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FILTER AND GRID RESOLUTION REQUIREMENTS IN LES VIA A

DISCONTINUOUS GALERKIN SOLVER

Ling Miao, PhD

University of Pittsburgh, 2018

The discontinuous Galerkin (DG) methodology has proven very effective for large eddy sim-

ulation (LES) of various turbulent flows. In LES with a given discretization accuracy, two

important parameters are the grid resolution h and the filter size ∆. In most of the previous

works, the grid spacing is usually set to be proportional to the specified filter size. In this

work, the DG method is combined with a subgrid scale (SGS) closure which is equivalent to

that of the filtered density function (FDF). Various ∆/h ratios for LES of a two-dimensional

and three-dimensional temporally developing mixing layer are considered, and a systematic

parametric study is conducted to investigate the effects of grid resolution, the filter width

size, and the order of the spectral discretization. Comparative assessments are made via the

use of high resolution direct numerical simulation (DNS) data.

Keywords: Discontinuous Galerkin; Large eddy simulation; LES filter size; Subgrid scale

model; Turbulent flows; Turbulence resolution length scale.
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1.0 INTRODUCTION

Large eddy simulation (LES) is now broadly accepted as the optimal means of capturing

the physics of turbulent reacting flows among the computational fluid dynamics (CFD)

methodologies currently available [1–8]. In LES, there are two basic assumptions: 1. the

transport of momentum, energy and passive scalars is mostly governed by the unsteady

features in the larger length scales; 2. smaller scales are more universal in their behavior.

Under these assumptions, LES calculates the large-scale unsteady turbulent motions, while

the effects of the smaller-scale motions are solved via a so-called subgrid scale (SGS) model

[9]. In doing so, the coupling between the numerical method and SGS modeling is of great

importance [10].

One of the most challenging issues in LES is associated with capturing SGS fluid flow

behavior. A large number of SGS models have been developed for the turbulent stress tensor

[11–19]. Vreman et al. [20] test and compare six important representatives of the available

SGS models. The dynamic models are found to generate better results than the non-dynamic

models. Among different models, the filtered density function (FDF) methodology has been

proven particularly effective for consistent modeling of the SGS quantities [21–27]. Essen-

tially FDF is the counterpart of the probability density function (PDF) methodology in

Reynolds-averaged Navier-Stokes (RANS) simulations [24, 27, 28]. In its most comprehen-

sive, stand-alone form, FDF addresses the joint statistics of the following SGS variables:

energy, pressure, frequency, velocity and all other scalar variables [29, 30]. Another most

critical challenge in LES, or more generally in CFD, is to develop high-order accurate and

stable numerical methods [31].
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Both the LES filter size and the grid resolution are the most important length scales in

LES. The former usually appears in the SGS models, and the latter is a critical consideration

in every numerical method. Compared to DNS, LES performs a low-pass filtering operation

that allows the filtered velocity field to be solved on a relatively coarse grid, thus requires

less computational effort or can simulate flows at higher Reynolds numbers. In most of the

past numerical works, the grid spacing is set to be proportional to the specified filter size,

while it should be pointed out that these two length scales are actually independent from

each other. The effects of each, however, could be examined as the ratio of the filter size to

the grid size, ∆/h. A large value of ∆/h contributes to good numerical accuracy, whereas

a smaller value benefits resolving more small scale turbulent motions while sacrifices more

numerical accuracy [32]. This natually leads to the consideration of a optimal choice of the

filter size and the grid size. Ideally the filter size should be somewhat smaller than the size of

the smallest energy-containing motions, while the grid spacing is as large as possible, subject

to the condition that the energy-containing motions are resolved [24]. But whether there

exits an optimal value remains a question, as well as what and how other factors affect the

optimal value. There have been some discussions and a point of view is that the optimal

value of ∆/h varies with different approaches and SGS models being used [33, 34]. The role

of the filter-grid ratio ∆/h has been examined in a few previous works both theoretically

and numerically. Ghosal [35] proposes a general non-linear analysis of the numerical error in

the solution of the Navier-Stokes equations for an isotropic homogeneous turbulent flow. His

theoretical evaluations show that for schemes of different order of accuracy, the dominance

of the subgrid term on the whole of the solution spectrum is ensured for different values

of ∆/h. Chow and Moin [36] assess Gholsal’s results by taking into account the nonlinear

feedback of the computed solution on the numerical error. The minimum of the filter-grid

ratio that can ensure the dominance of the subgrid terms is found to be a decreasing function

of the scheme’s order of accuracy. Geurts and Frohlich [37, 38] investigated the efficiency of

the prefiltering technique on the plane mixing layer configuration. They concluded that the

best solution for improving the results of a LES in practice is to refine the computational

grid, while keeping a low value of the ratio ∆/h.
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In this work, we use the discontinuous Galerkin (DG) method as the base flow solver

for simulating unsteady turbulent flows. This method combines the ideas of finite-element

and finite-volume methods to provide high-order approximations of the filtered transport

equations while allowing geometric flexibility. In Refs. [39, 40], we demonstrate the capability

of DG method for LES of turbulent combustion and shock capturing. DG uses a basis that is

continuous within an element but discontinuous between elements, and each element can have

a different polynomial degree p for the solution and the geometrical mapping. Also the basis

for the solution and the geometrical mapping can be chosen independently. The advantage

of the DG scheme is that it supports curved mixed-element meshes, variable discretization

order, and non-conforming mesh element refinement. These features enable the flow solver to

support combined h−p refinement which can result in optimal solution accuracy for a given

computational cost [41, 42]. Based on the close to exponential convergence of p refinement,

the procedure is much more efficient than the conventional approach of refining the grid

(reducing h) as is the typical practice in typical Eulerian LES.

1.1 OBJECTIVE AND SCOPE

The first objective of the present work is to implement the DG method for LES. Different

cases are tested of a two-dimensional temporally developing mixing layer and the first two

moments of the DG solutions are assessed. The solutions are compared with the filtered DNS

data to verify the predictive capability. This is demonstrated with comparing the profiles of

the subgrid, resolved and total variance for different ∆/h, and further analyzed by the error of

the LES solutions as compared with the filtered DNS data. The second objective of the work

is to extend the simulations to three-dimensional temporally developing mixing layer, and to

examine how the filter size along with the grid size influences the LES solutions. The filter

width, grid resolution and the order of spectral discretization are varied independently to

assess the effects of each by comparing the first two moments of the solutions. Comparative

assessments are also made via the use of high resolution DNS data.

3



This dissertation is organized as follows. In chapter 2, the DG solver is developed and

tested for LES of a two-dimensional mixing layer. In chapter 3, the simulations are extended

to a three-dimensional mixing layer. In chapter 4, some concluding remarks are provided.
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2.0 TWO-DIMENSIONAL MIXING LAYER

In the work described in this chapter, a DG solver is implemented for LES and tested on

a two-dimensional temporally developing mixing layer. Some systematic analysis will be

performed by changing the grid and filter size, as well as polynomial degree, and comparing

the LES solutions with the filtered DNS data.

2.1 FORMULATION

The mathematical formulation starts with the governing equations of a two-dimensional non-

reactive, low-speed variable density flow carrying a passive scalar. The primary transport

variables are the density ρ(x, t), the velocity vector ui(x, t)(i = 1, 2), the pressure P (x, t), and

the scalar mass fractions φ(x, t). The equations which govern the transport of these variables

in space (xi)(i = 1, 2) and time (t) are the continuity, momentum, and conservation of mass

fraction equations:

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.1a)

∂ρui
∂t

+
∂ρujui
∂xj

= −∂P
∂xi

+
∂Tji
∂xj

, (2.1b)

∂ρφ

∂t
+
∂ρujφ

∂xj
= −∂Jj

∂xj
. (2.1c)
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These equations are coupled with an appropriate equation of state. For a Newtonian

fluid, the most widely used Fourier’s law of heat conduction and Fick’s law of diffusion

define the viscous stress tensor Tij and the scalar flux Jj by

Tij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, Jj = −γ ∂φ

∂xj
, (2.2)

where µ is the fluid dynamic viscosity, γ = µ/Sc denotes the mass molecular diffusivity

coefficient, and Sc is the Schmidt number. Both µ and γ are assumed constant and Schmidt

number is assumed to be unity.

Large eddy simulation involves the spatial filtering operation [24, 43]. Such filtering

operation can be either implicit or explicit. For implicit filtering, the numerical grid itself is

assumed to be the LES low-pass filter. This operation takes full advantages of the numerical

grid resolution and eliminates the computational cost of calculating a subfilter scale model

term. But it is also difficult to determine the shape of the LES filter that can be useful for

some numerical methods. The trucation error can also be an issue [44]. The advantages of

explicit filtering operation, however, are that the filter shape is well defined and truncation

error can be reduced. While on the other hand, it faces the problem of loss of resolution. The

space resolution has to be fine enough in order to correctly integrate the convolution product

that defines the analytical filtering [45]. For explicit filtering, an LES filter is applied to the

numerical grid, i.e., explicitly to the discretized Navier-Stokes equations. Mathematically,

we have

〈Q(x, t)〉` =

∫ +∞

−∞
Q(x′, t)G(x′,x) dx′, (2.3)

where G(x′,x) ≡ G(x′ − x) denotes a filter function, and 〈Q(x, t)〉` is the filtered value of the

transport variable Q(x, t). In variable-density flows it is convenient to use the Favré-filtered

quantity 〈Q(x, t)〉L = 〈ρQ〉`/〈ρ〉`. We apply the filtering operation with a filter function that

is spatially varying, to Eq. (2.1):

∂〈ρ〉`
∂t

+
∂〈ρ〉`〈uj〉L

∂xj
= 0, (2.4)

∂〈ρ〉`〈ui〉L
∂t

+
∂〈ρ〉`〈uj〉L〈ui〉L

∂xj
= −∂〈P 〉`

∂xi
+
∂〈Tij〉`
∂xj

− ∂Σij

∂xj
, (2.5)

∂〈ρ〉`〈φ〉L
∂t

+
∂〈ρ〉`〈φ〉L〈ui〉L

∂xj
=

∂

∂xj

(
〈γ ∂φ
∂xj
〉`
)
− ∂Mj

∂xj
, (2.6)
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where Σij = 〈ρ〉`(〈uiuj〉L − 〈ui〉L〈uj〉L) and Mj = 〈ρ〉`(〈ujφ〉L − 〈uj〉L〈φ〉L) denote the SGS

stresses and the subgrid mass fluxes respectively. For the closure problem, we employ the

standard Smagorinsky model [46, 47]:

Σij −
2

3
〈ρ〉`Cν2∆2S2δij = −2µt

(
〈Sij〉L −

1

3
〈Skk〉Lδij

)
,

Mj = −γt
∂〈φ〉L
∂xj

. (2.7)

〈Sij〉L is the filtered strain rate tensor given by:

〈Sij〉L =
1

2

[
∂〈ui〉L
∂xj

+
∂〈uj〉L
∂xi

]
. (2.8)

The SGS viscosity is modeled by µt = 〈ρ〉`[Cν1∆]2S, where Cν1 = 0.17, Cν2 = 0.18, γt =

µt/Sct, Sct = 1, S =
√

2〈Sij〉L〈Sij〉L.

We consider the filtered density function (FDF) which contains the complete SGS sta-

tistical information of the scalars, denoted by:

FL(ψ,x, t) =

∫ +∞

−∞
ρ(x′, t)ζ(ψ,φ(x′, t))G(x′ − x) dx′, (2.9)

where

ζ(ψ,φ(x, t)) = δ(ψ − φ(x, t)). (2.10)

Here, δ denotes the Dirac delta function, and ψ represents the scalar array in the sample

space. The term ζ is the “fine-grained” density [48, 49]. Equation (2.9) defines FDF as

the spatially filtered value of the fine-grained density. With the condition of a positive filter

kernel [50], FL has all the properties of a mass density function [49]. Defining the “conditional

filtered value” of Q(x, t) as:

〈Q | ψ〉` ≡
∫ +∞
−∞ Q(x′, t)ρ(x′, t)ζ(ψ,φ(x′, t))G(x′ − x) dx′

FL(ψ,x, t)
, (2.11)

the FDF is governed by the exact transport eqution [10]:

∂FL
∂t

+
∂ [〈uj(x, t) | ψ〉`FL]

∂xj
=

∂

∂ψ

[〈
1

ρ(φ)

∂Jj
∂xj

∣∣∣∣ψ〉
`

FL

]
. (2.12)

This is an exact transport equation for the FDF. The first term on the right-hand side is

due to the effect of chemical reaction and is in a closed form. The unclosed nature of SGS

7



convection and mixing is exhibited via the conditional filtered values in the other two terms.

For closure of these terms, a gradient diffusion model is considered for convection, and the

linear mean square estimation (LMSE) [51, 52] for molecular mixing, given by the system of

stochastic differential equations (SDEs) [24, 48]:

dx+
i (t) =

[
〈ui〉L +

1

〈ρ〉`
∂(γ + γt)

∂xi

]
dt+

√
2(γ + γt)/〈ρ〉` dWi(t), (2.13)

dφ+ = −Ωm(φ+ − 〈φ〉L) dt. (2.14)

where dWi is the Wiener-Levy process [53] and, x+
i and φ+ are probabilistic representations

of the position and the scalar variables, respectively. In the model, Ωm = Cφ(γ+γt)/ (〈ρ〉`∆2)

is the SGS mixing frequency and Cφ = 4 is a model constant. In statistical mechanics, the

Fokker-Planck equation (also known as the Kolmogorov forward equation) is a partial differ-

ential equation that describes Brownian motion. The Fokker-Planck equation corresponding

to this model is (detailed derivation see [54]):

∂FL
∂t

+
∂ [〈uj〉LFL]

∂xj
=

∂

∂xj

[
(γ + γt)

∂(FL/〈ρ〉`)
∂xj

]
+

∂

∂ψ
[Ωm(ψ − 〈φ〉L)FL]. (2.15)

Equation (2.15) represents the modeled FDF transport equation. The generalized first SGS

moment 〈φ〉L and the SGS variance τ ≡ τ(φ, φ) are mostly considered for our study. These

moments are obtained via integration of the modeled FDF transport equation (Eq. (2.15)),

given by:

∂(〈ρ〉`〈φ〉L)

∂t
+

[〈ρ〉`〈uj〉L〈φ〉L]

∂xj
=

∂

∂xj

[
(γ + γt)

∂(〈φ〉L)

∂xj

]
, (2.16)

∂(〈ρ〉`τ)

∂t
+

[〈ρ〉`〈uj〉Lτ ]

∂xj
=

∂

∂xj

[
(γ + γt)

∂τ

∂xj

]
+ 2(γ + γt)

[
∂(〈φ〉L)

∂xj

∂(〈φ〉L)

∂xj

]
− 2Ωm〈ρ〉`τ. (2.17)

These equations are identical to those which would be obtained by employing consistent

closure for the SGS fluxes and the disspiation from Eq. (2.6).
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The parameter ∆ denotes the characteristic filter size. In the following study, it will be

varied for different values of the ratio ∆/h. The above formulations also serve as an evidence

for the fact that the effect of ∆/h varies with different SGS model, since the filtered velocity

field depends on the type of filter and filter width ∆, yet these quantities do not appear

directly in Eqs. (2.4)-(2.6); they appear only indirectly through the model for subgird terms.

In the following study, we will focus on examining the effects of refining the resolution and

changing the filter width.

2.2 DISCONTINUOUS GALERKIN SOLVER

The DG flow solver provides high-order approximations of the filtered transport equations

with a flexibility to deal with complex geometries. To implement this solver, the domain is

discretized into a number of structured or unstructured elements. Each of these elements are

mapped from the physical space to the computational space (x→ η). Within this space, the

transport variable are represented via the spectral approximations. The eigenfunctions of

the appropriate Sturm-Liouville problem are used for this approximation. Here the Legendre

polynomials are employed in conjunction with Gauss quadrature points. In 1-D (η), these

are given by:

Lp(η) =
1

2pn!

dp

dηp
[(η2 − 1)

p
], p = 0, 1, 2, . . . . (2.18)

where p denotes the degree of the Legendre polynomial and η is the computational space.

The number of Gauss quadrature points is given by ngp = p + 1. The basis functions up

to order p = 4 are shown in Fig. 1. Detailed DG discretization and it implementation is

described in APPENDIX A and Ref. [55].

The DG methodology is a combination of finite element (FE) and finite volume (FV)

methodologies. The multi-element part of DG is very similar to FE but unlike FE, DG

elements are disconnected at the interfaces, which makes them suitable for advection domi-

nated problems. The problem of the lack of solution uniqueness at the interface is addressed

as in FV by a numerical flux. The disconnected elements allow for flux calculation via ap-

9
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Figure 1: Basis functions for Legendre modal basis.

proximate Riemann solvers as is done here. APPENDIX B provides an error estimate test

for the order of accuracy of the DG implementation [41].

The DG solver has several advantages over more conventional methods (like finite volume,

finite difference and finite element). A significant advantage is that DG allows convergence to

DNS limit via p-refinement. Based on the close to exponential convergence of this refinement,

the procedure is much more efficient than the conventional approaches of refining the grid

(reducing h) as is the typical practice. Another advantage is that the DG variables can

easily be evaluated since these variables are represented by simple polynomials within each

element. Hence, there is no loss of accuracy due to the use of a lower order interpolation

method as is typically used in conventional approximations.
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2.3 DEMONSTRATION

Large eddy simulations as well as DNS are conducted on a cube box but suppressing the

third dimension as a simplified test case: 0 ≤ x ≤ L, −L/2 ≤ y ≤ L/2. The length L is

specified such that L = 2npλu, where np is the desired number of succesive vortex pairings

and λu is the wavelength of the most unstable mode corresponding to the mean stream-wise

velocity profile imposed at the initial time. The simulations considered a two-dimensional,

temporally developing mixing layer. Quite a number of direct numerical simulation work of

such turbulent mixling layer have been reported in literature. Incompressilbe simulations

have been reported by Comte et al. [56] and Rogers & Moser [57]. The former has shown

that a periodic mixing layer developing from a hyperbolic-tangent velocity profile is subject

to a violent three-dimensional instability. The latter investigated the influences of the two-

dimensional disturbances of varying strength on the self-similarity. The highly compressible

simulations at convective Mach number 0.2 to 1.2 are also investigated by Luo & Sandham

[58] and Vreman et al. [59]. They have found that the flow undergoes a transition with

primary instability alone, in the absence of secondary instability, vortex pairing or back-

ground noise, and the dilatational contribution to dissipation is negligible. In this work,

the flow is regarded as imcompressible. Initially the layer consists of two parallel streams

traveling in opposite directions with the same speed. x and y denote the stream-wise and

the cross-stream flow directions respectively. The velocity components in each direction are

u and v. The filtered stream-wise velocity is initialized with a hyperbolic tangent profile

with 〈u〉L = 1 on the top stream and 〈u〉L = −1 on the bottom stream.

The flow variables are normalized with respect to Lr = δv|t=0/2, Ur = ∆U/2, where

δv = ∆U/|∂〈u〉/∂y|max is the initial vorticity thickness; 〈u〉 is the Reynolds averaged value

of the filtered stream-wise velocity; ∆U is the velocity difference across the layer. All of the

Reynolds-averaged values are time-dependent and are determined by the ensemble averaging

over the homogeneous x axis, denoted by an overbar. The Reynolds number based on Lr

and Ur is Re = 100. The formation of the large scale vortical structures are expedited by

harmonic forcing of the layer. This results in the formation of np successive vortex pairings.

11



Both DNS and LES simulations are provided by the DG solver. Temporal integration in

the DG calculation is integrated via a 4th order Runge Kutta method [60]. The computa-

tional domain is discretized on euqally spaced quadrature points. Simulations are conducted

on a structured hexahedral mesh. For all cases, 〈φ〉L is initialized based on a hyperbolic

tangent profile. Specifically, 〈φ〉L|t=0 = 0.5 tanh(y) + 0.5. 2D DNS are conducted with a

mesh size hDNS = 1/32L and polynomial degree p = 5. LES simulations are conducted on

different cases varing mesh size hLES and filter width ∆. Analysis of the simulated results are

perfromed both instantaneously and statistically. In the former, the snap-shot contours of

the scalar variable are displayed. In the latter, the Reynolds averaged values are considered:

the SGS stresses τ(a, b), the resolved stresses R(a, b) and the total stresses r(a, b),

τ(a, b) = 〈ab〉L − 〈a〉L〈b〉L. (2.19)

R(a, b) = 〈a〉L〈b〉L −
(
〈a〉L

)(
〈b〉L

)
, (2.20)

r(a, b) = ab− āb̄. (2.21)

Note that for a generic filter, r(a, b) = R(a, b) + τ(a, b).

First the effect of varying the filter width with fixed grid resolution is examined. For

simplicity, the mesh size in LES is first set to be hLES = (1/16)L, while the DNS resolution

hDNS = (1/128)L. Then the filter size ∆ = C ∗ hLES takes various values with C =

0.25, 0.5, 1, 1.5, 2. Figure 15 shows the instantaneous contour plots of filtered scalar 〈φ〉L field

as computed via DNS (Fig. 2(a)) and LES (Figs. 2(b)-2(f)). These contour plots provides a

visual demonstration of how the LES cases bahave compared to the DNS results, which is

treated as an analytic solution here. Obviously, when the ratio ∆/h is relatively small, the

number of noises in the contour plots is quite noticeable, though the grid resolution remains

the same. As this ratio increases, the computational noise is decreased, but more small scale

structures in the vortex are resolved. When the ratio is as high as 4, the vortex become

quite small and we can easily deduct that if the ratio goes even higher, important turbulent

features will hardly be observed.

The above observations for varying ∆ while fixing h also lead to the question that how

different grid resolution influences the solution, especially how the influence is related to

12



(a) (b)

(c) (d)

(e) (f)

Figure 2: Contour plots of the filtered scalar field at t=2 (a) DNS results, (b) ∆ = 0.25hLES,

(c) ∆ = 0.5hLES, (d) ∆ = hLES, (e) ∆ = 1.5hLES, (f) ∆ = 2hLES.
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(a) (b)

(c) (d)

Figure 3: Contour plots of the filtered scalar field at t = 2, ∆ = (1/16)L (a) DNS results,

(b) ∆ = 0.5hLES, (c) ∆ = hLES, (d) ∆ = 2hLES.
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(a) (b)

(c) (d)

Figure 4: Contour plots of the filtered scalar field at t=2, ∆ = (1/64)L, h = (1/16)L (a)

DNS results, (b) p = 3, (c) p = 4, (d) p = 5.
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the filter size. Figure 3 shows the instantaneous contour plots of filtered scalar 〈φ〉L field

of simulations with fixed ∆ = (1/16)L. Grid resolution in LES is refined from h = (1/8)L,

h = (1/16)L, up to h = (1/32)L. It is obviously shown in the figures that the accuracy of

the solution is improved as the grid becomes finer, but the physical behavior, i.e. the char-

acteristics of the vortex pairing, is not affected. In other words, the physical characteristics

is determined by the filter size ∆. Considering the simulation cost that each case consumes,

the calculation with h = (1/8)L took only 35 minutes wall-time, while the calculations with

h = (1/32)L took as much as 28 hours and 35 minutes wall-time. Compared to the cases

where the grid size is fixed and filter size is varied, we can see that changing the grid size

plays a more important role in affecting the overall simulation costs. From the above study,

when the grid resolution is fixed, the filter size should be comparable to it in the puropose

of obtaining a suffcient accuracy.

In DG-LES solver, the polymomial degree is another important parameter, as p-enrichment

acts as a more efficient way to improve numerical accuracy than the conventional h-refinement.

Figure 4 shows the instantaneous contour plots of filtered scalar 〈φ〉L field for p = 3, 4, 5,

and ∆ = 1/64 and h = 1/16, since in Fig. 2(b) the vortex pairing shape is the closest to

the DNS result. It can be seen that when the polynomial degree is only 3, the noises in the

result are quite noticeble. As we increase p up to 5, the vortex become sharp.

Figures 5-8 show the variation of several Reynolds averaged values in the cross stream

as a more quantitative way of analysis. The LES resolution is now increased to be hLES =

(1/64)L to improve the computational accuracy. Overall, for different values of ∆/hLES,

LES predictions are in agreement with the DNS results. The profile of the filtered scalar

field is not affected much by different values of the ratio as is shown in Fig. 5. Figure 6 shows

that as ∆/hLES decreases, the SGS variance in LES results reduces and approaches zero,

while Fig. 7 indicates no such great influence of ∆/hLES. The total variance, as a result,

become smaller when decreasing the ratio ∆/hLES, as shown in Fig. 8.

Figures 9-12 show the influence of hLES independently on the Reynolds averaged values in

the cross stream direction, where ∆ = (1/64)L. Figure 9 indicates good agreement between

all of the LES and DNS results but not much difference can be seen in the filtered scalar for
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Figure 5: Cross-stream variation of the Reynolds-averaged values of the resolved scalar mean

for various filter size, p = 3, hLES = (1/64)L.
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Figure 6: Cross-stream variation of the Reynolds-averaged values of SGS scalar variance for

various filter size, p = 3, hLES = (1/64)L.
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Figure 7: Cross-stream variation of the Reynolds-averaged values of resolved scalar variance

for various filter size, p = 3, hLES = (1/64)L.
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Figure 8: Cross-stream variation of the Reynolds-averaged values of total scalar variance for

various filter size, p = 3, hLES = (1/64)L.
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different h. While from Figs. 11 - 12, it is shown that overall the SGS variance for different

grid size stays almost the same, and is in good agreement with the filtered DNS result, but

the resolved scalar variance and the total scalar variance are reduced and could converge to

the DNS limit with smaller grid size. Comparing Fig. 11 and 12, about 75-80% of the scales

are resovled and the rest is modeled.

To examine the influences of different filter-grid ratio values in a more systematic way, we

define and calculate the error of the LES solution as compared with the filtered DNS solution.

DNS results are first filtered using a simple box filter by 〈φ(x)〉 =
∫ +∞
−∞ φ(x)G(x − r) dr,

whose filter kernel G in physical space is given by:

G(x− r) =


1
∆

if |x− r| ≤ ∆
2
,

0 otherwise.

(2.22)

The filter size ∆ in this operation is determined the same as the corresponding filter width

in each LES cases. The error is then calculated by

L2(A) = ||ADNS − ALES|| =

√√√√ 1

N

N∑
j=1

(ADNSj
− ALESj

)2, (2.23)

where N is the number of points in the y-direction, and A is any Reynolds averaged quantity

of interest. The errors are plotted in Fig. 13 for different values of ∆. The results show that

errors of the resolved scalar variance, SGS scalar variance and total variance achieve the

minimum at smallest ∆ = 1/128 when hLES = (1/64)L. Taking into account the observation

in Fig. 15 when hLES is only (1/16)L, smaller ∆ gives more accurate physics but will not

necessarily decrease the error since the fixed grid size becomes insufficient for relatively small

filter size and the simulation will blow up at some point. It is also interesting to observe

from Fig. 13 that there is a much more rapid decrease in the errors when ∆ drops below

1/32.

The L2 norm errors of each LES simulations with different mesh sizes are also calculated

and plotted in Fig. 14. By refining the mesh size, the error decreases, especially for the

resolved energy and total energy. Since decreasing the filter size is an act of reducing the

modeling error, while decreasing the mesh size is reducing the numerical error, varying
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the filter size has a more obvious influence on the error reduction of SGS energy. The

differences in the shapes prove that the filter size and grid size have independent effects on

the simulation.

It is already known that in explicit filtering LES, the computational cost is roughly

proportional to (h/∆)−4 with a fixed filter width ∆, since the time step and number of

nodes in each direction scale as h−1 [32]. Good resolution therefore comes at a high price:

for example, doubling the resolution should increase the cost by a factor of 16. Recall that

the model of SGS viscosity we used is: µt = 〈ρ〉`[Cν1∆]2S, the filter size ∆ acts as the

similar role as the Smagorinsky constant Cν1 . Therefore, when the filter size is increased,

the SGS viscosity also becomes larger. Then the time spacing ∆t for temporal integration

has to be adjusted in order to ensure accuracy. Consequently, a smaller filter size could save

computational time to some extent. Rigorously there is no such optimal choice of the ratio

∆/h. Instead, ∆ and h should be chosen wisely and separately for the purpose of reducing

error and capturing physics. However, based on the current analysis for the two-dimensional

mixing layer, it is confirmed that the resolution h = 1/64 is sufficent and the SGS model

employed is capable of capturing the physics. Therefore, it is convincing to suggest keeping

∆ ≈ h for the purpose of obtaining optimum results.
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Figure 9: Cross-stream variation of the Reynolds-averaged values of resolved scalar mean for

various mesh size, ∆ = (1/64)L, p = 3.
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Figure 10: Cross-stream variation of the Reynolds-averaged values of SGS scalar variance

for various mesh size, ∆ = (1/64)L, p = 3.

24



���

Δ/����=����
Δ/����=���
Δ/����=�

-� -� -� � � � �

����

����

����

����

�

�
(
�
)

Figure 11: Cross-stream variation of the Reynolds-averaged values of resolved scalar variance

for various mesh size, ∆ = (1/64)L, p = 3.
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Figure 12: Cross-stream variation of the Reynolds-averaged values of total scalar variance

for various mesh size, ∆ = (1/64)L, p = 3.
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Figure 13: LES error of (a) resolved scalar variance, (b) SGS scalar variance and (c) total

scalar variance, as compared with filtered DNS results for various filter size. hLES = 1/64, p =

3.
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Figure 14: LES error of (a) resolved scalar variance, (b) SGS scalar variance and (c) to-

tal scalar variance, as compared with filtered DNS results for various mesh size. ∆ =

(1/64)L, p = 3.
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3.0 THREE-DIMENSIONAL MIXING LAYER

In the work described in this chapter, the DG solver is implemented for LES of a three-

dimensional temporally developing mixing layer. Systematic analysis is performed by chang-

ing the grid and filter size, as well as polynomial degree; and comparing the LES predictions

with the filtered DNS data.

3.1 FORMULATION

Formulation is similar to that of the two-dimensional case: the primary transport variables

are the (constant) density ρ(x, t), the velocity vector ui(x, t) (i = 1, 2, 3), the pressure

p(x, t), and the scalar mass fraction φ(x, t). The equations which govern the transport of

these variables in space (xi) (i = 1, 2, 3) and time (t) are the continuity, momentum and

the conservation of the mass fraction equations, same as Eq. (2.1). Detailed formulation of

filtering operation and filtered density function are described in chapter 2.

3.2 SIMULATIONS

For establishing the resolution criteria, extensive LES and DNS are conducted of a temporally

developing mixing layer [61, 62]. In doing so, the high-order DG scheme of Sammak et al.

[63] is used for the simulation purposes. To implement this solver, the domain is discretized
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into a number of elements. Each of these elements are mapped from the physical space to

the computational space (x→ η). Within this space, the transport variables are represented

via polynomial approximations of order p. A very significant feature of this scheme is that

it allows convergence to the DNS limit via both h− (grid size) and p− refinements. Based

on the close to exponential convergence of the latter, the procedure is much more efficient

compared to the conventional approach of refining the grid (reducing h). The computational

domain is discretized on equally spaced elements. For advective flux, Lax-Friedrichs [64], Roe

[65] and artificially upstream flux vector splitting scheme [66] implemented in the DG solver.

Diffusive fluxes are handled with a symmetric interior penalty method [67, 68]. Temporal

integration is done via a 4th order Runge Kutta method [60].

Simulations are conducted on a cube box, 0 ≤ x ≤ L,−L/2 ≤ y ≤ L/2 and 0 ≤ z ≤ L.

The box length L is specified such that L = 2npλu, where np is the desired number of

successive vortex pairings and λu is the wavelength of the most unstable mode corresponding

to the mean stream-wise velocity profile imposed at the initial time. Here, x, y and z denote

the stream-wise, the cross-stream and the span-wise flow directions. The velocity components

in these directions are denoted by u, v and w. The filtered stream-wise velocity is initialized

with a hyperbolic tangent profile with 〈u〉L = 1 on the top stream and 〈u〉L = −1 on

the bottom stream. The flow variables are normalized with respect to Lr = [δv (t = 0) /2]

where δv = ∆U/|∂〈u〉L/∂y|max, is the initial vorticity thickness. Here 〈u〉 is the Reynolds

averaged value of the filtered stream-wise velocity and ∆U is the velocity difference across

the layer. The reference velocity is Ur = ∆U/2. The Reynolds number based on the reference

velocity and length scales is Re = 50. The formation of the large scale vortical structures

are expedited by harmonic forcing of the layer. This includes 2D and 3D perturbations

with a random phase shift between the 3D modes [61]. This results in the formation of two

successive vortex pairings and strong three dimensionality caused by the growth of secondary

instabilities. In the context of the temporally developing flow, all of the Reynolds-averaged

values are time-dependent and are determined by ensemble averaging over the homogeneous

x− z planes. In the presentation below, these are denoted by an overbar.
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Figure 15: Contour plots of the filtered scalar field for various ∆/h sizes where p = 4,

h = 1/64 and t = 55. (a) ∆/h = 0.5, (b) ∆/h = 1, (c) ∆/h = 2 and (d) ∆/h = 4.
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3.3 DEMONSTRATIONS

The DNS simulation is conducted on a grid with h = 1/2563, and p = 5 and LES results

are investigated on a several mesh configurations with h = 1/163, h = 1/323, 1/643 and

1/1283 and p = 3, p = 4, p = 5. A filter function is used with ∆/h = 0.5, 1, 2 and 4. In

total, 48 LES cases conducted and statistical analysis of the simulated results are performed.

The Reynolds averaged values are: the SGS stresses τ(a, b) = 〈ab〉L−〈a〉L 〈b〉L, the resolved

stresses R(a, b) = 〈a〉L 〈b〉L −
(
〈a〉L

)(
〈b〉L

)
and the total stresses r(a, b) = (ab)− ab.

Figure 15 shows the instantaneous contour plots of filtered scalar (〈φα〉L) field as com-

puted for different ∆/h where p = 4, h = 1/64. This figure provides a visual demonstration

of the effect of filter size, as the lower ∆/h resolves more of the total energy. This is cor-

roborated quantitatively by the Reynolds averaged stresses presented in Fig. 16. Here, the

Reynolds averaged stresses from LES results compared with filtered and unfiltered DNS as

a more quantitative way of analysis. As it is presented in this figure, more than 80% of the

energy is resolved. The results for the cases with other values of h, p and ∆ show similar

trends, and are not shown. The differences between LES and DNS results are also com-

pared. The latter are filtered with the same width as those in LES cases, and the L2 norm

is calculated by Eq. (2.23).

Figure 17(a) indicates that for a fixed value of ∆, the SGS variance L2 norm error

decreases rapidly with larger ratio of ∆/h. While in Fig. 17(b), where h is fixed, the SGS

variance L2 norm error decreases slightly with smaller ratio of ∆/h, unlike the cases with

a fixed ∆. This indicates that the increase of the grid resolution could effectively reduce

the error. Moreover, the differences in Fig. 17(a) and Fig. 17(b) shows that the grid size

and filter size have independent effects. It is also observed that the higher order of spectral

approximation also decreases the error noticeably. Similar observations are made in Fig. 18

endorsing the above statements.

Figure 17(c) shows that as value of p increases, the amount of SGS energy decreases.

This is expected and is in accord with the expectation that with increased resolution, the

influence of SGS scales becomes less pronounced. This is further examined in Fig. 18(c)
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Figure 16: Cross stream variation of the Reynolds averaged values with p = 4, h = 1/32 and

∆ = 1/32. (a) SGS variance with, (b) resolved scalar variance with fixed, (c) total scalar

variance.
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Figure 17: L2 norm error analysis on SGS scalar variance. (a) fixed ∆ = 1/32, (b) fixed

h = 1/64, (c) fixed ∆ = 1/32.
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Figure 18: L2 norm error analysis on resolved scalar variance. (a) fixed ∆ = 1/32, (b) fixed

h = 1/64, (c) fixed ∆ = 1/32.
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Figure 19: L2 norm error analysis on total scalar variance. (a) direct method: fixed ∆ =

1/32, (b) indirect method: fixed ∆ = 1/32, (c) direct method: fixed h = 1/64, (d) indirect

method: fixed h = 1/64, (e) direct method: fixed ∆ = 1/32, (f) indirect method: fixed

∆ = 1/32.
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Figure 20: L2 norm error of total scalar from DNS.

for the resolved variances. As expected of a successful LES, a more significant portion of

the energy is resolved for a more accurate solution. In all of the cases, the total energy

remains the same (Fig. 19) and for all p values, the LES predictions are in close agreements

with the both filtered and unfiltered DNS data. This is very encouraging as it indicates

that regardless of the portion of energy captured by the resolved field, the total energy is

predicted well and there is no contamination of the total field due to SGS modeling.

Overall, for different values of ∆/h, LES results are in good agreement with DNS data,

confirming that the resolution of h = 1/64 is sufficient. It also validates that the SGS

model employed is capable of capturing the physics of the flow reasonably accurate. For

SGS variance, resolved and total scalar, the LES results merges to the DNS results as the

size of ∆ decreases. Recall the model of SGS viscosity, the filter size ∆ acts similar to the

Smagorinsky constant. Adjusting the filter size is essentially modifying the SGS model.

The effect of the filter size on the total scalar variance is shown in Fig. 20. It is shown

that for smaller ∆/h values, the assumption of generic filter is satisfied. Figure 21 indicates
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Figure 21: L2 norm error of the total scalar variance from direct method: (a) fixed p = 4,

(b) fixed h = 1/64, (c) fixed ∆ = 1/32.
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a significant error reduction as p increases. However, decreasing the h from 1/64 to 1/128

does not portray any significant effects (Fig. 21(a)). At this point, it is important to indicate

that the computational requirements become more significant with h-refinement. Reducing

the grid size by a factor of 2 requires 24 more computational times. The increase of p from

3 to 4 and 5 increases the computational time by ∼5 and ∼8 times, respectively.
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4.0 CONCLUDING REMARKS

A systematic study is conducted of the resolution requirements for large eddy simulation of

turbulent flow, via the discontinuous Galerkin (DG) method. The subgrid scale model in

LES is constructed based on the filtered density function. The resolution study is focused

on the effects of element size (h), spectral polynomial approximation (p) and the LES filter

width (∆). The simulations indicate: (1) For fixed values of h and p, as ∆ decreases, the

LES predictions converge to DNS results. (2) For a fixed ∆, LES results converge to a grid-

independent solution as h decreases or p increases. (3) For all values of ∆/h, DNS and LES

results are in good agreements in predicting the magnitude of the total energy. (4) As the

size of ∆ decreases, the resolved and total energy values in LES converge to those from DNS.

(5) For a fixed filter width, p− refinement is shown to be more effective compared to h−

refinement as the order of accuracy converges exponentially for the former and computation

cost are higher for the latter.

In general, p− refinement gives a better convergence rate and requires relatively less

computational times compared to h− refinement. Therefore, we suggest that to improve the

LES results, the best practice is to make the refinement via p, while keeping ∆ ≈ h.
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4.1 FUTURE WORK

We have achieved the basic guideline of choosing the important parameters in DG-LES,

based on simulations of two-dimensional and three-dimensional mixing layers, with uniform

mesh. For future work, we have the following suggestions:

1. Since the filter width plays a central role in the modeling of the unresolved stresses, it

will be useful if different SGS models are tested.

2. Since the relationship between h and ∆ is very important in simulations with non-uniform

meshes, it is important to consider more complex geometries.

3. To develop a more physically consistent model, it is of interest to study the adaptive LES

proposed by Pope [32], in which a measure of turbulence resolution (e.g. the percentage

of unresolved energy or dissipation) is the only specified quantity, and the grid and filter

width are adapted to achieve this.

4. The current work is limited to Newtonian fluids. It will be useful to also investigate

turbulent flows of non-Newtonian fluids.
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APPENDIX A

DG FORMULATION

The governing equations (Navier-Stokes equations) of compressible fluids are the conserva-

tion of mass, momentum, and energy, given as:

∂Uk
∂t

+
∂Fki
∂xi

= 0, (A.1)

where U is the solution vector, and F represents the flux, defined as:

U =



ρ

ρu

ρv

ρw

ρE


, F =



ρu ρv ρw

ρu2 + P − τ11 ρuv − τ12 ρuw − τ13

ρuv − τ21 ρv2 + P − τ22 ρvw − τ23

ρuw − τ31 ρvw − τ32 ρw2 + P − τ33

ρuH − τ1juj + q1 ρvH − τ2juj + q2 ρwH − τ3j + q3


, (A.2)

where ρ is the density, u, v, w are the velocity components in each spatial coordinate direction,

P is the pressure, E is total internal energy, H = E + P/ρ is the total enthalpy, τ is the

viscous stress tensor, and q is the heat flux. The viscosity is a function of the temperature

given by the Sutherland’s formula. These equations are closed using the ideal gas equation

of state:

ρE =
P

γ − 1
+

1

2
ρ
(
u2 + v2 + w2

)
, (A.3)
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where γ = 1.4 is the ratio of specific heats. Einstein notation is used in all of the following

where the subscripts of i and j respresent spatial dimensions from 1 to 3. The index k varies

over the number of variables.

To derive the weak form, Eq. (A.1) is first multiplied by a test function φ and integrated

over the domain Ω to give: ∫
Ω

φm

(
∂Uk
∂t

+
∂Fki
∂xi

)
dΩ = 0. (A.4)

Integrate it by parts and the residual Rnm is defined as:

Rkm =

∫
Ω

(
φm

∂Uk
∂t
− ∂φm

∂xi
Fki

)
dΩ +

∫
Γ

Fkini dΓ = 0, (A.5)

where φ are the basis functions and the solution is approximated using Uk = φmakm. The

index m runs over the number of basis functions. The advective fluxes are calculated using

a Riemann solver. The implemented Riemann solvers include: Lax-Friedrichs [64], Roe [65],

and artificially upstream flux vector splitting scheme (AUFS) [66]. The diffusive fluxes are

handled using a symmetric interior penalty (SIP) method [67, 68].

To solve the non-linear set of equations, a damped Newton’s method is used:

Jk∆ak =

[
M

∆t
+

(
∂R

∂a

)k]
∆ak = −Rk, (A.6)

where k is the non-linear iteration, J is the Jacobian matrix, M is a mass matrix and ∆t is an

element-wise time step which is used to dampen the solution of the linear update problem.

The mass matrix M only appears on the block diagonals due to the discontinuous basis. A

local time step ∆t is set on every element using

∆t =
CFL

h−1(
√
u2 + v2 + w2 + c)

, (A.7)

where h is a mesh size and c is the speed of sound. The CFL number is not based on

an explicit stabilit limit, but rather is used to control the convergence characteristic of the

implicit scheme. Newton’s method creates a linear system that must be solved to get the

update to the coefficients ans by:

ak+1 = ak + ∆ak. (A.8)

43



To solve the linear system in Eq. (A.6), a flexible-GMRES [69] (fGMRES) method is used.

To further improve convergence of fGMRES, a preconditioner P can be applied to the system

of equations, which in this work takes the form:

AP−1z = b, z = Px. (A.9)

Preconditioners that have been implemented include Jacobi relaxation, Gauss-Seidel relax-

ation, line implicit Jacobi, and ILU(0).
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APPENDIX B

ERROR ESTIMATE STUDY OF DG

The two-dimensional Ringleb flow is considered as a test case to provide an error estimation of

the DG implementation. Ringleb is a two-dimensional exact solution to the Euler equations.

This exact solution is suitable for testing the order of accuracy of the solver. The L2 error

norm is used:

L2 =

[
Σncell
i=1

∫
Ω

(u− ue)2 dΩ
]1/2

Σncell
i=1 Vi

,

where V is the volume of each cell, u is from the DG solver and ue the exact solution.

Simulations are conducted with four different mesh sizes h, consisting of 5, 10, 20 and 40

elements in both flow directions. The simulated results are compared with the exact solution.

The L2 norm of the error for the four sets of grids and polynomial degrees ranging from p = 0

to p = 3 is presented in Fig. 22. It is shown that the error decreases as predicted in a rate

proportional to hp+1 or better. This is a demonstration that the DG solver maintains the

correct order of accuracy.
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Figure 22: L2 norm errors of DG for different mesh size h.
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