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A HYBRID FILTERED DENSITY FUNCTION SPECTRAL-ELEMENT

LARGE EDDY SIMULATOR

Krisda Tapracharoen, PhD

University of Pittsburgh, 2018

This dissertation is focused on the development of a hybrid scheme, combining the spectral-

element method (SEM) solver with a Lagrangian Monte Carlo (MC) filtered density function

(FDF) simulator for large eddy simulation (LES) of turbulent flows. The methodology is

shown to be suitable for LES, as a larger portion of the resolved energy is captured as the

order of spectral approximation increases. The consistency and the overall performance of

the SEM-MC solver, and the realizability of the simulated results are demonstrated via LES

of a temporally developing mixing layer under both non-reacting and reacting conditions.

The effects of grid resolution and polynomial order (h−p refinement), and ensemble average

size (∆E) are studied. The computational scheme is fully parallelized via the message passing

interface (MPI) methodology.

Keywords: large eddy simulation; filtered density function; Monte Carlo methods; spectral-

element method.
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1.0 INTRODUCTION

Modeling and simulation of turbulent flow have been a challenging task for over a century

[2]. Direct numerical simulation (DNS) is one of the methods in which the Navier-Stokes

equations are solved directly without the use of turbulence models [3]. However, turbulence

has spatial scales that range from the very large, energy containing to the small, dissipating,

Kolmogorov scale. The ratio of these scales is directly proportional to the Reynolds number.

As the Reynolds number is of the order of thousands for practical problems, the range of

scales is enormous. For an accurate solution, the smallest grid spacing needs to be approxi-

mately the same as the Kolmogorov scale so that the dissipation is captured accurately [4].

The accuracy by which the scales are represented also depends on the numerical method.

A low order scheme requires a more significant number of grid points than a higher order

scheme to approximate the solution with the same accuracy.

Large eddy simulation (LES) is one of the ways to alleviate the computational cost by

filtering the transport equations [5]. Effectively, LES captures the dominant large scale

behavior of the flow and models the effects of the small scale eddies. In LES, the large scales

which are, anisotropic, are sensitive to boundary conditions and are computed directly. The

small scales are more isotropic, universal, and are modeled. Modeling of the small scales

reduces the computational cost, while the computation of the large scales provides detailed

flow-field information. In LES of reactive flows, modeling of chemical reaction imposes an

extra burden. There have been many attempts to model the effects of turbulence-chemistry

interactions [6–10].

Probability density function (PDF) method for solving the Reynolds-averaged Navier-

Stokes (RANS) equations has been very effective in turbulent reactive flows [11, 12]. In the

early stage of the development, the shape of PDF is parametrized using a few parameters
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[13]. The most popular distribution is the so-called β-function [14]. When more than one

parameter is to be considered, constructing a multi-dimensional PDF becomes more difficult

[15]. Pope [16] developed the PDF transport from its evolution equation. In this method,

the flow is represented by the joint PDF of velocities and scalars. The mean velocity and

Reynolds stresses can be calculated from first and second moments respectively. Givi [17]

and Pope [18] introduced the filtered density function (FDF) to account for the effects of

subgrid scale scalars. The primary advantage of FDF is that it provides a closure for the

effect of the chemical reaction. To deal with variable density flow, the filtered mass density

function (FMDF) [19] is developed. The most sophisticated FDF closure available to-date is

pressure-energy-velocity-composition filtered mass density function [20]. FDF has proven to

be very effective for LES reactive turbulent flow [21–33]. For its numerical simulation, the

FDF is represented by an ensemble of Monte Carlo (MC) particles.

Numerical schemes determine the fidelity of LES. Numerical errors in space and time can

smear the solutions as well as dissipate turbulence which leads to inaccurate results. Ghosal

[34] shows that for low-order finite difference schemes, the truncation error may be more

significant than modeled sub-grid stresses unless the filter width is significantly larger than

the grid size. Kravchenko and Moin [35] show that for low-order finite difference schemes

(2nd and 3rd order), the energy spectrum is heavily distorted by truncation errors, and the

contribution from the sub-grid model becomes negligible. They also show that low-order

schemes have large dispersion errors, and reduce the temporal accuracy.

Finite element methods (FEM) have been effective for turbulent flow simulations [36].

The essential components of this method are the trial and the test functions. The trial

functions are used as the basis functions for a truncated series expansion of the solution.

The test functions are used to ensure that the solutions are satisfied as closely as possible by

the truncated series expansion. The error in the solution produced by using the truncated

expansion instead of the exact solution is called the residual. The coefficients in the trial

function are computed by minimizing the residual. The choice of the trial function is one

of the features that distinguish various numerical schemes. The trial functions for FEM are

low-order local functions [37]. In FEM, the domain is divided into small elements, and a low-

order trial function is specified within each element. Thus, it is well suited for dealing with
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complex geometries. In Galerkin-FEM, the test functions are the same as the trial ones [38],

while in collocation methods, the test functions are the Dirac delta function centered at the

collocation points. The main difference between FEM and spectral method is that the latter

uses trial functions that are non-zero over the whole domain, while FEM uses trial functions

that are non-zero only on the sub-domains. For the spectral accuracy, the residual decays

faster than any inverse power of the highest retained mode provided that both the function

and all its derivatives are smooth [39]. The major drawback for the spectral method is that

the approximation of the flow variables with one polynomial dictates a simple geometry. The

spectral element method (SEM) is introduced by Patera [40]. It combines the accuracy of

single domain spectral schemes with the flexibility of FEM. In SEM, the spatial resolution

can be altered either by increasing number of an element (h-refinement) or by increasing

the polynomial order within the elements (p-refinement) [41]. It combines many features

including high-order approximation, robustness, and easiness to implement in parallel.

The FDF needs to be combined with a base flow solver. There are many attempts to

combine FDF with different numerical schemes, such as finite difference and finite volume

[42–50]. Despite its popularity, a major challenge associated with FDF is its implementation

on high-order numerical schemes. Sammak et al. [51, 52] combine high-order Eulerian dis-

continuous Galerkin (DG) with an MC solution of the FDF. Another challenge associated

with combining high-order numerical scheme and MC solver is the amount of its compu-

tational requirements [53]. Message passing interface (MPI) is the standard of exchanging

messages between multiple processors running a parallel program across distributed memory

[54]. For SEM, the domain is split up into smaller sub-domains, and are allocated to different

processors.

The objective of this dissertation is to assess the capability of the SEM-MC solver for

LES of reactive flow at low Mach numbers. The consistency of the solver is then evaluated by

comparing the moment of FDF with those obtained by SEM. The effects of polynomial degree

and grid size are studied. In the reacting case, the consistency of the FDF is investigated by

considering the compositional structure in the mixture fraction domain. This dissertation is

organized as follows. First, all of the governing equations are presented in Chapter 2. Then,

the numerical schemes for solving the base flow and the FDF are given in Chapter 3. All the

3



simulation results are presented in Chapter 4. Finally, some concluding remarks are finished

in Chapter 5.
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2.0 FORMULATION

2.1 BASIC EQUATIONS

The governing equations for variable density, viscous, reactive flow are the conservation

of mass, momentum, energy and species. The transport variables are the density ρ(x, t),

velocity vector ui(x, t), pressure p(x, t), total energy E(x, t) and species mass fraction φα(x, t)

(α = 1, 2, ..., NS). The conservation equations are:

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.1)

∂ρui
∂t

+
∂ (ρuiuj + pδij)

∂xj
=
∂σij
∂xj

, (2.2)

∂ρE

∂t
+
∂ (ρEuj + puj)

∂xj
= −∂qj

∂xi
+
∂σijui
∂xj

, (2.3)

∂ρφα
∂t

+
∂ρφαuj
∂xj

= −
∂Jαj
∂xj

+ ρSα, α = 1, 2, ..., NS. (2.4)

The chemical reaction source terms Sα(φ(x, t)) are function of all of a scalars. The total

energy, the viscous stress tensor, the heat flux and the scalar fluxes are:

E = e+
1

2
ukuk, (2.5)

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (2.6)
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qj = −λ ∂T
∂xj

, (2.7)

Jαj = −ρΓα
∂φα
∂xi

. (2.8)

where µ is the dynamic viscosity, λ is the thermal conductivity, e is the internal energy, γ

is the specific heat ratio and Γα is the mass diffusion coefficient of species α. the Schmidt

number (Sc = µ
ρΓα

) is assumed to be unity ρΓα = µ. Equation of state is assumed to obey

the ideal gas law:

p = (γ − 1)ρe. (2.9)

The conservation equations can be written in the matrix form:

∂Q

∂t
+
∂Fa

i

∂xi
− ∂Fv

i

∂xi
= S, (2.10)

where

Q =



ρ

ρu1

ρu2

ρu3

ρE

ρφα


,Fa

i =



ρui

ρu1ui + pδi1

ρu2ui + pδi2

ρu3ui + pδi3

ρ (ρE + p)ui

ρφαui


,Fv

i =



0

σi1

σi2

σi3

−qi + ukσik

µ∂φα
∂xi


,S =



0

0

0

0

0

ρSα


. (2.11)

Q is the vector of the conserved variables, Fa
i is the advective flux vector, Fv

i is the viscous

flux vector, and S is the source vector. These fluxes have to be separated to advective and

viscous fluxes because advective fluxes contained just first order derivative but viscous fluxes

contain higher-order.
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2.2 FILTERED TRANSPORT EQUATIONS

In LES, the transport equations are filltered using spatial low-pass [55]:

〈Q(x, t)〉` =

∫ +∞

−∞
Q(x′, t)G(x′,x)dx′, (2.12)

where G(x′,x) ≡ G (x′ − x) denotes a filter function, and 〈Q(x, t)〉` is the filtered value of the

transport variable Q(x, t). In variable-density flows, it is convenient to use the Favré-filtered

quantity:

〈Q(x, t)〉L =
〈ρQ〉`
〈ρ〉`

. (2.13)

Application of this filter yields:

∂ 〈ρ〉`
∂t

+
∂ 〈ρ〉` 〈uj〉L

∂xj
= 0, (2.14)

∂ 〈ρ〉` 〈ui〉L
∂t

+
∂
(
〈ρ〉` 〈uj〉L 〈ui〉L + 〈p〉` δij

)
∂xj

=
∂ 〈σij〉L
∂xj

−
∂τ sgsij

∂xj
+
∂
(
〈σij〉` − 〈σij〉L

)
∂xj

, (2.15)

∂ 〈ρE〉`
∂t

+
∂ (〈ρE〉` + 〈p〉`) 〈uj〉L

∂xi
= −

∂ 〈qj〉L
∂xj

+
∂ 〈σij〉L 〈ui〉L

∂xj
−
∂qsgsj

∂xj
+
∂
(
〈qj〉` − 〈qj〉L

)
∂xj

+
∂
(
〈σjk〉` − 〈σjk〉L

)
〈uj〉L

∂xk
+

1

2

∂ 〈ρ〉`
(
〈ukukuj〉L − 〈uk〉L 〈uk〉L 〈uj〉L − τ

sgs
kk 〈uj〉L

)
∂xj

,

(2.16)

∂ 〈ρ〉` 〈φα〉L
∂t

+
∂ 〈ρ〉` 〈uj〉L 〈φα〉L

∂xj
=

∂

∂xj

(〈
µ
∂φα
∂xj

〉
`

)
−
∂Mα

j

∂xj
+ 〈ρSα〉` , (2.17)

where Mα
j = 〈ρ〉`

(
〈ujφα〉L − 〈uj〉L 〈φα〉L

)
. The filtering process leads to several terms

that require closure. τ sgsij is the sub-grid scale stress tensor and qsgsj is the sub-grid tur-

bulent heat flux. These sub-grid terms represent the effect of the unresolved scales. The

other unclosed terms are: the filtered diffusive heat flux,
∂(〈qj〉`−〈qj〉L)

∂xj
; SGS viscous dissi-

pation,
∂(〈σjk〉

`
−〈σjk〉

L
)〈uj〉L

∂xk
; viscous stress,

(
〈σij〉` − 〈σij〉L

)
; divergence of turbulent diffu-

sion, 1
2

∂〈ρ〉`(〈ukukuj〉L−〈uk〉L〈uk〉L〈uj〉L−τ
sgs
kk 〈uj〉L)

∂xj
. The last four terms in the right-hand side of

7



Eq. (2.16) can be neglected [56]. For other sub-grid scale terms, we employ the standard

Smagorinsky model [57, 58]:

τ sgsij −
2

3
〈ρ〉`Cν2∆

2S2δij = −2µt

(
〈Sij〉L −

1

3
〈Skk〉L δij

)
,

Mα
j = −µt

∂ 〈φα〉L
∂xj

,

qsgsj = cvµt
∂ 〈T 〉L
∂xj

.

(2.18)

The filtered strain rate tensor is 〈Sij〉L = 1
2

[
∂〈ui〉L
∂xj

+
∂〈uj〉L
∂xi

]
. With that, the SGS viscosity is

modeled by µt = 〈ρ〉` [Cν1∆]2S, where Cν1 = 0.2, Prt = 1, Cν2 = 0.18, γt = µt/Sct, Sct = 1,

S =
√

2 〈Sij〉L 〈Sij〉L. The parameter ∆ denotes the filter size.

2.3 FILTERED MASS DENSITY FUNCTION

The filtered mass density function (FMDF) is the mass-weight spatially filtered value of the

fine-grained density. It is defined as [19]:

FL (ψ;x, t) =

∫ +∞

−∞
ρ(x′, t)ζ (ψ,φ(x′, t))G(x′ − x)dx′. (2.19)

The term ζ (ψ,φ(x′, t)) is the fine-grained density [16, 59]:

ζ (ψ,φ(x, t)) =
σ∏

α=1

δ (ψα − φα(x, t)) . (2.20)

δ denotes the Dirac delta function, and ψ represents the scalar array in the sample space.

With the condition of a positive filter kernel [60], FL has all the properties of a mass density

function [16]. The conditional filtered value of Q(x, t) is defined as:

〈
Q
ψ〉

`
≡
∫ +∞
−∞ Q (x′, t) ρ(x′, t)ζ (ψ,φ(x′, t))G (x′ − x) dx′

FL (ψ,x, t)
. (2.21)
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The FMDF is governed by the exact transport equation [17]:

∂FL
∂t

+
∂[〈uj(x, t)|ψ〉` FL]

∂xj
= − ∂

∂ψα
[Sα(ψ)FL]

+
∂

∂ψα

[〈
1

ρ(φ)

∂Jαj
∂xj

∣∣∣∣ψ〉
`

FL

]
.

(2.22)

This equation indicates that the effect of chemical reaction (the first term on right-hand

side of Eq. (2.22)) appears in a closed form. The unclosed nature of SGS convection and

mixing is shown via the conditional filtered values in the second term on the left-hand side

of Eq. (2.22) and the second term on the right-hand side of Eq. (2.22). For closure of these

terms, the gradient diffusion model and the linear mean square estimation (LMSE) model

are adopted for convection and the molecular mixing terms, respectively [6, 19]. These are

given in terms of the stochastic differential equations (SDE) [59, 61]:

dX+
i (t) =

[
〈ui〉L +

1

〈ρ〉`
∂(µ+ µt)

∂xi

]
dt+

√
2(µ+ µt)/〈ρ〉` dWi(t), (2.23)

dφ+
α = −Ωm

(
φ+
α − 〈φα〉L

)
dt+ Sα(φ+)dt. (2.24)

where dWi is the Wiener-Levy process [62] and, X+
i and φ+

α are probabilistic representations

of the position and the scalar variables. In the model, Ωm = Cφ (µ+ µt) / (〈ρ〉` ∆2) is

the SGS mixing frequency and Cφ = 4 is a model constant. The Fokker-Planck equation

corresponding to this model is [63]:

∂FL
∂t

+
∂[〈uj〉LFL]

∂xj
=

∂

∂xj

[
(µ+ µt)

∂(FL/〈ρ〉`)
∂xj

]
+

∂

∂ψα
[Ωm(ψα − 〈φα〉L)FL]− ∂[SαFL]

∂ψα
.

(2.25)

Equation (2.25) represents the modeled FMDF transport equation. This equation may be

integrated to obtain transport equations for the SGS moments. Since the FMDF is involved

only for the scalar variable, all of the hydrodynamic SGS terms need to be modeled by other

means. To establish the consistency and convergence of the MC solver, the generalized first
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SGS moment 〈φα〉L, and the SGS variance τα ≡ τ(φα, φα) are considered. These moments

are obtained via integration of the Eq. (2.25), as given by:

∂(〈ρ〉` 〈φα〉L)

∂t
+
∂[〈ρ〉` 〈uj〉L〈φα〉L]

∂xj
=

∂

∂xj

[
(µ+ µt)

∂(〈φα〉L)

∂xj

]
+ 〈ρ〉` 〈Sα〉L, (2.26)

∂(〈ρ〉` τα)

∂t
+
∂[〈ρ〉` 〈uj〉Lτα]

∂xj
=

∂

∂xj

[
(γ + γt)

∂τα
∂xj

]
+ 2(γ + γt)

[
∂(〈φα〉L)

∂xj

∂(〈φα〉L)

∂xj

]
−2Ωm 〈ρ〉` τα + 2 〈ρ〉` (〈φαSα〉L − 〈φα〉L〈Sα〉L).

(2.27)

2.4 SPECTRAL ELEMENT

For the spatial discretization, the Chebyshev multidomain spectral method (CMSM) is imple-

mented [64, 65]. In CMSM, the computational domain, Ω, is devided into K non-overlapping

hexahedral sub-domains, Dk,

Ω =
K∑
k=1

Dk. (2.28)

Each sub-domain is mapped onto a unit hexahedron ([0, 1] × [0, 1] × [0, 1]) in 3-D using

iso-parametric mapping to ensure that the spectral accuracy is not affected by the domain

boundary approximation. Applying the mapping, Eq. (2.10) without source terms becomes

[66]:

∂Q̃

∂t
+
∂F̃a

i

∂Xi

− ∂F̃v
i

∂Xi

= 0. (2.29)

where the tilde indicates a mapped vector, Xi denotes mapped space, xi denotes physical

space. The transformation from physical space to mapped space is via the Jacobian:

Q̃ = JQ, (2.30)

J(X, Y, Z) =
∂x

∂X

(
∂y

∂Y

∂z

∂Z
− ∂y

∂Z

∂z

∂Y

)
+
∂x

∂Y

(
∂y

∂X

∂z

∂Z
− ∂y

∂Z

∂z

∂X

)
+

∂x

∂Z

(
∂y

∂X

∂z

∂Y
− ∂y

∂Y

∂z

∂X

)
.

(2.31)
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Figure 1: Diagram of a Gauss and Gauss-Lobatto grid system in two dimensions with poly-

nomial degree 3. The filled circle denotes a Gauss-Gauss-Gauss grid point (ggg), the filled

square denotes a Lobatto-Gauss-Gauss grid point (lgg), and the filled triangle denotes a

Gauss-Gauss-Lobatto grid point (ggl).

Since the domain is divided into sub-domains, the equation needs to be solved for each sub-

domain. Let Q̃
k

, F̃a
i

k
, and F̃v

i

k
denote the approximated solution, the advective fluxes, and

the viscous fluxes respectively. Substitution of these approximation into Eq. (2.29) gives:

∂Q̃
k

∂t
+
∂F̃a

i

k

∂Xi

− ∂F̃v
i

k

∂Xi

= R, (2.32)

where R is the residual. In collocation methods, R must be zero at the Gauss points:[
∂Q̃

∂t

]
i+ 1

2
,j+ 1

2
,k+ 1

2

+

[
∂F̃a

i

∂Xi

]
i+ 1

2
,j+ 1

2
,k+ 1

2

−

[
∂F̃v

i

∂Xi

]
i+ 1

2
,j+ 1

2
,k+ 1

2

= 0, (2.33)

The quadrature points for Gauss and Gauss-Lobatto grids which provide zero for the residual

are defined by Chevbyshev quadrature points:

Xj+ 1
2

=
1

2

{
1− cos

[
(2j + 1) π

2N

]}
, j = 0, ..., N − 1, (2.34)
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and

Xj =
1

2

{
1− cos

[
πj

N

]}
, j = 0, ..., N. (2.35)

on the unit interval [0, 1]. Xj+ 1
2

does not mean that the point is in between Xj and Xj+1.

Based on two grids system, two types of Lagrange interpolating polynomials are defined,

hi+ 1
2

(ξ) =
N−1∏

j=0,i 6=j

ξ −Xj+ 1
2

Xi+ 1
2
−Xj+ 1

2

, (2.36)

li (ξ) =
N∏

j=0,i 6=j

ξ −Xj

Xi −Xj

. (2.37)

The solutions are approximate on Guass-Gauss-Gauss grid (ggg) at (Xj+ 1
2
,Yj+ 1

2
,Zj+ 1

2
). The

approximated solutions in mapped space are approximated using Largrange interpolants as:

Q̃ggg (X, Y, Z) =
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

Qg

i+ 1
2
,j+ 1

2
,k+ 1

2

hi+ 1
2

(X)hj+ 1
2

(Y )hk+ 1
2

(Z) . (2.38)

The solution procedures require the interpolation from Gauss grid to Gauss-Lobatto grid.

The interpolation uses the same interpolating polynomial as for approximated solutions. The

following equation is for the lgg point. In case of another Gauss-Lobatto point, the arguments

in interpolating polynomial must be changed accordingly.

Qlgg
(
Xi, Yj+ 1

2
, Zk+ 1

2

)
=

N−1∑
m=0

N−1∑
n=0

N−1∑
p=0

Qggg

m+ 1
2
,n+ 1

2
,p+ 1

2

hm+ 1
2

(Xi)hn+ 1
2

(
Yj+ 1

2

)
hp+ 1

2

(
Zk+ 1

2

)
.

(2.39)

Once the values are interpolated to the Gauss-Lobatto grid, the advective fluxes are com-

puted. Some of the flux is stored in the interface between two sub-domains, and the problem

occurs when the fluxes calculated from each sub-domain are different. To overcome this

problem, patching fluxes algorithm is considered. The viscous fluxes require the derivative

of the solutions. To ensure the continuity of the derivative at the interface, the patching

process of the advective flux is implemented. After patching the fluxes, their derivatives are

computed at the Gauss grid. These gradients are then interpolated back to Gauss-Lobatto

points. The viscous fluxes are computed using Eq. (2.11), and then be patched. Finally, the

12



total fluxes are obtained by adding inviscid and viscous fluxes. Once the total fluxes are

computed at the Gauss-Lobatto grid, the flux interpolants are constructed as:

F̃1 (X, Y, Z) =
N−1∑
m=0

N−1∑
n=0

N−1∑
p=0

F̃1m,n+ 1
2
,p+ 1

2
lm (X)hn+ 1

2
(Y )hp+ 1

2
(Z) , (2.40)

F̃2 (X, Y, Z) =
N−1∑
m=0

N−1∑
n=0

N−1∑
p=0

F̃2m+ 1
2
,n,p+ 1

2
hm+ 1

2
(X) ln (Y )hp+ 1

2
(Z) , (2.41)

F̃3 (X, Y, Z) =
N−1∑
m=0

N−1∑
n=0

N−1∑
p=0

F̃3m+ 1
2
,n+ 1

2
,phm+ 1

2
(X)hn+ 1

2
(Y ) lp (Z) , (2.42)

These fluxes are differentiated and evaluated at the Gauss grid,

∂F̃1

(
Xi+ 1

2
, Yj+ 1

2
, Zk+ 1

2

)
∂X

=
N∑
m=0

F̃1

(
Xm, Yj+ 1

2
, Zk+ 1

2

) ∂lm (Xi+ 1
2

)
∂X

, (2.43)

∂F̃2

(
Xi+ 1

2
, Yj+ 1

2
, Zk+ 1

2

)
∂Y

=
N∑
n=0

F̃2

(
Xi+ 1

2
, Yn, Zk+ 1

2

) ∂ln (Yj+ 1
2

)
∂Y

, (2.44)

∂F̃3

(
Xi+ 1

2
, Yj+ 1

2
, Zk+ 1

2

)
∂Z

=
N∑
p=0

F̃3

(
Xi+ 1

2
, Yj+ 1

2
, Zp

) ∂lp (Zk+ 1
2

)
∂Z

. (2.45)

2.5 PATCHING DOMAINS: RIEMANN SOLVER

To patch the values at the interface, the Mortar method is implemented [67]. In this method,

the fluxes at Lobatto grid from the two adjacent sub-domains are projected onto the interface

as shown in Fig. 2. This problem is treated as a Riemann problem. To describe this method

in one-dimension, we consider the following initial value problem,

∂Q

∂t
+
∂F (Q)

∂x
= 0,

Q (x, t = 0) =

QL, x < 0

QR, x > 0

,
(2.46)
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where,

Q =


ρ

ρu

ρE

ρφ

 , (2.47)

F =


ρu

ρu2 + p

ρ (ρE + p)u

ρφu

 . (2.48)

The solution between these states can be determined from left (QL) and right (QR) states.

The solution is approximated using Roe’s scheme [68]. The key idea for this scheme is to

transform ∂F(Q)
∂x

to A (QL,QR) ∂Q
∂x

as shown by Eq. (2.49):

∂Q

∂t
+ A (QL,QR)

∂Q

∂x
= 0. (2.49)

Figure 2: Mortar method is used to patch flux values between two sub-domains
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Here, A is the Jacobian matrix.

A =


0 1 0 0

(γ − 1)H − u2 − a2 (3− γ)u γ − 1 0

1
2
u [(γ − 3)H − a2] H − (γ − 1)u2 γu 0

−φu φ 0 u

 , (2.50)

where a =
√

γp
ρ

and H = e + p
ρ
. After replacing the non-linear term, ∂F(Q)

∂x
, Eq. (2.46) is

treated as a simplest PDE of hyperbolic type or can be called linear advection equation. The

solution of this equation can be obtained from Eigen values and vectors of matrix A:

λ1 = u− a, λ2 = λ3 = u, λ4 = u+ a, (2.51)

and

K1 =


1

u− a

H − ua

φ

 ;K2 =


1

u

1
2
u2

φ

K3 =


0

0

0

1

K4 =


1

u+ a

H + ua

φ

 ; (2.52)

where

α1 =
1

2ã2
[∆p− ρ̃ã∆u] , α4 =

1

2ã2
[∆p+ ρ̃ã∆u] , ã =

√
(γ − 1)

(
H̃ − 1

2
ũ2

)
,

ρ̃ =
√
ρLρR, ũ =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

, H̃ =

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

.

(2.53)

According to Harten and Hyman [69], the flux between two sub-domains can be calculated

by quantities from both side of sub-domain:

Fi+ 1
2

=
1

2
(FL + FR) +

1

2

(
λ1α1K

1 + λ4α4K
4
)
. (2.54)

Here, the interface values are corrected by taking the average of the two interface values. It

involves just the domain face values.
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2.6 TIME INTEGRATION

The Runge-Kutta (RK) scheme of Williamson [70] is employed for discretization in time.

This schemes is explicit with large stability limits and ease of programming. There is no

information of previous time-steps used for updating in each iteration. After spatial dis-

cretization, Eq. (2.55) is obtained,

∂Q

∂t
= D (t,Q (t)) ,Q (t0) = Q0, (2.55)

In each time step, the solutions are updated s times:

Qn = Qn−1 + ∆t
s∑
t=0

biKi, (2.56)

Ki = D

(
tn−1 + ci∆t,q

n−1 + ∆t
i−1∑
j=1

aijKj

)
, (2.57)

Williamson’s scheme avoids calculation of Kj matrix for every iteration by storing the infor-

mation:

wi = αiwi−1 + ∆tD (i−1, qi−1) qi = qi−1 + βwi, (2.58)

and

qi = qi−1 + βwi. (2.59)

where the coefficients are given in Table 1.

Table 1: Coefficients for 4th order Runge-Kutta with five stages [1].

Stage α β c

1 0 0.14965 0

2 -0.41789 0.37921 0.14965

3 -1.19215 0.82295 0.3704

4 -1.69778 0.69945 0.62225

5 -1.51418 0.15305 0.95828
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2.7 MONTE CARLO SIMULATION

Monte Carlo (MC) methods have been very effective for simulation of the PDF and FDF

transport [71, 72]. Here, Eq. (2.25) is solved by using a MC method. The FDF is represented

by an ensemble of MC particles, each with set of scalars φnα(t) = φnα(X(n)(t), t) and the

Lagrangian position vector X(n). The information on each MC particles is updated according

to convection, diffusion, mixing and chemical reaction. For demonstration, Fig. 3 shows the

position and concentration values for each MC particle, and are updated in every time-step.

Numerical solution of the Eq. (2.24) requires the values of the filtered velocity, the diffu-

sion coefficient, and gradients of the scalar field at the particle location for every iteration.

These are obtained from the SEM solution. The required information is evaluated by con-

sidering every particle within the ensemble element centered at the point of interest. This

ensemble domain is characterized by the size of ∆E which is the diameter of the circle at the

point of interest (Fig. 4). For accurate statistics, it is important to maximize the number of

particles within the ensemble domain, as well as minimize ∆E. The basis function method

[73] is used to calculate the ensemble averaged statistics. A basis function for a vertex i

(i = 1, 2, ..., NE
v ) of the ensemble domain E with respect to the particle j is given by:

bEij =
1

1 + rij
∑NE

v
k=1,k 6=i

1
rkj

, (2.60)

where rij is the distance between the vertex i and the particle j. An estimation of the mean

scalar at the vertex i can be obtained by summing over all the particles in the cells which

share the vertex and taking into account the vertex basis function:

〈Qi〉L =

∑NE
p

j=1 b
E
ijQj∑NE

p

j=1 b
E
ij

. (2.61)

Here, NE
p denotes the number of particles in cell E. 〈Qi〉L is the ensemble average of Q.
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Figure 3: Monte Carlo particles distribution in 2-D.

Figure 4: Ensemble averaging.
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3.0 PARALLEL COMPUTATIONS

3.1 SPECTRAL ELEMENT SIMULATION

The spectral-element method has a feature that makes its parallel implementation somewhat

easy. It does not employ global assembly to establish continuity across elements like FEM;

only the information between element is exchanged. There is no need to construct the huge

matrix with all constrained variables. The information is passed along the element faces.

Spatial and time discretization can be done within one element. The computational domain

can be divided into smaller domains, and then can be allocated to a different processor [74].

To decompose the mesh, the geometric partitioning software METIS is used which employs

recursive spectral bisection algorithm and partitions the grid per processor [75]. In METIS,

the sub-domains are decomposed in such a way that the number of neighboring domains is

minimized. This way the communication between each neighbor processors is optimal. For

a simple geometry, this process is demonstrated in Fig. 5. Partitioning the domain on two

processors leads to the allocation of five and four domains on each processor. As shown

in Fig. 6, the domains are globally numbered from 1 to 9, whereas the local numbering per

processor is from 1 to 5, and 1 to 4. To keep track of how the local numbering is connected to

the global numbering, a domain matrix with the row equals to the maximum global domain

number (9 in this case), and column equals to the maximum local domain number (5 in this

case). In each column, the local grid number and the processor number are stored.
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Figure 5: Domain partitions

Figure 6: Grid partitioning on two processors.

Dealing with mortar in parallel implementation is a difficult task. As shown in Fig. 7,

the mortars which will be used to calculate the average values can be in different processors.

Keeping track of the mortars requires storage of the local mortar number in mortar matrix.

Also, calculating average flux between each element requires information from both sides of

the element. The domain of interest is called the master domain, and the adjacent domains

are called slaves. The master and slave domain numbers are stored in the mortar matrix.

To send the information from the domain to the mortar, there is one loop that counts on

the global mortar numbering. For each mortar, it is determined whether the mortar is an
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interprocessor mortar or not. In the parallel implementation, different information can be

reached at the same time. Interprocessor mortar is defined such that the information of

interest is reached with some specific processor. For the mortars, the information needs

to be exchanged between the processors. More specifically, an array of variables has to

be sent from the domain to the mortar. The domain number and processor number from

where the information needs to be sent can be found by looking up the slave domain in the

mortar matrix, and consequently looking up the processor number in the domain matrix.

The specific domain face from where information needs sending is looked up in the mortar

matrix. The counter on that loop is used as the tag in the send operation. The receiving

processor number is found by looking up the master domain in the mortar matrix and the

processor number in the domain matrix. The receiving mortar is found by looking up the

local mortar number in the mortar matrix. The receiving tag is again available in the form

of the counter on the loop. The process of receiving information in the domain from the

mortar uses the same procedure.

The main advantage of looping through the global mortar numbering is that the tag

number is readily available, and every send operation is matched by its receive operation

which will prevent the code from stalling. A disadvantage is that the code would do excessive

execution, since it loops through the global mortar number, while the number of mortars per

processors is significantly less. The execution, however, is limited to an IF statement, which

checks whether the mortar is an edge mortar, and what processor it belongs. To decrease

the computational cost and increase the scalability, non-blocking MPI task is implemented

[76]. This implementation copies the interprocessor mortar to its slave domain. With this

modification, the amount of message passing does not change. However, this passing can

be implemented at a more convenient location. Another modification is the addition of

storage of a parameter that determines whether a domain has a face that needs message

passing. The purpose of this parameter is that if a domain does not need message passing,

then computations within that domain can be performed without needing the information

resulting from message passing. This process is demonstrated in Algorithm 1.
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Figure 7: Mortars on grid partitioning

3.2 MONTE CARLO SIMULATION

The challenging task in the parallelization of the Monte Carlo simulation is associated with

particle tracking. The MC particles can move from one element to another, causes the solver

not to have a local character (Fig. 8). Another difficulty is that the MC simulation must

couple with SEM. The communication between these two algorithms is through interpolation

and ensemble averaging [53]. The MC simulation requires interpolation of SEM values to the

particle position, and SEM requires ensemble average information from the MC solver. This

strong coupling makes the parallel implementation very challenging. One way to overcome

the problem is to preserve the local character of the solver. To track a particle within a grid

partition, the only information required is the local domain number in which the particles

reside. With this domain number, the fluid properties of the particle are determined, and the

particle position is updated. The information required for the exchange of particles between

processors is stored in a particle-matrix local to the processor and a particle-matrix global to

all processors. The entries in the local matrix are represented by all the particles that leave

the respective processor in an iteration. The local matrix is mostly sized by a percentage of

the estimated maximum number of particles per processor. The size of this matrix represents

the maximum number of particles being exchanged between processors per iteration.
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For exchange of particles between processors, firstly the entries in the local matrix are

determined. The procedure is as follows: If the mapped space coordinate of a particle exceeds

a domain boundary, it is determined which face it crosses. With the known domain face and

number, the global mortar number, which is stored in each domain array, is determined. With

the mortar matrix from SEM section, this mortar can be justified if this is an interprocessor

mortar. If this is the case, the particle is crossing processor. If only one coordinate direction

exceeds the domain boundaries, then the processor to which the particle is moving into is

determined through the mortar matrix. The local particle matrix can now be updated with

one entry. If more than one coordinate direction exceeds the domain boundary, the particle

may be crossing a corner of the grid partitioning. In this case, a search algorithm over the

processors is required to find the processor to which the particle is moving. If the grids are

structured, the processor corresponding to a specific particle coordinate is easily found.

Figure 8: Particle exchange

All local particle matrices are reduced to the global particle matrix with the gather

operation. This operation is performed on an equally sized local particle matrix for all

processors, but it is noted that a variable sized gather operation will most likely be more

effective. After the operation, the global particle matrix is sorted such that all particles that

move between two processors are following entries in the global particle matrix. With the
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sorted global particle matrix, all particles that move between processors are exchanged with

non-blocking receive operations. Non-blocking send and receive operations are employed

since during the operations, all of the particles that are not crossing a partition boundary,

can be updated. This effectively reduces the cost of the MPI operations. Once the particles

are exchanged, their information is updated as well. The parallel algorithm for one-time step

per processor is presented in Algorithm 2.

In previous studies, it is suggested that using 40-60 particles per element provides suf-

ficient accuracy [21, 77]. In a domain with 603 elements, the number of particles would be

about 8,640,000. It means that in every time step, the number of interpolation loop has to

be at least 8,640,000. Spectral interpolation is optimum for this purpose.

3.3 PARALLEL SCALABILITY

There are two basic ways to measure the parallel performance: strong and weak scaling.

Strong scaling demonstrates the capability in parallelization. It is used as justification for

a program that takes a long time to run. In this test, the problem size stays fixed, but the

number of processor increases and the number of processors varies from 1 to 64. The weak

scaling efficiency is 100t1
NtN

where t1 is the time to complete the work with one processor, and

tN is the time to complete the work with N processor. The weak scaling is shown in Fig. 9.
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Figure 9: Weak scaling.
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Algorithm 1: The parallel algorithm of SEM for one time step per processor

Interpolate Q from the Gauss to Lobatto grid and determine the fluxes;

for i=1,number of mortar do

if interprocessor mortar then

Send Q between processors to mortar ;

else

Project Q onto mortar;

end

end

for i=1,number of mortar do

Determine the advective flux and determine the average of Q on the mortar;

end

for i=1,number of mortar do

if interprocessor mortar then

Send the average of Q between processors to the domain ;

else

Project the average of Q onto the domain;

end

end

Determine the gradient of Q and viscous flux, then interpolate it to Lobatto grid;

for i=1,number of mortar do

if interprocessor mortar then

Send the viscous flux between processors to the mortar;

Determine the viscous flux, then send them between processors to the domain;

else

Project the viscous flux onto mortar;

Determine the viscous flux, Project viscous flux onto the domain;

end

end

Determine the gradient at the Gauss grid, and update;
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Algorithm 2: The parallel algorithm of MC simulation for one-time step per processor

Gather the local particle matrix into the global particle matrix;

Sort the global particle matrix;

Exchange particles between processors with non-blocking sends and receives;

for i=1,number of particle do

Update particles;

if interprocessor paricle then

Update the local mortar matrix;

end

end

Update the exchanged particles;

for i=1,number of particle do

if interprocessor paricle then

Update the local mortar matrix;

end

end

27



4.0 RESULTS

To demonstrate its effectiveness, the hybrid SEM-MC solver is employed for LES of a two-

dimensional, temporally developing mixing layer, as considered in previous DNS [30, 60].

Unsteady turbulent mixing of two adjacent streams of fluid with different speeds are con-

sidered. In the flow configuration, x and y denote the stream-wise and the cross-stream

directions, respectively. The velocity components in these directions are denoted by u and

v, respectively. The flow is periodic in the stream-wise direction. Both the filtered stream-

wise velocity and passive scalar fields are initialised with hyperbolic tangent profiles, where

〈u〉L = 1, 〈φ〉L = 1 on the top stream, and 〈u〉L = −1, 〈φ〉L = 0 on the bottom stream.

Simulations are conducted on a box, 0 ≤ x ≤ L and −L/2 ≤ y ≤ L/2. The stream-

wise length L is specified such that L = 2npλu, where np is the desired number of suc-

cessive vortex pairings and λu is the wavelength of the most unstable mode corresponding

to the mean stream-wise velocity profile imposed at the initial time. The flow variables

are normalized with respect to the half initial vorticity thickness, Lr = [δv (t = 0) /2] ; δv =

∆U/|∂〈u〉/∂y|max, where 〈u〉 is the Reynolds averaged value of the filtered stream-wise veloc-

ity and, ∆U is the velocity difference across the layer. The reference velocity is Ur = ∆U/2.

The Reynolds number (Re = ρUrLr
µ

) is equal to 50 and the Mach number (Ma = Ur
ar

) is 0.2.

Here ar is the reference speed of sound based on the reference temperature. The formation of

the large scale vortical structures are expedited by harmonic forcing of the layer. To initiate

turbulence, 2D perturbations are added with a random phase shift [78, 79]. The Reynolds

averaged values of the filtered values are obtained by ensemble averaging in the homogeneous

x-direction. There are denoted by an overbar.

In the reacting case, an irreversible, second-order reaction of type A + νB → (ν + 1)P

is considered. In this case, the reactants are initialized such that A = φ, and B = 1 − A.
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The reactant conversion is governed by SA = −krAB, where kr is the reaction rate constant;

and A,B, P denote the mass fractions of the three reactants. The non-dimensional number

associated with reaction rate is the Damköhler number (Da = krLr
Ur

). This number plays an

important role as it describes the interaction between chemical reaction and hydrodynamics.

As the Damköhler number is increased, the chemical reaction becomes faster compared to

fluid dynamics times scale.

The vortical structure form at t = 40 as shown in Fig. 10. To assess the consistency of

FDF solver, the values of the conserved scalar (〈φ〉L) from SEM and FDF are compared in

Fig. 11. It is shown that the two results are highly correlated, with the correlation coefficient

equals to 0.999. For the second-order moments, τ(a, b) = 〈ab〉L − 〈a〉L 〈b〉L denotes the SGS

stresses, the resolved stresses are expressed by R(a, b) = 〈a〉L 〈b〉L −
(
〈a〉L

)(
〈b〉L

)
, and the

total stresses are r(a, b) = (ab) − ab. For a generic filter, r(a, b) = R(a, b) + τ(a, b). The

overall consistency of these two methods is best achieved by comparing the second-order

moments as obtained from FDF with those via SEM. This is shown in Fig. 12 and provides

a quantitative demonstration of the consistency of the FDF simulations.

Figure 10: Contour plot of the filtered scalar field at t = 40.
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Figure 11: Scatter plot of the filtered scalar SEM vs FDF. The correlation coefficient is

0.999.

Figure 12: Scatter plot of the SGS variance at t = 40 on 64× 64 mesh.
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For the h-refinement study [80], the polynomial degree is fixed to be p = 3 and the grid

resolution is varied: 32× 32, 64× 64 and 128× 128. Figures 13− 15 show the averaged SGS

variance, the resolved variance, and the total stress, respectively. The averaged resolved

SGS variance does not change significantly. In Figs. 16-18, it is shown that as polynomial

degree increases, the variance decreases significantly. According to Boyd [81], the error from

changing grid resolution is of order O(hn). The error from changing polynomial degree

is proportional to O(( 1
N

)N), where N is the number of collocation points defined by the

polynomial order.

Figure 13: Averaged SGS variance at t = 60 with p = 3.

31



Figure 14: Averaged resolved variance at t = 40 with p = 3..

Figure 15: Averaged total stress at t = 40 with p = 3.
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Figure 16: Averaged SGS variance at t = 40 with 64× 64 resolution.

Figure 17: Averaged resolved variance at t = 40 with 64× 64 resolution.
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Figure 18: Averaged total stress at t = 40 with 64× 64 resolution.

Figure 19: Cross-stream variation of the Reynolds-averaged values of SGS variance at t = 40,

p = 3.
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Figures 19−21 provide a demonstration of the consistency of the FDF simulator as the

MC results are in agreement with those via SEM. Figure 22 shows the influence of ∆E. It is

shown for the second-order moment that the size of the ensemble domain has a significant

influence on the variance. The results from FDF converge to those obtained from SEM as

the size of the ensemble domain is reduced.

Figure 20: Cross-stream variation of the Reynolds-averaged values of the resolved variance

at t = 40, p = 3.
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Figure 21: Cross-stream variation of the Reynolds-averaged values of the total stress at

t = 40, p = 3.

Figure 22: Cross-stream variation of the Reynolds-averaged values of the SGS variance at

t = 40, p = 3.
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To assess the realizability of reacting flow simulation, the compositional structure of the

flame in the mixture fraction domain (ξ) is considered. As shown in Figs. 23 and 24, when

the Da number is high, the composition is close to the infinitely fast reaction, and when the

Da number is low, the values are close to those of the mixing only case. This is collaborated

by the mass fractions of all of the other species, as shown in the scatter plots (Figs. 25 and

26) and the cross stream variation of the Reynolds averaged values (Figs. 27 and 28). The

superiority of FDF is best demonstrated in Fig. 29 where the predicted values of the product

mass fractions are compared with DNS data. It is shown that the FDF results are much closer

to DNS than the LES results without the inclusion of the subgrid scale fluctuations. This

figure demonstrates the power of FDF in accurate predictions of the turbulence-chemistry

interactions.

Figure 23: Scatter plots of the filtered composition variables versus the filtered mixture

fraction for Da = 1.
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Figure 24: Scatter plots of the filtered composition variables versus the filtered mixture

fraction for Da = 10.

Figure 25: Scatter plots of the filtered composition variables versus the filtered mixture

fractions for Da = 1.
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Figure 26: Scatter plots of the filtered composition variables versus the filtered mixture

fraction for Da = 10.

Figure 27: Mean value of the filtered mass fraction of a scalar for Da = 1.
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Figure 28: Mean values of the filtered scalar for Da = 10.

Figure 29: Cross-stream variation of the product distribution for Da = 1.
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For further assessment of realizability, the behavior of two Shvab-Zeldovich (conserved

scalar) variables are considered:

Z1 = A = (1−B) with Da = 0

Z2 =
A− B

ν
+ B∞

ν

A∞ + B∞
ν

,
(4.1)

where the subscript∞ denotes the values at the free stream. It is shown that the correlation

between 〈Z1〉 and 〈Z2〉 is excellent as shown in Fig. 30.

Figure 30: Scatter plot of 〈Z2〉 versus 〈Z1〉 for Da = 1.
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5.0 CONCLUDING REMARKS

The subject of this dissertation is the merger of the spectral element method (SEM) with the

Lagrangian Monte Carlo (MC) solution of the filtered density function (FDF). This merger

provides a novel tool for conducting large eddy simulation (LES) of turbulent reacting flows.

A two-dimensional temporally developing mixing layer is considered under both non-reacting

and reacting conditions. The consistency of the methodology is assessed by comparing

the first two moments of the FDF with those obtained by the SEM solutions of the same

moments’ transport equations. The properties of the SEM-MC simulator can be summarized

as follows:

1. The SEM method combines the versatility of finite element method with the accuracy of

spectral approximations and is particularly effective when utilized in conjunction with

the Lagrangian MC solver.

2. The SEM solver supports combined h−p refinement which results in an optimal solution

accuracy for a given computational cost.

3. Even at low p values, when the resolved energy is significantly reduced, the total energy

is captured accurately. This feature is particularly attractive when the prediction of the

total energies (stresses) are of primary concern.

4. A significant advantage of the hybrid methodology is that it will allow us to reach to

DNS limit via p-refinement. Based on the close to the exponential convergence of this re-

finement, the procedure is much more efficient than the conventional approach of refining

the grid (reducing h) as is the practice in typical Eulerian LES.

5. A particular advantage of the approach is that the physical variables can easily be eval-

uated at the MC particle locations since these variables are represented by simple poly-
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nomials on each element. Hence, there is no loss of accuracy due to the use of a lower

order interpolation method as is used in conventional approximations.

6. Due to the local character of SEM, it enables superior scalability on massively parallel

computer architectures. The solver is designed to scale to very large cases, and simula-

tions involving several billion degrees of freedom are within reach.

7. Due to the high order polynomial approximation, the SEM mesh elements are typically

much larger than the cells in FD or FV discretizations. This implies that the MC particles

will remain much longer in one element as compared to that in conventional approaches,

and thus the computational effort for the particle tracking algorithm will be reduced

significantly.

8. In reactive flows, the result from modeling the source term using FDF is promising. This

method can be extended to deal with the complex turbulent combustion problem since

the computational expense does not increase exponentially when increasing the number

of species.

The success of the SEM-MC FDF simulator as demonstrated here warrants its further

extension and applications for LES of complex turbulent combustion problems. For future

work, three-dimensional simulations are recommended to provide a more realistic setting

for turbulent transport. The preliminary version of the 3-D SEM-MC code has just been

completed (Fig. 31) and can be used for extensive future simulations, provided that sufficient

computational resources are available.
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Figure 31: Contour plot of the filtered scalar filed in a three-dimensional mixing layer.
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