD2/3 module;  

2. Search the parameter space (six parameters) for the SNAIL1/miR-34 module 

based on the 50 samples of good-fit parameter set of the SMAD2/3 module 

from step 1.   

In step 2 some of the parameters in the SNAIL1/miR-34 module were fixed and used as a 

well-trained parameter set from our previous work 13. Instead only six new parameters that 

connect the module SMAD2/3 and module SNAIL1/miR-34 were considered in the parameter 

space searching.  

When the GLI1 module was included, we again used the fact that there is no feedback 

between the SMAD2/3 module and the GLI1 module, and used a three-step searching procedure 

to reduce the computational efforts,  
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1. Search the parameter space (nine parameters) for the SMAD2/3 module;  

2. Search the parameter space (seven parameters) for the GLI1 module; 

3. Search the parameter space (six parameters) for the SNAIL1/miR-34 module 

based on the 50 samples of good-fit parameter set of the SMAD2/3 module the 

GLI1 module from step 1-2.    

Parameter change in various over-expression/down-expression or over-active/down-active 

conditions (Supplementary Fig. 15) 

To produce the results in Fig. 15B, a 1.2-fold change of kgli0 is used in the case of GLI1 over-

expression, a 0.8-fold change of ksmadi in the case of I-SMAD down-regulation. There is 0.8-fold 

change of kgskn in the case of over-active cytosol GSK3, 1.2-fold change of kgskc in the case of 

under-active cytosol GSK3. Similarly, there is 1.2-fold change of kgskc in the case of over-active 

nuclear GSK3, and 0.5-fold change of kgskc in the case of under-active nuclear GSK3. 
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2.5.2 Supplementary figures 

Figure 10 Network of TGF-β activating SNAIL1 reconstructed with IPA. 
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Figure 11 Schematic of the parameter space search approach.1) Calculate single cell distributions of experimental 

observables. 2) Define pseudo-potentials from the parameterized distribution. 3) Obtain model parameter 

distributions that reproduce the distributions of experimental observables. (See parameter space searching in the SI 

for more detail). 
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Figure 12 Supplemental results showing GLI1 contributes to the second wave of SNAIL1. (A) Scatted plot of 

measured nuclear GLI1 and SNAIL1 concentrations and the corresponding histogram representation for [nuclear 

SNAIL1]. The same sets of data of Fig. 6C are used. (B) The model of Fig. 5A with GLI1 reproduces the observed 

pSMAD2/3-SNAIL1 dynamics. To fit the SNAIL1 dynamics the exact temporal profile of GLI1 is not important 

except the requirement of its activation after 24 h. 
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Figure 13 Supplemental results showing temporal switch between two phosphorylation forms of GSK3. (A) IF 

images showing the temporal switch between two phosphorylation forms of GSK3. (B) Scattered plots showing 

correlation between nuclear and cytosol concentrations of GSK3D. (C) Immunoprecipitation studies showing two 

phosphorylation forms do not coexist. MCF10A cells were treated with TGF-β for 8 hours and the total proteins 

were harvested by RIPA. GSK3D and GSK3AA antibody were used for immunoprecipitation, respectively. GSK3D 

and GSK3AA proteins were used for western blot. Ctrl is sample that did not undergo immunoprecipitation. (D) 

Silver staining measurement of the relative amount of different GSK3 forms. The right figure shows a representative 

of three independent replicates. M refers to the marker with mass as 50 kd. (E) Relative GSK3 enzymatic activities 

in the cytosol and nucleus during TGF-β treatment. 
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Figure 14 Supplemental results of the full model. (A) The model of Fig. 8A reproduces the observed GLI1 as well 

as pSMAD2/3-SNAIL1 dynamics. (B) Examples of regulatory factors having positive feedback loop and reservoir 

of molecules in inactive form that can be activated by another stimulus. IDPs refer to intrinsically disordered 
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proteins, and some of them are transcription factors, which change into folded form and have higher DNA binding 

affinity upon binding of cofactors or posttranslational modification. ID1 is a member of the family of inhibitors of 

DNA binding proteins. (C) Bifurcation diagram showing that the initial concentration boost is small compared to the 

concentration jump associated with external signal induced switch of cell states. (D-E) Schematics of the early and 

full GSK3 inhibition experiments.  
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Figure 15 Supplemental results that cells can detect signal duration. (A) Schematic of TGF-β pulse experiments for 

Fig. 9B and 6C. (B) Supplemental model results of pulsed TGF-β1 treatments with various mutations. (C) The 

mRNA levels of selected TGF-β activated genes at day 3 after different durations of TGF-β1 treatments. (D) 

Examples of other signaling transduction pathways that share similar motif structure as that of TGF-β signaling, 

including IL-12, DNA double strand breaking, and LPS. 
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3.0 SPATIAL CLUSTERING AND COMMON REGULATORY ELEMENTS 

CORRELATE WITH TGF-Β INDUCED CONCERTED GENE EXPRESSION 

Cellular responses to surrounding cues require temporally concerted transcriptional regulation of 

multiple genes. A single-input-module motif with one transcription factor regulating multiple 

target genes can generate the coordinated gene expression. In eukaryotic cells, transcriptional 

activity of a gene is affected by not only transcription factors but also the ambient DNA 

condition of the gene, characterized by epigenetic modifications and the three-dimensional 

chromosome structure. To examine how the local gene environment and transcriptional factor 

regulation are coupled, we performed a combined analysis of time-course RNA-seq data of TGF- 

β treated MCF10A cells and corresponding epigenome and Hi-C data. Using the Dynamic 

Regulatory Events Miner (DREM), we first clustered differentially expressed genes based on 

gene expression profiles and associated transcription factors. Next we defined a set of linear and 

radial distribution functions as used in statistical physics to measure distributions of the genes 

within a cluster both along the genome sequence and spatially. Remarkably genes within each 

cluster, i.e., having similar temporal gene expression pattern and sharing common upstream 

transcription factors, have significantly higher tendency to be spatially close in the three- 

dimensional structure, compared to those belonging to different clusters. Specifically, we 

identified local spatial organization of over a hundred of AP1-regulated genes. We propose that 

competition between hetero- and homo-dimeric AP1 fine-tunes the chromosome structure and
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 leads to differential expression of target genes. Overall our computational results are consistent 

with a model that transcriptional factors actively orchestrate spatial clustering of a group of 

genes as well as fine structure of individual genomic loci, and future studies can test whether this 

spatial chromosome organization contributes to concerted gene expression. 

3.1 INTRODUCTION 

A cell continuously receives signals from its local extracellular environment and adjusts cellular 

programs accordingly such as cell proliferation, motility and metabolism22. Typically, regulating 

a cellular process requires expression change of a group of genes in a temporally coordinated 

manner267. It is an important question how such a coordinated regulation is achieved. 

A mechanism of such regulation is through specific structures of interaction networks of 

transcription factors (TFs). TFs bind to specific DNA sites and regulate transcription activities of 

targeted genes. One TF can regulate multiple target genes to form a so-called single input 

module (SIM, or fan- out). This SIM network motif appears in high frequency to coordinate the 

expression of genes with related functions such as those in bacterial metabolic pathways268. Gene 

regulation in eukaryotic cells is more complex since the three-dimensional structure of DNA has 

more profound impact on gene transcription than that in prokaryotic cells. For instance, the 

nucleosome structure with high packing level limits gene accessibility269. Furthermore, 

epigenetic modifications can strongly influence gene transcription. It is not fully understood how 

these different regulation mechanisms may collectively regulate a group of related genes. 
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To investigate the coupling of gene regulation mechanisms at different levels, here we 

used transcriptional response to TGF-β as a model system. The TGF-β family is crucial for 

regulating a complex signal transduction network in embryonic and fetal development, and is 

involved in multiple physiological and pathological processes such as cancer progression and 

wound healing75. The signaling event starts from membrane embedded TGF-β receptors, which 

capture active TGF-β molecules from extracellular environment270. The TGF-β signal is then 

transmitted into cells through a signal transduction network and triggers a cascade of cellular 

responses. The latter is achieved through temporally coordinated expression changes of a groups 

of genes with related functions such as those involved in cell proliferation, metabolism, and 

motility271. TGF-β also induces global reprogramming of cell epigenome272, which reinforces 

cellular responses for committed cell phenotype transition. 

A main aim of the present work is to analyze how multiple levels of regulation lead to 

concerted expression of groups of genes. For this purpose, we analyzed the temporal gene 

expression profiles of TGF-β1 treated human MCF10A cells in the context of histone 

modification patterns and chromosome structures derived from Hi-C data. Our analyses reveal 

that genes co-regulated by a common transcription factor have tendency to be spatially close, 

even if they are not linearly close on a chromosome. The results suggest correlation among 

transcription factors, chromosome structure, and gene expression that requires further study. 
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3.2 RESULTS 

3.2.1 Gene expression change reflects cell phenotype transition in response to TGF-β 

We used human mammary MCF10A cells, a non-tumorigenic breast epithelial cell line, as the 

major in vitro model in this study. Cells were induced with 4 ng/ml TGF-β1 for 12 hours, 2, 3, 5, 

8, 12, and 21 days. Untreated MCF10A cells show typical epithelial morphology with tight cell-

to-cell adherence. With TGF-β1 treatment, we observed progressive morphological changes, 

indicating cell transformation from the epithelial to mesenchymal phenotype. From day 2 to day 

5, cells start to show loosened intercellular adherence. After day 5, some cells expand cell size 

and show polarity. With further TGF-β treatment, more cells acquire a spindle-like shape. On 

day 21, only a small fraction of cells still remain morphologically unchanged (Fig. 20A) and 

most cells have undergone epithelial-to-mesenchymal transition (EMT).  

Next we performed RNA-seq studies to uncover changes of gene expression 

accompanying EMT. At each time point, we harvested samples and extracted RNA for RNA-seq 

analysis. The RNA-seq results reveal that about 33% human genes were differentially expressed 

(DE) upon TGF-β treatment. Principal component analysis (PCA) over these ~7000 DE genes 

show that gene expression profiles of samples from different time points are better separated than 

those of replicate samples from the same time point (Fig. 20B), as expected. The global 

transcriptome change over time as seen in the PCA space is consistent with the gradual 

morphology change of cells over time and the previous report that TGF-β-induced EMT 

proceeds through intermediate states13. 



86 

3.2.2 Genes classes based on both expression pattern and upstream regulators have 

3.2.2       more common characters 

To further examine the temporal patterns and functions of the DE genes, we performed 

hierarchical clustering analysis, which divides the DE genes into seven classes based on their 

expression level changes (16A)273. Expressions of ~1,700 genes decrease, and those of ~2,000 

genes increase with time. Another two classes show transient up and transient down dynamics, 

respectively. The remaining three classes have dynamic features similar to those of the transient 

up and transient down classes, but with temporal shift. Gene ontological (GO) analysis (Fig. 21) 

reveals that genes in each class typically are involved in multiple cellular processes. For 

example, genes in the decreasing class are related RNA polymerase I activity and snoRNA 

binding. These two classes of genes are related to RNA metabolic process, including ribosomal 

RNA production, modification, and binding to regulatory factors. This observation is consistent 

with previous reports that under TGF-β treatment cells are under growth arrest until they finish 

EMT274. 

Histone modifications affect gene expression275. To investigate the relationship between 

histone modification and gene expression pattern, we integrated H3K4me3 and H3K4ac data 

based on genome- wide ChIP-seq analysis from Messier et.al.276 to the RNA-seq data. Both 

H3K4me3 and H3K4ac are histone modification marks that are associated with active or poised 

genes277. H3K4ac enriches on active genes at both the early and late stages of cancer progression 

and H3K4me3 enriches only on genes related to late cancer stages276. We used the distributions 

of H3K4me3 and H3K4ac modification on all human genes as a control, and examined the marks 

in each clustering gene class. The results in 16B show that all gene classes have elevated 

H3K4me3 and H3K4ac compared to the control, and there is no apparent difference on histone 
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modification patterns between different classes. Each gene class also has a broad and even 

bimodal distribution. That is, genes within a hierarchical clustering class do not share common 

histone modification patterns. Given that histone modification patterns correlate with local 

chromosome structures179, these results suggest that genes from the same clustering class have 

heterogeneous local chromosome environments. 

Next, we adopted a different clustering scheme, the Dynamic Regulatory Events Miner 

(DREM), which cluster genes by combining gene expression time series with additional pre-

established transcription networks278. Figure 2A shows clustering results analyzed with DREM2 

based on a Hidden Markov Model (HMM)279. At each conjunction node, genes are assigned to 

different branches based on their expression trend and the up-stream regulators (transcription 

factors on this node). Genes from an upstream branch can become key regulators at subsequent 

nodes278,279. It reveals a hierarchy of gene regulation during the process of TGF-β-induced 

phenotype change. With DREM2 the DE genes are clustered prominently into 46 branches with 

19 nodes at the conjunction sites and 25 end classes. For clarity, we call the latter HMM classes 

to distinguish them from the expression-only clustering classes. 

Compared to the hierarchical clustering classes, HMM classes show finer dynamic 

patterns and GO enrichment information (Table 2). For example, genes in the first seven classes 

all have increased expression, but differ in the detailed temporal profiles. Genes in Class C1 

increase to high levels already on day 2. Genes relating to metalloendopeptidase activity are 

enriched in this class by over 17 folds in respect to the reference genes. Four of the matrix 

metalloproteinases (mmps), mmp2/7/11/13, are in this class. These four MMPs degrade 

components of extracellular matrix proteins such as gelatin, fibronectin, and laminin, and 

mediate biological activities including migration, mammary epithelial cell apoptosis, and 
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EMT280. Heparin binding genes are another type of highly enriched genes. These genes, such as 

periostin (postn), fibronectin (fn1), are also related to matrix or cell membrane formation and 

thus affect cell migration and adhesion. Another class of early activation genes, Class C2, is also 

enriched with genes related to cell matrix and membrane structure. Among them five of pcdh 

family members, including pcdh7/a4/b9/b10/b13, are integral membrane proteins and have 

function as cell-cell recognition and adhesion. Genes within each HMM class show narrower 

distributions of histone modification patterns (17B) than those of the expression-only classes 

(16B), meaning those genes have more similar patterns of these histone marks. Therefore, 

DREM2 analysis reveals that genes with related functions are often regulated by common TFs, 

and have similar dynamic profiles. 
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Figure 16 TGF-β induced gene expression change shows distinct temporal patterns. (A) Hierarchical-clusters of 

genes based on gene expression patterns during TGF-β treatment. (B) Violin plots of indicated histone modification 

level distribution sampled through genes belonging to individual expression pattern clusters. The numbers 1-7 on the 

x-axis follow the order of classes in panel A. The control group ‘A’ is sampled through all genes.
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Figure 17 Genes clustered by both expression patterns and key transcription factors show correlation between 

patterns of expression and histone modification. (A) Dynamic regulatory map obtained through DREM2 

analysis. (B) Violin plots of indicated histone modification level distribution sampled through genes 

belonging to individual DREM2 clusters. 
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3.2.3 Genes sharing common regulators have higher probability to be spatially close 

As mentioned in Introduction, local DNA environment of a gene affects its transcriptional. Then 

it is natural to ask whether genes sharing similar expression patterns and common regulatory 

factors, as identified by DREM2 analysis, may be arranged to be spatially close to share similar 

local DNA environment. To test this idea, we first examined gene arrangement along the linear 

DNA sequences. We divided the whole human genomic DNA into bins with a resolution of one 

million base pairs, a typical size of a topologically associated domain. Then we matched genes to 

the relevant bins based on their linear chromosomal positions. Statistical analysis of the genes 

spreading along the chromosomes shows that genes are not evenly distributed along the DNA 

sequences (18A). Most bins have less than ten genes, among them one third are gene-free. 

Around 3% bins (less than 100 bins) contain 17% of the overall human genes. This uneven 

distribution is slightly more profound for the DE genes under TGF-β treatment: DE genes reside 

in less than half of the bins and 17% of them are enriched in 2.5% bins. 

To further examine the gene distribution along chromosomes, we defined an averaged 

linear distribution function (see supplementary materials for additional details). It measures how 

the density of genes belonging to a specific HMM cluster changes in respect to the transcription 

starting site (TSS) of a tagged gene, also a member of the cluster. Specifically, for a given DE 

gene belonging to HMM class α, we divided sequences flanking to its TSS into bins with a size 

of 125 kb on both sides (Fig. 22A, left panel, r = 125 kb), and calculated fraction of class α genes 

within each bin, then averaged over taking every gene in cluster α as the tagged one. For 

statistical comparison, we also calculated other two distribution functions as control that 

represent the fractions of all human and DE genes, respectively. Genes of over half of HMM 

clusters do not show clustering significantly higher than DE genes and all genes do. The upper 
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left panel of 18B shows such an example, Class C23. Only five classes show small but 

significant accumulation of genes from the same HMM class within the first pair of r = 125 kb 

bins compared to controls, and one of them (C24) is shown in 18B upper right panel. 

Next, we investigated spatial arrangement of the DE genes using a set of available Hi-C 

data of MCF10A cells172. Similar to what used in statistical mechanics281, we defined a set of 

radial distribution functions that measure the average radial density of genes cluster relative to a 

tagged gene (Fig. 22A, right). Again genes in Class C24 tend to spatially close (18B bottom 

right), likely due to their proximity along the linear sequence. Notably, genes in Class C23 also 

show significant tendency of spatial colocalization. The average relative density of C23 genes 

within the first shell is more than two folds of that of all genes. That means, some C23 genes not 

close along the linear sequence come close together spatially. Spatial clustering of genes from a 

HMM class can also be visualized from a two-dimensional plot of bins on chromosome 14 based 

on bin-bin contact frequencies from the Hi-C data (Fig. 18C). While C24 genes mainly reside in 

a number of isolated bins, most C23 genes reside in three bins that are spatially close. Further 

examinations reveal significant gene spatial clustering for all HMM classes compared to that of 

the controls (Fig. 18D), and the spatial clustering mainly takes place within each HMM cluster 

(Fig. 22B). These results indicate that it is a general phenomenon that genes sharing a common 

upstream regulator have higher tendency of spatial clustering. 

We also examined how the genes within the first shell of a tagged gene are distributed 

along the chromosome sequence (Fig. 22C). While a large contribution comes from genes that 

are already close along the chromosome sequences, some gene elements as far as ~ 50M bp apart 

are brought together spatially. These observations are also consistent with other reports that 

transcription factors play a key role of pulling distal chromosome elements together174,282. 
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3.2.4 Temporal switching between AP1 hetero- and homo-dimers fine tunes local 

chromosome structures and leads to different expression patterns of downstream 

genes. 

Next we examined how co-localization of co-regulated genes influences gene regulation. We 

focused on a specific bin on chromosome 14 (Fig. 19A, red), which contains 12 genes, and five 

of them are down-regulated with TGF-β treatment. One of them is gene fos that encodes 

transcription factor FOS. The FOS protein functions by forming heterodimer AP1 with another 

transcription factor, JUN. AP1 binds to DNA and recruit other factors to bind to transcription 

initiation complexes of targeted genes and increase their expression activities283. The other four 

genes in the bin have AP1 binding enhancers, and DREM2 analysis identified FOS and JUN as 

the key regulators for them (Fig. 22D). Therefore a common local chromosome environment and 

a common regulator AP1 likely contribute to the similar expression pattern of these genes. In 

later discussions we call this bin as the “fos-bin”. 

To examine whether there is a larger spatial cluster of genes sharing a common regulator 

FOS, we expanded the analysis to genes in bins that are close to the fos-bin based on Hi-C 

results (with bin-bin distance < 8 a.u.) (Fig. 19A), which contain ~ 100 DE genes. The histone 

modification patterns among these groups do not show significant differences (Fig. 23A). 

Transcription factor binding site analysis revealed that most of them contain the core AP1 

binding site 5’-TGAG/CTCA-3’ (Fig. 19B). Interesting, the temporal expression patterns of 

these genes can be divided into four classes (Fig. 19C), decreasing as fos does (Fig. 23B, left), 

increasing similar to jun that is not within this expanded bin cluster (Fig. 23B, right), and 

transient down and up. The latter show similar initial dynamics as fos and jun. 



94 

        Then the question is how these genes subject to the same local DNA environment and co- 

regulated by AP1 can have distinct and even opposite temporal patterns. It turns out that AP1 

exist in two forms, FOS-JUN (FJ) heterodimers, and JUN-JUN (JJ) homodimers284. These two 

forms share the same core DNA binding site but with biased peripheral sequences, and the FJ 

dimer has higher DNA binding affinity than the JJ dimer does285. FJ dimer and JJ dimer also have 

distinct 3D protein complex structures284, and the lists of their target genes only partially overlap. 

A plausible working model that is consistent with known information is sketched in Fig. 19D. 

Within a large-scale 3D chromosome structure formed by these genes, both FJ and JJ forms 

further compete for binding and bridging their respective target enhancers and promoters to form 

transient enhancer-promoter complexes for gene transcription. In untreated MCF10A cells the FJ 

form dominates. TGF-β treatment leads to decrease of FOS, and increase of JUN, with the 

dominating form of AP1 shifted to the JJ form. Consequently, transcriptions of genes regulated 

by FJ only decrease, and those of genes regulated either by JJ only or by both forms increase 

with time. 
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Figure 18 A fraction of genes with similar expression pattern and controlled by the same up-stream egulators tend 

to co-localize in the 3D chromosome structure. (A) Heat map shows numbers of 1 Mb bins containing given number 

of genes and TGF-β responding genes. The orange line highlight bins that all genes within these bins are response to 

TGF-β treatment. (B) Linear and radial distribution functions of TGF-β-responding genes within two HMM classes. 

We calculated the distribution of genes at three levels: all genes used samples of all available genes. HMM genes are 

genes within indicated HMM group. DE genes are genes that shown different expression during TGF-β treatment. 

For spatial distance 1 a.u. ≈ 60 nm. (C) Spatial clustering of TGF-β-responding genes belonging to two 

representative HMM classes, respectively. Every circle indicates a 1-Mb bin. The size of a circle scales to the total 

number of genes in this bin. The gray level in a circle scales to the number of genes in the indicated class. The two-

dimensional spatial arrangement of bins within one chromosome was calculated by a fast-greedy algorithm based on 

the contact frequencies between every pair of bins from Hi-C data. The line width between two circles is 

proportional to the contact frequencies between the two corresponding bins. Background color indicates clustering 

results from fast-greedy algorithm. (D) The relative gene density of all HMM classes within the first shell of radial 

distribution. 
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Figure 19 Temporal switch between hetero- (FJ) and homo-dimer (JJ) forms of AP1 regulates downstream group of 

genes and modifies local DNA spatial structure. (A) Spatial structure of chromosome 14. The red box delimits the 

bins (purple) that have strong correlation with the fos-bin. (B) Combination of visualizing chromatin interaction map 

and FOS/JUN binding site data near the fos bin. Purple circles are the 1-Mb bins that are spatially close to the fos-

bin from Hi-C data as shown in panel A. Blue curves on the top indicate Hi-C correlation values between two bins. 

The size of a circle indicates the total number of genes in the bin. The predicted FOS and JUN binding sites are 

shown in bars. Colors of bars represent data from different cell lines and the height of a bar reflects the normalized 

peak. (C) Clustering of DE genes in the bins that defined in A. (D) Proposed model of chromosome structure change 

fine tuned by the two forms of AP1. 
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3.3 DISCUSSION 

Cellular responses typically require change of transcriptional activities of groups of genes in a 

temporally coordinated manner. Through analyzing available transcriptome, epigenome, and Hi-

C data of MCF10A cells in response to TGF-β treatment, we revealed spatial clustering of genes 

co-regulated by common factors. This co-localization may be a consequence of chromosome 

reorganization orchestrated by the common transcription factors. Reversely, this co-localization 

may also contribute to concerted gene regulation in eukaryotic cells, which can be viewed a 

further refinement of a strategy with the SIM network motif first noticed in prokaryotic cells. 

Spatial co-localization may facilitate simultaneous regulation of local chromosome environment 

of these genes, such as DNA methylation and histone modification patterns, and related local 

chromosome compaction, all of which affect gene expression activities. 

Our analysis reveals two related mechanisms to achieve the spatial clustering of genes 

subject to common regulators. Some genes reside closely in the genomic sequence and thus 

spatially as well. Genes that are linearly separated can also become adjacent through forming 

three-dimensional structures. DNA binding factors such as transcription factors and transcription 

initiation complexes can drag targeted chromosome regions together to form enhancer-promoter 

hub structures286. These structures are cell type specific and more dynamic. Consequently, we 

predict that under long time TGF-β treatment MCF10A cells undergo EMT with accompanying 

large spatial rearrangement of chromatins, so genes in the upregulated HMM classes (e.g., C1 

and C2) may show higher tendency of spatial clustering after TGF-β treatment than that without 

treatment as examined here. Hi-C measurements of TGF-β treated MCF10A cells in the 

mesenchymal phenotype may test this prediction. 
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          While our analyses only provide correlation between common upstream transcription factor 

(and associated similar temporal gene expression pattern) and gene spatial localization, extensive 

studies have revealed that transcription factors actively orchestrate chromosome structure 

organization282,287,288. In this work we further propose that within a group of spatially clustered 

genes, trans-regulatory elements such as TFs can further fine-tune chromosome structures and 

transcriptional activities of individual genes that are spatially close. We identified such an 

example of two forms of AP1 regulating their target genes. The FJ and JJ form of AP1 

complexes regulate multiple cellular processes such as cell growth, proliferation, apoptosis and 

EMT through acting on different sets of target genes. Proteins in FOS family and JUN family can 

bind to form AP1. The mRNA levels of both fos and another FOS family element fosl1 were 

down-regulated starting from 12 hours after TGF-β treatment, while those of another two 

members fosb and fosl2 did not change significantly. Similarly, genes in the JUN family 

members, junb and jund, showed similar expression pattern as jun (Fig. 23C). Based on gene 

expression patterns we propose that a temporal switch from FJ to JJ forms may adjust the local 

chromosome 3D structure and target gene transcriptions. The mechanism can be experimentally 

tested through in situ chromosome structure studies. 

In summary, based on integrated analysis of transcriptome, epigenome and chromosome 

3D structural information we propose a mechanism for concerted regulation of a group of 

genes. That is, it can be achieved through sharing a common trans regulatory element and 

physical colocalization of the target genes. 
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3.4 MATERIALS AND METHODS 

Cell culture 

MCF10A cells were purchased from the American Type Culture Collection (ATCC) and were 

cultured in DMEM/F12 (1:1) medium (Gibco) with 5% horse serum (Gibco), 100 μg/ml of 

human epidermal growth factor (PeproTech), 10 mg/ml of insulin (Sigma), 10 mg/ml of 

hydrocortisone (Sigma), 0.5 mg/ml of cholera toxin (Sigma), and 1x penicillin-streptomycin 

(Gibco). Cells were incubated at 37 °C with 5% CO2. We induced the cells with 4 ng/ml human 

recombinant TGF-β1 (Cell signaling). Medium was changed every the other day.  

RNA extraction and library preparation 

Total RNA was isolated from the cell pellets with RNA extraction kit (Qiagen, Cat No. 74104) 

All the RNA products were confirmed with high quality (RQN score = 10.0) using the Fragment 

AnalyzerTM platform (Advanced Analytical Technologies, Inc). Libraries were prepared using 

NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, Cat No. E7530L) according to the 

manufacturer's instructions. Briefly, mRNA was first isolated from total RNA with oligo d(T)25 

beads (all volumes were halved except for washing step, NEB, Cat No. E7490S), and then 

purified mRNA was denatured and melted into small fragments. Next, mRNA product was 

subjected to random priming and extension for reverse transcription. After that, double-stranded 

cDNA was end-repaired, dA-tailed, adaptor ligated and then amplified after 12 cycles of PCR. 

Purification and quality control were the last step for library preparation. The final quality-

ensured libraries were pooled and sequenced on the Illumina HiSeq 4000 instrument for 150 bp 

paired-end sequencing. 
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RNA-seq data processing 

Paired-end cleaned reads were aligned to human reference genome hg19 (UCSC) using TopHat 

(v 2.1.1) with default parameters. The BAM files of mapped reads were further used to annotate 

transcripts and calculate the FPKM values using the Cufflinks, Cuffquant, Cuffnorm suite289. DE 

genes were identified between any two time points with the criteri(A) fold change >2 or < 0.5 

and FDR < 0.05. The FPKM values of genes from RNA-seq dataset were further cleanup by R. 

hierarchical-cluster of genes was performed by R package (pheatmap). DREM2 cluster was 

performed with the DREM2 software279. 

Chromosome structure establishment and distribution function calculations 

MCF10A Hi-C results were downloaded online (GEO:GSE66733). Chromosome structure was 

established by an R package (igraph). Clustering of bins was obtained with the fast-greedy 

algorithm. Details of calculating the linear and radial distributions are provided in supplementary 

materials. 

FOS/JUN binding site analysis 

ChIP-seq of FOS binding results of Hela, K562 and MCF10A; JUN binding ChIP-seq results of 

hESCh1 and hUVEC were downloaded from ENCODE. 19B (bottom) was created by 

customized R code. 

Linear distribution function 

For a tagged gene belonging to class α, we divided the flanking sequences into bins with a size of 

Δl base pairs, and the i-th pair of bins [�-i- 1�∆l, -i ∆l] and [ i ∆l,(i+ 1)∆l], i = 0, 1, etc. In the i-th 
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pair of bins, there are niα genes belonging to the same class as the tagged gene. For the 0-th pair 

of bins counting of the genes should exclude the tagged gene. The linear correlation is calculated 

as σiα
L = 

〈niα+n-iα〉α
Nα-1

, where i = 0, 1, 2, etc. Nα is total number of genes belonging to class α, and the 

average <niα+n-iα>α is performed over all genes belonging to class α as the tagged gene. 

As a control, we calculated 

σi
La=

〈ni+n-i〉α
N-1

. (37) 

where ni is the number of genes in the i-th bin, and N is total number of human genes, and 

σi
Ld=

〈ndi+n-di〉α
Nd-1

. (38) 

where ndi is the number of DE genes in the i-th bin, and Nd is total number of DE genes, 

If there were no class-specific gene clustering, we would expect that 

σiα
L = 

〈niα+n-iα〉α
Nα-1

 = 
〈ni+n-i〉α

Nα-1
Nα-1

N
=σi

La=σi
Ld (39) 

within statistical errors. 

Instead we observed significant differences between the two for some HMM classes. 

Spatial distribution function 

Here we borrowed the idea of radial distribution function from statistical mechanics. We divided 

each chromosome into bins with a size of a 250 kb. A tagged gene that belongs to class α resides 

in a bin that we refer as the tagged bin. We set to analyze the spatial distance between the tagged 

bin and another bin containing a specific gene, for which we used the Shrec3D algorithm290 to 

convert the contact frequency between two bins from hi-C data to a spatial distance. We also 
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divided the sphere centered at the tagged bin into shells with a width Δr (Fig. 22A), and defined 

the spatial correlation function between this bin and another one as, 

σαα
R (i)= 〈 nαi

(Nα-1)
V  43π�((i+1)Δr)3-(iΔr)3�

〉α, (40)

σαβ
R (i)= 〈 nβi

Nβ
V  43π�((i+1)Δr)3-(iΔr)3�

〉α, i = 0,1, etc, (41) 

where nαi  is the number of genes belonging to class α within a spherical shell (iΔr, 

(i+1)Δr), with that of the first shell excluding the tagged gene, nβi  is the number of genes 

belonging to class β within a spherical shell (iΔr, (i+1)Δr), Nα and Nβ are the total numbers of 

genes belonging to class α and β, respectively, V is the nucleus volume and we choose the unit so 

that V = 1, and the average is the same as above. 

Similarly, we defined controls as, 

σRa(i)= 〈 ni
(N-1)

V  43π�((i+1)Δr)3-(iΔr)3�
〉α, (42)

σRd(i)= 〈 ndi
�Nd-1�

V  43π��(i+1)Δr�
3
-(iΔr)3�

〉α, (43) 

where ni is the number of genes within the i-th shell, and N is total number of human 

genes, ndi is the number of DE genes within the i-th shell, and Nd is total number of human genes. 

Again the tagged gene is excluded for counting n0 and nd0. 

With similar derivation as for the linear distribution case, if there were no class-specific 

gene clustering, we would expect that within statistical errors, 

σαα
R (i)=σαβ

R (i)=σRa(i)=σRd(i),  (44) 
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3.5 SUPPLEMENTARY TABLES AND FIGURES 

Table 2 Gene ontology of DREM2 classes. 

Class index Enriched functions Fold changes 
Class 1 Metalloendopeptidase activity 16 

Heparin binding 15 
Class 2 Calcium ion binding 4 
Class 3 NA -- 
Class 4 NA -- 
Class 5 NA -- 
Class 6 Protein kinase activity 3 

Enzyme binding 3 
Class 7 NA -- 
Class 8 Proteoglycan binding 17 
Class 9 Metal ion binding 2 
Class 10 DNA binding transcription factor activity 2 

DNA binding 2 
Metal ion binding 2 
G-protein coupled receptor activity 0.13 

Class 11 NA -- 
Class 12 NA -- 
Class 13 NA -- 
Class 14 NA -- 
Class 15 Cargo receptor activity 13 
Class 16 NA -- 
Class 17 Signaling receptor activity 0.7 
Class 18 Catalytic activity, acting on a tRNA 5 

Structural constituent of ribosome 5 
Catalytic activity, acting on DNA 5 
RNA binding 3 

Class 19 Single-stranded DNA-dependent ATPase activity 40 
Histone kinase activity 33 
ATP-dependent microtubule motor activity, plus- 21 
Cyclin-dependent protein serine/threonine kinase 19 

Class 20 Thiamine pyrophosphate binding 86 
RNA binding 3 
Protein binding 1.34 

Class 21 Aminoacyl-tRNA ligase activity 13 
Structural constituent of ribosome 8 
RNA binding 4 
Adenyl ribonucleotide binding 2 
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Table 2 (continued) 

Class 22 RNA polymerase I activity 23 
Proton-transporting ATP synthase activity, 23 
Oxidoreductase activity, acting on the CH-CH 12 
snoRNA binding 12 

Class 23 Ligase activity, forming carbon-carbon bonds 50 

Coenzyme binding 5 
Class 24 NA -- 
Class 25 NA -- 

NA: no significant enrichment 
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Figure 20 MCF10A cells respond to TGF-β treatment. (A) MCF10A cells show morphological change in responses 

to 4 ng/ml TGF-β at different time points. (B) PCA clustering reveals distinct gene expression patterns over time. 
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Figure 21 Gene ontology (GO) analysis of hierarchical-clustering classes. 
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Figure 22 Genes in HMM class that are regulated by FOS. (A) Cartoon illustration of the linear and radial 

distribution functions. (B) Average density of genes within the same HMM class (diagonal) to the targeted gene or 

other HMM classes (off-diagonal) in the first shell of the radial distribution. (C) Distribution of distances along 

genomic sequence between a tagged gene and genes of the same HMM class in the first shell. (D) HMM classes 

(indicated by black arrows) containing genes that are regulated by FOS.
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Figure 23 Gene expression is regulated by transcription factor and local chromosome environment. (A) Histone 

modification level in every expression cluster. The numbers on x-axis indicate the clusters in Fig. 4B, and “A” refers 

to all genes in the region highlighted in 19A. (B) mRNA expression levels of fos and jun in MCF10A cell line. (C) 

Relative mRNA level of FOS-family genes and JUN-family genes in MCF10A cell line. 
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4.0 CELLS REORGANIZE CHROMOSOME STRUCTURE FOR COORDINATED 

HISTONE MODIFICATION AND GENE EXPRESSION DURING CELL 

DIFFERENTIATION 

A cell type transition process requires well-orchestrated global changes of gene expressions. It is 

intriguing how temporally coordinated regulation of multiple genes is achieved despite existence 

of large extrinsic and intrinsic stochasticity. One such major source of stochasticity is 

transcriptional bursting, where even under constant levels of trans-regulatory elements genes 

remain transcriptionally active for a period, then become inactive for a more extended period 

before switching back to be active. One expects that such bursting dynamics may destroy 

temporal coordination of genes that are required for specific cellular functions. We integrated 

datasets of gene expression, histone modification, and chromosome conformation during mouse 

nervous system development, and identified that genes having related functions and regulated by 

common TFs tend to cluster spatially and share similar histone modification patterns. The 

observations lead to a model that genes in proximity synchronize their transcriptions by 

synchronizing their inherently stochastic switching between histone modification states with 

different transcriptional activities. Analysis of single cell RNAseq data confirmed such 

correlated fluctuations. 
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4.1 INTRODUCTION 

During mammalian embryonic development, a totipotent fertilized egg differentiates step by step 

into differentiated functional cells with unique transcriptome profiles and chromosome structures 

that are cell type and tissue specific291. For example, in neuron development one can isolate 

pluripotent embryonic stem cells (ESC), which can be induced to differentiate into neural 

progenitor cells (NPC). The later further differentiates to neural cells that perform nervous 

system specific function292,293. Each cell type transition is accompanied with a tightly temporally 

regulated global reprogramming of gene expressions, since coordination of multiple proteins is 

often necessary for carrying specific biological processes. Unbalanced protein levels may impede 

completion of a process and ineffective usage of those proteins in high expression. Similar 

coordinated gene expression is also required in differentiated cells for processes such as cell 

cycle progression and cell motility change. 

From an engineering perspective precise control of waves of coordinated and balanced 

gene expressions is a highly nontrivial task. While systems biology analysis has identified a 

single input module (SIM, or fan-out) network motif, in which one transcription factor (TF) 

regulates and thus synchronizes expressions of multiple gene targets with related functions, this 

coordination in principle can be jeopardized by the involved stochastic processes such as 

transcription and translation in cells (Fig. 24A). This difficulty arises especially in eukaryotic 

cells, where local chromosome structures and epigenetic modification patterns critically affect 

gene promoter activities together with TFs. Specifically, single molecule studies revealed bursts 

of gene expressions, indicating that a gene stochastically switches between two or more modes 

of different transcriptional activities. While transcriptional bursting has been observed in both 
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prokaryotic and eukaryotic cells, the latter typically has longer inactive period in the order of 

hours294,295-302. This long period is comparable to the time scale of transcription, translation, and 

protein half-lives, and makes it a potential major contributor to temporal fluctuations of protein 

levels (Fig. 24B). Existence of transcriptional burst is a major source of intrinsic noises. Genes 

with uncorrelated bursting can have temporally uncorrelated expressions even if they are 

regulated by a common TF, therefore additional regulation mechanism is needed. 

Several studies reveal that local genomic environments such as chromosome structures 

and histone modification patterns contribute to transcriptional burst through modulating 

chromosome accessibility and binding affinities of gene regulatory elements303. Notably several 

histone marks affect transcriptional bursting size and frequency301,302,304-307. Consider a simple 

case that a histone exists in one of two states, with and without a specific mark308-310. Histones 

with proximity interact with each other, which lead to a collection of nucleosomes of a gene 

promoter or gene body existing in a collective state of either dominated by histones with or 

without the marks13,36,150,311. These two collective states have different gene transcriptional 

activities, and can stochastically interchange that contribute to transcriptional bursting (Fig. 

24C). Then hypothetically a mechanism that correlates epigenetic state switches of two genes 

can synchronize expression fluctuations of these genes. 

To investigate the above hypothesis, we combined data of RNA-seq, histone modification 

ChIP-seq, and Hi-C from mouse nervous system development312,313. Development of murine 

ESCs (mESC) to NPCs then neuron cortical neural (CN) cells is an experimentally well- 

characterized process. Through integrated interpretation of different types of data, we found that 

cells reorganize chromosome structures dynamically to posit some commonly regulated genes  
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with related functions spatially close. Our model analysis predicts such spatial colocalization 

results in correlated histone modification state switching and gene expression, and the latter was 

subsequently confirmed through analyzing single cell RNAseq data. 

Figure 24 Gene regulation and bursting expression. 

(A) Schematic of the SIM module in gene regulation. (B) Asynchronized bursting expression of two genes. (C)

Transcription activities of a gene is regulated by collective histone modifications. 
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4.2 RESULTS 

4.2.1 Genes with related functions tend to be co-regulated by common TFs during cell 

differentiation 

We first performed Dynamic Regulatory Events Miner (version 2.03, DREM2) analysis on 

available RNAseq data313, which combines time series clustering with pre-established 

transcription networks to classify genes using a Hidden Markov Model (HMM)278,279. The 

analysis clustered over 12,000 differentiated genes (DE) out of ~24,000 overall genes into seven 

final classes (Fig. 25A, PA3-PA9), and identified a small number of master TFs that regulate 

their expression and form SIM motif structures (e.g. in Fig. 25B). Table 3 shows the first ten TFs 

that play key rules in each splitting pathway. The score split indicates the probability of having a 

greater value than the number of genes assigned to be regulated by targeted TF. A lower score 

split associates to more significance. Split % is the percentage of the number of genes regulated 

by targeted TF out of the parent path. For example, REST is the top key TF in pathway 4 that 

regulates proteins and miRNAs with functions related to neuron development etc., and a number 

of TFs such as SP1, HDAC1 that are required in nervous system development and cell fate 

decision. GO analysis also shows that genes within one class have related functions (Fig. 29). 

For example, genes that relate to nervous system development and neuron are enriched in PA4 

and PA5 classes. 



114 

Table 3 Key TFs of DREM2 classes. 

TF Score Split* % Split** 

PA1 

REST 1.27E-19 60.2 

EGR1 3.46E-15 58.43 

EGR3 3.40E-12 57.04 

EGR4 9.90E-12 61.69 

TEAD2 1.14E-11 61.85 

EGR2 1.28E-11 56.81 

ZFP219 2.46E-11 61.93 

POU2F1 1.13E-10 53.61 

WT1 1.86E-10 61.01 

HIC1 3.45E-09 57.81 
PA2 

PITX2 3.41E-36 66.86 

ELK4 7.96E-19 59.83 

RB1 5.56E-12 54 

E2F5 9.26E-12 53.79 

E2F2 9.26E-12 53.79 

TFDP2 3.09E-11 52.57 

NFYB 9.44E-10 48.44 

HLF 8.93E-08 48.83 

NFYA 1.28E-07 46.69 

E2F4 5.80E-07 45.71 

PA3 
PPARA 3.62E-06 16.57 

TLX1 2.72E-05 17.92 

TMEM37 3.70E-05 15.57 

PGR 3.70E-05 15.57 

ERF 5.54E-05 17.68 

NR3C1 7.88E-05 15.13 

PIK3R3 1.11E-04 17.4 

ERG 1 1.11E-04 17.4 

PSMD12 1.11E-04 17.4 

FSCN1 1.11E-04 17.4 

PA4 

REST 2.08E-49 50.52 

POU2F1 3.99E-23 37.27 

MEF2A 2.27E-21 38.15 

LHX3 2.56E-14 46.96 

POU2F2 3.33E-13 41.39 

SLC22A1 3.33E-13 41.39 

VSX2 2.51E-12 45.03 

ONECUT2 4.72E-11 44.18 

CUX1 7.75E-11 34.25 

POU3F2 2.73E-10 35.67 

PA5 

ZBTB7A 2.15E-22 51.53 

TRP53 3.70E-19 41.61 
SMAD4 8.74E-18 42.86 

SMAD1 1.86E-16 45.19 

ZIC2 2.43E-15 47.8 

USF2 4.52E-15 40.95 

ESCO1 4.50E-15 48.06 

CTF1 4.50E-15 48.06 

SMAD3 1.60E-14 41.56 

EP300 1.64E-14 47.12 

PA6 

PITX2 4.07E-21 87.5 

ELK1 1.23E-14 62.5 

ELK4 9.36E-13 72.99 
NRF1 1.37E-08 59.55 

NFYA 8.14E-07 56.07 

NFYB 1.18E-06 56.84 

YY1 1.57E-06 55.72 

GABPA 7.55E-06 56.19 

FLI1 2.23E-04 55.74 

CUZD1 2.23E-04 55.74 

PA7 

SMAD3 4.72E-30 34.17 

SMAD7 6.73E-30 42.05 

SMAD5 6.73E-30 42.05 

SMAD6 6.73E-30 42.05 
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Table 3 (continued) 

SMAD2 6.73E-30 42.05 

SMAD1 1.64E-29 36.92 

SFPI1 2.52E-26 33.56 

SMAD4 3.67E-26 30.46 
KLF12 3.25E-25 39.78 

ZIC2 4.05E-25 39.27 

PA8 

SRF 3.71E-12 59.46 

MEF2A 2.99E-11 58.14 

ZFP238 1 1.34E-10 70.72 

ELK4 5.36E-10 65.37 

FOXD3 1.23E-07 61.52 

NKX3-1 2.66E-07 60.44 

EGR2 2.27E-06 58.29 

FOXF1A 3.37E-06 62.5 

CREB1 1.19E-05 54.24 

ATF6 1 1.68E-05 57.05 

PA9 
RB1 1.85E-10 59.21 

E2F5 2.39E-09 58.03 

E2F2 2.39E-09 58.03 

NFYB 2.97E-05 49.73 

NFYA 4.18E-05 49.11 

TFDP2 3.40E-03 48.82 

E2F7 4.09E-03 49.62 

OTX1 0.046 47.55 

OTX2 0.046 47.55 

TFDP1 0.172 43.28 

* The score split indicates the probability of having a greater value than the number of genes

assigned to be regulated by targeted TF.  

** Split % is the percentage of the number of genes regulated by targeted TF out of the parent 

path. 
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Figure 25 DREM2 analysis clusters DE genes based on gene expression and involved regulatory TFs. (A) Gene 

clustering based on the DREM2 algorithm. (B) Regulation network describing regulation of REST on targeted 

genes. 

 
 
 
 



117 

Figure 26 Relationship between gene expression and chromosome localization. (A) Distributions of genes grouped 

by DREM2 clustering along the linear DNA sequence. (B) Spatial rearrangement of chromosome 1 structure during 

differentiation of ESC to NPC then CN cells. Each node in the plot represents an 1-Mb genome bin. The line width 

between each pair of nodes is proportional to the Hi-C contact frequency. Fast- greedy algorithm was used to 

calculate clustering of the nodes. (C) Radial distributions of genes belonging to each DREM 2 class. Each bin 

represents a 50-kb genome bin. Roughly 1 a.u ≈ 60 nm 
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4.2.2 Co-expressed genes tend to cluster spatially. 

To investigate the relation between gene expression and local chromosome environment, we 

analyzed the spatial arrangements of genes based on the HMM clustering. First, under 250 kb 

resolution, genes in the same DREM2 class tend to cluster along the DNA sequence compared to 

reference genes (Fig. 26A). A finer 50-kb bin analysis shows that the clustering actually mainly 

take place within the first 100 kb. These results indicate that there is certain build-in tendency in 

the DNA sequence to cluster genes with related functions and common regulatory elements 

together. 

Consider that DNA is a three-dimensional entity, it is natural to ask whether gene 

clustering is beyond the linear sequence. Indeed recent studies uncovered several basic features 

of chromosome structures, such as topologically associated domains (TADs) and larger meta- 

TAD structures. Enhancers, super-enhancers, and other long-distance cis-regulatory elements 

work cooperatively with trans-regulatory elements such as TFs and lnRNAs orchestrate these 

three-dimensional structures174, and drag DNA segments far from each other along the linear 

sequence spatially close. Hi-C data reveals large spatial reorganization of the chromosome three- 

dimensional structure during neuron cell differentiation (Fig. 30A). To better visualize such 

reorganization, we designed a two-dimensional representation, and figure 4.3B shows example 

plots of chromosome 1. In these plots, each circle represents an 1-Mb bin, with widths of the 

edges being proportional to the Hi-C contact frequency between two corresponding bins. We 

arranged the bins in the plot through a fast-greedy clustering based on Hi-C contact frequencies 

of ESC cells. The clustering analysis shows that the bins spatially segregate into several clusters, 

with some bins separated by 100 Mbs or more reside closely in the three-dimensional space. 

Next to compare structures of different cell types, we fixed the arrangement of the bins on the 
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plots, using only the edges to reflect changes of the contact frequencies. From ESC to NPC, there 

is a large concerted reorganization of the last one-third part of chromosome 1, reflecting a major 

cell type change from multipotent stem cells to a specific cell lineage. We observed genes related 

to nervous system development, such as brinp2/3, astn1, et.al., in that region. Similarly there are 

scattered chromatin changes from NPC to CN. Overlaying the 2D structure of all three cells 

reveals some strong links that exist uniquely in NPC cells. That is, these DNA conformation 

structure appear transiently during differentiation from ESC to NPC, then disassemble during 

differentiation from NPC to CN. 

To quantify the relationship between gene spatial clustering and gene co-regulation in 

neuron cell differentiation, we performed a radial distribution function analysis on genes within 

each DREM2 class. Again, we divided chromosomes into 50 kb bins and align genes into bins 

based on their location. Then, we used Hi-C data with 50 kb resolution and calculated the 

relative spatial distance between every pair of bins on the same chromosomes in the three types 

of cells using the Shrec3D algorithm290. Next, we calculated the radial distribution of genes in 

each HMM cluster, which reflects the extent of co-localization of genes both linearly close and 

separated. First, we observed that compared to all genes or all differentiated genes, genes in 

specific HMM class have higher tendency to cluster spatially. For example, in ESC cells, genes 

in HMM class PA4 or PA9 have higher density in the first spatial bin (≤ 60 nm) compare to 

references genes or all genes (Fig. 26, left column). Moreover, if we compare gene densities of 

every HMM class near one targeted genes, we reached similar conclusion that genes within the 

same HMM class as the targeted gene have higher density around this targeted genes than genes 

in other HMM (Fig. 30B). These observations indicate the spatial localization of genes correlate 

with their regulation. Next, we performed the same analysis on other cell types during ESC 
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differentiation, and observed similar pattern of gene clustering (Fig. 26C, Fig. 30C). The 

comparison also reveals cell type specific chromosome reorganization. For example, In HMM 

class PA4, genes are more spatially clustered in CN cells than in others; while genes in HMM 

PA9 have higher tendency of clustering in ESC cells. Interestingly, comparing gene density of 

every HMM class in the initial ESC and final CN cells, genes in the sub-branches of PA2 (HMM 

PA7-PA9) and PA3, which are down-regulated during neuron development, tend to have higher 

density in ESC than CN. In contrast, genes in PA4 and PA6, which are up-regulated during cell 

differentiation cluster more in CN than ESC (Fig. 30C). This scenario indicates that active genes 

cluster more spatially. 

Taken together, we classified genes into different DREM2 class based on both their 

expression levels and key regulators. A radial distribution analysis shows close relationship 

between the DREM2 class of genes and their spatial co-localization. The latter changes during 

cell type transition. 

4.2.3 Co-localized and co-regulated genes also have stronger correlation on histone 

modification patterns. 

Previous studies showed that genes expression levels are related to local epigenetic modifications 

on chromosomes179. Neural cell differentiation is accompanied with genome-wise 

reprogramming of epigenetic modifications. Therefore we set to examine the relationship 

between gene spatial distribution and histone modifications by focusing on a specific hot region 

identified from the above combined DREM2 and Hi-C data analysis. Genes in this chromosome 
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chromosome region need to be in the same DREM2 class and thus functional related. The region 

should also be in proximity with some distal chromosome regions so we can analyze whether 

and how genes from these different regions are co-regulated. 

The region we chose is on chromosome 1, which we named regionact. All four genes 

within regionact have increased expression during neural cell differentiation, and three of them 

are required in the nervous system. For example, astn1, which highly expresses in cortex and 

frontal lobe, relates to neuronal migration314. BMP/retinoic acid inducible neural specific 2 

(brinp2) encodes the important neural cell specific proteins315. During neural cell development 

there is clear spatial reorganization between regionact and several other bins. Figure 27A shows 

correlation among bins near regionact. Strong interactions exist between regionact and one of its 

neighbors in ESC, which become much weaker in CN cells. Instead, interactions between 

regionact and two bins nearby on each side appear significantly stronger in CNs. That is, genes in 

regionact. form stronger contacts to both bins during the transition from ESC to CN. 

Next, we analyzed the epigenetic features in regionact and regions clustered to it during 

cell type transition. We examined three typical histone modification marks, H3K4me1, 

H3K27ac, and H3K27me3, which are strongly associated to gene activity. The histone 

modification data of ESC is obtained from Santos lab. Those from CN are obtained from Bonev 

et.al.313. We aligned the histone modification ChIP-seq location to chromosomes. Then we 

compared ranks of local histone modification levels among three cell types. Figure 27B 

combines information of gene expression, DNA dynamics, and histone modification levels. The 

red curves on the top indicate that the two underlying regions become physically closer to each 

other with the transition from ESC to CN. The green curve indicates that the two regions are 

physically closer in ESC than in CN cells. Under the curves, seven colors are used to distinguish 
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genes in different DREM2 class. For convenience of inspection genes in PA4, the class all genes 

in regionact belong to, are singled out and re-drawn underneath. Interestingly, three regions under 

the red curves have more similar pattern of change in H3K4me1 and H3K27ac. All of them 

acquire more active histone modifications in CN cells. The two regions under green curve have 

opposite changes of histone modification level. Analysis on the differences of histone 

modification between ESC and CN shows that genes physically close tend to have similar 

histone modification patterns. 
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Figure 27 Commonly regulated genes tend to cluster spatially and have similar histone modification(A) Contact 

frequencies of selected regions on chromosome 1 based on high resolution Hi-C map. The lines in green, blue, and 

red are correlation between pairs of bin in ESC and CN samples, respectively. When overlaid, the overlapping lines 

turn to black. The width of a line represents the correlation between bins. The center bin is the targeted spatial bin. 

(B) Combination of visualizing chromatin interaction map of targeted region and changes of histone modification

during neuron system development. Red curves on top are the regions have significant stronger interaction in CN 

cells. Green curve links two regions that have closer distance in ESC. Colors of bars immediately under curves 

represent genes in different HMM class. Height of histone marks is the differences of histone modification level 

from ESC to CN (histone level in CN – histone level in ESC). 
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Figure 28 Transcriptions of functionally related genes in proximity are correlated.(A) Variances of genes among 

single cells are normally large. Left: Representative genes in regions near regionact.Right: variances of all D4 genes 

from single cell data. (B) Correlation coefficient of genes in chromosome 1 (left) and zoomed in figure of targeted 

map (right). (C) Histograms of distance distribution between pair of genes with high correlation coefficient (> 0.7) 

in different cell types (top). Relationship between correlation coefficient and spatial distance of pair of genes in 

different cell types (bottom)  
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4.2.4 Co-localized genes have both similar histone modification patterns and 

more synchronized transcriptional bursting 

The observation that colocalized genes tend to have similar histone modification patterns can be 

explained from cooperative histone modification reading-and-writing mechanism discussed in 

previous studies.311,316-318 That is, a nucleosome with certain histone mark may facilitate 

recruitment of the corresponding enzymes to neighboring nucleosomes and adding the same 

mark. Consequently, genes that are spatially close tend to have similar histone modification 

patterns. More importantly, the stochastic switching dynamics of the histone modification states 

of the genes tend to be synchronized. Since histone modification state switching of the gene 

promoter or gene body is a major contributor to transcriptional bursting, the model predicts that 

the bursting dynamics of these genes is better synchronized. 

To test this prediction, we analyzed the expressions of 153 DREM2 PA4 class genes on 

chromosome 1 using existing single cell RNAseq data of 434 mouse brain cells 312. All the genes 

show large cell-to-cell variations of readings of the transcripts, typically spanning several 

decades (Fig. 28A). Each pair of the genes shows positive correlations, which is not surprising 

since these genes are regulated by common TFs (Fig. 28B). Noticeably a number of pairs, 

including some well-separated (5 - 35 Mbs) along the DNA sequence, show significantly higher 

(> 0.7) correlations. That is, these pairs of genes tend to have either correlated high or low 

expression in individual cells. Comparing these genes and Hi-C data reveals that they are 

spatially close. 

To further analyze the relationship between the correlation coefficient and spatial 

distance of genes in genome-wide, we picked all pairs of genes that have correlation coefficient 

higher than 0.7 and plot their spatial distances (Fig. 28C). The results show obvious changes of 
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the spatial distance distribution accompanied with differentiation of ESC to CN. Generally 

speaking the chromosomes become increasingly more compact from ESC to CN (Fig. 28C, top). 

However, some pairs of genes have larger distance in CN than in ESC. For example, pairs of 

genes in red circles are further from each other during cell differentiation. Therefore the single 

cell RNAseq data corroborates the prediction that spatially localized genes can synchronize their 

transcriptional bursting. 

4.3 DISCUSSION 

An intriguing observation is that biological systems can achieve remarkable performance, often 

to the limit set by physical laws, despite large environmental noises and intrinsic stochasticity of 

processes involved. Studies at single molecule and single cell levels have demonstrated 

transcriptional bursting, i.e., the stochastic activation and inactivation of gene promoters that lead 

to discontinuous and bursting synthesis of mRNAs. The universal existence of transcriptional 

bursting suggests that this existence is inherent and largely unavoidable for the transcriptional 

process especially in eukaryotic cells, and contributes to cell heterogeneity. This observation 

raises a serious question on how cells minimize effects of this type of stochasticity with its time 

scale comparable to the transcriptional and translational processes. 

In this work we discovered a simple and effective strategy cells use to coordinate 

expressions of multiple genes, i.e., synchronizing instead of reducing transcriptional bursting of 

different genes. Mechanistically it is achieved by physically clustering genes with related 

functions and regulated by common TFs. Due to cooperativity of histone mark reading-and-

writing among spatially close nucleosomes, two genes in proximity synchronize their stochastic 
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switch of histone modification states. Since the latter is a major contributor of transcriptional 

bursting, transcriptional events of the two genes are temporally correlated, albeit stochasticity of 

each event may not be much affected. 

Our proposed mechanism has a number of testable predictions. First we predict higher 

temporal expression correlation between two functionally related genes in physical proximity 

compared to that between two that are also functionally related with a common regulator but 

resides distally in the nucleus. Analysis of single cell RNAseq data have confirmed such 

increased expression correlation. The temporal correlation can also be tested directly with live 

cell imaging using two-color transcription reporters incorporated at the endogenous sites of 

selected pairs of genes302. We expect to observe transcriptional bursting as in existing live cell 

studies in the field, but with the two signals showing strong temporal correlation. Recent 

advances of CRISPR-based gene editing can facilitate such study319. Another prediction is 

related to the histone modification patterns of these two groups of functionally related and co- 

regulated genes. We predict that in both cases genes show cell-to-cell heterogeneity of levels of 

some histone modification marks, reflecting existence of multiple states; but those genes in 

proximity show higher correlation than those in distance do. Experimentally one can again 

generate a cell line with reporter sequence being inserted to a specific gene, sort cells with high 

and low reporter signals and for each group perform CHIP-PCR analysis against histone marks 

under study for the tagged and other genes in the same DREM2 class. Using results with 

unsorted cells as references, for genes that are in proximity with the tagged gene we expect to 

observe significant correlation of histone mark levels between them, while for genes that are 

distal to the tagged gene there is no significant sign of additional correlation with respect to the 

reference. 
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In this study we focused on how spatial clustering affects histone modifications and its 

implications on transcriptional bursting and coordinated gene expression. It is possible that 

spatial clustering also affects other aspects of gene regulation such as enhancer-promoter 

interactions, which may also influence transcriptional bursting320. Clustering of genes regulated 

by a common TF also facilitates the TF to search for the targets. That is after it dissociates from 

one binding site, it can easily locate another one nearby. This so-called serial ligand rebinding 

mechanism has been discussed in the context of bacterial chemotaxis321. Since the typical target 

searching time for a TF is much shorter than the period between two transcriptional bursting 

events, we do not expect such mechanism contribute much to synchronize transcriptional events 

of two proximal genes. 
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4.4 SUPPLEMENTARY MATERIALS 

Figure 29 GO analysis of genes in every HMM classes. 
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Figure 30 Dynamic change of chromosome structure during cell differentiation. (A) Top: Heatmaps from 250 kb-

resolution HiC data of ESC, NPC, and CN cells, respectively. Bottom: Differences of the correlation between pair of 

bins. (B) Average density of genes within the same HMM class (diagonal) of the targeted gene or other HMM 

classes (off-diagonal) in the first shell of the radial distribution in ESC and CN. (C) Changes of average density of 

genes compared to all genes’ density in the first shell of every HMM class from ESC to CN. 
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5.0 CONCLUSION 

5.1 SUMMARY 

In multicellular organisms, development starts from differentiation of totipotential stem cells 

step-by-step to functional cells. Cells need to maintain stable cell phenotypes, and be phenotypic 

plastic for development and in response to stress, where cells often need to choose one fate 

among others and undergo phenotype transition22,197. In response to signals, groups of cells are 

required to transit in a coordinated manner47,322. Cell fate decision and cell phenotype transition 

involve changes of almost every aspect of cell physiology, such as cell shape, cell movement, 

cell cycle, primary and secondary metabolism. These functional changes require coordinated 

synthesis and degradation of collaborative proteins, such as structure proteins, regulated proteins 

(TFs), and enzymes. Thus, coordinate regulation of multiple proteins is a key for cell phenotype 

transition. 

In this dissertation, I presented mechanistic studies on gene regulation during cell 

phenotype transition at different levels. First, I investigated functions of the core TF network for 

cells to interpret the external signals. In this project, I used TGF-β induced EMT in MCF10A 

cells as the model system. The results show a nested TF network that can detect duration of 

external signals. Thus, cells remain as epithelial cells in response to short pulse signals, but have  
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flexibility to acquire mesenchymal features if the stimulation is strong and continuous. The 

nested network also helps in synchronizing cell responses. Thus, despite inherent cell-cell 

heterogeneity cells can respond together to fulfill specific functional requirements. 

Next, to understand balanced expression levels of multiple gene regulation can be 

achieved from different regulatory levels, I used TGF-β induced EMT in MCF10A cells and 

cortical neuron differentiation from ESC in mouse as model systems, and analyzed combined 

data of gene expression (RNA-seq), DNA conformation (HiC), and histone modification (ChIP- 

seq). Our analysis showed that besides TFs binding or local histone modification levels, cells 

cluster some functionally related genes spatially together to coordinate their expression 

correlation. Specifically, single molecule and single cell studies reveal that most eukaryotic 

genes show stochastic transcriptional bursting, which is a major reason for heterogeneous gene 

expression among isogenic individual cells. By clustering spatially, functionally related genes 

share more common histone modification features compared to genes regulated by the same TF 

but reside at distant locations, and have more synchronized transcriptional bursting and 

correlated expression fluctuations. 

 
 
 

5.2 FUTURE PERSPECTIVE 
 
 
Stochasticity and determination are two important aspects for cell phenotype transition4,323,324. 

Stochasticity can lead to heterogeneity among a group of isogenic cells. This heterogeneity is 

concealed with experimental measurements at bulk levels, in which the observed quantities are 

population averaged. Thus the information within single cells is simply overlooked. Currently, 

with technological advances, one can extract quantitative information from single cells. In the 
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near future I expect that to see more exciting single cell studies on cell phenotypic transitions. 

Below I just briefly discuss a number of possible directions. 

In my published single cell studies on EMT13,325, we worked with fixed cells. While it is 

convenient to obtain a large number of samples, temporal correlation of an observable is missing 

with fixed cells. A complementary strategy is to track individual cells over time with life cell 

imaging. Fluorescence labeling of target proteins is often used in time-lapse imaging, but 

generating the labeled cell lines can be time consuming and technically challenging. 

Development of CRISPR-based gene editing techniques greatly changes such situation, and 

allows efficient inserting fluorescence protein sequences into the endogenous sites of targeted 

genes. I was involved in developing an efficient procedure of generating the knockin DNA 

constructs and cell lines319. The Xing lab is applying the technique for EMT studies. The lab is 

also using the technique to generate cell lines for MS2-based live cell imaging of mRNAs. For 

processes like EMT where cells undergo large morphological change, even tracing cell 

morphology over time with bright-field imaging can reveal much important information. I was 

involved in the project of developing an efficient deep learning algorithm for cell 

segmentation326, which makes image analysis more convenient. 

In Chapter III and IV I presented my analyses on chromosome structure and gene 

regulation. All the chromosome structure data are obtained from fixed cells. Recently several 

live cell chromosome labeling techniques have been developed. Notably the CRISPR system has 

been repurposed to label specific chromosome loci with catalytically deactivated Cas9 and RNA 

aptamers327-335. The Xing lab has improved this CRISPR-dCas9 chromosome labeling system, 

and I am collaborating with other group members to apply the technique to test the AP1 

dynamics predicted in Chapter III. 
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Meanwhile, there also continuous improvements on single cell techniques with fixed 

cells. For example, the efficiency of high throughout single cell RNA-seq analysis has been 

dramatically improved while the cost being greatly reduced. Several recent studies reconstructed 

differentiation processes from single cell RNAseq measurements of tens of thousands of 

cells336,337. Similar, other traditional biochemical technologies also turn to single cell levels, such 

as single cell PCR, single cell ChIP-seq, and single cell Hi-C. All of those technologies are 

quickly advancing biomedical and basic life science researches. 
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