
On the Value of Using an Interactive Electronic Textbook in an
Introductory Programming Course

Kerttu Pollari-Malmi
Aalto University

kerttu.pollari-malmi@aalto.fi

Julio Guerra
Universidad Austral de Chile

mallium@gmail.com

Peter Brusilovsky
University of Pittsburgh

peterb@pitt.edu

Lauri Malmi
Aalto University

lauri.malmi@aalto.fi

Teemu Sirkiä
Aalto University

teemu.sirkia@aalto.fi

ABSTRACT
E-books including interactive elements are rapidly becoming more
popular and are likely to largely replace traditional textbooks at
university level education. In this paper, we report our initial obser-
vations on the changes we noticed in students’ motivational factors
and learning results when a static PDF textbook was replaced by
an interactive e-textbook in a large CS1 service course. We found
increase in both motivational factors, as well as learning gain. In
addition, students’ feedback on the learning resources improved.
While the changes were not large, they encourage to continue in-
tegrating more interactive learning content into course learning
environment.

CCS CONCEPTS
• Applied computing→ E-learning;

KEYWORDS
CS1, programming education, E-textbooks, motivation

1 INTRODUCTION
Online and blended forms of education are rapidly changing the
educational culture world wide because of the easy accessibility of
free or low cost learning resources through Internet. Massive open
online courses (MOOCs) have becomemainstream as one important
area in complementary and higher education. Self-study resources
available, for example, in Khan Academy1, Lynda2, Youtube or
Wikipedia provide vast opportunites for students to learn different
topics. Yet these sources are widely based on short texts, video mate-
rials, and possibly interactive demonstrations. Complete electronic
textbooks, e-textbooks, which provide a comprehensive resource
for some topic with different integrated interactive components, in-
stead of plain static PDF resources, or cross-linked static resources

1https://www.khanacademy.org/
2https://www.lynda.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Koli Calling 2017, November 16–19, 2017, Koli, Finland
© 2018 Association for Computing Machinery.
ACM ISBN 78-1-4503-5301-4/17/11. . . $15.00
https://doi.org/https://doi.org/10.1145/3141880.3141890

available, e.g., in Wikipedia, are more rare. However, considerable
development work is carried out in this area. Some notable exam-
ples in the area of computing education include the CS principles
textbook3 by Guzdial and Ericson and OpenDSA textbook4 for data
structures and algorithms, by Shaffer et. al. [20].

In the area of computer science education thework in e-textbooks
has largely focused on developing the necessary platforms and soft-
ware to enable the interactive components, as well as creating the
actual learning content for some target topic. So far there is little
research which has explored the impact of these resources on stu-
dents’ studying and learning. It is in this area, where our current
paper contributes.

In the next sections, we present an overview of relevant work in
e-textbooks, followed by the description of our large scale target
course in programming, with over 600 students. In Section 4, we ex-
plain our study, in which we explored the impact of our distributed
e-textbook on students’ motivation and learning results. Our results
are preliminary and we discuss the directions of future research in
the final section.

2 PREVIOUS RESEARCH
The research on electronic textbooks always concentrated on ex-
panding the borders of traditional textbooks, focusing on various
aspects that the traditional form was not able to support. The early
work on electronic textbooks was associated with the develop-
ment of hypertext with a pioneer electronic book called SuperBook
[17] being one of the early hypertext projects. The use of hyper-
text allowed to create a book that offered different non-sequential
navigation opportunities. The hypertext also enabled some early
research on creating libraries that explained programming glos-
saries [1] and programming examples [13, 19] where non-linear
navigation was most essential. By the middle 1990es, the process of
making full-scale hypertext-based textbook has been mastered [16]
and researchers in the area of computer science education started to
explore some opportunities to extend hyper-textbooks with more
advanced functionalities such as “runnable” program examples and
simple problems [2, 22]. The progress, however was slow due to
technical difficulties in working with traditional hypertext systems
and interfacing them with other applications (such as compilers).

The gradual transition from classic hypertext to the Web sup-
ported a range ofmore advanced projects. In 1996, ELM-ART system
[4, 5] pioneered an idea of an interactive and adaptive Web-based

3http://interactivepython.org/runestone/static/StudentCSP/index.html
4http://lti.cs.vt.edu/Books/OpenDSA/html/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/163106639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.khanacademy.org/
https://www.lynda.com/
https://doi.org/https://doi.org/10.1145/3141880.3141890
http://interactivepython.org/runestone/static/StudentCSP/index.html
http://lti.cs.vt.edu/Books/OpenDSA/html/

textbook integrating an electronic textbook with an intelligent tu-
toring system that supported problem solving. This combination
allowed creating textbooks with “live” LISP problems that students
could solve online while receiving extensive feedback. The sys-
tem also included “runnable” program examples and a function
glossary. In 1997 Brown and Najork [3] followed with the model
of “collaborative active” textbook that included dynamic examples
of algorithm animations and collaboration functionality. By the
end of 1990es, a few likeminded project explored other aspects of
interactive Web-based electronic textbooks for computer science
education [9, 10].

Just in a few years the work on interactive textbooks became
an active research direction recognized by the first review of this
area [23]. Several working group meetings [12, 18] helped to bring
researchers in this area together and lead to some well-known col-
laborative projects such as OpenDSA [20]. Surprisingly, a gradual
switch of interactive textbooks from being a focus of research to
being practical tools resulted in decreasing attention to evaluating
the impact of these novel tools. While many systems were devel-
oped (see [12, 18] for a good list of examples), very few studies have
been reported. A notable recent example is the research by Ericson
et al. [6–8] who explored the usage of different features and design
principles of an e-textbook targeted for school teachers in program-
ming education. Our current paper, on the other hand, attempts
to bridge the gap between practice and research by focusing on
evaluation of a typical modern interactive electronic programming
textbook in a large university level course.

3 THE TARGET COURSE
This study was carried out in Fall 2015 and Fall 2016 on an in-
troductory programming course at Aalto University, which is the
largest technical university in Finland, and provides also programs
in business, arts, and design. The target course was CS-A1111, Basic
Course in Programming Y.1 This is a compulsory semester-long
CS1 service course for the first year engineering students (not in-
cluding computer science students) at the School of Engineering
and at the School of Electrical Engineering. Most of these students
take only 1–2 programming courses in their bachelor’s studies. The
programming language used in the course is Python. The course
focuses on procedural programming covering all basic structures,
like variables, selection statements, loops, functions, parameters,
lists, and handling text files. Only the basics of the object-oriented
programming are covered in the course, and it is possible to pass
the course with a low grade without any knowledge of objects.

To pass the course, students had to pass the exam and get enough
points from the mandatory exercises. The exercises were split to
9 weekly rounds, each having 3–4 programming problems. In ad-
dition, there were some program animations to explore and in
2015 also some Parsons problems [15]. Each round had a specified
minimum number of points that students had to obtain to pass the
course. However, it was possible to pass the course with a low grade
without gathering minimum points from Round 9, which concerned
object-oriented programming. In addition to the mandatory exer-
cises, the students were offered an access to a voluntary practice
system Python Grids exercises, which provided four types of inter-
active practice content: annotated examples, animated examples,
semantic code assessment problems, and Parsons problems.

The course staff included the responsible teacher giving the
lectures and 17 part time teaching assistants helping students to
solve the exercise problems in classroom exercise sessions. In 2015,
there were 17 and in 2016 18 weekly exercise groups during 10
weeks. Attendance at the exercise sessions was voluntary. All exer-
cise problems were submitted through a web page to an automatic
assessment tool, thus allowing students to work from home or else-
where off campus. On the other hand, students could take part in
several exercise sessions a week, if they wanted more help. The
course had also a web forum where the students could ask for
advice.

The contents and requirements of the course in 2015 and 2016
were the same. The main difference was that in 2015, there were 18
lectures together covering all course topics, and the main learning
resource was a static PDF textbook 5 written by the lecturer. In
2016, the number of the lectures was reduced to 10, the lectures
concentrated on basic concepts, and the students were asked to self-
study themore advanced examples using an interactive e-textbook 6

which was developed from the previous year static resource. The
text in both books was almost the same. However, the e-textbook
also included interactive animations, using technology developed
in [21], and annotated code examples. Moreover, in 2016 there was
also a direct link from the exercises to the corresponding e-textbook
chapter while in 2015, no such link existed, and there was only the
whole PDF book available as a resource.

An example of an animation is presented in Figure 1. The an-
imation shows the program code, the line of the code which is
currently executed, the expression to be evaluated, the current val-
ues of the variables and so on. Animations also contain manually
added explanations for the key steps.

An example of an annotated code example is presented in Figure
2. The PDF book included nearly the same code examples, but
the code was explained in plain text, while in the annotated code
examples the explanation is split into small parts presented in boxes.
The reader canmove the cursor on a certain box, and the code line(s)
which are explained in this box are colored with a red color.

4 THE STUDY
As described above, the course arrangements, requirements and
staff resources were very close to each other in the 2015 and 2016.
The role of lectures was diminished, increasing the need for self
studying. On the other hand, changing the static PDF textbook
into an interactive e-textbook and setting up direct links from
the assignments to the corresponding e-textbook chapters were
expected to support self studying.

We wanted to explore whether these differences had an effect
on students’ motivation factors and learning results. Our research
questions are: RQ1) Were there differences in the changes of the
motivation factors of the students in 2015 and 2016 courses?, RQ2)Were
there differences in the learning gain (the difference of the posttest and
pretest results) in 2015 and 2016 courses?, RQ3) Were there differences
in the exam results of 2015 and 2016 courses?

5http://www.cse.hut.fi/fi/opinnot/CSE-A1111/S2015/kalvot/opetusmoniste2015.pdf
6https://grader.cs.hut.fi/static/y1/

Figure 1: Example of an animation in e-textbook.

Figure 2: Example of an annotated example in e-textbook. (original Finnish example translated into English).

4.1 Data collection
In both years, the students were asked to take a pretest on Python
programming at the beginning of the course and posttest at the
end of the course. Each test contained 10 small Python problems.
Posttest problems were isomorphic to the pretest. The tests were
the same in 2015 and 2016.

The students also completed a Motivational Questionnaire at
the beginning and at the end of the course. This questionnaire con-
tains two instruments: the Learning Activation questionnaire and
the Achievement-Goal Orientation questionnaire. The Learning
Activation questionnaire has been adapted from the questionnare
developed by [14] and it includes three motivational factors: Fasci-
nation (4 questions), Competency Beliefs (5 questions), and Values (5
questions). Items of Fascination factor measure the extent to which
the student likes programming. Competency Beliefs questions ask
students if they think they can deal positively with the subject. Val-
ues questions measure to which extent students think programming
is important for their lives and professional development.

The Achievement-Goal questionnaire is a 12-question survey
which measures Goal-Orientation conformed of 4 factors which
are not exlusive: Mastery Approach orientation is related to the
motivation of mastering the learning content; Mastery Avoidance is

related to the avoidance of failing to learn; Performance Approach
relates to the motivation to perform, score, or do better than others;
and Performance Avoidance orientation refers to the motivation for
avoiding to fail, scoring under the minimum, or doing worse than
others.

In the end of the course, the students took a final exam, which
was compulsory to pass the course. The exam consisted of small
problems where the student had to explain what a given program
outputs or the purpose of the given function (total 21 % of maximum
points), and problemswhere the student had to write a small Python
program with pen and paper (total 75 % of maximum points). 4 %
of maximum points were given as a bonus if the student took the
posttest and the final motivation query. The problems in 2015 and
2016 exams were different, but they tested the same concepts.

In the end of the course, the students were asked to fill a feedback
questionnaire, which included 50 questions, including questions
about usage of the course material and their opinions on it.
4.2 Results
Regarding motivation, 426 and 444 students answered both initial
and final motivational questionnaires in 2015 and 2016, respectively.
For each student, answers of questions within each motivational
factor were averaged and normalized to the range 0 to 1. A value

of 0 is the lower motivation, and the value of 1 is the maximum
motivation. Table 1 shows the average values of the factors at
the beginning and at the end of each course and their differences.
Non-parametric Mann-Whitney did not show differences between
years in the initial measure of any motivational factor, except for
Competency Beliefs (p=.021), being this motivational factor lower
in 2016. From Table 1 we observe differences in the changes of
motivation factors from the initial motivation questionnaire to the
final motivation questionnaire. To test these differences we build
regression models in which the year is added as a dummy variable,
with value 0 for 2015 and 1 for 2016. Models were built separately
for each motivational factor measured at the end of the term (final)
and included as predictors the motivational factor at the beginning
of the term (initial) and the dummy variable year. We report the
models in which year contributes significantly to improve the a
preliminary model built only with the motivational initial measure
as predictor. The Beta coefficient of year and its significant value is
reported in last column of Table 1.

The Competency Beliefs was lower at the beginning of the 2016
course, but it increased more than in 2015 course. Also, in 2016, the
increase of Values is significantly higher than in 2015. A positive
effect is also observed for Mastery approach. While in both groups
this motivational factor decreases, it decreased less in 2016. In
summary, the motivational factors developed more into positive
direction in 2016 than in 2015.

The summary of the results of the pretest and the posttest are
presented in Table 2. The pretest scores were slightly higher in 2015
than 2016 (ie. the students’ initial knowledge was slightly better in
2015), but the posttest results were clearly better in 2016 than 2015.
From the pretest and posttest results we calculated the learning
gain for each student. It is defined as a ratio of the actual gain
(posttest score minus pretest score) to the maximum possible gain
(maximum achievable posttest score minus pretest score). In 2015,
the average learning gain was 0.466, while in 2016, it was 0.526.
Thus, the learning gain was 0.06 larger in 2016 than in 2015. To test
for significance, we built first a regression model in which posttest
is predicted first by pretest, and then a second model that adds the
dummy variable year. Results showed a significant contribution
of year, i.e a positive effect of using the e-textbook, in predicting
posttest, βyear = .071, p < .000), which can be interpreted as using
e-textbook explains an increase of 7% in posttest scores, controlling
for pretest scores.

There was a small difference in the results of the first exams of
the course in 2015 and 2016. The maximum number of points in
the exam was 100. 4 of those points were given as bonus points if
the student took the posttest and answered to the final motivation
questionnaire. In both years, 556 students took part in the exam.
In 2015, the average of the exam points was 79.38, while in 2016,
the average was 77.26. Thus, the average was 2.12 points lower
in 2016. However, difference of 0.74 points comes from the bonus
points (average was 3.99 in 2015 while it was 3.25 in 2016). Thus, the
real difference in actual exam problems was 1.38 points. Because
the problems were different in various years (although they were
about the same topics), we cannot, however, conclude whether the
difference is due to the different problems or students’ knowledge.

According to the feedback questionnaire at the end of the course,
more students really used the e-textbook as a course material in

2016 than PDF book in 2015. In 2015, 63.0 % of the students told that
they had used the PDF book, while in 2016 92.6 % of the students
told that they had used the e-textbook. It is rather strange that part
of the students did not read the PDF book or e-textbook, because it
had been told to be the main course text in the course. However, we
have no data to explain this. We can speculate that these students
used other online or printed resources.

In addition to the change of the format of the book, the part of
the increase in the use might result from the fact that in 2016, most
of the Python programming problems had at the beginning of the
problem description a direct link to the chapter of the e-textbook
which told about the programming concepts needed in solving
the problem. (For example, if it was necessary to use lists to solve
the problem, the problem description had a link to a e-textbook
chapter about lists.) In 2015, is was told at the beginning of the
problem description which topics are practiced in the problem, but
no direct links were provided. The static PDF text was accessible or
downloadable in a fixed place in the online learning environment.

The students were also asked to evaluate the PDF book in 2015
and the e-textbook in 2016 using a grade in scale 1–5, where 5
is the best. Table 3 shows these results along with the number
of students who declared not using the material in both years.
Note that fewer people missed to use the e-textbook (20) than
students who did not use the PDF version in 2015 (118). In 2015, the
average of the grade was 3.68, while in 2016, the average was 3.97.
Non-parametric Mann-Whitney test shows a significant difference,
Mann-Whitney U = 53687.0, p < .000, MeanRank2015 = 329.66,
MeanRank2016 = 406.49, showing higher values in 2016. Thus, the
students liked the e-textbook better than the PDF book, although
the text was almost the same in both versions.

These differences cannot be explained by the differences of the
students, because the students came from the same degree programs
in 2015 and 2016, and there were no significant differences in the
previous knowledge of the students according to the pretest results.

5 DISCUSSION
Students’ activity and engagement with learning resources is in a
central role in the learning process. Previous research has shown
that engagement with interactive materials, e.g., [11] is beneficial
for learning. Interaction with immediate feedback provides students
a valuable resource for exploring new concepts, as well as testing
their mental models about the concepts and their behavior. The
feedback supports correcting and tuning their mental models thus
supporting learning. This is the strength of interactive e-textbooks
compared with static resources.

However, usage of e-textbooks is a complex phenomenon, and
students are not using them in isolation. Our current research is
a pilot study concerning the usage of an e-textbook. While we
observed several positive results both in motivation and learning
results, we should treat these results with care. There were changes
in the lectures as well as weekly programming exercises, which can
include intervening variables which have an effect in the results. It
is plausible that the decrease of lectures encouraged students for
self studying the material. However, only a minority of students
have followed the lectures to the end in both years, which implies
that this effect might be small. On the other hand, the clear increase

Table 1: Summary of the results of motivation queries.

2015 2016 regression
Factor initial final difference initial final difference βinit ial (p-value)

Fascination .565 .577 .012 .578 .596 .018
Competency Beliefs .504 .656 .152 .485 .681 .197 .032 (.006)
Values .702 .684 -.017 .707 .727 .020 .032 (<.000)
Mastery Approach .693 .642 -.051 .699 .674 -.025 .032 (.005)
Mastery Avoidance .617 .578 -.039 .619 .601 -.018
Performance Approach .574 .568 -.006 .575 .588 .014
Performance Avoidance .571 .552 -.019 .575 .567 -.008

Table 2: Summary of the pretest and posttest results.

2015 2016
N Mean N Mean

pretest 532 0.2221 545 0.2019
posttest 429 0.6018 459 0.6634
learning gain 412 0.4662 450 0.5263

Table 3: Feedback given by students to the PDF material in
2015 and e-textbook in 2016.

Answers Did not
1 2 3 4 5 use Total

2015 0% 6% 36% 43% 15% 118 427
2016 0% 5% 20% 47% 28% 20 479

of using the e-textbook, covering almost the whole 2016 student
cohort, suggests that students considered the resource useful and
used it when working with the exercises.

For future research we need to log more accurately how stu-
dents accessed the chapters and how much they used the inter-
active elements in the book. Some interesting questions include
further exploring the difference in impact of using static PDFs vs.
e-textbooks with interactive elements: what is the value (impact)
of integrating interactive learning resources into an e-textbook
vs. using only links to external interactive elements, what is the
impact of different types of interactive elements in an e-textbook,
when considered separately or as a combined resource, and how
do different types of students use these resources?

REFERENCES
[1] H. D. Böcker, H. Hohl, and T. Schwab. Hypadapter - Individualizing Hypertext.

In D. Diaper, editor, IFIP TC13 Third International Conference on Human-Computer
Interaction, pages 931–936. North-Holland, 1990.

[2] T. Boyle, G. Gray, B. Wendl, and M. Davies. Taking the plunge with CLEM: the
design and evaluation of a large scale CAL system. Computers and Education,
22(1/2):19–26, 1994.

[3] M. H. Brown and M. A. Najork. Collaborative active textbooks. Journal of Visual
Languages and Computing, 8(4):453–486, 1997.

[4] P. Brusilovsky, E. Schwarz, and G. Weber. ELM-ART: An intelligent tutoring
system on World Wide Web. In C. Frasson, G. Gauthier, and A. Lesgold, editors,
Third International Conference on Intelligent Tutoring Systems, ITS-96, volume
1086 of Lecture Notes in Computer Science, pages 261–269. Springer Verlag, 1996.

[5] P. Brusilovsky, E. Schwarz, and G. Weber. Electronic textbooks on WWW: from
static hypertext to interactivity and adaptivity, pages 255–261. Educational Tech-
nology Publications, Englewood Cliffs, New Jersey, 1997.

[6] B. Ericson, S. Moore, B. Morrison, and M. Guzdial. Usability and Usage of
Interactive Features in an Online Ebook for CS Teachers. In Proceedings of the
Workshop in Primary and Secondary Computing Education, WiPSCE ’15, pages
111–120, New York, NY, USA, 2015. ACM.

[7] B. J. Ericson, M. J. Guzdial, and B. B. Morrison. Analysis of Interactive Features
Designed to Enhance Learning in an Ebook. In Proceedings of the Eleventh Annual
International Conference on International Computing Education Research, ICER
’15, pages 169–178, New York, NY, USA, 2015. ACM.

[8] B. J. Ericson, K. Rogers, M. C. Parker, B. B. Morrison, and M. Guzdial. Identifying
Design Principles for CS Teacher Ebooks through Design-Based Research. In
Proceedings of the 12th Annual International Conference on International Computing
Education Research, ICER ’16, pages 191–200, 2016.

[9] O. Grillmeyer. An Interactive Multimedia Textbook for Introductory Computer
Science. In The Proceedings of the Thirtieth SIGCSE Technical Symposium on
Computer Science Education, pages 286–290, New York, NY, USA, 1999. ACM.

[10] N. Henze, K. Naceur, W. Nejdl, and M. Wolpers. Adaptive hyperbooks for con-
structivist teaching. Künstliche Intelligenz, 13(4):26–31, 1999.

[11] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages & Computing, 13(3):259–
290, 2002.

[12] A. Korhonen, T. Naps, C. Boisvert, P. Crescenzi, V. Karavirta, L. Mannila, B. Miller,
B. Morrison, S. Rodger, R. Ross, and C. Shaffer. Requirements and Design Strate-
gies for Open Source Interactive Computer Science eBooks. In Proceedings of
the ITiCSE Working Group Reports Conference on Innovation and Technology in
Computer Science Education-working Group Reports, pages 53–72. ACM, 2013.

[13] M. Linn. How can hypermedia tools help teach programming. Learning and
Instruction, 2:119–139, 1992.

[14] D. W. Moore, M. E. Bathgate, J. Chung, and M. A. Cannady. Measuring activa-
tion and engagement. Technical report, Activation Lab, Learning Research and
Development Center, University of Pittsburgh, Pittsburgh, PA (USA), 2011.

[15] D. Parsons and P. Haden. Parson’s Programming Puzzles: A Fun and Effective
Learning Tool for First Programming Courses. In Proceedings of the 8th Aus-
tralasian Conference on Computing Education - Volume 52, ACE ’06, pages 157–163,
Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc.

[16] R. Rada. Converting a textbook to hypertext. ACM Transactions on Information
Systems, 10(3):294–315, 1992.

[17] J. R. Remde, L. M. Gomez, and T. K. Landauer. SuperBook: an automatic tool
for information exploration – hypertext? In the ACM conference on Hypertext,
Hypertext’87, pages 175–188, 1987.

[18] G. Rößling, T. Naps, M. Hall, V. Karavirta, A. Kerren, C. Leska, A. Moreno, R. Oech-
sle, S. Rodger, J. Urquiza-Fuentes, and J. A. Velázquez-Iturbide. Merging Interac-
tive Visualizations with Hypertextbooks and Course Management. SIGCSE Bull.,
38(4):166–181, 2006.

[19] P. K. Schank, M. C. Linn, and M. J. Clancy. Supporting PASCAL programming
with an on-line template library and case studies. International Journal on the
Man-Machine Studies, 38(6):1031–1048, 1993.

[20] C. Shaffer. OpenDSA: An Interactive eTextbook for Computer Science Courses. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education,
pages 5–5. ACM, 2016.

[21] T. Sirkiä. Jsvee & Kelmu: Creating and Tailoring Program Animations for Com-
puting Education. In 2016 IEEE Working Conference on Software Visualization
(VISSOFT), pages 36–45, Oct 2016.

[22] S. Tyerman, P. Woods, and J. Warren. Loop Tutor and HyperTutor: Experiences
with adaptive tutoring systems. In Proc. of Australian and New Zealand Conference
on Intelligent Information Systems, ANZIIS’96, pages 60–63, 1996.

[23] M. Unanue, P. Velasco, P. Flores, U. Fuentes, and I. Velázquez. Electronic books
for programming education: a review and future prospects. In Proceedings of the
7th annual conference on Innovation and technology in computer science education,
ITiCSE ’02, pages 34–38, 2002.

	Abstract
	1 Introduction
	2 Previous research
	3 The Target course
	4 The Study
	4.1 Data collection
	4.2 Results

	5 Discussion
	References

