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ENSEMBLE TIME-STEPPING ALGORITHMS FOR NATURAL

CONVECTION

Joseph Fiordilino, PhD

University of Pittsburgh, 2018

Predictability of fluid flow via natural convection is a fundamental issue with implications

for, e.g., weather predictions including global climate change assessment and nuclear reactor

cooling. In this work, we study numerical methods for natural convection and utilize them

to study predictability. Eight new algorithms are devised which are far more efficient than

existing ones for ensemble calculations. They allow for either increased ensemble sizes or

denser meshes on current computing systems.

The artificial compressibility ensemble (ACE) family produce accurate velocity and tem-

perature approximations and are fastest. The speed of second-order ACE degrades as ε→ 0

or ∆t → 0 due to the iterative solver. However, first-order ACE has a uniform solve time

since γ = O(1). The ensemble backward differentiation formula (eBDF) family are most

accurate and reliable. The penalty ensemble algorithm (PEA) family are strongly affected

by the timestep and are least accurate. In particular, γ = O(1/∆t2) for second-order PEA

leads to solver breakdown. We also propose an ACE turbulence (ACE-T) family of methods

for turbulence modeling which are both fast and accurate.

A complete numerical analysis is performed which establishes full-reliability. The analysis

involves techniques that are novel and results that subsume, elucidate, and expand previous

results in closely related fields, e.g., iso-thermal fluid flow. Numerical tests show predicted

accuracy is consistent with theory.

Predictability is a highly complex and problem-dependent phenomenon. Predictability

studies are performed utilizing the new second-order ACE algorithm. We perform a numer-
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ical test where the flow reaches a steady state. It is found that increasing the size of the

domain increases predictability. Also, spatial averages increase predictability with increasing

filter radius. We also study a problem with a manufactured solution. Sufficiently large rota-

tions increase the predictability of a flow. Further, spatial averages decrease predictability

with increasing filter radius.
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1.0 INTRODUCTION

There cannot be a greater mistake than that of looking superciliously upon
practical applications of science. The life and soul of science is its
practical application...

Sir William Thomson [82]

This thesis is concerned with numerical methods, and their properties, for the study of

natural convection. Natural convection is ubiquitous in nature. This phenomenon plays

a fundamental role in our planet’s atmosphere and oceans and in many technologies, e.g.,

cooling of nuclear reactor and electronic systems; see, e.g., [6, 47, 101, 109] and references

therein. Natural convection can be described mathematically by the Boussinesq equations

under a variety of circumstances.

The Boussinesq equations are derived from physical conservation laws [14, 116]; that is,

conservation of momentum, mass, and internal energy. Thus, they share the same struc-

ture as the Navier-Stokes equations (NSE) and, therefore, many of the difficulties and phe-

nomenon, such as turbulence, are present. The resulting nonlinear set of equations exhibit

chaos and the question of predictability arises. Thus, numerical solution of the Boussi-

nesq equations with slightly different initial conditions can exhibit exponential separation of

nearby trajectories.

With this in mind, practical computing demands several runs of a code. In particular, for

many problems of interest, a single realization solve is not sufficient owing to fundamental

uncertainty in initial conditions, forcings, parameters, and etc. [89]. Consequently, ensemble

calculations are critical. Briefly, ensemble calculations amount to J solves of a set of equa-

tions with slightly perturbed initial data. Averaging these solutions produces the ensemble

averaged solution, which tends to perform better as a prediction than any of the realizations;

see, e.g., Chapter 6.5 of [80] or [4, 44, 81] and references therein.
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It is evident that the ensemble size and mesh density are competing factors; increases in

either yield better approximations. Consequently, the development of algorithms which can

reduce storage requirements or decrease turnaround time are well justified. Currently, the

practice is to solve a single set of equations with slightly perturbed data. Ultimately, this

reduces to J linear algebra problems, 1 ≤ j ≤ J : Ajxj = bj; that is, J linear solves with J

different coefficient matrices. If the J coefficient matrices could be somehow reduced, this

would constitute a major storage decrease. Further, if only a single coefficient matrix were

needed, efficient block solvers would be applicable and an additional, dramatic reduction in

turnaround time would be possible.

In view of the above, several algorithms are proposed and studied in this thesis. We

analyze longtime stability of some commonly used algorithms, e.g., the first- and second-order

backward differentiation formula (BDF) family. New ensemble algorithms are proposed and

a complete numerical analysis is performed. Consequently, full reliability of each algorithm is

established. Thus, scientists and engineers can have confidence in our algorithms’ capabilities

and limitations.

In Chapter 2, we introduce mathematical tools and notation that will be instrumental

in establishing rigorous results. For example, the discrete inf-sup condition (2.23), also

known as the discrete Ladyzhenskaya-Babǔska-Brezzi condition (LBBh), plays a pivotal role

throughout. When satisfied, this condition ensures well-posedness, stability of approximate

solutions, and is necessary for convergence to the true solutions of the continuous problems.

We will use this condition to establish full-reliability of all algorithms.

We confront the issue of long-time stability of solutions to the Boussinesq equations in

Chapter 3. Under mild conditions, the temperature is uniformly bounded in time, however,

common numerical methods, e.g., the BDF family, have not yet been proven to exhibit this

behavior. The main difficulty is that the temperature does not satisfy homogeneous Dirichlet

boundary conditions. Therefore, the convective and buoyancy terms couple the velocity and

temperature in an essential way that is difficult to treat with current mathematical tools.

We introduce a new interpolant, the discrete Hopf interpolant (Theorem 3), to confront

this issue. Using it, we are able to show that the velocity and temperature approximations

can exhibit, at most, sub-linear growth in the final simulation time t∗ provided the finite

2



element mesh satisfies a mesh condition. In particular, provided that the first mesh-line of

the finite element mesh is within O(Ra−1) of the hot wall, ‖un+1
h ‖+ ‖T n+1

h ‖ ≤ C
√
t∗.

Chapter 4 forms the central component of this thesis. We confront the issue of efficiency

when simulating multiple realizations of the Boussinesq equations with slightly different

initial data. Ensemble calculations have proven essential in, e.g., weather forecasting [80]

and ocean modeling [89]. Unfortunately, ensemble calculations require J sequential, fine

mesh solves or J parallel, coarse mesh solves of a given code. We introduce several ensemble

algorithms, which offer potentially dramatic speed ups and reduce storage requirements. We

verify and validate these algorithms with numerical experiments.

In Chapter 5, we utilize our flagship algorithm, second-order ACE from Chapter 4, to

illustrate the use of ensembles. In particular, we study the predictability phenomenon. To

this end, we introduce quantities which are useful for quantifying predictability horizons:

average effective Lyapunov exponents, predictability horizons, and variance. Predictability

horizons of solutions and their spatial averages are calculated for test problems.

We end with conclusions and open questions in Chapter 6. The aim of this thesis is to

be more than a collection of results. The intent is to improve understanding on each of the

topics confronted in Chapters 3 - 5 and invite graduate students and researchers to tackle

interesting open problems. Consequently, we collect, state, and elaborate on many of the

open problems that have arisen along our journey. We hope that this thesis will be accessible

and provide sufficient insight to improve and extend results and develop understanding.
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2.0 MATHEMATICAL PRELIMINARIES

Young man, in mathematics you don’t understand things. You just get
used to them.

John von Neumann [144]

In this section, we introduce notation and necessary preliminaries. Hs(Ω) denotes the

Hilbert space of L2(Ω) functions with distributional derivatives of order s ≥ 0 in L2(Ω).

The corresponding norms and seminorms are ‖ · ‖s and | · |s. In the special case s = 0,

H0(Ω) = L2(Ω) and the associated inner product and induced norm are (·, ·) and ‖ · ‖. The

Lp(Ω) norm is denoted ‖ · ‖Lp and ‖ · ‖Lp(Ω0) for Ω0 ⊂ Ω, 1 ≤ p ≤ ∞.

Define the Hilbert spaces,

X := H1
0 (Ω)d = {v ∈ H1(Ω)d : v = 0 on ∂Ω}, Q := L2

0(Ω) = {q ∈ L2(Ω) : (1, q) = 0},

W := H1(Ω), WΓD := {S ∈ W : S = 0 on ΓD}, V := {v ∈ X : (q,∇ · v) = 0 ∀ q ∈ Q}.

The dual norm ‖ · ‖−1 is understood to correspond to either X or WΓD . Further, we utilize

the fractional order Hilbert space on the nonhomogeneous Dirichlet boundary H1/2(ΓD1)

with corresponding norm

‖χ‖1/2,ΓD1
:=
(∫

ΓD1

|χ(s)|2ds+

∫
ΓD1

∫
ΓD1

|χ(s)− χ(s′)|2

|s− s′|d
dsds′

)1/2

.

An extension operator of the nonhomogeneous Dirichlet data will be useful.

Theorem 1. Let Ω ⊂ Rd be a bounded Lipschitz domain and χ ∈ H1/2(ΓD1). Then, there

exists an extension operator τ : H1/2(ΓD1)→ W and Ctr > 0 such that τ |ΓD1
= χ and

‖τ‖1 ≤ Ctr‖χ‖1/2,ΓD1
. (2.1)

Proof. See Lemma 3.2 on p. 1832 of [23].
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For natural convection within a unit square or cubic enclosure with a pair of differentially

heated vertical walls, the linear conduction profile τ(x) = 1−x1, where x1 denotes the spatial

coordinate in the horizontal direction, is such an extension satisfying: ‖τ‖1 ≤ 2
√

3
3

.

The explicitly skew-symmetric trilinear forms are denoted:

b(u, v, w) =
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v) ∀u, v, w ∈ X,

b∗(u, T, S) =
1

2
(u · ∇T, S)− 1

2
(u · ∇S, T ) ∀u ∈ X, ∀T, S ∈ W.

They enjoy the following continuity results and properties.

Lemma 1. There are constants C1, C2, C3, C4, C5, and C6 such that for all u,v,w ∈ X and

T,S ∈ W , b(u, v, w) and b∗(u, T, S) satisfy

b(u, v, w) = (u · ∇v, w) +
1

2
((∇ · u)v, w),

b(u, v, w) ≤ C1‖∇u‖‖∇v‖‖∇w‖,

b(u, v, w) ≤ C2

√
‖u‖‖∇u‖‖∇v‖‖∇w‖,

b(u, v, w) ≤ C3‖∇u‖‖∇v‖
√
‖w‖‖∇w‖,

b∗(u, T, S) = (u · ∇T, S) +
1

2
((∇ · u)T, S),

b∗(u, T, S) ≤ C4‖∇u‖‖∇T‖‖∇S‖,

b∗(u, T, S) ≤ C5

√
‖u‖‖∇u‖‖∇T‖‖∇S‖,

b∗(u, T, S) ≤ C6‖∇u‖‖∇T‖
√
‖S‖‖∇S‖.

Proof. See Lemma 2.1 on p. 12 of [132].

It is interesting to note that skew-symmetry of the above trilinear forms requires u·n = 0;

that is, T · n 6= 0 is permitted. Also, there are several equivalent forms of the nonlinearities

in the continuous setting which differ in the discrete setting [76]. Consideration of these

alternative forms in Chapters 3 and 4 is an interesting open problem.

The Poincaré-Friedrichs inequality will be useful: ∀χ ∈ X or WΓD , there exists CP > 0 such

that

‖χ‖ ≤ CP‖∇χ‖.
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The constant CP depends solely on the domain [76]. In particular, the domain and its

homogeneous Dirichlet boundary. Consequently, CP will generally differ for functions in X

or WΓD . We do not explicitly differentiate here. Also, the following Sobolev embedding

inequality is useful [45]: for χ ∈ X or WΓD ,

‖χ‖L4 ≤ CS‖∇χ‖, (2.2)

where CS depends on the domain. These are consequences of the Ladyzhenkaya inequalities.

The differential filter [48] will prove useful for studying predictability in Chapter 5: Given

χ, find χ satisfying

−δ2∆χ+ χ = χ in Ω, (2.3)

χ = χ on ∂Ω. (2.4)

The boundary conditions are a delicate issue. In particular, if χ = 0 on ∂Ω then χ = ∆χ = 0

on ∂Ω. Thus, χ is a linear function within the boundary layer, which may not reflect the

correct behavior [76].

The weak formulation is: Given χ ∈ L2(Ω)d or L2(Ω), find χ ∈ X or W satisfying

δ2(∇χ,∇v) + (χ, v) = (χ, v), ∀v ∈ X or WΓD . (2.5)

When solving for χ ∈ W , we require χ = Ψ + τ ; Ψ ∈ WΓD is the auxiliary solution and

τ ∈ W is an interpolant satisfying the nonhomogeneous Dirichlet boundary condition. If

χ ∈ X or H1
0 (Ω), the filtered solution χ satisfies the following.

Lemma 2. Let Ω ⊂ Rd be a convex polyhedron and χ ∈ X or H1
0 (Ω). Then, the solution χ

to the problem (2.5) satisfies the following:

If χ ∈ L2(Ω)d or L2(Ω), then

δ2‖∇χ‖2 + ‖χ‖2 ≤ ‖χ‖2.

Further, if ∇χ ∈ L2(Ω)d or L2(Ω), then

δ2‖∇(χ− χ)‖2 + ‖χ− χ‖2 ≤ δ2‖∇χ‖2.

Moreover, if ∆χ ∈ L2(Ω)d or L2(Ω), then

δ2‖∇(χ− χ)‖2 + ‖χ− χ‖2 ≤ δ4‖∆χ‖2.

6



Proof. See Lemma 4.0.3 and 4.0.5 on p. 7 of [98].

Let N be a positive integer and set both ∆t = t∗

N
and tn = n∆t for 0 ≤ n ≤ N .

Then, [0, t∗] =
N−1⋃
n=0

[tn, tn+1] is a partition of the time interval. We define the discrete time-

derivatives and associated extrapolations,

∂i∆t(v
n) :=


vn−vn−1

∆t
i = 1,

3vn−4vn−1+vn−2

2∆t
i = 2.

(2.6) E i(vn) :=

v
n−1 i = 1,

2vn−1 − vn−2 i = 2.

(2.7)

Using the polarization identity and the elementary identity 2(3a − 4b + c)a = a2 + (2a −

b)2 − b2 + (2b− c)2, respectively, the following relations hold:

(∂1
∆t(v

n),∆tvn) =
1

2

(
‖vn‖2 − ‖vn−1‖2 + ‖vn − vn−1‖2

)
, (2.8)

(∂2
∆t(v

n),∆tvn) =
1

4

(
‖vn‖2 + ‖2vn − vn−1‖2 − ‖vn−1‖2 − ‖2vn−1 − vn−2‖2

+ ‖vn − 2vn−1 + vn−2‖2
)
. (2.9)

A discrete Gronwall inequality will play an important role in the stability and error

analysis.

Lemma 3. (Discrete Gronwall Lemma). Let ∆t, H, an, bn, cn, and dn be finite nonnegative

numbers for n ≥ 0 such that for N ≥ 1

aN + ∆t
N∑
0

bn ≤ ∆t
N−1∑

0

dnan + ∆t
N∑
0

cn +H,

then for all ∆t > 0 and N ≥ 1

aN + ∆t
N∑
0

bn ≤ exp
(
∆t

N−1∑
0

dn
)(

∆t
N∑
0

cn +H
)
.

Proof. See Lemma 5.1 on p. 369 of [64].
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We will also utilize the following norms in the error analysis: ∀ − 1 ≤ k <∞,

|||v|||∞,k := max
0≤n≤N

‖vn‖k, |||v|||p,k :=
(
∆t

N∑
n=0

‖vn‖pk
)1/p

.

The following form of the Boussinesq equations is considered. Let Ω ⊂ Rd be an open,

bounded, Lipschitz domain. Given u(x, 0) = u0(x) and T (x, 0) = T 0(x), find u(x, t) :

Ω× (0, t∗]→ Rd, p(x, t) : Ω× (0, t∗]→ R, and T (x, t) : Ω× (0, t∗]→ R satisfying

ut + u · ∇u− ν∆u+ Λ× u+∇p = βgT + f1 in Ω, (2.10)

∇ · u = 0 in Ω, (2.11)

Tt + u · ∇T − κ∆T = f2 in Ω, (2.12)

u = 0 on ∂Ω, T = 1 on ΓD1 , T = 0 on ΓD2 , n · ∇T = 0 on ΓN . (2.13)

In the above, β ← (TH − TC)β and p ← 1
ρ
p; see Appendix A. The weak formulation of the

Boussinesq equations (2.10) - (2.13) is: Find u : [0, t∗]→ X, p : [0, t∗]→ Q, T : [0, t∗]→ W

for a.e. t ∈ (0, t∗] satisfying for j = 1, ..., J :

(ut, v) + b(u, u, v) + ν(∇u,∇v) + (Λ× u, v)− (p,∇ · v) = (βgT, v)

+ (f1, v) ∀v ∈ X, (2.14)

(∇ · u, q) = 0 ∀q ∈ Q, (2.15)

(Tt, S) + b∗(u, T, S) + κ(∇T,∇S) = (f2, S) ∀S ∈ WΓD . (2.16)

For turbulent simulations, we consider the following system: Find u : [0, t∗]→ X, p : [0, t∗]→

Q, T : [0, t∗]→ W for a.e. t ∈ (0, t∗] satisfying for j = 1, ..., J :

(ut, v) + b(u, u, v) +
(
(ν + νturb)D(u),∇v

)
+ (Λ× u, v)− (p,∇ · v)

= (βgT, v) + (f1, v) ∀v ∈ X, (2.17)

(∇ · u, q) = 0 ∀q ∈ Q, (2.18)

(Tt, S) + b∗(u, T, S) +
(
(κ+

νturb
σturb

)∇T,∇S
)

= (f2, S) ∀S ∈ WΓD , (2.19)

where D(u) := 1
2

(
∇u +∇uT

)
is the symmetric part of the deformation tensor, νturb is the

eddy viscosity, and σturb is the turbulent Prandtl number. The solution quantities u, p,
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and T are understood to correspond to the mean solution quantities. In the above, the

Reynolds stress tensor and turbulent heat flux vector were modeled via R(u, u) = νturbD(u)

and H(u, T ) = νturb
σturb
∇T under the eddy viscosity hypothesis, Boussinesq assumption, and

gradient-diffusion hypothesis. Owing to Korn’s inequality, the following relationships hold

[76]:

(∇u,∇v) = 2(D(u),∇v) = 2(∇u,D(v)) ∀ u, v ∈ V,
√

2

2
‖∇u‖ ≤ ‖D(u)‖ ≤ ‖∇u‖ ∀ u, v ∈ X.

As a consequence, results proven with D(u) replaced with ∇u imply results for the former.

2.1 FINITE ELEMENT PRELIMINARIES

Let {Th}0<h<1 be a family of quasi-uniform meshes, unless specified otherwise, with maximum

element length h = max
K∈Th

hK . The geometric interpolation of Ω is defined as Ωh =
⋃
K∈Th K.

We will assume Ω to be a convex polyhedron for simplicity; curved boundaries can be dealt

with in the usual way, e.g., isoparametric elements [31]. Consequently, we have Ω = Ωh. Let

Xh ⊂ X, Qh ⊂ Q, Ŵh = (Wh,WΓD,h) ⊂ (W,WΓD) = Ŵ be conforming finite element spaces

defined as

Xh := {vh ∈ C0(Ωh)
d : ∀ K ∈ Th, vh|K ∈ Pj(K)d } ∩X,

Qh := {qh ∈ C0(Ωh) : ∀ K ∈ Th, qh|K ∈ Pl(K) } ∩Q,

Wh := {Sh ∈ C0(Ωh) : ∀ K ∈ Th, Sh|K ∈ Pj(K) } ∩W,

WΓD,h := {Sh ∈ C0(Ωh) : ∀ K ∈ Th, Sh|K ∈ Pj(K) } ∩WΓD .

The spaces above satisfy the following approximation properties: ∀1 ≤ j, l ≤ k,m,

inf
vh∈Xh

{
‖u− vh‖+ h‖∇(u− vh)‖

}
≤ Chk+1|u|k+1 u ∈ X ∩Hk+1(Ω)d, (2.20)

inf
qh∈Qh

‖p− qh‖ ≤ Chm|p|m p ∈ Q ∩Hm(Ω), (2.21)

inf
Sh∈Ŵh

{
‖T − Sh‖+ h‖∇(T − Sh)‖

}
≤ Chk+1|T |k+1 T ∈ Ŵ ∩Hk+1(Ω). (2.22)
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Furthermore, we consider those spaces for which the discrete inf-sup condition is satisfied,

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖qh‖‖∇vh‖

≥ α > 0, (2.23)

where α is independent of h. Examples include the MINI-element, Taylor-Hood, and non-

conforming Crouzeix-Raviart elements [76]. The space of discretely divergence free functions

is defined by

Vh := {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

The discrete inf-sup condition (2.23) plays an important role in the stability and error anal-

ysis. In fact, it implies that we may approximate functions in V well by functions in Vh.

Lemma 4. Suppose the discrete inf-sup condition (2.23) holds, then for any v ∈ V

inf
vh∈Vh

‖∇(v − vh)‖ ≤ C(α) inf
vh∈Xh

‖∇(v − vh)‖.

Proof. See Theorem 1.1 on p. 59 of [50].

The spaces X∗h and V ∗h , dual to Xh and Vh, are endowed with the following dual norms

‖w‖X∗h := sup
vh∈Xh

(w, vh)

‖∇vh‖
, ‖w‖V ∗h := sup

vh∈Vh

(w, vh)

‖∇vh‖
.

Further, these norms are equivalent for functions in Vh.

Lemma 5. Let w ∈ Vh, then

C∗‖w‖X∗h ≤ ‖w‖V ∗h ≤ ‖w‖X∗h .

Proof. See Lemma 1 on p. 243 of [46].
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The following local and global inverse estimate holds [31]: ∀χ ∈ Xh or Wh,

‖∇χ‖L2(K) ≤ CKh
−1
K ‖χ‖L2(K),

‖∇χ‖ ≤ Cinvh
−1‖χ‖,

where Cinv depends on the minimum angle in the triangulation.

The Stokes projection will be useful in the error analysis. Let IStokesh : X×Q→ Xh×Qh

via IStokesh (u, p) = (U, P ) satisfy the following discrete Stokes problem:

Pr(∇(U − u),∇vh)− (P − p,∇ · vh) = 0 ∀ vh ∈ Xh, (2.24)

(∇ · (U − u), qh) = 0 ∀ qh ∈ Qh. (2.25)

The following result holds.

Lemma 6. Assume the approximation properties (2.20) - (2.21) and associated regularity

hold. Then, there exists C > 0 such that

h−1‖u− U‖+ ‖∇(u− U)‖+ ‖p− P‖ ≤ C(α, Pr,Ω)
{

inf
vh∈Xh

‖∇(u− vh)‖+ inf
qh∈Qh

‖p− qh‖
}
.

Proof. Follows from Theorem 13 on p. 62 of [85] and the Aubin-Nitsche trick.

We will also need the existence of an interpolant of the extension operator, τ , with

optimal approximation properties.

Theorem 2. Let τ : H1/2(ΓD1)→ W be an extension operator satisfying Theorem 1. More-

over, suppose τ ∈ W ∩Hk+1(Ω). Then, there exists an interpolant Ihτ ∈ Wh such that

‖∇Ihτ‖ ≤ C̃I‖τ‖1,

‖τ − Ihτ‖+ h‖∇(τ − Ihτ)‖ ≤ Chk+1|τ |k+1.

Moreover, if τ |ΓD2
= 0, then

‖Ihτ‖1 ≤ CI‖τ‖1.

Proof. See Lemma 3.2 on p. 1838 of [23] for the first. The second is a consequence of the

Poincaré-Friedrichs inequality.
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In the discrete setting, the explicitly skew-symmetric trilinear forms satisfy an additional

estimate.

Lemma 7. Suppose u,v,w ∈ Xh and T,S ∈ WΓD,h. Then, there exists C?, C?? > 0 such that

b(u, v, w) and b∗(u, T, S) satisfy, for d = 3,

sup
u,v,w∈Xh

b(u, v, w)

‖∇u‖‖∇v‖‖w‖
≤ C?h

−1/2,

sup
u∈Xh
T,S∈Wh

b∗(u, T, S)

‖∇u‖‖∇T‖‖S‖
≤ C??h

−1/2.

Furthermore, for d = 2,

sup
u,v,w∈Xh

b(u, v, w)

‖∇u‖‖∇v‖‖w‖
≤ C?(1 + | ln(h)|)1/2,

sup
u∈Xh
T,S∈Wh

b∗(u, T, S)

‖∇u‖‖∇T‖‖S‖
≤ C??(1 + | ln(h)|)1/2.

Proof. The first set follow from Lemma 1 and the inverse inequality. In 2d, the following

inverse estimate holds [12]: ‖χ‖L∞ ≤ C(1 + | ln(h)|)1/2‖∇χ‖. Consequently,

b(u, v, w) = (u · ∇v, w) +
1

2
((∇ · u)v, w)

≤ ‖u‖L∞‖∇v‖‖w‖+
1

2
‖∇ · u‖‖v‖L∞‖w‖

≤ C(1 + | ln(h)|)1/2‖∇u‖‖∇v‖‖w‖+
C
√
d(1 + | ln(h)|)1/2

2
‖∇u‖‖∇v‖‖w‖

≤ C(1 + | ln(h)|)1/2‖∇u‖‖∇v‖‖w‖,

and the result follows. Follow analogously for b∗.

The discrete differential filter is: Given χh ∈ L2(Ω)d or L2(Ω), find χh ∈ Xh or Wh

satisfying

δ2(∇χh,∇vh) + (χh, vh) = (χh, vh), ∀vh ∈ Xh or WΓD,h. (2.26)

When solving for χh ∈ Wh, we require χh = Ψh + Ihτ ; again, Ψh ∈ WΓD,h is the auxiliary

solution and Ihτ ∈ Wh is an interpolant satisfying the nonhomogeneous Dirichlet boundary

condition. For χh ∈ Xh, d = 1, 2, 3, the discrete differential filter satisfies the following.
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Lemma 8. Let χ be the continuous differential filter satisfying (2.5). Suppose the approxi-

mation properties (2.20) or (2.22) hold. Then, the discrete problem (2.26) is well-posed and

satisfies the following:

δ‖∇(χ− χh)‖+ ‖χ− χh‖ ≤ Chk(δ + h)|χ|k+1.

Proof. See Lemma 4.0.6 and Theorem 4.0.1 on p. 7-8 of [98].
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3.0 STABILITY OF FINITE ELEMENT METHODS FOR THE

BOUSSINESQ EQUATIONS

I often say that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your knowledge is of
a meagre and unsatisfactory kind; it may be the beginning of knowledge,
but you have scarcely in your thoughts advanced to the state of Science,
whatever the matter may be.

Sir William Thomson [82]

The temperature in natural convection problems is uniformly bounded in time (‖T (t)‖ ≤

C < ∞) under mild data assumptions [42, 96]. However, when this often analyzed problem

is approximated by standard FEM, all available stability bounds, e.g., [125,126,142], for the

temperature exhibit exponential growth in time unless the heat transfer through the solid

container is included in the model, e.g., [10]. Moreover, even in the stationary case, stability

estimates can yield extremely restrictive mesh conditions, e.g., h = O(Ra−30/(6−d)) [23].

In this chapter, we prove that, without the aforementioned restrictions, the temperature

approximation is bounded sub-linearly in terms of the simulation time t∗ provided that

the first mesh line in the finite element mesh is within O(Ra−1) of the heated wall; that

is, ‖T nh ‖ ≤ C
√
t∗. In practice, numerical simulations are carried out on a graded mesh

[21,67,99,103] due to the interaction between the boundary layer, which is O(Ra−1/4) in the

laminar regime [49], and the core flow. In particular, practitioners place several mesh points

within the boundary layer, which envelops the internal core flow. Although our condition is

more restrictive, this may be due to a gap in the analysis and, none-the-less, it is indicative

of the value of graded meshes for stability as well as accuracy.

A major accomplishment in this chapter is the construction of a new discrete extension

operator, the discrete Hopf extension. In Hopf [65], a ”background flow” was utilized to
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study stationary solutions of the NSE. Since then, the background flow method has been

utilized and developed in many subsequent works. In Doering and Constantin [27], it was

employed to derive an upper bound on the time averaged turbulent energy dissipation rate

for shear driven flow. In this work, the background flow takes the following form

τ(x) =


U
2δ

(2δ − xα) 0 ≤ xα ≤ δ,

U
2

δ ≤ xα ≤ 1− δ,

U
2δ

(L− xα) L− δ ≤ xα ≤ L,

where U is the speed of the driven boundary, δ is the so-called boundary layer, α is in the

direction orthogonal to the driven wall, and L is the distance between two parallel plates.

From the viewpoint of the analyst, δ acts as an additional free parameter. In particular,

choosing δ = O(Re−1), the authors derive the estimate ε ≤ 1
8
√

2
U3

L
.

Since [27], the method has been developed further and applied in other settings, including

natural convection [28]. Wang [139] later derived ε ≤ C U3

L
, where L is the diameter of

the domain, for bounded, smooth domains in Rn. John, Layton, and Manica [77] treated

the discrete setting, deriving the same dissipation rate scaling under the mesh condition

h = O(Re−1). Recently, Pakzad [111] utilized the method to analyze energy dissipation

rates of the Smagorinsky model with van Driest damping.

The outline of this chapter is as follows. In Section 3.1, we present a new interpolant

which will play a pivotal role in the stability analyses. In Sections 3.2 and 3.3, we present

and analyze the stability of four numerical schemes: first- and second-order BDF and linearly

implicit variants. In particular, it is shown that the velocity and temperature approximations

can grow at most sub-linearly in time provided that the first mesh line in the finite element

mesh is within O(Ra−1) of the nonhomogeneous Dirichlet boundary. Moreover, the pressure

approximation can grow at most linearly. We end with conclusions in Section 3.4.

15



Figure 3.1: The discrete Hopf interpolant on a FE mesh.

3.1 CONSTRUCTION OF THE DISCRETE HOPF EXTENSION

The mesh condition h = O(Ra−30/(6−d)) from [23] arises from the use of the Scott-Zhang

interpolant of degree j. To improve upon this condition, we develop a special interpolant for

the upcoming analysis. We construct it as follows; see Figure 3.1.

Algorithm: Construction of the discrete Hopf extension

Step one: Consider those mesh elements K such that K ∩ ΓD1 6= ∅. Enumerate these

mesh elements from 1 to l′.

Step two: ∀ 1 ≤ l ≤ l′, let {φlk}d+1
k=1 be the usual piecewise linear hat functions with

supp φlk ⊂ Kl .

Step three: Fix l, select those φlk such that φlk(x) = 1 for x ∈ Kl ∩ ΓD1 .

Step four: Define ψi such that {ψi}i′i=1 = {φlk}
k′,l′

k,l=1.

Step five: Define τ =
∑i′

i=1 T̃
iψi where −∞ < T̃min ≤ T̃ i ≤ T̃max < ∞ are arbitrary

constants.

Then,

Theorem 3. Suppose T̃ : ΓD1 → R is a piecewise linear function defined on ΓD1. The
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discrete Hopf extension τ : Ω→ R satisfies

τ(x) = T̃ on ΓD1 ,

τ(x) = 0 on Ω− ∪l′l=1Kl.

Moreover, let δ = max1≤l≤l′ hl. Then, the following estimate holds: ∀σ > 0, ∀(χ1, χ2) ∈

(Xh,WΓD,h)

|b∗(χ1, τ, χ2)| ≤ Cδ
(
σ−1‖∇χ1‖2 + σ‖∇χ2‖2

)
. (3.1)

Proof. The properties are a consequence of the construction. For the estimate (3.1), it suf-

fices to consider |b∗(χ1, T̃
iψi, χ2)| where T̃ i = T̃ (xi) is the corresponding nodal value of T̃ .

For each ψi there is a corresponding mesh element Kl such that supp ψi ⊂ Kl. Let K̂ ⊂ Rd

be the reference element and FKl : K̂ → Kl the associated affine transformation given by

x = FKlx̂ = BKlx̂ + bKl . We will utilize the operator norm ‖ · ‖op and the Euclidean norm

| · |`2 below.

Consider 1
2
|(χ1 · ∇T̃ iψi, χ2)|, the estimate for 1

2
|(χ1 · ∇χ2, T̃

iψi)| follows analogously.

Transform to the reference element, use standard FEM estimates, the Cauchy-Schwarz in-

equality, and equivalence of norms. Then,

1

2
|(χ1 · ∇T̃ iψi, χ2)| = |T̃

i||det(BKl)|
2

|
∫
K̂

χ̂1 ·B−TKl ∇̂ψ̂
iχ̂2dx̂|

≤ |T̃
i||det(BKl)|

2
‖B−TKl ‖op|∇̂ψ̂

i|`2
∫
K̂

|χ̂1|`2|χ̂2|dx̂

≤ Chd−1
l ‖χ̂1‖L2(K̂)‖χ̂2‖L2(K̂)

≤ Chd−1
l ‖∇̂χ̂1‖L2(K̂)‖∇̂χ̂2‖L2(K̂). (3.2)

Consider ‖∇̂χ̂2‖L2(K̂) and ‖∇̂χ̂1‖L2(K̂). Transforming back to the mesh element and using

standard FEM estimates yields

‖∇̂χ̂2‖2
L2(K̂)

= |det(B−1
Kl

)|
∫
Kl

BT
Kl
∇χ2 ·BT

Kl
∇χ2dx

≤ |det(B−1
Kl

)|‖BT
Kl
‖2
op‖∇χ2‖2

L2(Kl)

≤ Ch2−d
l ‖∇χ2‖2

L2(Kl)
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≤ Ch2−d
l ‖∇χ2‖2, (3.3)

‖∇̂χ̂1‖2
L2(K̂)

≤ Ch2−d
l ‖∇χ1‖2. (3.4)

Use (3.3) and (3.4) in (3.2) and Young’s inequality. This yields

1

2
|(χ1 · ∇T̃ iψi, χ2)| ≤ Chl

(
σ‖∇χ1‖2 + σ−1‖∇χ2‖2

)
.

Summing from i = 1 to i = i′ and taking the maximum hl yields the result.

The equivalence of norms argument in (3.2) is subtle. Consider K and let p be a polyno-

mial of fixed degree satisfying p ∈ C0(K) and p(x) = 0 for some x ∈ ∂K. If ‖∇p‖L2(K) = 0,

then p = C ∈ R. Further, since p is continuous on K, C = 0. Thus, ‖∇ · ‖L2(K) and ‖ · ‖L2(K)

are equivalent norms for such functions.

If we allow the interpolant to be constructed with the basis elements of Wh, we can

reconstruct any function Sh ∈ Wh exactly on the boundary ΓD1 with the same properties.

For square and cubic domains we can define such an interpolant explicitly, e.g.,

τ(x) =


1
δ
(δ − xα) 0 ≤ xα ≤ δ,

0 δ ≤ xα ≤ 1,

where α is in the direction orthogonal to the differentially heated walls or in the direction

of gravity for the differentially heated vertical wall problem and Rayleigh-Bénard problem,

respectively.
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3.2 NUMERICAL SCHEMES

In this section, we consider the following popular temporal discretizations: BDF1, linearly

implicit BDF1, BDF2, and linearly implicit BDF2; see, e.g., [3,69] regarding linearly implicit

variants of some common time-stepping schemes. Denote the fully discrete solutions by unh,

pnh, and T nh at time levels tn = n∆t, n = 0, 1, ..., N , and t∗ = N∆t. Recall, the first- and

second-order extrapolations are defined via E 1(vn+1) = vn and E 2(vn+1) = 2vn − vn−1. All

algorithms require fn+1
1 , fn+1

2 , P r, Ra, and Ta to be provided. Moreover, both {ukh}nk=n+1−i

and {T kh }nk=n+1−i must be prescribed for i = 1, 2.

BDFi: Find (un+1
h , pn+1

h , T n+1
h ) ∈ (Xh, Qh,Wh) satisfying, for every n = i− 1, i, ..., N − 1,

(∂i∆t(u
n+1
h ), vh) + b(un+1

h , un+1
h , vh) + Pr(∇un+1

h ,∇vh) + PrTa1/2(eΛ × un+1
h , vh)

− (pn+1
h ,∇ · vh) = PrRa(ξT n+1

h , vh) + (fn+1
1 , vh) ∀vh ∈ Xh, (3.5)

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh, (3.6)

(∂i∆t(T
n+1
h ), Sh) + b∗(un+1

h , T n+1
h , Sh) + (∇T n+1

h ,∇Sh) = (fn+1
2 , Sh) ∀Sh ∈ Wh,ΓD , (3.7)

linearly implicit BDFi: Find (un+1
h , pn+1

h , T n+1
h ) ∈ (Xh, Qh,Wh) satisfying, for every n =

i− 1, i, ..., N − 1,

(∂i∆t(u
n+1
h ), vh) + b(E i(un+1

h ), un+1
h , vh) + Pr(∇un+1

h ,∇vh) + PrTa1/2(eΛ × un+1
h , vh)

− (pn+1
h ,∇ · vh) = PrRa(ξE i(T n+1

h ), vh) + (fn+1
1 , vh) ∀vh ∈ Xh, (3.8)

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh, (3.9)

(∂i∆t(T
n+1
h ), Sh) + b∗(E i(un+1

h ), T n+1
h , Sh) + (∇T n+1

h ,∇Sh)

= (fn+1
2 , Sh) ∀Sh ∈ Wh,ΓD . (3.10)

19



It is not necessary to introduce an extrapolation for the buoyancy term

PrRa(ξTh, vh) in the linearly implicit schemes. However, a speed advantage is gained since

the velocity and temperature solves become uncoupled. These algorithms will be modified

for use in ensemble calculations in Chapter 4; consequently, results in this chapter will remain

valid for the presented ensemble algorithms.

3.3 STABILITY ANALYSIS

We present stability results for the aforementioned algorithms provided the first meshline

in the finite element mesh is within O(Ra−1) of the heated wall. We begin with the BDFi

schemes, first proving stability of the velocity and temperature approximations. As a corol-

lary, the pressure approximation is proven stable. We then follow analogously for the lin-

early implicit BDFi schemes.

Theorem 4. Consider BDF1 or BDF2. Suppose f1 ∈ L2(0, t∗;H−1(Ω)d) and f2 ∈

L2(0, t∗;H−1(Ω)). If δ = O(Ra−1), then there exist C > 0, independent of t∗, such that

BDF1:

1

2
‖TNh ‖2 + ‖uNh ‖2 +

N−1∑
n=0

‖T n+1
h − T nh ‖2 +

N−1∑
n=0

‖un+1
h − unh‖2 +

∆t

4

N−1∑
n=0

‖∇T n+1
h ‖2

+
Pr∆t

2

N−1∑
n=0

‖∇un+1
h ‖2 ≤ Ct∗,

BDF2:

1

2
‖TNh ‖2 +

1

2
‖2TNh − TN−1

h ‖2 + ‖uNh ‖2 + ‖2uNh − uN−1
h ‖2 +

N−1∑
n=1

‖T n+1
h − 2T nh + T n−1

h ‖2

+
N−1∑
n=1

‖un+1
h − 2unh + un−1

h ‖2 +
∆t

2

N−1∑
n=1

‖∇T n+1
h ‖2 + Pr∆t

N−1∑
n=1

‖∇un+1
h ‖2 ≤ Ct∗,

Proof. Our strategy is to first estimate an auxiliary temperature approximation in terms

of the velocity approximation and data. We then bound the velocity approximation in

terms of data yielding stability of both approximations. Denote the auxiliary temperature
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approximation θn+1
h = T n+1

h − τ . Consider the BDFi family, i = 1 or 2. Let Sh = ∆tθn+1
h ∈

WΓD,h in equation (3.7), rewrite all quantities in terms of θkh, k = n, n + 1, and rearrange.

Since (∇τ,∇θn+1
h ) = −(∆τ, θn+1

h ) +
∫
∂Ω

(∇τ · n)θn+1
h dx = 0, we have

(∂i∆t(θ
n+1
h ),∆tθn+1

h ) + ∆t‖θn+1
h ‖2 = −∆tb∗(un+1

h , θn+1
h + τ, θn+1

h ) + ∆t(fn+1
2 , θn+1

h ) (3.11)

Consider −∆tb∗(un+1
h , θn+1

h + τ, θn+1
h ). Use skew-symmetry and apply Theorem 3. Then,

−∆tb∗(un+1
h , θn+1

h + τ, θn+1
h ) = −∆tb∗(un+1

h , τ, θn+1
h ) (3.12)

≤ C∆tδ
(
σ−1

1 ‖∇un+1
h ‖2 + σ1‖∇θn+1

h ‖2
)
.

Use the Cauchy-Schwarz-Young inequality on ∆t(fn+1
2 , θn+1

h ),

∆t(fn+1
2 , θn+1

h ) ≤ ∆t

2σ2

‖fn+1
2 ‖2

−1 +
σ2∆t

2
‖∇θn+1

h ‖2. (3.13)

Using (3.12) and (3.13) in (3.11) and rearranging leads to

(∂i∆t(θ
n+1
h ),∆tθn+1

h )+
3∆t

4

(
1− 4Cδσ1

3
− 2σ2

3

)
‖∇θn+1

h ‖2 ≤ C∆tδε−1
1 ‖∇un+1

h ‖2 +
∆t

2σ2

‖fn+1
2 ‖2

−1.

Letting Cδσ1 = σ2 = 1/2 yields

(∂i∆t(θ
n+1
h ),∆tθn+1

h ) +
∆t

4
‖∇θn+1

h ‖2 ≤ 2C2∆t δ2 ‖∇un+1
h ‖2 + ∆t‖fn+1

2 ‖2
−1.

Sum from n = i − 1 to n = N − 1 and put all data on the right hand side. This yields

the following bounds on the auxiliary temperature approximation in terms of the velocity

approximation and data, for i = 1:

1

2
‖θNh ‖2 +

1

2

N−1∑
n=0

‖θn+1
h − θnh‖2 +

∆t

4

N−1∑
n=0

‖∇θn+1
h ‖2 ≤ 2C2δ2∆t

N−1∑
n=0

‖∇un+1
h ‖2 (3.14)

+∆t
N−1∑
n=0

‖fn+1
2 ‖2

−1 +
1

2
‖θ0

h‖2,

and for i = 2:

1

4

(
‖θNh ‖2 + ‖2θNh − θN−1

h ‖2
)

+
1

4

N−1∑
n=1

‖θn+1
h − 2θnh + θn−1

h ‖2 +
∆t

4

N−1∑
n=1

‖∇θn+1
h ‖2 (3.15)

≤ 2C2δ2∆t
N−1∑
n=1

‖∇un+1
h ‖2 + ∆t

N−1∑
n=1

‖fn+1
2 ‖2

−1 +
1

4

(
‖θ0

h‖2 + ‖2θ1
h − θ0

h‖2
)
.
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Next, let vh = ∆tun+1
h ∈ Vh in (3.5) and rearrange terms. Then,

(∂i∆t(u
n+1
h ),∆tun+1

h ) + Pr∆t‖∇un+1
h ‖2 = ∆tPrRa(ξ(θn+1

h + τ), un+1
h )

+ ∆t(fn+1
1 , un+1

h ). (3.16)

Use the Cauchy-Schwarz, Poincaré-Friedrichs, and Young’s inequalities on ∆t(fn+1
1 , un+1

h )

and ∆tPrRa(ξ(θn+1
h + τ), un+1

h ) and note that ‖ξ‖L∞(Ω) = 1,

∆tPrRa(ξθn+1
h , un+1

h ) ≤ PrRa2C4
P∆t

‖
∇θn+1

h ‖2 +
Pr∆t

4
‖∇un+1

h ‖2, (3.17)

∆tPrRa(ξτ, un+1
h ) ≤ PrRa2∆t

2σ3

‖τ‖2
−1 +

Prσ3∆t

2
‖∇un+1

h ‖2, (3.18)

∆t(fn+1
1 , un+1

h ) ≤ ∆t

σ4

‖fn+1
1 ‖2

−1 +
σ4∆t

2
‖∇un+1

h ‖2. (3.19)

Using (3.17), (3.18), and (3.19) in (3.16) leads to

(∂i∆t(u
n+1
h ),∆tun+1

h ) +
3Pr∆t

4

(
1− 2σ3

3
− 2σ4

3Pr

)
‖∇un+1

h ‖2 ≤ PrRa2C4
P∆t‖∇θn+1

h ‖2

+
PrRa2∆t

2σ3

‖τ‖2
−1 +

∆t

σ4

‖fn+1
1 ‖2

−1.

Let Prσ3 = σ4 = Pr/4. Then,

(∂i∆t(u
n+1
h ),∆tun+1

h ) +
Pr∆t

2
‖∇un+1

h ‖ ≤ PrRa2C4
P∆t‖∇θn+1

h ‖2

+ 2PrRa2∆t‖τ‖2
−1 +

2∆t

Pr
‖fn+1‖2

−1.

Using the identity (2.8), summing from n = i − 1 to n = N − 1, and putting all data on

right-hand side yields, for i = 1:

1

2
‖uNh ‖2 +

1

2

N−1∑
n=0

‖un+1
h − unh‖2 +

Pr∆t

2

N−1∑
n=0

‖∇un+1
h ‖2 ≤ PrRa2C4

P∆t
N−1∑
n=0

‖∇θn+1
h ‖2

+
2∆t

Pr

N−1∑
n=0

(
Pr2Ra2‖τ‖2

−1 + ‖fn+1
1 ‖2

−1

)
+

1

2
‖u0

h‖2, (3.20)

and for i = 2:

1

4

(
‖uNh ‖2 + ‖2uNh − uN−1

h ‖2
)

+
1

4

N−1∑
n=1

‖un+1
h − 2unh + un−1

h ‖2 +
Pr∆t

2

N−1∑
n=1

‖∇un+1
h ‖2
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≤ PrRa2C4
P∆t

N−1∑
n=1

‖∇θn+1
h ‖2 +

2∆t

Pr

N−1∑
n=1

(
Pr2Ra2‖τ‖2

−1 + ‖fn+1‖2
−1

)
+

1

4

(
‖u0

h‖2 + ‖2u1
h − u0

h‖2
)
. (3.21)

Now, from equation (3.14), we have

PrRa2C4
P∆t

N−1∑
n=0

‖∇θn+1
h ‖2 ≤ 8C2C4

PPrRa
2δ2∆t

N−1∑
n=0

‖∇un+1
h ‖2

+ 4PrRa2C4
P∆t

N−1∑
n=0

‖fn+1
2 ‖2

−1 + 2PrRa2C4
P‖θ0

h‖2. (3.22)

Using the above in (3.20) with δ = 1
4
√

2CC2
P

Ra−1 leads to

1

2
‖uNh ‖2 +

1

2

N−1∑
n=0

‖un+1
h − unh‖2 +

Pr∆t

4

N−1∑
n=0

‖∇un+1
h ‖2

≤ 4PrRa2C4
P∆t

N−1∑
n=0

‖fn+1
2 ‖2

−1 + 2PrRa2C4
P‖θ0

h‖2

+
2∆t

Pr

N−1∑
n=0

(
Pr2Ra2‖τ‖2

−1 + ‖fn+1
1 ‖2

−1

)
+

1

2
‖u0

h‖2. (3.23)

Similarly, from equation (3.15), we have

PrRa2C4
P∆t

N−1∑
n=1

‖∇θn+1
h ‖2 ≤ 8C2C4

PPrRa
2δ2∆t

N−1∑
n=1

‖∇un+1
h ‖2

+ 4PrRa2C4
P∆t

N−1∑
n=1

‖fn+1
2 ‖2

−1 + PrRa2C4
P

(
‖θ0

h‖2 + ‖2θ1
h − θ0

h‖2
)
. (3.24)

Using the above in (3.15) and the same choice of δ yields

1

4

(
‖uNh ‖2 + ‖2uNh − uN−1

h ‖2
)

+
1

4

N−1∑
n=1

‖un+1
h − 2unh + un−1

h ‖2 +
Pr∆t

4

N−1∑
n=1

‖∇un+1
h ‖2

≤ 4PrRa2C4
P∆t

N−1∑
n=0

‖fn+1
2 ‖2

−1 + PrRa2C4
P

(
‖θ0

h‖2 + ‖2θ1
h − θ0

h‖2
)

+
2∆t

Pr

N−1∑
n=1

(
Pr2Ra2‖τ‖2

−1 + ‖fn+1‖2
−1

)
+

1

4

(
‖u0

h‖2 + ‖2u1
h − u0

h‖2
)
. (3.25)
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Thus, the velocity approximation is bounded above by data and therefore the tempera-

ture approximation as well; that is, both the velocity and temperature approximations are

stable. Adding (3.14) and (3.23), multiplying by 2, and using the identity T nh = θnh + τ

together with the triangle inequality yields the first result. The second follows similarly.

As a corollary, the pressure approximation is stable, allowing for linear growth with

respect to t∗ in L1(0, t∗;L2(Ω)).

Corollary 1. Suppose the hypotheses of Theorem 4 hold. Then,

α∆t
N−1∑
n=i−1

‖pn+1
h ‖ ≤ Ct∗.

Proof. Consider (3.5), isolate (∂i∆t(u
n+1
h ), vh), and let vh ∈ Vh. Then,

(∂i∆t(u
n+1
h ), vh) = −b(un+1

h , un+1
h , vh)− Pr(∇un+1

h ,∇vh)− PrTa1/2(eΛ × un+1
h , vh)

+ PrRa(ξT n+1
h , vh) + (fn+1

1 , vh). (3.26)

Applying Lemma 1 to the skew-symmetric trilinear term and the Cauchy-Schwarz and

Poincaré-Friedrichs inequalities to the remaining terms yields

−b(un+1
h , un+1

h , vh) ≤ C1‖∇un+1
h ‖‖∇un+1

h ‖‖∇vh‖, (3.27)

−Pr(∇un+1
h ,∇vh) ≤ Pr‖∇un+1

h ‖‖∇vh‖, (3.28)

−PrTa1/2(eΛ × un+1
h , vh) ≤ PrTa1/2C2

P‖∇un+1
h ‖‖∇vh‖, (3.29)

PrRa(ξT n+1
h , vh) ≤ PrRaC2

P‖∇T n+1
h ‖‖∇vh‖, (3.30)

(fn+1
1 , vh) ≤ ‖fn+1

1 ‖−1‖∇vh‖. (3.31)

Apply the above estimates in (3.26), divide by the common factor ‖∇vh‖ on both sides, and

take the supremum over all 0 6= vh ∈ Vh. Then,

‖∂i∆t(un+1
h )‖V ∗h ≤

(
C1‖∇un+1

h ‖+ Pr + PrTa1/2C2
P

)
‖∇un+1

h ‖

+ PrRaC2
P‖∇T n+1

h ‖+ ‖fn+1
1 ‖−1. (3.32)

By Lemma 5,
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‖∂i∆t(un+1
h )‖X∗h ≤ C∗

((
C1‖∇un+1

h ‖+ Pr + PrTa1/2C2
P

)
‖∇un+1

h ‖

+ PrRaC2
P‖∇T n+1

h ‖+ ‖fn+1
1 ‖−1

)
. (3.33)

Reconsider equation (3.5). Isolate the pressure term, apply (3.27) - (3.31) on the right-hand

side terms. Then,

(pn+1
h ,∇ · vh) ≤ (∂i∆t(u

n+1
h ), vh) +

((
C1‖∇un+1

h ‖+ Pr + PrTa1/2C2
P

)
‖∇un+1

h ‖

+ PrRaC2
P‖∇T n+1

h ‖+ ‖fn+1
1 ‖−1

)
‖∇vh‖. (3.34)

Divide by ‖∇vh‖ and take the supremum over all 0 6= vh ∈ Xh. Then,

sup
06=vh∈Xh

(pn+1
h ,∇ · vh)
‖∇vh‖

≤
(
1 + C∗

)((
C1‖∇un+1

h ‖+ Pr + PrTa1/2C2
P

)
‖∇un+1

h ‖

+ PrRaC2
P‖∇T n+1

h ‖+ ‖fn+1
1 ‖−1

)
. (3.35)

Use the inf-sup condition (2.23),

α‖pn+1
h ‖ ≤

(
1 + C∗

)((
C1‖∇un+1

h ‖+ Pr + PrTa1/2C2
P

)
‖∇un+1

h ‖

+ PrRaC2
P‖∇T n+1

h ‖+ ‖fn+1
1 ‖−1

)
. (3.36)

Multiplying by ∆t, summing from n = i − 1 to n = N − 1, applying the Cauchy-Schwarz

inequality to all but the first term on the right-hand side yields

α∆t
N−1∑
n=i−1

‖pn+1
h ‖ ≤

(
1 + C∗

)(
C1∆t

N−1∑
n=i−1

‖∇un+1
h ‖2

+
(
Pr + PrTa1/2C2

P

)√
t∗
(

∆t
N−1∑
n=i−1

‖∇un+1
h ‖2

)1/2

+ PrRaC2
P

√
t∗
(

∆t
N−1∑
n=i−1

‖∇T n+1
h ‖2

)1/2

+
√
t∗
(

∆t
N−1∑
n=i−1

‖fn+1
1 ‖2

−1

)1/2
)
. (3.37)

Consequently, stability of the pressure approximation follows, built upon the stability of the

temperature and velocity approximations.
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We now prove analagous results for the linearly implicit schemes.

Theorem 5. Consider linearly implicit BDF1 or linearly implicit BDF2. Suppose

f1 ∈ L2(0, t∗;H−1(Ω)d) and f2 ∈ L2(0, t∗;H−1(Ω)). If δ = O(Ra−1), then there exist C > 0,

independent of t∗, such that

linearly implicit BDF1:

1

2
‖TNh ‖2 + ‖uNh ‖2 +

N−1∑
n=0

‖T n+1
h − T nh ‖2 +

N−1∑
n=0

‖un+1
h − unh‖2 +

∆t

4

N−1∑
n=0

‖∇T n+1
h ‖2

+
Pr∆t

2

N−1∑
n=0

‖∇un+1
h ‖+

Pr∆t

2
‖∇uNh ‖2 ≤ Ct∗.

linearly implicit BDF2:

1

2
‖TNh ‖2 +

1

2
‖2TNh − TN−1

h ‖2 + ‖uNh ‖2 + ‖2uNh − uN−1
h ‖2 +

N−1∑
n=1

‖T n+1
h − 2T nh + T n−1

h ‖2

+
N−1∑
n=1

‖un+1
h − 2unh + un−1

h ‖2 +
∆t

2

N−1∑
n=1

‖∇T n+1
h ‖2 +

Pr∆t

2

N−1∑
n=1

‖∇un+1
h ‖2

+
Pr∆t

4

(
2‖∇uNh ‖2 + ‖∇uN−1

h ‖2
)
≤ Ct∗.

Proof. We follow the general strategy in Theorem 4. Let vh = ∆tun+1
h ∈ Vh in (3.8) and

Sh = ∆tθn+1
h ∈ WΓD,h in equation (3.10). Rewrite all quantities in terms of θkh, k = n, n+ 1,

and rearrange. Then,

(∂i∆t(u
n+1
h ),∆tun+1

h ) + Pr∆t‖∇un+1
h ‖2 = PrRa∆t(ξ(E i(θn+1

h ) + τ), un+1
h )

+ ∆t(fn+1
1 , un+1

h ), (3.38)

and

(∂i∆t(θ
n+1
h ),∆tθn+1

h ) + ∆t‖∇θn+1
h ‖2 = −∆tb∗(E i(un+1

h ), τ, θn+1
h ) + ∆t(fn+1

2 , θn+1
h ). (3.39)

We present the analysis only for the case i = 2 (linearly implicit BDF2). Consider

−∆tb∗(E 2(un+1
h ), τ, θn+1

h ). We have that−∆tb∗(E 2(un+1
h ), τ, θn+1

h ) = −∆tb∗(2unh−un−1
h , τ, θn+1

h )

= −2∆tb∗(unh, τ, θ
n+1
h ) + ∆tb∗(un−1

h , τ, θn+1
h ). Thus, using Theorem 2 yields

−2∆tb∗(unh, τ, θ
n+1
h ) ≤ C δ∆t

(
4σ−1

5 ‖∇unh‖2 + σ5‖∇θn+1
h ‖2

)
, (3.40)
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∆tb∗(un−1
h , τ, θn+1

h ) ≤ C δ∆t
(
σ−1

6 ‖∇un−1
h ‖2 + σ6‖∇θn+1

h ‖2
)
. (3.41)

Moreover, use the Cauchy-Schwarz-Young and Poincare-Friedrichs inequalities on

PrRa∆t(ξE 2(θn+1
h ), un+1

h ),

2PrRa∆t(ξθnh , u
n+1
h ) ≤ 2Pr2Ra2C4

P∆t

σ7

‖∇θnh‖2 +
∆tσ7

2
‖∇un+1

h ‖2, (3.42)

−PrRa∆t(ξθn−1
h , un+1

h ) ≤ Pr2Ra2C4
P∆t

2σ8

‖∇θn−1
h ‖2 +

∆tσ8

2
‖∇un+1

h ‖2. (3.43)

Use estimates (3.13), (3.40), and (3.41) in equation (3.39). Let σ5 = σ6 = 1
4Cδ

and σ2 = 1/4,

using the identity (2.9), sum from n = 1 to n = N − 1, and rearrange. Then,

1

4
‖θNh ‖2 +

1

4
‖2θNh − θN−1

h ‖2 +
1

4

N−1∑
n=1

‖θn+1
h − 2θnh + θn−1

h ‖2 +
∆t

4

N−1∑
n=1

‖∇θn+1
h ‖2

≤ 16C2∆t δ2

N−1∑
n=1

‖∇unh‖2 + 4C2∆t δ2

N−1∑
n=1

‖∇un−1
h ‖2 + 2∆t

N−1∑
n=1

‖fn+1
2 ‖2

−1

+
1

4
‖θ0

h‖2 +
1

4
‖θ1

h − θ0
h‖2. (3.44)

Using (3.18), (3.19), (3.42), and (3.43) in (3.39) leads to

(∂i∆t(u
n+1
h ),∆tun+1

h )+Pr∆t
(
1−Prσ3∆t

2
−σ4 + σ7 + σ8

2Pr

)
‖∇un+1

h ‖2 ≤ 2Pr2Ra2C4
P∆t

σ7

‖∇θnh‖2

+
Pr2Ra2C4

P∆t

2σ8

‖∇θn−1
h ‖2 +

∆t

2ε4
‖τ‖2

−1 +
∆t

2ε5
‖fn+1

1 ‖2
−1.

Let 2Prσ3 = 2σ4 = σ7 = σ8 = Pr/2. Then,

(∂i∆t(u
n+1
h ),∆tun+1

h ) +
Pr∆t

4
‖∇un+1

h ‖2 ≤ 4PrRa2C4
P∆t‖∇θnh‖2 + Pr2Ra2C4

P∆t‖∇θn−1
h ‖2

+
2∆t

Pr
‖τ‖2

−1 +
2∆t

Pr
‖fn+1‖2

−1.

Using the identity (2.9), summing from n = 1 to n = N − 1, and rearranging yields

1

4
‖uNh ‖2 +

1

4
‖2uNh − uN−1

h ‖2 +
1

4

N−1∑
n=1

‖un+1
h − 2unh + un−1

h ‖2 +
Pr∆t

4

N−1∑
n=1

‖∇un+1
h ‖2

≤ PrRa2C4
P∆t

N−1∑
n=1

(
4‖∇θnh‖2+‖∇θn−1

h ‖2
)

+
2∆t

Pr

N−1∑
n=1

(
‖τ‖2

−1+‖fn+1‖2
−1

)
+

1

4
‖u0

h‖2+
1

4
‖2u1

h−u0
h‖2
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≤ 5PrRa2C4
P∆t

N−1∑
n=1

‖∇θn+1
h ‖2 +

2∆t

Pr

N−1∑
n=1

(
‖τ‖2

−1 + ‖fn+1‖2
−1

)
+

1

4
‖u0

h‖2 +
1

4
‖2u1

h − u0
h‖2

+ PrRa2C4
P∆t

(
5‖∇θ1

h‖2 + ‖∇θ0
h‖2
)
. (3.45)

Now, from equation (3.44), we have

5PrRa2C4
P∆t

N−1∑
n=1

‖∇θn+1
h ‖2 ≤ 80C2PrRa2C4

P δ
2∆t

N−1∑
n=1

(
4‖∇unh‖2 + ‖∇un−1

h ‖2
)

+ 40PrRa2C4
P∆t

N−1∑
n=1

‖fn+1
2 ‖2

−1 + 5PrRa2C4
P

(
‖θ0

h‖2 + ‖2θ1
h − θ0

h‖2
)
. (3.46)

Add and subtract Pr∆t
8

∑N−1
n=1 ‖∇unh‖2 and Pr∆t

16

∑N−1
n=1 ‖∇u

n−1
h ‖2 in (3.45) and use the above

estimate with δ = 1
32
√

5C2
P

Ra−1. Then,

1

4
‖uNh ‖2+

1

4
‖2uNh −uN−1

h ‖2+
1

4

N−1∑
n=1

‖un+1
h −2unh+un−1

h ‖2+
Pr∆t

8

N−1∑
n=1

‖∇un+1
h ‖2+

Pr∆t

8
‖∇uNh ‖2

+
Pr∆t

16
‖∇uN−1

h ‖2 ≤ 40PrRa2C4
P∆t

N−1∑
n=1

‖fn+1
2 ‖2

−1 + 5PrRa2C4
P

(
‖θ1

h‖2 + ‖2θ1
h − θ0

h‖2
)

+
2∆t

Pr

N−1∑
n=0

(
‖τ‖2

−1 + ‖fn+1‖2
−1

)
+

1

4
‖u1

h‖2 +
1

4
‖2u1

h − u0
h‖2

+ PrRa2C4
P∆t

(
5‖∇θ1

h‖2 + ‖∇θ0
h‖2
)

+
Pr∆t

16

(
2‖∇u1

h‖2 + ‖∇u0
h‖2
)
. (3.47)

The result follows.

In similar fashion, we can now prove that pressure approximations of linear implicit

BDFi can grow at most linearly in L1(0, t∗;L2(Ω)).

Corollary 2. Suppose the hypotheses of Theorem 5 hold. Then,

α∆t
N−1∑
n=i−1

‖pn+1
h ‖ ≤ Ct∗.
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Proof. Consider (3.8), isolate (∂i∆t(u
n+1
h ), vh), and let vh ∈ Vh. Then,

(∂i∆t(u
n+1
h ), vh) = −b(E i(un+1

h ), un+1
h , vh)− Pr(∇un+1

h ,∇vh)− PrTa1/2(eΛ × un+1
h , vh)

+ PrRa(ξE i(T n+1
h ), vh) + (fn+1

1 , vh). (3.48)

Applying Lemma 1 to the skew-symmetric trilinear term and the Cauchy-Schwarz and

Poincaré-Friedrichs inequalities to the remaining terms yields

−b(E i(un+1
h ), un+1

h , vh) ≤ C1‖∇E i(un+1
h )‖‖∇un+1

h ‖‖∇vh‖, (3.49)

PrRa(ξE i(T n+1
h ), vh) ≤ PrRaC2

P‖∇E i(T n+1
h )‖‖∇vh‖. (3.50)

Apply the above estimates in (3.48), divide by the common factor ‖∇vh‖ on both sides, take

the supremum over all 0 6= vh ∈ Vh, and apply Lemma 5. Then,

‖∂i∆t(un+1
h )‖X∗h ≤ C∗

((
C1‖∇E i(un+1

h )‖+ Pr + PrTa1/2C2
P

)
‖∇un+1

h ‖

+ PrRaC2
P‖∇E i(T n+1

h )‖+ ‖fn+1
1 ‖−1

)
. (3.51)

Reconsider equation (3.5). Isolate the pressure term, apply (3.28), (3.29), (3.31), (3.49),

and (3.50) on the right-hand side terms, divide by ‖∇vh‖, take the supremum over all

0 6= vh ∈ Xh. The inf-sup condition (2.23) then yields

α‖pn+1
h ‖ ≤

(
1 + C∗

)((
C1‖∇E i(un+1

h )‖+ Pr + PrTa1/2C2
P

)
‖∇un+1

h ‖

+ PrRaC2
P‖∇E i(T n+1

h )‖+ ‖fn+1
1 ‖−1

)
. (3.52)

Multiplying by ∆t, and summing from n = i− 1 to n = N − 1, yields

α∆t
N−1∑
n=i−1

‖pn+1
h ‖ ≤

(
1 + C∗

)(
C1∆t

N−1∑
n=i−1

‖∇E i(un+1
h )‖‖∇un+1

h ‖

+
(
Pr + PrTa1/2C2

P

)
∆t

N−1∑
n=i−1

‖∇un+1
h ‖

+ PrRaC2
P∆t

N−1∑
n=i−1

‖∇E i(T n+1
h )‖+ ∆t

N−1∑
n=i−1

‖fn+1
1 ‖−1

)
. (3.53)
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Applying the Cauchy-Schwarz inequality,

α∆t
N−1∑
n=i−1

‖pn+1
h ‖ ≤

(
1 + C∗

)[(
C1

(
∆t

N−1∑
n=i−1

‖∇E i(un+1
h )‖2

)1/2

+ Pr + PrTa1/2C2
P

)√
t∗
(

∆t
N−1∑
n=i−1

‖∇un+1
h ‖2

)1/2

+ PrRaC2
P

√
t∗
(

∆t
N−1∑
n=i−1

‖∇E i(T n+1
h )‖2

)1/2

+
√
t∗
(

∆t
N−1∑
n=i−1

‖fn+1
1 ‖2

−1

)1/2
]
. (3.54)

As needed.

The differences between the estimates appearing in Corollaries 1 and 2 are the arbitrary

constant and the requirements on the mesh, which are given in the corresponding theorems.

The mesh conditions appearing for the linearly implicit schemes, Theorem 5 and Corol-

lary 2, are more restrictive than for the fully implicit schemes, Theorems 4 and Corollary 1;

that is, the proportionality constants are relatively smaller. This is interesting since typical

analyses of the fully implicit schemes require a discrete Gronwall inequality which imposes

a crippling timestep condition: ∆t = O(Ra−2). Whereas the presented linearly implicit

schemes have no such condition, utilizing an alternative Gronwall inequality, Lemma 3.

3.4 CONCLUSION

The coupling terms b∗(E i(uh), T
n+1
h , Sh) and PrRa(ξE i(Th), vh) that arise in stability anal-

yses of FEM discretizations of natural convection problems with sidewall heating are the

major source of difficulty. The former term forces the stability of the temperature approx-

imation to be dependent on the velocity approximation and vice versa for the latter term.

Standard techniques fail to overcome this imposition, in the absence of a discrete Gronwall

inequality.

A new discrete Hopf interpolant was introduced to overcome this issue. Fully discrete

stability estimates were proven which improve upon previous estimates. In particular, it was

shown that provided that the first mesh line in the finite element mesh is within O(Ra−1)
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of the nonhomogeneous Dirichlet boundary, the velocity and temperature approximations

are stable allowing for sub-linear growth in t∗. Further, the pressure approximation is stable

allowing for linear growth.

A uniform in time stability estimate was not able to be achieved due to the term

PrRa(ξτ, vh), which arises when an interpolant of the boundary is introduced. We con-

jecture that the results proven herein may be improved, owing to a gap in the analysis. In

particular, it appears likely that the mesh condition can be improved to δ = O(Ra−1/a), for

a > 1.
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4.0 ENSEMBLE ALGORITHMS FOR THE BOUSSINESQ EQUATIONS

WITH UNCERTAIN DATA

At the limits of what is computable, it is impressive for a new computer
to halve the turnaround time... but a new algorithm can reduce the
exponent!

William Layton, paraphrased discussion on the curse of dimensionality.

In physical applications, initial conditions, forcings, and parameters are never known

exactly. In particular, any measurement device, such as a radiosonde, will specify a value

up to a prescribed tolerance. Limitations imposed on dynamical systems due to these un-

certainties has been discussed and exhibited in the works of Charney [15], Philips [112],

Thompson [134], and Lorenz [92], among others. Essentially, uncertainty in these quantities

can render a computer code into an expensive random number generator.

Ensemble calculations improve the quality of a prediction given inherent uncertainties in

a choice of model, the initial conditions, parameters, domain, and etc. The historical roots

of ensemble forecasting are discussed by Lewis [91]. Applications of ensemble usage include,

e.g., weather prediction [80, 102, 128, 129], ocean dynamics [89], turbulence modeling [72],

magnetohydrodynamics (MHD) [105], and 3D printing [37,121]. The ensemble average is the

most likely distribution and the variance gives an estimate of prediction reliability. Moreover,

the predictability horizon and the average effective Lyapunov exponent can be estimated

and used to quantify how predictable a flow is and, therefore, the potential reliability of the

numerical approximation.

Typically, these calculations involve the numerical solution of J sequential, fine mesh

runs or J parallel, coarse mesh runs of a given code for the governing equations of a physical

phenomenon with slightly varying initial conditions or parameter values. Evidently, there is a

substantial increase in computational resources over single realization solves, which severely
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limits the ensemble size. This increase begs the question: Can ensemble size be increased

without decreasing mesh density (and vice versa) on a fully utilized computer system?

Early work on improving the efficiency of ensemble algorithms for fluid flow problems was

performed by Jiang and Layton [71]. In a sequence of papers [71,72], they develop ensemble

algorithms for the Navier-Stokes system of equations (NSE) subject to uncertain initial

conditions and body forces. As it will be instructive, we present the NSE here. Let Ω ⊂ Rd

be an open, bounded, Lipschitz domain. Given u(x, 0;ωj) = u0(x;ωj) for j = 1, 2, ..., J , let

u(x, t;ωj) and p(x, t;ωj) satisfy

ut + u · ∇u− ν∆u+∇p = f in Ω, (4.1)

∇ · u = 0 in Ω, (4.2)

u = 0 on ∂Ω, (4.3)

where ν is the viscosity and f is a body force. Applying a BDF1 discretization in time and

standard FEM discretization in space for the above system, we arrive at the following block

linear system for each ensemble member j: 1
∆t
Mu + νSu +Nu(u

n) BT

B 0

un+1
j

pn+1
j

 =

(fn+1 + 1
∆t
Mu)u

n
j

0

 , (4.4)

where Mu is the mass matrix, Su is the diffusion matrix, Nu(u
n) is the convection matrix,

and B is the continuity matrix. The above is equivalent to solving the J linear systems:

Ajxj = bj,

with coefficient matrices Aj, solution vectors xj, and right-hand sides bj.

The convection matrix Nu(u
n) is the only matrix dependent on the ensemble member j.

Jiang and Layton noticed that if this matrix can be modified so that it is independent of j,

via a consistent modification of the convective term u·∇u, then the above block linear system

will be equivalent to the following: Let A be the resulting coefficient matrix (independent of

j). Then, the following set of J linear systems must be solved at each timestep:[
A
] [
x1|x2|...|xJ

]
=
[
b1|b2|...|bJ

]
. (4.5)
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The choice they made was:

un+1 · ∇un+1 ← 〈u〉n · ∇un+1 + u′
n · ∇un,

where 〈u〉n = 1
J

∑J
j=1 u(x, tn;ωj) and u′n = u(x, tn;ωj) − 〈u〉n are the ensemble average

and fluctuation. Using this splitting, they are able to prove stability and optimal-order

convergence provided the following CFL-type condition holds:

∆t

νh
‖∇u′nh‖2 ≤ C. (4.6)

The system (4.5) can be solved with efficient block solvers; for example, block LU factor-

izations [26], block QMR [43], block GMRES [70], block BiCGSTAB [30], and etc. [57].

Moreover, since only one coefficient matrix is required for computation per timestep, the

storage requirement is reduced.

Since this pioneering effort, there has been a rapid progression of developments. In [72],

Jiang introduces an eddy viscosity model, utilizing the Kolmogorov-Prandtl relation, into

their laminar flow ensemble algorithm. They are able to prove that the new algorithm is

stable under a less restrictive timestep condition:

∆t

ν
‖∇ · u′nh‖2

L4 ≤ C. (4.7)

In particular, −∇ · R(u, u), where R(u, u) is the Reynolds stress, is replaced with −∇ ·

(2νturbD(u)) with

νturb(l, k
′) = Cl

√
k′, (4.8)

where D(u) is the symmetric part of the deformation tensor, C is an arbitrary constant,

l = ∆t|u′| is the mixing length, and k′(x, t) = 1
2
|u′|2(x, t) = 1

2

∑J
j=1 |u′|2(x, t;ωj) is the

kinetic energy associated with velocity fluctuations.

Interestingly, the turbulent viscosity is directly parametrized by fluctuations of ensemble

members. This results in a dramatic decrease in complexity over alternative, widely used

turbulence models, e.g., the k− ε model. The typical system [118] that must be solved is as

follows: Find (u, p, k1, k2, ..., kR) satisfying

ut + u · ∇u−∇ ·
(
νturb(k1, ..., kR)D(u)

)
+∇p = f, (4.9)
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∇ · u = 0, (4.10)

kr,t + u · ∇kr −∇ ·
(
µturb,r(k1, ..., kR)∇kr

)
− ηr(k1, ..., kR)|D(u)|2

+Gr(k1, ..., kR) = 0, (4.11)

where {kr}Rr=1 are turbulence statistics, νturb is the eddy viscosity function, µturb,r are eddy

diffusion statistics associated with kr, ηr and Gr are rational functions of kr. Appropriate

boundary conditions must be prescribed for the additional R equations.

It is expected that as R increases, accuracy improves [118]; intuitively, this makes sense

since we introduces additional parameters that are data-fitted. The cases R = 1 and R = 2

are associated with the TKE and k − ε models. We see that, compared with using the

turbulence model proposed by Jiang [71], the above model requires R extra solves and

many additional parameter and function determinations. In the case of ensembles, the

increased complexity is obviously compounded. Naturally, complexity increases further for

non-isothermal fluid flow [1,7, 19,61,67].

Returning to the historical progression of ensemble algorithms, Jiang, Kaya, and Layton

[73] later develop a new ensemble eddy viscosity model inspired by Leray regularization

[87,88] and utilizing the eddy viscosity model (4.8). Interestingly, the method is proven to be

unconditionally stable and, as t∗ →∞, the solution approaches statistical equilibrium and its

variance approaches zero. Mohebujjaman and Rebholz [105] introduce a first-order ensemble

timestepping algorithm also including the above eddy viscosity model for the Elsässer variable

formulation of equations for MHD. They present stability and convergence results for their

algorithm.

Further, Takhirov, Neda, and Waters [131] introduce time relaxation and study the

effects of grad-div stabilization. Noticeably, they found that grad-div stabilization increases

stability. Khankan [83] developed a first-order turbulence model for natural convection based

on (4.8) and under a similar condition for stability. More recently, Gunzburger, Jiang, and

Wang [54] considered ensemble dependent constant viscosity. In this work, they decompose

the viscosity into its ensemble average and fluctuating components and use the following

IMEX discretization:

〈ν〉∆un+1 + ν ′∆un. (4.12)
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Under this splitting, the resulting algorithm is stable under condition 4.6 and∣∣∣∣ ν ′〈ν〉
∣∣∣∣ ≤ C. (4.13)

They later developed their idea into a second-order time accurate method [55] under the

same conditions.

Although each of these works represents a significant advance, there is a need for more

efficient algorithms due to ensemble size and resolution demands. New methodologies must

be applied to reach further. One possible entry point is the saddle point structure. Operator

splitting [51, 103, 143], artificial compressibility [20, 25, 53, 119, 122, 123, 133], and projection

methods [52, 113], among others, address this. Artificial compressibility, in particular, de-

couples the velocity and pressure solves, decreasing storage, complexity, and turnaround

time.

Additionally, the Boussinesq equations subject to the Coriolis force have been neglected.

This system of equations forms the backbone of all models to numerically simulate the

atmosphere and ocean. Further, it is rich in complex features, depending on the Ra number,

domain, and boundary conditions, e.g., boundary layers, centro-symmetry [49], bifurcation

[96,141], and turbulence; see [13,42,79,106,114,116] and references therein for more details

(derivation/stability/existence/uniqueness). Therefore, this is the vital next step in the

development of ensemble algorithms. In particular, there is a need for efficient ensemble

algorithms for the Boussinesq equations subject to the Coriolis force, including turbulence

models, with uncertain data.

Recall, the Boussinesq equations are given by: Suppose we are given, for j = 1, 2, ..., J ,

initial conditions: u(x, 0;ωj) = u0(x;ωj) and T (x, 0;ωj) = T 0(x;ωj),

parameters: ν(ωj), β(ωj), κ(ωj), and Λ(ωj),

forcings: f1(x, t;ωj) and f2(x, t;ωj).

Then, find u(x, t;ωj) : Ω × (0, t∗] → Rd, p(x, t;ωj) : Ω × (0, t∗] → R, and T (x, t;ωj) :

Ω× (0, t∗]→ R satisfying

ut + u · ∇u− ν∆u+ Λ× u+∇p = βgT + f1 in Ω, (4.14)

∇ · u = 0 in Ω, (4.15)
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Tt + u · ∇T − κ∆T = f2 in Ω, (4.16)

u = 0 on ∂Ω, T = 1 on ΓD1 , T = 0 on ΓD2 , n · ∇T = 0 on ΓN . (4.17)

In the above, β ← (TH − TC)β and p← 1
ρ
p; see Appendix A. Notice that if we apply typical

BDF discretizations to the above, the resulting linear system, after FEM discretization, will

be of the form (4.5). In view of this, consider the following approximations:

un+1 · ∇un+1 ≈ 〈u〉n · ∇un+1 + u′
n · ∇un, (4.18)

−ν∆un+1 ≈ −〈ν〉∆un+1 − ν ′∆un, (4.19)

−Λ× un+1 ≈ −〈Λ〉 × un+1 − Λ′ × un, (4.20)

un+1 · ∇T n+1 ≈ 〈u〉n · ∇T n+1 + u′
n · ∇T n, (4.21)

−κ∆T n+1 ≈ −〈κ〉∆T n+1 − κ′∆T n, (4.22)

βgT n+1 ≈ βgT n. (4.23)

Using the above in (4.14) and (4.16) yields

un+1 − un

∆t
+ 〈u〉n · ∇un+1 + u′

n · ∇un − 〈ν〉∆un+1 + ν ′∆un

+ 〈Λ〉 × un+1 + Λ′ × un +∇pn+1 = βgT n + fn+1
1 , (4.24)

∇ · un+1 = 0, (4.25)

and

T n+1 − T n

∆t
+ 〈u〉n · ∇T n+1 + u′

n · ∇T n − 〈κ〉∆T n+1 + κ′∆T n = fn+1
2 . (4.26)

Now, rearranging and applying a typical FEM discretization in space, e.g., Taylor-Hood,

then the resulting set of linear systems must be solved: 1
∆t
Mu +Nu(〈uh〉n) + 〈ν〉Su + 〈Λ〉Ru BT

B 0

un+1
h,j

pn+1
h,j

 =

Fu,j
0

 , (4.27)

and [ 1

∆t
MT +NT (〈uh〉n) + 〈κ〉ST

]
T n+1
h,j = FT,j, (4.28)
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where Mu is the mass matrix, Nu(〈uh〉n) is the convection matrix associated with convective

velocity 〈uh〉n, Su is the diffusion matrix, R is the rotation matrix, and B is the continuity

matrix. Analagous relations hold for the matrices in the temperature system. Evidently, we

have an equivalent form of the linear system (4.5) and can take advantage of efficient block

solvers.

Now, the method outlined above is useful only if it is stable and accurate. We expect

that if the fluctuating quantities, u′ or ∇u′, ν ′, Λ′, and κ′ are “small”, then each of the

associated approximations we have made will be accurate and the resulting algorithm will

produce good results. The algorithm (4.24) - (4.26) corresponds to eBDF (4.40) - (4.42),

below; we will prove, that this family of algorithms is nonlinearly, energy stable (Theorem

7) and optimally convergent (Theorems 13 and 14) under certain “smallness” conditions:

conditions (4.52) and (4.53).

Following the progression of ideas, we see that if we can break the saddle point structure

of (4.27), the resulting algorithm will be less complex. Utilizing, the penalty and artificial

compressibility methods, this can be accomplished. The penalty method involves modifying

the continuity equation (4.15) via

εp+∇ · u = 0,

where ε > 0 is the penalization parameter. Formally, taking the gradient of this equation,

multiplying by 1
ε
, and rearranging yields the relationship

∇p = −1

ε
∇∇ · u. (4.29)

Using (4.29), we can eliminate the pressure term in (4.24) yielding full velocity-pressure

decoupling,

un+1 − un

∆t
+ 〈u〉n · ∇un+1 + u′

n · ∇un − 〈ν〉∆un+1 + ν ′∆un

+ 〈Λ〉 × un+1 + Λ′ × un − 1

ε
∇∇ · un+1 = βgT n + fn+1

1 (4.30)

and

pn+1 = −1

ε
∇ · un+1. (4.31)
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After a rearrangement, we see that the momentum and continuity equations are replaced

with a convection-diffusion equation and algebraic update; it is consistent [122], with order

i, provided ε = O(∆ti). Furthermore, after FEM spatial discretization, the following block

linear system for the velocity and temperature and algebraic pressure update must be solved.

Step one: [ 1

∆t
Mu + 〈ν〉Su +Nu(〈uh〉n) +

1

ε
D
]
un+1
h,j = Fu,j, (4.32)[ 1

∆t
MT +NT (〈uh〉n) + 〈κ〉ST

]
T n+1
h,j = FT,j, (4.33)

Step two:

pn+1
h,j = −1

ε
∇ · un+1

h,j , (4.34)

where D is the matrix associated with −∇∇· operator. Clearly, the velocity solve is now

decoupled from the pressure solve. Consequently, the system is fully decoupled. In practice,

the second step is a pressure mass matrix solve; that is, the pressure mass matrix is built and

resulting system is solved. If, e.g., the non-conforming Crouzeix-Raviart (P1nc-P0) element

is used, it is a true algebraic update. We will prove that the corresponding fully-discrete

algorithm, PEA (4.43) - (4.44), is stable and convergent under similar conditions as eBDF

and proper choice of ε.

An alternative approach is to utilize artificial compressibility. Artificial compressibility

methods [133] involve adding a “compressibility” term to the continuity equation:

εpt +∇ · u = 0,

where ε > 0 is the artificial compressibility parameter, related to the Mach number [97].

Approximating this equation with BDF and rearranging yields

pn+1 = pn − ∆t

ε
∇ · un+1.

Consequently, the momentum equation can be rewritten as

un+1 − un

∆t
+ 〈u〉n · ∇un+1 + u′

n · ∇un − 〈ν〉∆un+1 + ν ′∆un
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+ 〈Λ〉 × un+1 + Λ′ × un +∇pn − ∆t

ε
∇∇ · un+1 = βgT n + fn+1

1 .

Once again, this is consistent [123, 124] provided ε = O(∆ti). After, a FEM spatial

discretization, we must solve

Step one:

[ 1

∆t
Mu + 〈ν〉Su +Nu(〈uh〉n) +

∆t

ε
D
]
un+1
h,j = Fu,j, (4.35)[ 1

∆t
MT +NT (〈uh〉n) + 〈κ〉ST

]
T n+1
h,j = FT,j, (4.36)

Step two:

pn+1
h,j = pnh,j −

∆t

ε
∇ · un+1

h,j . (4.37)

The resulting set of equations have the same structure as the penalty approximation,

however, we see that ∆t
ε

replaces 1
ε

in front the grad-div term; this is a critical difference.

The grad-div term has drawn significant attention due to its positive impact on solution

quality; see, e.g., [11, 36, 108] and references therein. Unfortunately, the condition number

of the matrix γD generally grows without bound as γ → ∞ [51]. Consequently, iterative

solvers can slow dramatically.

Recall, for penalty and artificial compressibility methods, ε is selected to be O(∆ti)

to ensure convergence. Due to the 1
ε

= C
∆ti

= γ factor in front of the grad-div matrix D,

penalty methods are better suited for producing quick results or initial conditions for artificial

compressibility methods. Unfortunately, both results of Theorem 15 and the second-order

result of Theorem 16 are sub-optimal with respect to ε. Regarding the latter, second-order

accuracy is recovered with the choice ε = O(∆t3). Numerical experiments suggest that this

is improvable. Theoretical justification is left as an open problem.

Earlier, we mentioned that these algorithms should produce accurate results provided,

e.g.,∇u′ was “small”. This is not an unreasonable demand for laminar flows but for turbulent

flows it is. However, requiring ∇·u′ to be “small” would not be unreasonable since ∇·u = 0

for the continuous system. It turns out that ACE-T is such an algorithm.

40



Typically, for turbulent flows, we are not interested in the point-wise solution quantities

but the temporal, spatial, or ensemble averages of these quantities. The aversion towards

point-wise solution values is both out of necessity and practicality; for large Ra numbers,

computers aren’t yet powerful enough and engineers are often interested in the averaged

quantities. Therefore, turbulence modeling is implemented. There are several important

variants, however, they generally involve decomposing the solution variables into mean and

fluctuating components and solving the resulting closure problem utilizing the eddy viscosity

hypothesis, Boussinseq assumption, and a relationship for the turbulent heat fluxes.

Typical choices for the eddy viscosity νturb are prescribed via the Prandtl length model,

Komolgorov-Prandtl relation, and or Smagorinsky model [127], among others [140]. For

the turbulent heat flux, models include gradient-diffusion, algebraic flux, and differential

flux models [19]. Herein, we utilize the Kolmogorov-Prandtl relation and gradient-diffusion

hypothesis yielding the following models:

∇ ·R(u, u) = νturb(l, k
′)∇u = C∆tk′∇u, (4.38)

∇ ·H(u, T ) =
νturb(l, k

′)

σturb
∇T =

C∆tk′

σturb
∇T, (4.39)

where k′(x, t) = 1
2

∑J
j=1 |u′|2(x, t;ωj) is the kinetic energy associated with velocity fluctua-

tions. In the above, we have replaced D(u) with ∇u. Owing to Korn’s inequality, results

proven with the latter imply the same for the former; constants may change. Additionally,

the Kolmogorov-Prandtl relation exhibits the correct near wall behavior: l(y) = O(y) as

y → 0 [72]. This suggests that our proposed turbulence model does not need additional

near-wall damping. Moreover, we see that k′ directly parametrizes the kinetic energy fluc-

tuations.

The resulting time-stepping scheme is

un+1 − un

∆t
+ 〈u〉n · ∇un+1 + u′

n · ∇un −∇ ·
((
〈ν〉+ Cν∆t|u′n|2

)
∇u
)

+ ν ′∆un

+ 〈Λ〉 × un+1 + Λ′ × un +∇pn − ∆t

ε
∇∇ · un+1 = βgT n + fn+1

1 ,

T n+1 − T n

∆t
+ 〈u〉n · ∇T n+1 + u′

n · ∇T n −∇ ·
((
〈κ〉+

Cν∆t

σturb
|u′n|2

)
∇T n+1

)
+ κ′∆T n = fn+1

2 ,
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pn+1 = pn − ∆t

ε
∇ · un+1.

Therefore, the fully-discrete system will share a similar structure to ACE.

4.1 NUMERICAL SCHEMES

In this section, we will introduce eight efficient algorithms for computing an ensemble of

solutions to the Boussinesq system (4.14) - (4.17). eBDF (4.40) - (4.42), utilize techniques

from Jiang [71] resulting in two linear systems, each involving a shared coefficient matrix, for

multiple right-hand sides at each timestep. PEA (4.43) - (4.44), utilize the penalty method

to decouple the velocity and pressure solution variables. A significant speed (' 2.5 to 22.5)

up is seen for first-order PEA over eBDF. Second-order PEA performs poorly on timing

due to solver breakdown owing to the O(1/∆t2) factor in front of the grad-div matrix.

ACE (4.46) - (4.47) incorporates artificial compression for the same purpose as PEA:

decoupling the velocity-pressure solve. The same speed ups are seen over eBDF as with

first-order PEA. Lastly, we develop ACE-T (4.49) - (4.50) for turbulent flows. We employ

the eddy viscosity model (4.38), utilizing the Kolmogorov-Prandtl relation, and a generalized

gradient-diffusion model.

Denote the fully discrete solutions by unh, pnh, and T nh at time levels tn = n∆t, n =

0, 1, ..., N , and t∗ = N∆t. Recall, the first- and second-order extrapolations are defined via

E 1(vn+1) = vn and E 2(vn+1) = 2vn − vn−1. Consequently,

E 1(〈v〉n+1) = 〈v〉n,

E 1(v′
n+1

) = v′
n
,

E 2(〈v〉n+1) = 2〈v〉n − 2〈v〉n−1 =
1

J

J∑
j=1

2vn − vn−1,

E 2(v′
n+1

) = 2v′
n − v′n−1

= (2vn − vn−1)− 1

J

J∑
j=1

2vn − vn−1 = E 2(vn+1)− E 2(〈v〉n+1).

For the algorithms below, it will be understood that fn+1
1 , fn+1

2 , ν, κ,Λ, and β must be

provided. Further, both {ukh}nk=n+1−i and {T kh }nk=n+1−i must be prescribed for i = 1, 2; for
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ACE and ACE-T, pnh must also be prescribed in the first step.

Algorithm (eBDF): Find (un+1
h , pn+1

h , T n+1
h ) ∈ (Xh, Qh,Wh) satisfying, for every n = i −

1, i, ..., N − 1,

(∂i∆t(u
n+1
h ), vh) + b(E i(〈uh〉n+1), un+1

h , vh) + b(E i(u′
n+1
h ),E i(un+1

h ), vh)

+ 〈ν〉(∇un+1
h ,∇vh) + ν ′(∇E i(un+1

h ),∇vh) + (〈Λ〉 × un+1
h , vh) + (Λ′ × E i(un+1

h ), vh)

− (pn+1
h ,∇ · vh) = (βgE i(T n+1

h ), vh) + (fn+1
1 , vh) ∀vh ∈ Xh, (4.40)

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh, (4.41)

(∂i∆t(T
n+1
h ), Sh) + b∗(E i(〈uh〉n+1), T n+1

h , Sh) + b∗(E i(u′
n+1
h ),E i(T n+1

h ), Sh)

+ 〈κ〉(∇T n+1
h ,∇Sh) + κ′(∇E i(T n+1

h ),∇Sh) = (fn+1
2 , Sh) ∀Sh ∈ WΓD,h. (4.42)

Algorithm (PEA): Step 1. Find (un+1
h , pn+1

h , T n+1
h ) ∈ (Xh, Qh,Wh) satisfying, for every

n = i− 1, i, ..., N − 1,

(∂i∆t(u
n+1
h ), vh) + b(E i(〈uh〉n+1), un+1

h , vh) + b(E i(u′
n+1
h ),E i(un+1

h ), vh)

+ 〈ν〉(∇un+1
h ,∇vh) + ν ′(∇E i(un+1

h ),∇vh) + (〈Λ〉 × un+1
h , vh) + (Λ′ × E i(un+1

h ), vh)

+
1

ε
(∇ · un+1

h ,∇ · vh) = (βgE i(T n+1
h ), vh) + (fn+1

1 , vh) ∀vh ∈ Xh, (4.43)

(∂i∆t(T
n+1
h ), Sh) + b∗(E i(〈uh〉n+1), T n+1

h , Sh) + b∗(E i(u′
n+1
h ),E i(T n+1

h ), Sh)

+ 〈κ〉(∇T n+1
h ,∇Sh) + κ′(∇E i(T n+1

h ),∇Sh) = (fn+1
2 , Sh) ∀Sh ∈ WΓD,h. (4.44)

Step 2. Given un+1
h ∈ Xh, find pn+1

h ∈ Qh satisfying

pn+1
h = −1

ε
∇ · un+1

h . (4.45)

Algorithm (ACE): Step 1. Find (un+1
h , pn+1

h , T n+1
h ) ∈ (Xh, Qh,Wh) satisfying, for every

n = i− 1, i, ..., N − 1,
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(∂i∆t(u
n+1
h ), vh) + b(E i(〈uh〉n+1), un+1

h , vh) + b(E i(u′
n+1
h ),E i(un+1

h ), vh)

+ 〈ν〉(∇un+1
h ,∇vh) + ν ′(∇E i(un+1

h ),∇vh) + (〈Λ〉 × un+1
h , vh) + (Λ′ × E i(un+1

h ), vh)

− (pnh,∇ · vh) +
∆t

ε
(∇ · un+1

h ,∇ · vh) = (βgE i(T n+1
h ), vh) + (fn+1

1 , vh) ∀vh ∈ Xh, (4.46)

(∂i∆t(T
n+1
h ), Sh) + b∗(E i(〈uh〉n+1), T n+1

h , Sh) + b∗(E i(u′
n+1
h ),E i(T n+1

h ), Sh)

+ 〈κ〉(∇T n+1
h ,∇Sh) + κ′(∇E i(T n+1

h ),∇Sh) = (fn+1
2 , Sh) ∀Sh ∈ WΓD,h. (4.47)

Step 2. Given (un+1
h , pnh) ∈ (Xh, Qh), find pn+1

h ∈ Qh satisfying

pn+1
h = pnh −

∆t

ε
∇ · un+1

h . (4.48)

Algorithm (ACE-T): Step 1. Find (un+1
h , pn+1

h , T n+1
h ) ∈ (Xh, Qh,Wh) satisfying, for every

n = i− 1, i, ..., N − 1,

(∂i∆t(u
n+1
h ), vh) + b(E i(〈uh〉n+1), un+1

h , vh) + b(E i(u′
n+1
h ),E i(un+1

h ), vh)

+ 〈ν〉(∇un+1
h ,∇vh) + ν ′(∇E i(un+1

h ),∇vh) + (νturbD(un+1
h ), D(vh))

+ (〈Λ〉 × un+1
h , vh) + (Λ′ × E i(un+1

h ), vh)− (pnh,∇ · vh) +
∆t

ε
(∇ · un+1

h ,∇ · vh)

= (βgE i(T n+1
h ), vh) + (fn+1

1 , vh) ∀vh ∈ Xh, (4.49)

(∂i∆t(T
n+1
h ), Sh) + b∗(E i(〈uh〉n+1), T n+1

h , Sh) + b∗(E i(u′
n+1
h ),E i(T n+1

h ), Sh)

+ 〈κ〉(∇T n+1
h ,∇Sh) + κ′(∇E i(T n+1

h ),∇Sh) + (
νturb
σturb

∇T n+1
h ,∇Sh)

= (fn+1
2 , Sh) ∀Sh ∈ WΓD,h. (4.50)

Step 2. Given (un+1
h , pnh) ∈ (Xh, Qh), find pn+1

h ∈ Qh satisfying

pn+1
h = pnh −

∆t

ε
∇ · un+1

h . (4.51)

The second-order eBDF is similar to a BDF2-AB2 method used in [86] to uncouple a pair

of evolution equations with exactly skew-symmetric coupling. As it will be instructive, we

state and prove that solutions exist uniquely for each of the above algorithms. The results

are collected into one theorem.
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Theorem 6. Consider each of the above algorithms. Suppose fn+1
1 ∈ H−1(Ω)d, fn+1

2 ∈

H−1(Ω), unh ∈ Xh, T nh ∈ Wh, and pnh ∈ Qh(when required). Then, there exists unique

solutions un+1
h ∈ Xh, T n+1

h ∈ Wh, and pn+1
h ∈ Qh.

Proof. See Appendix C.

It is interesting to note that if 〈u〉n is replaced with the weighted arithmetic mean, e.g.,

〈u〉nw =
∑J

j=1 wju(x, tn;ωj) such that
∑J

j=1wj = 1, all results proven below will hold. It

would be interesting to utilize the arithmetic mean and associated fluctuation in the above

algorithms whereby an additional calculation is made,

max
1≤j≤J

min
w∈BJ (0,1)

‖∇E i
w(u′

n+1
h )‖,

where BJ(0, 1) is the J-dimensional unit ball. This optimization problem could lead to

increased stability.

4.2 STABILITY ANALYSIS

In this section, we prove conditional, nonlinear, energy stability of solutions for each of

the proposed algorithms. Our analysis is general, encompassing both the 2d and 3d cases.

Restricting to 2d [71], condition (4.52) can be relaxed. Sufficient conditions for stability are

as follows:

∆t

h
max

1≤j≤J
‖∇E i(u′

n+1
h )‖2 ≤ C†min{〈ν〉, 〈κ〉}, (4.52)

max

{
max

1≤j≤J

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2, max

1≤j≤J

∣∣∣∣ κ′〈κ〉
∣∣∣∣2} ≤ C††, (4.53)

where C†† <
1
4
, 1

36
for first- and second-order methods, respectively. Typically, C† is deter-

mined with pre-computations. Dimensional analysis indicates that [C†] = L3−d, where L is

a typical length scale. For ACE-T, condition (4.52) is improvable:

∆t max
1≤j≤J

‖∇ · E i(u′
n+1
h )‖2

L4 ≤ C†min{〈ν〉, 〈κ〉}, (4.54)
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provided Cν ≥ C††† and Cν
σturb

≥ C††††. Here, [C†] = Ld−2.

If the viscosity and thermal conductivity are not ensemble dependent, e.g., ν(ωj) = 〈ν〉 =

ν and κ(ωj) = 〈κ〉 = κ for all 1 ≤ j ≤ J , condition (4.53) is automatically satisfied. Further,

the following alternative non-dimensional forms of condition (4.52) and (4.54) are:

∆t

h
max

1≤j≤J
‖∇E i(u′

n+1
h )‖2 ≤ C†Pr,

∆t max
1≤j≤J

‖∇ · E i(u′
n+1
h )‖2

L4 ≤ C†Pr,

recalling that Pr = ν
κ

is the Prandtl number. Also, if J = 1, we see that all conditions are

automatically satisfied and the resulting algorithms are unconditionally, nonlinearly, energy

stable. In fact, when J = 1, we recover the standard linearly implicit BDF, penalty, and

artificial compressibility methods.

Theorem 7. Consider eBDF (4.40) - (4.42). Suppose f1 ∈ L2(0, t∗;H−1(Ω)d) and f2 ∈

L2(0, t∗;H−1(Ω)). If conditions (4.52) and (4.53) hold, then there exists C#, C4 > 0 such

that,

‖uNh ‖2 +
1

2
‖TNh ‖2 +

1

2

N−1∑
n=0

(
‖un+1

h − unh‖2 + ‖T n+1
h − T nh ‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇un+1

h ‖2 +
1

2
‖〈κ〉1/2∇T n+1

h ‖2
)

+
∆t

2

(
‖〈ν〉1/2∇uNh ‖2 +

1

2
‖〈κ〉1/2∇TNh ‖2

)
≤ exp(C#t

∗)

(
C2
I

(16|βg|2C2
P

νmin
+

12κ2
max

κmin

)
t∗‖τ‖2

1+

+ 4∆t
N−1∑
n=0

( 4

νmin
‖fn+1

1 ‖2
−1 +

3

κmin
‖fn+1

2 ‖2
−1

)
+ ‖u0

h‖2 + 2‖T 0
h‖2

+
∆t

2

(
‖〈ν〉1/2∇u0

h‖2 + 2‖〈κ〉1/2∇T 0
h‖2
))

+
(

1 + 2 exp(C#t
∗) +

〈κ〉t∗

4
+

(
1 + 2 exp(C#t

∗)
)
〈κ〉∆t

2

)
‖τ‖2

1

and

‖uNh ‖2 +
1

2
‖TNh ‖2 + ‖2uNh − uN−1

h ‖2 +
1

2
‖2TNh − TN−1

h ‖2
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+
1

2

N−1∑
n=1

(
‖un+1

h − 2unh + un−1
h ‖2 + ‖T n+1

h − 2T nh + T n−1
h ‖2

)
+

∆t

2

N−1∑
n=1

(
‖〈ν〉1/2∇un+1

h ‖2 +
1

2
‖〈κ〉1/2∇T n+1

h ‖2
)

+ 2∆t
(
‖〈ν〉1/2∇uNh ‖2 +

1

2
‖〈κ〉1/2∇TNh ‖2

)
+ ∆t

(
‖〈ν〉1/2∇uN−1

h ‖2 +
1

2
‖〈κ〉1/2∇TN−1

h ‖2
)
≤ exp(C4t

∗)

(
32C2

I

( |βg|2C2
P

νmin
+
κ2
max

κmin

)
t∗‖τ‖2

1

+32∆t
N−1∑
n=1

( 1

νmin
‖fn+1

1 ‖2
−1 +

1

κmin
‖fn+1

2 ‖2
−1

)
+‖u1

h‖2 +2‖T 1
h‖2 +‖2u1

h−u0
h‖2 +2‖2T 1

h −T 0
h‖2

+ 2∆t
(
‖〈ν〉1/2∇u1

h‖2 + 2‖〈κ〉1/2∇T 1
h‖2
)

+ ∆t
(
‖〈ν〉1/2∇u0

h‖2 + 2‖〈κ〉1/2∇T 0
h‖2
))

+
(

2 + 4 exp(C4t
∗) +

〈κ〉t∗

2
+
(
3 + 6 exp(C4t

∗)
)
〈κ〉∆t

)
‖τ‖2

1.

Proof. Our strategy is to prove stability of an auxiliary temperature approximation θh ∈

WΓD,h given by the relationship T nh = θnh + Ihτ , where Ihτ ∈ Wh is an interpolant of τ in

the finite element space satisfying ‖Ihτ‖1 ≤ CI‖τ‖1. Using the above relationship and the

triangle inequality will yield the result. Thus, let T nh = θnh + Ihτ in equation (4.42). Let

Sh = ∆tθn+1
h ∈ WΓD,h, add 0 = ∆tb∗(E i(u′n+1

h ),E i(θn+1
h ),E i(θn+1

h )), and reorganize. Then,

(∂i∆t(θ
n+1
h ),∆tθn+1

h ) + ∆t‖〈κ〉1/2∇θn+1
h ‖2 = −∆tb∗(E i(u′

n+1
h ),E i(θn+1

h ), θn+1
h − E i(θn+1

h ))

−∆tb∗(E i(un+1
h ), Ihτ, θ

n+1
h )−∆t(κ∇Ihτ,∇θn+1

h )

−∆t(κ′∇E i(θn+1
h ),∇θn+1

h ) + ∆t(fn+1
2 , θn+1

h ). (4.55)

Similarly, for the velocity, consider equation (4.40), letting vh = ∆tun+1
h ∈ Xh , adding

0 = ∆tb(E i(u′n+1
h ),E i(un+1

h ),E i(un+1
h )), and reorganizing yields

(∂i∆t(u
n+1
h ),∆tun+1

h ) + ∆t‖〈ν〉1/2∇un+1
h ‖2 = −∆tb(E i(u′

n+1
h ),E i(un+1

h ), un+1
h − E i(un+1

h ))

−∆t(ν ′∇E i(un+1
h ),∇un+1

h )−∆t(Λ′ × E i(un+1
h ))

+ ∆t(βgE i(T n+1
h ), un+1

h ) + ∆t(fn+1
1 , un+1

h ). (4.56)

Note that (〈Λ〉 × un+1
h , un+1

h ) = 0 by skew-symmetry. We treat the cases i = 1 and i = 2

separately; let i = 1. Consider (4.55), then the following estimates holds

−∆tb∗(u′
n
h, θ

n
h , θ

n+1
h − θnh) ≤ C??∆th

−1/2‖〈κ〉−1/2∇u′nh‖‖〈κ〉1/2∇θnh‖‖θn+1
h − θnh‖ (4.57)
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≤ 2C2
??∆t

2

h
‖〈κ〉−1/2∇u′nh‖2‖〈κ〉1/2∇θnh‖2 +

1

4
‖θn+1

h − θnh‖2,

−∆tb∗(unh, Ihτ, θ
n+1
h ) ≤ ∆t

2
‖unh · 〈κ〉−1/2∇Ihτ‖‖〈κ〉1/2θn+1

h ‖ (4.58)

+
∆t

2
‖unh · 〈κ〉1/2∇θn+1

h ‖‖〈κ〉−1/2Ihτ‖

≤ (1 + CP )2C2
I∆t

4κminσ0

‖τ‖2
1‖unh‖2 +

σ0∆t

4
‖〈κ〉1/2∇θn+1

h ‖2,

−∆t(κ∇Ihτ,∇θn+1
h ) ≤ C2

Iκ
2
max∆t

2κminσ1

‖τ‖2
1 +

σ1∆t

2
‖〈κ〉1/2∇θn+1

h ‖2 (4.59)

−∆t(κ′∇θnh ,∇θn+1
h ) = −∆t(κ′

〈κ〉1/2

〈κ〉1/2
∇θnh ,∇θn+1

h ) (4.60)

≤ ∆t‖κ′〈κ〉−1/2∇θnh‖‖〈κ〉1/2∇θn+1
h ‖

= ∆t‖ κ
′

〈κ〉
〈κ〉1/2∇θnh‖‖〈κ〉1/2∇θn+1

h ‖

≤ ∆t

2

∣∣∣∣ κ′〈κ〉
∣∣∣∣2‖〈κ〉1/2∇θnh‖2 +

∆t

2
‖〈κ〉1/2∇θn+1

h ‖2,

∆t(fn+1
2 , θn+1

h ) ≤ ∆t

2κminσ2

‖fn+1
2 ‖2

−1 +
σ2∆t

2
‖〈κ〉1/2∇θn+1

h ‖2. (4.61)

Let σ0 = σ1 = σ2 = 1
12

, use the above estimates in equation (4.55), multiply by 2, and

rearrange. Then,

‖θn+1
h ‖2−‖θnh‖2+

1

2
‖θn+1

h −θnh‖2+
∆t

4
‖〈κ〉1/2∇θn+1

h ‖2+
∆t

2

(
‖〈κ〉1/2∇θn+1

h ‖2−‖〈κ〉1/2∇θnh‖2
)

+
∆t

2

(
1− 2

∣∣∣∣ κ′〈κ〉
∣∣∣∣2 − 4C2

??∆t

h
‖〈κ〉−1/2∇u′nh‖2

)
‖〈κ〉1/2∇θnh‖2

≤ 6(1 + CP )2C2
I∆t

κmin
‖τ‖2

1‖unh‖2 +
12C2

Iκ
2
max∆t

κmin
‖τ‖2

1 +
12∆t

κmin
‖fn+1

2 ‖2
−1. (4.62)

Since conditions (4.52) and (4.53) hold, the last term on the left-hand side is non-negative

and we may drop it yielding

‖θn+1
h ‖2−‖θnh‖2+

1

2
‖θn+1

h −θnh‖2+
∆t

4
‖〈κ〉1/2∇θn+1

h ‖2+
∆t

2

(
‖〈κ〉1/2∇θn+1

h ‖2−‖〈κ〉1/2∇θnh‖2
)

≤ 6(1 + CP )2C2
I∆t

κmin
‖τ‖2

1‖unh‖2 +
12C2

Iκ
2
max∆t

κmin
‖τ‖2

1 +
12∆t

κmin
‖fn+1

2 ‖2
−1. (4.63)

Now we follow analogously for the velocity equation. Considering equation (4.56), the fol-

lowing estimates hold

−∆tb(u′
n
h, u

n
h, u

n+1
h − unh) ≤ 2C2

?∆t2

h
‖〈ν〉−1/2∇u′nh‖2‖〈ν〉1/2∇unh‖2 +

1

4
‖un+1

h − unh‖2, (4.64)
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−∆t(ν ′∇unh,∇un+1
h ) ≤ ∆t

2

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2‖〈ν〉1/2∇unh‖2 +

∆t

2
‖〈ν〉1/2∇un+1

h ‖2, (4.65)

−∆t(Λ′ × unh, un+1
h ) ≤ C2

P∆t

2νminσ3

|Λ′|2‖unh‖2 +
σ3∆t

2
‖〈ν〉1/2∇un+1

h ‖2, (4.66)

∆t(βgθnh , u
n+1
h ) ≤ |βg|

2C2
P∆t

2νminσ4

‖θnh‖2 +
σ4∆t

2
‖〈ν〉1/2∇un+1

h ‖2, (4.67)

∆t(βgIhτ, u
n+1
h ) ≤ |βg|

2C2
PC

2
I∆t

2νminσ5

‖τ‖2
1 +

σ5∆t

2
‖〈ν〉1/2∇un+1

h ‖2, (4.68)

∆t(fn+1
1 , un+1

h ) ≤ ∆t

2νminσ6

‖fn+1
1 ‖2

−1 +
σ6∆t

2
‖〈ν〉1/2∇un+1

h ‖2. (4.69)

Let σ3 = σ4 = σ5 = σ6 = 1
16

, use the above estimates in equation (4.56), multiply by 2, and

rearrange. Then,

‖un+1
h ‖2−‖unh‖2+

1

2
‖un+1

h −unh‖2+
∆t

4
‖〈ν〉1/2∇un+1

h ‖2+
∆t

2

(
‖〈ν〉1/2∇un+1

h ‖2−‖〈ν〉1/2∇unh‖2
)

+
∆t

2

(
1− 2

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2 − 4C2

?∆t

h
‖〈ν〉−1/2∇u′nh‖2

)
‖〈ν〉1/2∇unh‖2 ≤ 16C2

P∆t

νmin
|Λ′|2‖unh‖2

16|βg|2C2
P∆t

νmin
‖θnh‖2 +

16|βg|2C2
PC

2
I∆t

νmin
‖τ‖2

1 +
16∆t

νmin
‖fn+1

1 ‖2
−1. (4.70)

Conditions (4.52) and (4.53) imply we may drop the last term on the left-hand side. Thus,

adding inequality (4.63) to (4.70), summing over n from n = 0 to n = N−1, and rearranging

yields

‖uNh ‖2 + ‖θNh ‖2 +
1

2

N−1∑
n=0

(
‖un+1

h − unh‖2 + ‖θn+1
h − θnh‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇un+1

h ‖2 + ‖〈κ〉1/2∇θn+1
h ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇uNh ‖2 + ‖〈κ〉1/2∇θNh ‖2

)
≤
(16C2

P

νmin
|Λ′|2 +

6(1 + CP )2C2
I

κmin
‖τ‖2

1

)
∆t

N−1∑
n=0

‖unh‖2

+
16|βg|2C2

P

νmin
∆t

N−1∑
n=0

‖θnh‖2 + C2
I

(16|βg|2C2
P

νmin
+

12κ2
max

κmin

)
∆t

N−1∑
n=0

‖τ‖2
1

+ 4∆t
N−1∑
n=0

( 4

νmin
‖fn+1

1 ‖2
−1 +

3

κmin
‖fn+1

2 ‖2
−1

)
+ ‖u0

h‖2 + ‖θ0
h‖2

+
∆t

2

(
‖〈ν〉1/2∇u0

h‖2 + ‖〈κ〉1/2∇θ0
h‖2
)
. (4.71)
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Add ∆t2

2

(
‖〈ν〉1/2∇uNh ‖2+‖〈κ〉1/2∇θNh ‖2

)
to the right-hand side and let C# = max{1, 16C2

P

νmin
|Λ′|2,

6(1+CP )2C2
I

κmin
,

16|βg|2C2
P

νmin
}. Applying Lemma 3 yields

‖uNh ‖2 + ‖θNh ‖2 +
1

2

N−1∑
n=0

(
‖un+1

h − unh‖2 + ‖θn+1
h − θnh‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇un+1

h ‖2 + ‖〈κ〉1/2∇θn+1
h ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇uNh ‖2 + ‖〈κ〉1/2∇θNh ‖2

)
≤ exp(C#t

∗)

(
C2
I

(16|βg|2C2
P

νmin
+

12κ2
max

κmin

)
t∗‖τ‖2

1

+ 4∆t
N−1∑
n=0

( 4

νmin
‖fn+1

1 ‖2
−1 +

3

κmin
‖fn+1

2 ‖2
−1

)
+ ‖u0

h‖2 + ‖θ0
h‖2

+
∆t

2

(
‖〈ν〉1/2∇u0

h‖2 + ‖〈κ〉1/2∇θ0
h‖2
))

. (4.72)

Lastly, using the relationship T nh = θnh +Ihτ and the triangle inequality yields the first result;

that is, the velocity and temperature approximations are stable. Moving to the second-order

algorithm, let i = 2. The following estimates hold

−∆tb∗(E 2(u′
n+1
h ), 2θnh − θn−1

h , θn+1
h − 2θnh + θn−1

h )

≤ 4C2
??∆t

2

h
‖〈κ〉−1/2∇E 2(u′

n+1
h )‖2

(
‖〈κ〉1/2∇θnh‖2 + ‖〈κ〉1/2∇θn−1

h ‖2
)

+
1

8
‖θn+1

h − 2θnh + θn−1
h ‖2,

−∆tb∗(2unh − un−1
h , Ihτ, θ

n+1
h ) ≤ (1 + CP )2C2

I∆t

κminσ7

‖τ‖2
1‖2unh − un−1

h ‖2 (4.73)

+
σ7∆t

4
‖〈κ〉1/2∇θn+1

h ‖2,

−∆t(κ′∇(2θnh − θn−1
h ),∇θn+1

h ) ≤ ∆t

∣∣∣∣ κ′〈κ〉
∣∣∣∣2(4‖〈κ〉1/2∇θnh‖2 + ‖〈κ〉1/2∇θn−1

h ‖2
)

(4.74)

+
∆t

4
‖〈κ〉1/2∇θn+1

h ‖2.

Let 4σ1 = 4σ2 = σ7 = 1
4
, use the above estimates in equation (4.55), multiply by 4, and

rearrange. Then,
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‖θn+1
h ‖2+‖2θn+1

h −θnh‖2−‖θnh‖2−‖2θnh−θn−1
h ‖2+

1

2
‖θn+1

h −2θnh−θn−1
h ‖2+

∆t

2
‖〈κ〉1/2∇θn+1

h ‖2

+ 2∆t
(
‖〈κ〉1/2∇θn+1

h ‖2 − ‖〈κ〉1/2∇θnh‖2
)

+ ∆t
(
‖〈κ〉1/2∇θnh‖2 − ‖〈κ〉1/2∇θn−1

h ‖2
)

+ 2∆t
(

1− 8

∣∣∣∣ κ′〈κ〉
∣∣∣∣2 − 4C2

??∆t

h
‖〈κ〉−1/2∇E 2(u′

n+1
h )‖2

)
‖〈κ〉1/2∇θnh‖2

+ ∆t
(

1− 4

∣∣∣∣ κ′〈κ〉
∣∣∣∣2 − 4C2

??∆t

h
‖〈κ〉−1/2∇E 2(u′

n+1
h )‖2

)
‖〈κ〉1/2∇θn−1

h ‖2

≤ 16(1 + CP )2C2
I∆t

κmin
‖τ‖2

1‖2unh − un−1
h ‖2 +

32C2
Iκ

2
max∆t

κmin
‖τ‖2

1 +
32∆t

κmin
‖fn+1

2 ‖2
−1. (4.75)

Similarly, for the velocity, consider equation (4.56). Then, the following estimates hold

−∆tb(E 2(u′
n+1
h ), 2unh − unh, un+1

h − 2unh + unh)

≤ 4C2
?∆t2

h
‖〈ν〉−1/2∇E 2(u′

n+1
h )‖2

(
‖〈ν〉1/2∇unh‖2 + ‖〈ν〉1/2∇un−1

h ‖2
)

+
1

8
‖un+1

h − 2unh + un−1
h ‖2, (4.76)

−∆t(ν ′∇(2unh − un−1
h ),∇un+1

h ) ≤ ∆t

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2(4‖〈ν〉1/2∇unh‖2 + ‖〈ν〉1/2∇un−1

h ‖2
)

(4.77)

+
∆t

4
‖〈ν〉1/2∇un+1

h ‖2,

−∆t(Λ′ × (2unh − un−1
h ), un+1

h ) ≤ C2
P∆t

νminσ8

|Λ′|2‖2unh − un−1
h ‖2 +

σ8∆t

4
‖〈ν〉1/2un+1

h ‖2, (4.78)

∆t(βg(2θnh − θn−1
h ), un+1

h ) ≤ |βg|
2C2

P∆t

νminσ9

‖2θnh − θn−1
h ‖2 +

σ9∆t

4
‖〈ν〉1/2∇un+1

h ‖2. (4.79)

Let 4σ5 = 4σ6 = σ8 = σ9 = 1
8
, use the above estimates in equation (4.56), multiply by 4,

and rearrange. Then,

‖un+1
h ‖2+‖2un+1

h −unh‖2−‖unh‖2−‖2unh−un−1
h ‖2+

1

2
‖un+1

h −2unh−un−1
h ‖2+

∆t

2
‖〈ν〉1/2∇un+1

h ‖2

+ 2∆t
(
‖〈ν〉1/2∇un+1

h ‖2 − ‖〈ν〉1/2∇unh‖2
)

+ ∆t
(
‖〈ν〉1/2∇unh‖2 − ‖〈ν〉1/2∇un−1

h ‖2
)

+ 2∆t
(

1− 8

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2 − 4C2

?∆t

h
‖〈ν〉−1/2∇u′nh‖2

)
‖〈ν〉1/2∇unh‖2

+ ∆t
(

1− 4

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2 − 4C2

?∆t

h
‖〈ν〉−1/2∇u′nh‖2

)
‖〈ν〉1/2∇un−1

h ‖2
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≤ 32C2
P∆t

νmin
|Λ′|2‖2unh − un−1

h ‖2 +
32|βg|2C2

P∆t

νmin
‖2θnh − θn−1

h ‖2

+
32|βg|2C2

PC
2
I∆t

νmin
‖τ‖2

1 +
32∆t

νmin
‖fn+1

1 ‖2
−1. (4.80)

Denote C4 = max{1, 32C2
P

νmin
|Λ′|2, 32|βg|2C2

P

νmin
,

16(1+CP )2C2
I

κmin
‖τ‖2

1}. Then, adding (4.75) to (4.80),

using conditions (4.52) and (4.53), summing over n from n = 1 to n = N−1, and rearranging

yields

‖uNh ‖2 + ‖θNh ‖2 + ‖2uNh − uN−1
h ‖2 + ‖2θNh − θN−1

h ‖2

+
1

2

N−1∑
n=1

(
‖un+1

h − 2unh + un−1
h ‖2 + ‖θn+1

h − 2θnh + θn−1
h ‖2

)
+

∆t

2

N−1∑
n=1

(
‖〈ν〉1/2∇un+1

h ‖2 + ‖〈κ〉1/2∇θn+1
h ‖2

)
+ 2∆t

(
‖〈ν〉1/2∇uNh ‖2 + ‖〈κ〉1/2∇θNh ‖2

)
+ ∆t

(
‖〈ν〉1/2∇uN−1

h ‖2 + ‖〈κ〉1/2∇θN−1
h ‖2

)
≤ C4∆t

N−1∑
n=1

(
‖unh‖2 + ‖2unh − un−1

h ‖2 + ‖θnh‖2 + ‖2θnh − θn−1
h ‖2

)
+ 32C2

I∆t
N−1∑
n=1

( |βg|2C2
P

νmin
+
κ2
max

κmin

)
‖τ‖2

1 + 32∆t
N−1∑
n=1

( 1

νmin
‖fn+1

1 ‖2
−1 +

1

κmin
‖fn+1

2 ‖2
−1

+ ‖u1
h‖2 + ‖θ1

h‖2 + ‖2u1
h − u0

h‖2 + ‖2θ1
h − θ0

h‖2

+ 2∆t
(
‖〈ν〉1/2∇u1

h‖2 + ‖〈κ〉1/2∇θ1
h‖2
)

+ ∆t
(
‖〈ν〉1/2∇u0

h‖2 + ‖〈κ〉1/2∇θ0
h‖2
))
. (4.81)

Apply Lemma 3, recall the relation T nh = θnh + Ihτ , and apply the triangle inequality. This

yields the result.

As a corollary, stability of the pressure approximation follows.

Corollary 3. Suppose Theorem 7 holds. Let i = 1. Then, the pressure approximation

satisfies for all N ≥ 1,

α∆t
N−1∑
n=0

‖pn+1
h ‖ ≤ (1+C−1

∗ )

(
C1

νmin

(
∆t

N−1∑
n=0

‖〈ν〉1/2∇〈uh〉n‖2
)1/2(

∆t
N−1∑
n=0

‖〈ν〉1/2∇un+1
h ‖2

)1/2

+ t∗1/2
(
ν1/2
max +

C2
P |〈Λ〉|
ν

1/2
min

)(
∆t

N−1∑
n=0

‖〈ν〉1/2∇un+1
h ‖2

)1/2
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+ t∗1/2
(C1C†h

∆t
+ C††νmax +

C2
P |Λ′|
ν

1/2
min

)(
∆t

N−1∑
n=0

‖〈ν〉1/2∇unh‖2
)1/2

+
C2
P |βg|t∗1/2

κ
1/2
min

(
∆t

N−1∑
n=0

‖〈κ〉1/2∇T nh ‖2
)1/2

+ t∗1/2
(

∆t
N−1∑
n=0

‖fn+1
1 ‖2

−1

)1/2
)
.

Moreover, for i = 2,

α∆t
N−1∑
n=1

‖pn+1
h ‖

≤ (1 + C−1
∗ )

(
C1

νmin

(
∆t

N−1∑
n=1

‖〈ν〉1/2∇E 2(〈uh〉n+1)‖2
)1/2(

∆t
N−1∑
n=1

‖〈ν〉1/2∇un+1
h ‖2

)1/2

+ t∗1/2
(
ν1/2
max +

C2
P |〈Λ〉|
ν

1/2
min

)(
∆t

N−1∑
n=1

‖〈ν〉1/2∇un+1
h ‖2

)1/2

+ t∗1/2
(C1C†h

∆t
+ C††νmax +

C2
P |Λ′|
ν

1/2
min

)(
∆t

N−1∑
n=1

‖〈ν〉1/2∇(2unh − un−1
h )‖2

)1/2

+
C2
P |βg|t∗1/2

κ
1/2
min

(
∆t

N−1∑
n=1

‖〈κ〉1/2∇(2T nh − T n−1
h )‖2

)1/2

+ t∗1/2
(

∆t
N−1∑
n=1

‖fn+1
1 ‖2

−1

)1/2
)
.

Proof. For the pressure, consider equation (4.40), isolate the discrete time-derivative, and

let vh ∈ Vh. Then,

(∂i∆t(u
n+1
h ), vh) = −b(E i(〈uh〉n+1), un+1

h , vh)− b(E i(u′
n+1
h ),E i(un+1

h ), vh)− (〈ν〉∇un+1
h ,∇vh)

− (ν ′∇E i(un+1
h ),∇vh)− (〈Λ〉 × un+1

h , vh)− (Λ′ × E i(un+1
h ), vh)

+ (βgE i(T n+1
h ), vh) + (fn+1

1 , vh). (4.82)

The following estimates hold,

−b(E i(〈uh〉n+1), un+1
h , vh) ≤

C1

νmin
‖〈ν〉1/2∇E i(〈uh〉n+1)‖‖〈ν〉1/2∇un+1

h ‖‖∇vh‖, (4.83)

−b(E i(u′
n+1
h ),E i(un+1

h ), vh) ≤ C1‖〈ν〉−1/2∇E i(u′
n+1
h )‖‖〈ν〉1/2∇E i(un+1

h )‖‖∇vh‖, (4.84)

−(〈ν〉∇un+1
h ,∇vh) ≤ ν1/2

max‖〈ν〉1/2∇un+1
h ‖‖∇vh‖, (4.85)

−(ν ′∇E i(un+1
h ),∇vh) ≤ νmax

∣∣∣∣ ν ′〈ν〉
∣∣∣∣‖〈ν〉1/2∇E i(un+1

h )‖‖∇vh‖, (4.86)

−(〈Λ〉 × un+1
h , vh) ≤

C2
P |〈Λ〉|
ν

1/2
min

‖〈ν〉1/2∇un+1
h ‖‖∇vh‖, (4.87)
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−(Λ′ × E i(un+1
h ), vh) ≤

C2
P |Λ′|
ν

1/2
min

‖〈ν〉1/2∇E i(un+1
h )‖‖∇vh‖, (4.88)

(βgE i(T n+1
h ), vh) ≤

C2
P |βg|
κ

1/2
min

‖〈κ〉1/2∇E i(T n+1
h )‖‖∇vh‖, (4.89)

(fn+1
1 , vh) ≤ ‖fn+1

1 ‖−1‖∇vh‖. (4.90)

Using the above estimates in equation (4.82), dividing both sides by 0 6= ‖∇vh‖, taking a

supremum over vh ∈ Vh, and applying Lemma 5 and conditions (4.52) and (4.53) yields

‖∂i∆t(un+1
h )‖X∗h ≤ C−1

∗

(( C1

νmin
‖〈ν〉−1/2∇E i(〈uh〉n+1)‖+ ν1/2

max +
C2
P |〈Λ〉|
ν

1/2
min

)
‖〈ν〉1/2∇un+1

h ‖

+
(C1C†h

∆t
+ C††νmax +

C2
P |Λ′|
ν

1/2
min

)
‖〈ν〉1/2∇E i(un+1

h )‖

+
C2
P |βg|
κ

1/2
min

‖〈κ〉1/2∇E i(T n+1
h )‖+ ‖fn+1

1 ‖−1

)
. (4.91)

Reconsider equation (4.40), isolate the pressure term, and use the estimates (4.83) - (4.90).

Then,

(pn+1
h ,∇ · vh) ≤ (∂i∆t(u

n+1
h ), vh)

+

(( C1

νmin
‖〈ν〉1/2∇E i(〈uh〉n+1)‖+ ν1/2

max +
C2
P |〈Λ〉|
ν

1/2
min

)
‖〈ν〉1/2∇un+1

h ‖

+
(C1C†h

∆t
+ C††νmax +

C2
P |Λ′|
ν

1/2
min

)
‖〈ν〉1/2∇E i(un+1

h )‖

+
C2
P |βg|
κ

1/2
min

‖〈κ〉1/2∇E i(T n+1
h )‖+ ‖fn+1

1 ‖−1

)
‖∇vh‖. (4.92)

Divide by 0 6= ‖∇vh‖, take a supremum over vh ∈ Xh, and use the inf-sup condition (2.23).

This yields

α‖pn+1
h ‖ ≤ ‖∂i∆t(un+1

h )‖X∗h

+
( C1

νmin
‖〈ν〉1/2∇E i(〈uh〉n+1)‖+ ν1/2

max +
C2
P |〈Λ〉|
ν

1/2
min

)
‖〈ν〉1/2∇un+1

h ‖

+
(C1C†h

∆t
+ C††νmax +

C2
P |Λ′|
ν

1/2
min

)
‖〈ν〉1/2∇E i(un+1

h )‖

54



+
C2
P |βg|
κ

1/2
min

‖〈κ〉1/2∇E i(T n+1
h )‖+ ‖fn+1

1 ‖−1. (4.93)

Use estimate (4.91), multiply by ∆t, and sum over n from n = i− 1 to n = N − 1. Then,

α∆t
N−1∑
n=i−1

‖pn+1
h ‖

≤ (1 + C−1
∗ )∆t

N−1∑
n=i−1

(( C1

νmin
‖〈ν〉1/2∇E i(〈uh〉n+1)‖+ ν1/2

max +
C2
P |〈Λ〉|
ν

1/2
min

)
‖〈ν〉1/2∇un+1

h ‖

+
(C1C†h

∆t
+ C††νmax +

C2
P |Λ′|
ν

1/2
min

)
‖〈ν〉1/2∇E i(un+1

h )‖

+
C2
P |βg|
κ

1/2
min

‖〈κ〉1/2∇E i(T n+1
h )‖+ ‖fn+1

1 ‖−1

)
. (4.94)

The result follows by application of the Cauchy-Schwarz inequality and regrouping.

In all of the above estimates, a discrete Gronwall inequality, Lemma 3, was used to prove

stability. As we saw in Chapter 3, it is possible to remove the exponential growth factor

under a condition on the mesh.

Theorem 8. Suppose the hypotheses of Theorem 7 hold. Further, suppose that δ = O(Ra−1)

and the following condition holds:

max
1≤j≤J

max
K∈Th

∆t

hK
‖∇E i(u′

n+1
h )‖2

L2(K) ≤ C†min{〈ν〉, 〈κ〉}.

Then, there exists C > 0, independent of t∗, such that

‖uNh ‖2 +
1

2
‖TNh ‖2 +

1

2

N−1∑
n=0

(
‖un+1

h − unh‖2 + ‖T n+1
h − T nh ‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇un+1

h ‖2 +
1

2
‖〈κ〉1/2∇T n+1

h ‖2
)

+
∆t

2

(
‖〈ν〉1/2∇uNh ‖2 +

1

2
‖〈κ〉1/2∇TNh ‖2

)
+ α∆t

N−1∑
n=0

‖pn+1
h ‖ ≤ Ct∗

and

‖uNh ‖2 +
1

2
‖TNh ‖2 + ‖2uNh − uN−1

h ‖2 +
1

2
‖2TNh − TN−1

h ‖2
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+
1

2

N−1∑
n=1

(
‖un+1

h − 2unh + un−1
h ‖2 + ‖T n+1

h − 2T nh + T n−1
h ‖2

)
+

∆t

2

N−1∑
n=1

(
‖〈ν〉1/2∇un+1

h ‖2 +
1

2
‖〈κ〉1/2∇T n+1

h ‖2
)

+ 2∆t
(
‖〈ν〉1/2∇uNh ‖2 +

1

2
‖〈κ〉1/2∇TNh ‖2

)
+ ∆t

(
‖〈ν〉1/2∇uN−1

h ‖2 +
1

2
‖〈κ〉1/2∇TN−1

h ‖2
)

+ α∆t
N−1∑
n=1

‖pn+1
h ‖ ≤ Ct∗.

Proof. These estimates follow from techniques used in Theorem 5 (Chapter 3) and Theorem

7.

The mesh condition δ = O(Ra−1) is removable if the temperature satisfies homogeneous

boundary conditions on the entire Dirichlet boundary [8].

Theorem 9. Suppose the hypotheses of Theorem 7 hold. Further, suppose that T |ΓD = 0.

Then, there exists C > 0, independent of t∗, such that

‖uNh ‖2 + ‖TNh ‖2 +
1

2

N−1∑
n=0

(
‖un+1

h − unh‖2 + ‖T n+1
h − T nh ‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇un+1

h ‖2 + ‖〈κ〉1/2∇T n+1
h ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇uNh ‖2 + ‖〈κ〉1/2∇TNh ‖2

)
+ α∆t

N−1∑
n=0

‖pn+1
h ‖ ≤ C

and

‖uNh ‖2 + ‖TNh ‖2 + ‖2uNh − uN−1
h ‖2 + ‖2TNh − TN−1

h ‖2

+
1

2

N−1∑
n=1

(
‖un+1

h − 2unh + un−1
h ‖2 + ‖T n+1

h − 2T nh + T n−1
h ‖2

)
+

∆t

2

N−1∑
n=1

(
‖〈ν〉1/2∇un+1

h ‖2 + ‖〈κ〉1/2∇T n+1
h ‖2

)
+ 2∆t

(
‖〈ν〉1/2∇uNh ‖2 +

1

2
‖〈κ〉1/2∇TNh ‖2

)
+ ∆t

(
‖〈ν〉1/2∇uN−1

h ‖2 + ‖〈κ〉1/2∇TN−1
h ‖2

)
+ α∆t

N−1∑
n=1

‖pn+1
h ‖ ≤ C.
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Proof. We note that T n+1
h ∈ WΓD,h. Consequently, stability of the temperature approx-

imation follows immediately from estimates (4.57), (4.58), and (4.60) with θn+1
h replaced

with T n+1
h . Moreover, the buoyancy term (βgE i(T n+1

h ), un+1
h ) appearing in (4.56) is easily

dispatched as follows

∆t
N−1∑
n=i−1

(βgE i(T n+1
h ), un+1

h ) ≤ |βg|
2C4

P∆t

2νminσ

N−1∑
n=i−1

‖∇E i(i(T n+1
h )‖2

+
σ∆t

2

N−1∑
n=i−1

‖〈ν〉1/2∇un+1
h ‖2. (4.95)

The first term on the right-hand side is bounded and the second can be subsumed into the

diffusive term on the left-hand side of equation (4.56). The remainder is routine.

The above result corresponds to flow driven by body or heat forces. It is not surprising

that, provided f1 = f2 = 0, the above result implies (un+1
h , T n+1

h , pn+1
h )→ (0, 0, 0) as n→∞.

Analogs of both Theorems 8 and 9 hold for PEA, ACE, and ACE-T. We will not state

them in the interest of brevity. Utilizing techniques from Theorem 7, we can prove analogous

results for PEA.

Theorem 10. Consider PEA (4.43) - (4.44). Suppose f1 ∈ L2(0, t∗;H−1(Ω)d) and f2 ∈

L2(0, t∗;H−1(Ω)). If conditions (4.52) and (4.53) hold, then there exists C#, C4 > 0 such

that,

‖uNh ‖2 +
1

2
‖TNh ‖2 +

1

2

N−1∑
n=0

(
‖un+1

h − unh‖2 + ‖T n+1
h − T nh ‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇un+1

h ‖2 +
1

2
‖〈κ〉1/2∇T n+1

h ‖2 + 4ε‖pn+1
h ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇uNh ‖2 +

1

2
‖〈κ〉1/2∇TNh ‖2

)
≤ exp(C#t

∗)

(
C2
I

(16|βg|2C2
P

νmin
+

12κ2
max

κmin

)
t∗‖τ‖2

1

+ 4∆t
N−1∑
n=0

( 4

νmin
‖fn+1

1 ‖2
−1 +

3

κmin
‖fn+1

2 ‖2
−1

)
+ ‖u0

h‖2 + 2‖T 0
h‖2 +

∆t

2

(
‖〈ν〉1/2∇u0

h‖2 + 2‖〈κ〉1/2∇T 0
h‖2
))

+
(

1 + 2 exp(C#t
∗) +

〈κ〉t∗

4
+

(
1 + 2 exp(C#t

∗)
)
〈κ〉∆t

2

)
‖τ‖2

1
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and

‖uNh ‖2 +
1

2
‖TNh ‖2 + ‖2uNh − uN−1

h ‖2 +
1

2
‖2TNh − TN−1

h ‖2

+
1

2

N−1∑
n=1

(
‖un+1

h − 2unh + un−1
h ‖2 + ‖T n+1

h − 2T nh + T n−1
h ‖2

)
+

∆t

2

N−1∑
n=1

(
‖〈ν〉1/2∇un+1

h ‖2 +
1

2
‖〈κ〉1/2∇T n+1

h ‖2 + 2ε‖pn+1
h ‖2

)
+ 2∆t

(
‖〈ν〉1/2∇uNh ‖2 +

1

2
‖〈κ〉1/2∇TNh ‖2

)
+ ∆t

(
‖〈ν〉1/2∇uN−1

h ‖2 +
1

2
‖〈κ〉1/2∇TN−1

h ‖2
)
≤ exp(C4t

∗)

(
32C2

I

( |βg|2C2
P

νmin
+
κ2
max

κmin

)
t∗‖τ‖2

1

+ 32∆t
N−1∑
n=1

( 1

νmin
‖fn+1

1 ‖2
−1 +

1

κmin
‖fn+1

2 ‖2
−1

)
+ ‖u1

h‖2 + 2‖T 1
h‖2 + ‖2u1

h − u0
h‖2 + 2‖2T 1

h − T 0
h‖2

+ 2∆t
(
‖〈ν〉1/2∇u1

h‖2 + 2‖〈κ〉1/2∇T 1
h‖2
)

+ ∆t
(
‖〈ν〉1/2∇u0

h‖2 + 2‖〈κ〉1/2∇T 0
h‖2
))

+
(

2 + 4 exp(C4t
∗) +

〈κ〉t∗

2
+
(
3 + 6 exp(C4t

∗)
)
〈κ〉∆t

)
‖τ‖2

1.

Proof. Consider equation (4.43) and use (4.45) to rewrite 1
ε
(∇·un+1

h ,∇·vh) = −(pn+1
h ,∇·vh).

Letting vh = ∆tun+1
h ∈ Xh , adding 0 = ∆tb(E i(u′n+1

h ),E i(un+1
h ),E i(un+1

h )), and reorganizing

yields

(∂i∆t(u
n+1
h ),∆tun+1

h ) + ∆t‖〈ν〉1/2∇un+1
h ‖2 −∆t(pn+1

h ,∇ · un+1
h )

= −∆tb(E i(u′
n+1
h ),E i(un+1

h ), un+1
h − E i(un+1

h ))−∆t(ν ′∇E i(un+1
h ),∇un+1

h )

−∆t(Λ′ × E i(un+1
h ), un+1

h ) + ∆t(βgE i(T n+1
h ), un+1

h ) + ∆t(fn+1
1 , un+1

h ). (4.96)

We must deal with the pressure term, which does not vanish. Take the L2(Ω) inner product

of equation (4.45) with ∆tpn+1
h ∈ Qh. This yields

ε∆t‖pn+1
h ‖2 = −∆t(∇ · un+1

h , pn+1
h ). (4.97)

Add equation (4.96) to (4.97). Then,

(∂i∆t(u
n+1
h ),∆tun+1

h ) + ∆t‖〈ν〉1/2∇un+1
h ‖2 + ε∆t‖pn+1

h ‖2
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= −∆tb(E i(u′
n+1
h ),E i(un+1

h ), un+1
h − E i(un+1

h ))−∆t(ν ′∇E i(un+1
h ),∇un+1

h )

−∆t(Λ′ × E i(un+1
h )) + ∆t(βgE i(T n+1

h ), un+1
h ) + ∆t(fn+1

1 , un+1
h ). (4.98)

The result follows by similar techniques used in Theorem 7.

Alternatively, we could have kept 1
ε
(∇ · un+1

h ,∇ · vh) within equation (4.43). In this

case, we can show ε∆t‖pn+1
h ‖2 = ∆t

ε
‖∇ · un+1

h ‖2 ≤ C(data), as needed. However, the same

techniques used in the above theorem can be utilized for ACE and in the upcoming error

analysis.

Theorem 11. Consider ACE (4.46) - (4.47). Suppose f1 ∈ L2(0, t∗;H−1(Ω)d) and f2 ∈

L2(0, t∗;H−1(Ω)). If conditions (4.52) and (4.53) hold, then there exists C#, C4 > 0 such

that,

‖uNh ‖2 +
1

2
‖TNh ‖2 + ε‖pNh ‖2 +

1

2

N−1∑
n=0

(
‖un+1

h − unh‖2 + ‖T n+1
h − T nh ‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇un+1

h ‖2 +
1

2
‖〈κ〉1/2∇T n+1

h ‖2 +
4∆t

ε
‖∇ · un+1

h ‖2
)

+
∆t

2

(
‖〈ν〉1/2∇uNh ‖2 +

1

2
‖〈κ〉1/2∇TNh ‖2

)
≤ exp(C#t

∗)

(
C2
I

(16|βg|2C2
P

νmin
+

12κ2
max

κmin

)
t∗‖τ‖2

1

+ 4∆t
N−1∑
n=0

( 4

νmin
‖fn+1

1 ‖2
−1 +

3

κmin
‖fn+1

2 ‖2
−1

)
+ ‖u0

h‖2 + 2‖T 0
h‖2 + ε‖p0

h‖2 +
∆t

2

(
‖〈ν〉1/2∇u0

h‖2 + 2‖〈κ〉1/2∇T 0
h‖2
))

+
(

1 + 2 exp(C#t
∗) +

〈κ〉t∗

4
+

(
1 + 2 exp(C#t

∗)
)
〈κ〉∆t

2

)
‖τ‖2

1

and

‖uNh ‖2 +
1

2
‖TNh ‖2 + ε‖pNh ‖2 + ‖2uNh − uN−1

h ‖2 +
1

2
‖2TNh − TN−1

h ‖2

+
1

2

N−1∑
n=1

(
‖un+1

h − 2unh + un−1
h ‖2 + ‖T n+1

h − 2T nh + T n−1
h ‖2

)
+

∆t

2

N−1∑
n=1

(
‖〈ν〉1/2∇un+1

h ‖2 +
1

2
‖〈κ〉1/2∇T n+1

h ‖2 +
2∆t

ε
‖∇ · un+1

h ‖2
)
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+ 2∆t
(
‖〈ν〉1/2∇uNh ‖2 +

1

2
‖〈κ〉1/2∇TNh ‖2

)
+ ∆t

(
‖〈ν〉1/2∇uN−1

h ‖2 +
1

2
‖〈κ〉1/2∇TN−1

h ‖2
)
≤ exp(C4t

∗)

(
32C2

I

( |βg|2C2
P

νmin
+
κ2
max

κmin

)
t∗‖τ‖2

1

+ 32∆t
N−1∑
n=1

( 1

νmin
‖fn+1

1 ‖2
−1 +

1

κmin
‖fn+1

2 ‖2
−1

)
+ ‖u1

h‖2 + 2‖T 1
h‖2 + ε‖p1

h‖2 + ‖2u1
h − u0

h‖2 + 2‖2T 1
h − T 0

h‖2

+ 2∆t
(
‖〈ν〉1/2∇u1

h‖2 + 2‖〈κ〉1/2∇T 1
h‖2
)

+ ∆t
(
‖〈ν〉1/2∇u0

h‖2 + 2‖〈κ〉1/2∇T 0
h‖2
))

+
(

2 + 4 exp(C4t
∗) +

〈κ〉t∗

2
+
(
3 + 6 exp(C4t

∗)
)
〈κ〉∆t

)
‖τ‖2

1.

Proof. Consider equation (4.46) and use (4.48) to rewrite ∆t
ε

(∇·un+1
h ,∇· vh)− (pnh,∇· vh) =

−(pn+1
h ,∇ · vh). Letting vh = ∆tun+1

h ∈ Xh , adding 0 = ∆tb(E i(u′n+1
h ),E i(un+1

h ),E i(un+1
h )),

and reorganizing yields

(∂i∆t(u
n+1
h ),∆tun+1

h ) + ∆t‖〈ν〉1/2∇un+1
h ‖2 −∆t(pn+1

h ,∇ · un+1
h )

= −∆tb(E i(u′
n+1
h ),E i(un+1

h ), un+1
h − E i(un+1

h ))−∆t(ν ′∇E i(un+1
h ),∇un+1

h )

−∆t(Λ′ × E i(un+1
h ), un+1

h ) + ∆t(βgE i(T n+1
h ), un+1

h ) + ∆t(fn+1
1 , un+1

h ). (4.99)

As in the penalty case, we must deal with the non-vanishing pressure term. Take the L2(Ω)

inner product of equation (4.48) with ∆tpn+1
h ∈ Qh. This yields

ε

2

(
‖pn+1

h ‖2 − ‖pnh‖2 + ‖pn+1
h − pnh‖2

)
= −∆t(∇ · un+1

h , pn+1
h ). (4.100)

Add equation (4.99) to (4.100). Then,

(∂i∆t(u
n+1
h ),∆tun+1

h ) + ∆t‖〈ν〉1/2∇un+1
h ‖2 +

ε

2

(
‖pn+1

h ‖2 − ‖pnh‖2 + ‖pn+1
h − pnh‖2

)
= −∆tb(E i(u′

n+1
h ),E i(un+1

h ), un+1
h − E i(un+1

h ))−∆t(ν ′∇E i(un+1
h ),∇un+1

h )

−∆t(Λ′ × E i(un+1
h )) + ∆t(βgE i(T n+1

h ), un+1
h ) + ∆t(fn+1

1 , un+1
h ). (4.101)

We see that,
∑N−1

n=i−1
ε
2

(
‖pn+1

h ‖2 − ‖pnh‖2 + ‖pn+1
h − pnh‖2

)
= ε

2

(
‖pNh ‖2 − ‖pi−1

h ‖2
)

+ ε
2

∑N−1
n=i−1 ‖p

n+1
h − pnh‖2. Consequently, the result follows by similar techniques used in

Theorem 7.
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Note that ε
2

∑N−1
n=i−1 ‖p

n+1
h − pnh‖2 = ∆t

2ε

(
∆t
∑N−1

n=i−1 ‖∇ · u
n+1
h ‖2

)
. Consequently, for ε =

O(∆t), ∇ · uh ∈ L2(0, t∗;L2(Ω)d) and for ε = O(∆t2), ∇ · uh ∈ L∞(0, t∗;L2(Ω)d). In other

words, pressure stability weakens while velocity becomes more divergence free. Lastly, we

prove stability of ACE-T.

Theorem 12. Consider ACE-T (4.49) - (4.50). Suppose f1 ∈ L2(0, t∗;H−1(Ω)d) and

f2 ∈ L2(0, t∗;H−1(Ω)). If conditions (4.53) and (4.54) hold, then there exists C, C#, C4 > 0

such that,

‖uNh ‖2 +
1

2
‖TNh ‖2 + ε‖pNh ‖2 +

1

32

N−1∑
n=0

(
‖un+1

h − unh‖2 + ‖T n+1
h − T nh ‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇un+1

h ‖2 +
1

2
‖〈κ〉1/2∇T n+1

h ‖2 +
4∆t

ε
‖∇ · un+1

h ‖2
)

+
∆t

2

(
‖〈ν〉1/2∇uNh ‖2 +

1

2
‖〈κ〉1/2∇TNh ‖2

)
≤ C exp(C#t

∗)

((
1 + 〈κ〉+

(
〈κ〉+ ν−1

min +
κ2
max

κmin

)
t∗
)
‖τ‖2

1

+ ∆t
N−1∑
n=0

( 1

νmin
‖fn+1

1 ‖2
−1 +

1

κmin
‖fn+1

2 ‖2
−1

)
+ ‖u0

h‖2 + ‖T 0
h‖2 + ε‖p0

h‖2 + ∆t
(
‖〈ν〉1/2∇u0

h‖2 + ‖〈κ〉1/2∇T 0
h‖2
))

and

‖uNh ‖2 +
1

2
‖TNh ‖2 + ε‖pNh ‖2 + ‖2uNh − uN−1

h ‖2 +
1

2
‖2TNh − TN−1

h ‖2

+
1

32

N−1∑
n=1

(
‖un+1

h − 2unh + un−1
h ‖2 + ‖T n+1

h − 2T nh + T n−1
h ‖2

)
+

∆t

2

N−1∑
n=1

(
‖〈ν〉1/2∇un+1

h ‖2 +
1

2
‖〈κ〉1/2∇T n+1

h ‖2 +
2∆t

ε
‖∇ · un+1

h ‖2
)

+ 2∆t
(
‖〈ν〉1/2∇uNh ‖2 +

1

2
‖〈κ〉1/2∇TNh ‖2

)
+ ∆t

(
‖〈ν〉1/2∇uN−1

h ‖2 +
1

2
‖〈κ〉1/2∇TN−1

h ‖2
)

≤ C exp(C4t
∗)

((
1 + 〈κ〉+

(
〈κ〉+ ν−1

min +
κ2
max

κmin

)
t∗
)
‖τ‖2

1
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+ ∆t
N−1∑
n=1

( 1

νmin
‖fn+1

1 ‖2
−1 +

1

κmin
‖fn+1

2 ‖2
−1

)
+ ‖u1

h‖2 + ‖T 1
h‖2 + ε‖p1

h‖2 + ‖2u1
h − u0

h‖2 + ‖2T 1
h − T 0

h‖2

+ ∆t
(
‖〈ν〉1/2∇u1

h‖2 + ‖〈κ〉1/2∇T 1
h‖2
)

+ ∆t
(
‖〈ν〉1/2∇u0

h‖2 + ‖〈κ〉1/2∇T 0
h‖2
))

.

Proof. From Theorem 11, we arrive at

(∂i∆t(u
n+1
h ),∆tun+1

h ) +
ε

2

(
‖pn+1

h ‖2 − ‖pnh‖2 + ‖pn+1
h − pnh‖2

)
+ ∆t‖〈ν〉1/2∇un+1

h ‖2

+ ∆t‖νturb1/2∇un+1
h ‖2 = −∆tb(E i(u′

n+1
h ),E i(un+1

h ), un+1
h − E i(un+1

h ))

−∆t(ν ′∇E i(un+1
h ),∇un+1

h )−∆t(Λ′ × E i(un+1
h ), un+1

h )

+ ∆t(βgE i(T n+1
h ), un+1

h ) + ∆t(fn+1
1 , un+1

h ). (4.102)

and

(∂i∆t(θ
n+1
h ),∆tθn+1

h ) + ∆t‖〈κ〉1/2∇θn+1
h ‖2 + ∆t‖

(νturb
σturb

)1/2∇θn+1
h ‖2

= −∆tb∗(E i(u′
n+1
h ),E i(θn+1

h ), θn+1
h − E i(θn+1

h ))−∆tb∗(E i(un+1
h ), Ihτ, θ

n+1
h )

−∆t
((
κ+

νturb
σturb

)
∇Ihτ,∇θn+1

h

)
−∆t(κ′∇E i(θn+1

h ),∇θn+1
h ) + ∆t(fn+1

2 , θn+1
h ). (4.103)

First notice that, by skew-symmetry,

−∆tb(E i(u′
n+1
h ),E i(un+1

h ), un+1
h − E i(un+1

h )) = ∆tb(E i(u′
n+1
h ), un+1

h , un+1
h − E i(un+1

h )),

−∆tb∗(E i(u′
n+1
h ),E i(θn+1

h ), θn+1
h − E i(θn+1

h )) = ∆tb∗(E i(u′
n+1
h ), θn+1

h , θn+1
h − E i(θn+1

h )).

Then,

∆tb∗(E i(u′
n+1
h ), θn+1

h , θn+1
h − E i(θn+1

h )) = (E i(u′
n+1
h ) · ∇θn+1

h , θn+1
h − E i(θn+1

h ))

+
1

2
((∇ · E i(u′

n+1
h ))θn+1

h , θn+1
h − E i(θn+1

h ))

≤ ∆t2
(σ10,1

2
‖E i(u′

n+1
h ) · ∇θn+1

h ‖2 +
σ10,2

4
‖(∇ · E i(u′

n+1
h ))θn+1

h ‖2
)

+ (
1

2σ10,1

+
1

4σ10,2

)‖θn+1
h − E i(θn+1

h )‖2

≤ ∆t2
(σ10,1

2

∫
Ω

|E i(u′
n+1
h )|2|∇θn+1

h |2dx+
σ10,2

4
‖〈κ〉−1/2∇ · E i(u′

n+1
h )‖2

L4‖〈κ〉1/2θn+1
h ‖2

L4

)
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+ (
1

2σ10,1

+
1

4σ10,2

)‖θn+1
h − E i(θn+1

h )‖2,

≤ ∆t2
(σ10,1

2

∫
Ω

|E i(u′
n+1
h )|2|∇θn+1

h |2dx+
C2
Sσ10,2

4
‖〈κ〉−1/2∇ · E i(u′

n+1
h )‖2

L4‖〈κ〉1/2∇θn+1
h ‖2

)
+ (

1

2σ10,1

+
1

4σ10,2

)‖θn+1
h − E i(θn+1

h )‖2, (4.104)

∆tb(E i(u′
n+1
h ), un+1

h , un+1
h − E i(un+1

h ))

≤ ∆t2
(σ11,1

2

∫
Ω

|E i(u′
n+1
h )|2|∇un+1

h |2dx+
C2
Sσ11,2

4
‖〈ν〉−1/2∇ · E i(u′

n+1
h )‖2

L4‖〈ν〉1/2∇un+1
h ‖2

)
+ (

1

2σ11,1

+
1

4σ11,2

)‖un+1
h − E i(un+1

h )‖2, (4.105)

−∆t(
νturb
σturb

∇Ihτ,∇θn+1
h ) ≤ C2

I∆t

2σ12

‖τ‖2
1 +

σ12∆t

2
‖(νturb
σturb

)1/2∇θn+1
h ‖2. (4.106)

Let i = 1 and use the above estimates as well as estimates (4.58) - (4.61) in equation (4.103).

Then,

1

2

(
‖θn+1

h ‖2 − ‖θnh‖2
)

+
(1

2
− 1

2σ10,1

− 1

4σ10,2

)
‖θn+1

h − θnh‖2

+
(5

8
− σ0

4
− σ1 + σ2

2
− C2

Sσ10,2∆t

4
‖∇ · u′nh‖2

L4

)
∆t‖〈κ〉1/2∇θn+1

h ‖2

+
∆t

4

(
‖〈κ〉1/2∇θn+1

h ‖2 − ‖〈κ〉1/2∇θnh‖2
)

+
(

1− 2

∣∣∣∣ κ′〈κ〉
∣∣∣∣2)∆t

4
‖〈κ〉1/2∇θnh‖2

+ ∆t

∫
Ω

(〈κ〉
8

+
(
1− σ12

2

)νturb
σturb

− σ10,1∆t

2
|u′nh|2

)
|∇θn+1

h |2dx

≤ (1 + CP )2C2
I∆t

4κminσ0

‖τ‖2
1‖unh‖2 +

(κ2
max∆t

κminσ1

+
1

σ12

)C2
I∆t

2
‖τ‖2

1 +
∆t

2κminσ2

‖fn+1
2 ‖2

−1. (4.107)

Choosing 8σ0 = 32σ1 = 32σ2 = 16
15
σ10,1 = 16σ10,2 = 8σ12 = 1, multiplying by 2, and

rearranging yields

‖θn+1
h ‖2 +

1

32
‖θn+1

h − θnh‖2 +
(

1− 64C2
S∆t‖∇ · u′nh‖2

L4

)∆t

8
‖〈κ〉1/2∇θn+1

h ‖2

+
∆t

2

(
‖〈κ〉1/2∇θn+1

h ‖2 − ‖〈κ〉1/2∇θnh‖2
)

+
(

1− 2

∣∣∣∣ κ′〈κ〉
∣∣∣∣2)∆t

2
‖〈κ〉1/2∇θnh‖2

+ ∆t

∫
Ω

(〈κ〉
4

+
(
1− 128

225

)15Cν∆t

8σturb
|u′nh|2

)
|∇θn+1

h |2dx
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≤ ‖θnh‖2 +
4(1 + CP )2C2

I∆t

κmin
‖τ‖2

1‖unh‖2

+ 8
(4κ2

max∆t

κminσ1

+ 1
)C2

I∆t

2
‖τ‖2

1 +
32∆t

κmin
‖fn+1

2 ‖2
−1. (4.108)

For the velocity equation 4.102, using the estimate (4.105) and estimates (4.65) - (4.69), and

rearranging yields

1

2

(
‖un+1

h ‖2−‖unh‖2
)

+
(1

2
− 1

2σ11,1

− 1

4σ11,2

)
‖un+1

h −unh‖2+
ε

2

(
‖pn+1

h ‖2−‖pnh‖2+‖pn+1
h −pnh‖2

)
+
(5

8
− σ3 + σ4 + σ4 + σ6

2
− C2

Sσ11,2∆t

4
‖∇ · u′nh‖2

L4

)
∆t‖〈ν〉1/2∇un+1

h ‖2

+
∆t

4

(
‖〈ν〉1/2∇un+1

h ‖2 − ‖〈ν〉1/2∇unh‖2
)

+
(

1− 2

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2)∆t

4
‖〈ν〉1/2∇unh‖2

+ ∆t

∫
Ω

(〈ν〉
8

+ νturb −
σ11,1∆t

2
|u′nh|2

)
|∇un+1

h |2dx ≤ C2
P∆t

2νminσ3

|Λ′|2‖unh‖2 +
|βg|2C2

P∆t

2νminσ4

‖θnh‖2

+
|βg|2C2

PC
2
I∆t

2νminσ5

‖τ‖2
1 +

∆t

2νminσ6

‖fn+1
1 ‖2

−1. (4.109)

Choose 32σ3 = 32σ4 = 32σ5 = σ6 = 16
15
σ11,1 = 16σ11,2 = 1, multiply by 2, and rearrange.

Then,

‖un+1
h ‖2 + ε‖pn+1

h ‖2 +
1

32
‖un+1

h − unh‖2 + ‖pn+1
h − pnh‖2

+
(

1− 64C2
S∆t‖∇ · u′nh‖2

L4

)∆t

8
‖〈ν〉1/2∇un+1

h ‖2

+
∆t

2

(
‖〈ν〉1/2∇un+1

h ‖2 − ‖〈ν〉1/2∇unh‖2
)

+
(

1− 2

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2)∆t

2
‖〈ν〉1/2∇unh‖2

+ ∆t

∫
Ω

(〈ν〉
4

+ 2
(
1− 8

15

)
Cν |u′nh|2

)
|∇un+1

h |2dx ≤
(
1 +

32C2
P∆t

νmin
|Λ′|2

)
‖unh‖2 + ε‖pnh‖2

+
32|βg|2C2

P∆t

νmin
‖θnh‖2 +

32|βg|2C2
PC

2
I∆t

νmin
‖τ‖2

1 +
32∆t

νmin
‖fn+1

1 ‖2
−1. (4.110)

Add inequalities (4.108) and (4.110) together, use conditions (4.53) and (4.54), sum over n

from n = 0 to n = N − 1, use Lemma 3 and the relation T nh = θnh + Ihτ , and the triangle

inequality. The second-order case, i = 2, follows by similar arguments.
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4.3 ERROR ANALYSIS

Herein, we state and prove convergence estimates for the proposed algorithms. In particular,

Theorems 13 and 14 guarantee first- and second-order velocity and temperature accuracy

for eBDF, respectively. Corollary 4 states that the pressure approximation is of the same

order of accuracy. In Theorem 15, we prove that PEA is first- and second-order accurate

in velocity and temperature provided ε = O(∆t2) and ε = O(∆t4), respectively. Similarly,

ACE is proven first- and second-order provided ε = O(∆t) and ε = O(∆t3), respectively, in

Theorem 16. We leave improvement of these conditions as an open problem.

Denote un, pn, and T n as the true solutions at time tn = n∆t. Assume the solutions

satisfy the following regularity assumptions:

u ∈ L∞(0, t∗;X ∩Hk+1(Ω)d), ut ∈ L2(0, t∗;Hk+1(Ω)d), utt ∈ L2(0, t∗;Hk+1(Ω)d),

T, τ ∈ L∞(0, t∗;W ∩Hk+1(Ω)), Tt ∈ L2(0, t∗;Hk+1(Ω)), Ttt ∈ L2(0, t∗;Hk+1(Ω)), (4.111)

p ∈ L2(0, t∗;Q ∩Hm(Ω)), pt ∈ L2(0, t∗;Q).

Remark: Regularity of the auxiliary temperature solution θ follows since θ = T − τ .

Convergence is proven for θ first. The result will follow for the primitive variable T via

the triangle inequality and interpolation estimates.

The errors for the solution variables are denoted

enu = (un − Ihun)− (unh − Ihun) = ηn − φnh, (4.112)

enθ = (θn − Ihθn)− (θnh − Ihθn) = ζn − ψnh , (4.113)

enp = (pn − Ihpn)− (pnh − Ihpn) = λn − πnh . (4.114)

Definition 1. (Consistency error). The consistency errors are defined as

ς iu(u
n; vh) :=

(
∂i∆t(u

n
h)− unt , vh

)
+ (Λ′ × (un − E i(un)), vh) + (βg(T n − E i(T n)), vh)

−Bn
u +Dn

u ,

ς iT (T n;Sh) :=
(
∂i∆t(T

n+1
h )− T nt , Sh

)
−Bn

T +Dn
T ,

ςp(p
n; qh) = ε

( 1

∆t

∫ tn

tn−1

pt(s)ds, qh
)
,
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where

Bn
u := b(un − E i(un), unh, vh) + b(E i(u′

n
h), un − E i(un), vh),

Bn
T := b∗(un − E i(un), T nh , Sh) + b∗(E i(u′

n
h), T n − E i(T n), Sh) + b∗(un − E i(un), τ, Sh),

Dn
u := (ν ′∇(un − E i(un)),∇vh),

Dn
T := (κ′∇(T n − E i(T n)),∇Sh).

Lemma 9. Provided u and T satisfy the regularity assumptions (4.111), then ∀σ, r > 0

|ς1
u(un; vh)| ≤

6CrC
2
P∆t

νminσ

(
‖utt‖2

L2(tn−1,tn;L2(Ω)d) + |Λ′|2‖ut‖2
L2(tn−1,tn;L2(Ω)d)

+ |βg|2‖Tt‖2
L2(tn−1,tn;L2(Ω))

)
+

6CrC
2
1∆t

σ

( 1

ν2
min

‖〈ν〉1/2∇unh‖2 + ‖〈ν〉−1/2∇u′n−1
h ‖2

+
|ν ′|2

C2
1

)
‖∇ut‖2

L2(tn−1,tn;L2(Ω)d) +
σ

r
‖〈ν〉1/2∇vh‖2,

|ς1
T (T n;Sh)| ≤

5CrC
2
P∆t

κminσ
‖Ttt‖2

L2(tn−1,tn;L2(Ω))

+
5CrC

2
4∆t

σ

( 1

κ2
min

‖〈κ〉1/2∇T nh ‖2 + ‖〈κ〉−1/2∇u′n−1
h ‖2

+
1

κmin
‖τ‖2

1 +
|κ′|2

C2
4

)
‖∇ut‖2

L2(tn−1,tn;L2(Ω)d) +
σ

r
‖〈κ〉1/2∇Sh‖2.

Moreover, for the second-order case (i = 2), we have

|ς2
u(un; vh)| ≤

6CrC
2
P∆t3

νminσ

(
‖uttt‖2

L2(tn−2,tn;L2(Ω)d) + |Λ′|2‖utt‖2
L2(tn−2,tn;L2(Ω)d)

+ |βg|2‖Ttt‖2
L2(tn−2,tn;L2(Ω))

)
+

6CrC
2
1∆t3

σ

( 1

ν2
min

‖〈ν〉1/2∇unh‖2 + ‖〈ν〉−1/2∇E 2(u′
n
h)‖2

+
|ν ′|2

C2
1

)
‖∇utt‖2

L2(tn−2,tn;L2(Ω)d) +
σ

r
‖〈ν〉1/2∇vh‖2,

|ς2
T (T n;Sh)| ≤

5CrC
2
P∆t3

κminσ
‖Tttt‖2

L2(tn−2,tn;L2(Ω))

+
5CrC

2
4∆t3

σ

( 1

κ2
min

‖〈κ〉1/2∇T nh ‖2 + ‖〈κ〉−1/2∇E 2(u′
n
h)‖2

+
1

κmin
‖τ‖2

1 +
|κ′|2

C2
4

)
‖∇utt‖2

L2(tn−2,tn;L2(Ω)d) +
σ

r
‖〈κ〉1/2∇Sh‖2.

Lastly, if pt ∈ L∞(tn−1, tn;L2(Ω)), then

|ςp(pn; qh)| ≤
Crε∆t

σ
‖pt‖2

L∞(tn−1,tn;L2(Ω)) +
εσ

r
‖∇qh‖2.
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Proof. We consider only ς iu(u
n; vh) since the results for ς iT (T n;Sh) and ςp(p

n; qh) follow by

similar arguments. Consider the first three terms, applying the Cauchy-Schwarz inequal-

ity, Taylor’s Theorem with integral remainder, Poincaré-Friedrichs inequality, and Young’s

inequality yields

(un − un−1

∆t
− unt , vh

)
≤ CrC

2
P∆t

νminσ1

‖utt‖2
L2(tn−1,tn;L2(Ω)d) +

σ1

r
‖〈ν〉1/2∇vh‖2, (4.115)

(Λ′ × (un − un−1), vh) ≤
CrC

2
P |Λ′|2∆t

νminσ2

‖ut‖2
L2(tn−1,tn;L2(Ω)d) +

σ2

r
‖〈ν〉1/2∇vh‖2, (4.116)

(βg(T n − T n−1), vh) ≤
CrC

2
P |βg|2∆t

νminσ3

‖Tt‖2
L2(tn−1,tn;L2(Ω)) +

σ3

r
‖〈ν〉1/2∇vh‖2. (4.117)

For the skew-symmetric terms Bn
u , apply Lemma 1, Taylor’s Theorem with integral remain-

der, and Young’s inequality. Then,

b(un − un−1, unh, vh) ≤
CrC

2
1∆t

ν2
minσ4

‖〈ν〉1/2∇unh‖2‖∇ut‖2
L2(tn−1,tn;L2(Ω)d) (4.118)

+
σ4

r
‖〈ν〉1/2∇vh‖2, (4.119)

b(u′
n−1
h , un − un−1, vh) ≤

CrC
2
1∆t

σ5

‖〈ν〉−1/2∇u′n−1
h ‖2‖∇ut‖2

L2(tn−1,tn;L2(Ω)d) (4.120)

+
σ5

r
‖〈ν〉1/2∇vh‖2. (4.121)

Consider the viscous term Dn
u . Apply the Cauchy-Schwarz inequality, Taylor’s Theorem with

integral remainder, and Young’s inequality. Then,

(ν ′∇(un − un−1),∇vh) ≤
∆t

σ6

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2‖∇ut‖2

L2(tn−1,tn;L2(Ω)d) +
σ6

r
‖〈ν〉1/2∇vh‖2. (4.122)

Letting σl = σ
6

for 1 ≤ l ≤ 6 and regrouping yields the first result. For the second, i = 2,

the following estimates hold,

(3un − 4un−1 + un−2

2∆t
− unt , vh

)
≤ CrC

2
P∆t3

σ7

‖uttt‖2
L2(tn−2,tn;L2(Ω)d) (4.123)

+
σ7

r
‖〈ν〉1/2∇vh‖2, (4.124)

(Λ′ × (un − 2un−1 + un−2), vh) ≤
CrC

2
P |Λ′|2∆t3

σ8

‖utt‖2
L2(tn−2,tn;L2(Ω)d) (4.125)

+
σ8

r
‖〈ν〉1/2∇vh‖2. (4.126)

(βg(T n − 2T n−1 + T n−2), vh) ≤
CrC

2
P |βg|2∆t3

σ9

‖Ttt‖2
L2(tn−2,tn;L2(Ω)) (4.127)

67



+
σ9

r
‖〈ν〉1/2∇vh‖2, (4.128)

b(un − 2un−1 + un−2, unh, vh) ≤
CrC

2
1∆t3

σ10

‖∇unh‖2‖∇utt‖2
L2(tn−2,tn;L2(Ω)d) (4.129)

+
σ10

r
‖〈ν〉1/2∇vh‖2, (4.130)

b(E 2(u′
n
h), un − 2un−1 + un−2, vh) ≤

CrC
2
1∆t3

σ11

‖∇E 2(u′
n
h)‖2‖∇utt‖2

L2(tn−2,tn;L2(Ω)d) (4.131)

+
σ11

r
‖〈ν〉1/2∇vh‖2,

(ν ′∇(un − 2un−1 + un−2),∇vh) ≤
|ν ′|2∆t3

σ12

‖∇utt‖2
L2(tn−2,tn;L2(Ω)d) (4.132)

+
σ12

r
‖〈ν〉1/2∇vh‖2. (4.133)

Letting σl = σ
6

for 7 ≤ l ≤ 12 and regrouping yields the second result.

We are now in a position to prove convergence. We first begin with proving eBDF is

first-order convergent when i = 1.

Theorem 13. Consider first-order eBDF. For (u,p,T) satisfying (4.14) - (4.17), suppose

that (u0
h, p

0
h, T

0
h ) ∈ (Xh, Qh,Wh) are approximations of (u0, p0, T 0) to within the accuracy of

the interpolant. Further, suppose that conditions (4.52) and (4.53) hold. Then, there exists

constants C, C# > 0 such that

‖eNu ‖2 + ‖eNT ‖2 +
1

2

N−1∑
n=0

(
‖en+1

u − enu‖2 + ‖en+1
T − enT‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇en+1

u ‖2 + ‖〈κ〉1/2∇en+1
T ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇eNu ‖2 + ‖〈κ〉1/2∇eNT ‖2

)
≤ C exp(C#t

∗)
{

inf
Sh∈Wh

(
(1 + κ−1

min)κ−1
min|||∇(T − Sh)|||2∞,0 + κmax|||∇(T − Sh)|||22,0

+ κ−1
min‖(T − Sh)t‖2

L2(0,t∗;L2(Ω)) + h∆t‖∇(T − Sh)t‖2
L2(0,t∗;L2(Ω))

)
+ inf
vh∈Xh

(
(1+ν−1

min)ν−1
min|||∇(u− vh)|||2∞,0+

(
κ−1
min+νmax+(|〈Λ〉|2+|Λ′|2)+|βg|2)

)
|||∇(u− vh)|||22,0

+ ν−1
min‖(u− vh)t‖2

L2(0,t∗;L2(Ω)d) + h∆t‖∇(u− vh)t‖2
L2(0,t∗;L2(Ω)d)

)
+ inf

qh∈Qh
ν−1
min|||p− qh|||

2
2,0 + t∗ inf

Sh∈Wh

(
|βg|2ν−1

min‖τ − Sh‖2 + (1 + κ−1
min + κmax)‖∇(τ − Sh)‖2

)
+ h∆t+

(
ν−1
min(1 + |Λ′|2 + |βg|2) + |κ′|2 + |ν ′|2

)
∆t2
}

+ ‖e0
u‖2 + ‖e0

T‖2 + ∆t
(
‖〈ν〉1/2∇e0

u‖2 + ‖〈κ〉1/2∇e0
T‖2
)
.
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Proof. Let T n = θn + τ . The true solutions satisfy for all n = i− 1, ..., N − 1:

(∂i∆t(u
n+1), vh) + b(un+1, un+1, vh) + ν(∇un+1,∇vh) + (Λ× un+1, vh)− (pn+1,∇ · vh)

= (βg(θn+1 + τ), vh) + (fn+1
1 , vh) + (∂i∆t(u

n+1)− un+1
t , vh) ∀vh ∈ Xh, (4.134)

(∇ · un+1, qh) = 0 ∀qh ∈ Qh, (4.135)

(∂i∆t(θ
n+1), Sh) + b∗(un+1, θn+1, Sh) + b∗(un+1, τ, Sh) + κ(∇θn+1,∇Sh) + κ(∇τ,∇Sh)

= (fn+1
2 , Sh) + (∂i∆t(θ

n+1)− θn+1
t , Sh) ∀Sh ∈ WΓD,h. (4.136)

Subtract (4.40) from (4.134), add and subtract b(un+1−E i(un+1), un+1
h , vh), b(E i(u′n+1

h ), un+1−

E i(un+1), vh), ν
′(∇E i(un+1),∇vh), and (Λ′ × E i(un+1), vh), and rearrange. Then, the error

equation for velocity is

(∂i∆t(e
n+1
u ), vh) + b(un+1, en+1

u , vh) + b(E i(en+1
u ), un+1

h , vh) + b(E i(u′
n+1
h ), en+1

u − E i(en+1
u ), vh)

+ 〈ν〉(∇en+1
u ,∇vh) + ν ′(∇E i(en+1

u ),∇vh) + (〈Λ〉 × en+1
u , vh) + (Λ′ × E i(en+1

u ), vh)

− (en+1
p ,∇ · vh) = ςu(u

n+1, vh) ∀vh ∈ Xh. (4.137)

Similarly, the error equation for temperature follows by subtracting (4.42) from (4.136),

adding and subtracting b∗(un+1 − E i(un+1), θn+1
h , Sh), b

∗(E i(u′n+1
h ), θn+1 − E i(θn+1), Sh),

b∗(E i(un+1), τ − Ihτ, Sh), and κ′(∇E i(θn+1),∇Sh), and rearranging. Then,

(∂i∆t(e
n+1
θ ), Sh)+b

∗(un+1, en+1
θ , Sh)+b

∗(E i(en+1
u ), θn+1

h , Sh)+b
∗(E i(u′

n+1
h ), en+1

θ −E i(en+1
θ ), Sh)

+ b∗(E i(un+1), τ − Ihτ, Sh) + b∗(E i(en+1
u ), Ihτ, Sh) + 〈κ〉(∇en+1

θ ,∇Sh)

+ κ(∇(τ − Ihτ),∇Sh) + κ′(∇E i(en+1
θ ),∇Sh) = ςT (θn+1, Sh) ∀Sh ∈ WΓD,h. (4.138)

Use the substitutions (4.112) - (4.114) in equations (4.137) and (4.138). Then,

(∂i∆t(φ
n+1
h ), vh) + b(un+1, φn+1

h , vh) + 〈ν〉(∇φn+1
h ,∇vh) = (∂i∆t(η

n+1), vh) + b(un+1, ηn+1, vh)

+ b(E i(ηn+1), un+1
h , vh)− b(E i(φn+1

h ), un+1
h , vh) + b(E i(u′

n+1
h ), ηn+1 − E i(ηn+1), vh)

− b(E i(u′
n+1
h ), φn+1

h − E i(φn+1
h ), vh) + 〈ν〉(∇ηn+1,∇vh) + ν ′(∇E i(ηn+1),∇vh)
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− ν ′(∇E i(φn+1
h ),∇vh) + (〈Λ〉 × ηn+1, vh) + (Λ′ × ηn, vh)− (Λ′ × φnh, vh)− (en+1

p ,∇ · vh)

+ (βgE i(ζn+1), vh)− (βgE i(ψn+1
h ), vh) + (βg(τ − Ihτ), vh)− ςu(un+1, vh) ∀vh ∈ Xh

and

(∂i∆t(ψ
n+1
h ), Sh)+b(un+1, ψn+1

h , Sh)+〈κ〉(∇ψn+1
h ,∇Sh) = (∂i∆t(ζ

n+1), Sh)+b∗(un+1, ζn+1, Sh)

+ b∗(E i(ηn+1), θn+1
h , Sh)− b∗(E i(φn+1

h ), θn+1
h , Sh) + b∗(E i(u′

n+1
h ), ζn+1 − E i(ζn+1), Sh)

− b∗(E i(u′
n+1
h ), ψn+1

h − E i(ψn+1
h ), Sh) + b∗(E i(un+1), τ − Ihτ, Sh) + b∗(E i(ηn+1), Ihτ, Sh)

+ b∗(E i(φn+1
h ), Ihτ, Sh) + κ(∇(τ − Ihτ),∇Sh) + 〈κ〉(∇ζn+1,∇Sh) + κ′(∇E i(ζn+1),∇Sh)

− κ′(∇E i(ψn+1
h ),∇Sh)− ςθ(θn+1, Sh) ∀Sh ∈ WΓD,h.

Letting vh = ∆tφn+1
h ∈ Xh and Sh = ∆tψn+1

h ∈ WΓD,h yields

(∂i∆t(φ
n+1
h ),∆tφn+1

h ) + ∆t‖〈ν〉1/2∆tφn+1
h ‖2 = (∂i∆t(η

n+1),∆tφn+1
h ) + ∆tb(un+1, ηn+1, φn+1

h )

+∆tb(E i(ηn+1), un+1
h , φn+1

h )−∆tb(E i(φn+1
h ), un+1

h , φn+1
h )+∆tb(E i(u′

n+1
h ), ηn+1−E i(ηn+1), φn+1

h )

−∆tb(E i(u′
n+1
h ), φn+1

h − E i(φn+1
h ), φn+1

h ) + 〈ν〉∆t(∇ηn+1,∇φn+1
h ) + ν ′∆t(∇E i(ηn+1),∇φn+1

h )

− ν ′∆t(∇E i(φn+1
h ),∇φn+1

h ) + ∆t(Λ× ηn, φn+1
h )−∆t(Λ× φnh, φn+1

h )−∆t(λn+1,∇ · φn+1
h )

+ ∆t(βgE i(ζn+1), φn+1
h )−∆t(βgE i(ψn+1

h ), φn+1
h )

+ ∆t(βg(τ − Ihτ), φn+1
h )−∆tςu(u

n+1, φn+1
h ) (4.139)

and

(∂i∆t(ψ
n+1
h ),∆tψn+1

h ) + ∆t‖〈κ〉1/2∇ψn+1
h ‖2 = (∂i∆t(ζ

n+1),∆tψn+1
h ) + ∆tb∗(un+1, ζn+1, ψn+1

h )

+ ∆tb∗(E i(ηn+1), θn+1
h , ψn+1

h )−∆tb∗(E i(φn+1
h ), θn+1

h , ψn+1
h )

+ ∆tb∗(E i(u′
n+1
h ), ζn+1 − E i(ζn+1), ψn+1

h )−∆tb∗(E i(u′
n+1
h ), ψn+1

h − E i(ψn+1
h ), ψn+1

h )

+ ∆tb∗(E i(un+1), τ − Ihτ, ψn+1
h ) + ∆tb∗(E i(ηn+1), Ihτ, ψ

n+1
h )

−∆tb∗(E i(φn+1
h ), Ihτ, ψ

n+1
h ) + κ∆t(∇(τ − Ihτ),∇ψn+1

h ) + 〈κ〉∆t(∇ζn+1,∇ψn+1
h )

+ κ′∆t(∇E i(ζn+1),∇ψn+1
h )− κ′∆t(∇E i(ψn+1

h ),∇ψn+1
h )−∆tςθ(θ

n+1, ψn+1
h ). (4.140)

We seek to now estimate all terms on the right-hand sides in such a way that we may subsume

the terms involving unknown pieces ψkh and φkh into the left-hand sides. Consider equation
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(4.139) and let i = 1 (first-order). The following estimates are formed using skew-symmetry,

Lemma 1, and the Cauchy-Schwarz-Young inequality,

∆tb(un+1, ηn+1, φn+1
h ) = ∆tb∗(〈ν〉−1/2un+1, ηn+1, 〈ν〉1/2φn+1

h )

≤ C1∆t‖〈ν〉−1/2∇un+1‖‖∇ηn+1‖‖〈ν〉1/2∇φn+1
h ‖

≤ CrC
2
1∆t

νminσ1

‖∇un+1‖2‖‖∇ηn+1‖2 +
σ1∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.141)

∆tb(ηn, un+1
h , φn+1

h ) ≤ CrC
2
1

ν2
minσ2

‖〈ν〉1/2∇un+1
h ‖2‖∇ηn‖2 +

σ2

r
‖〈ν〉1/2∇φn+1

h ‖2. (4.142)

Applying Lemma 1, the Cauchy-Schwarz-Young inequality, Taylor’s theorem, and condition

(4.52) yields,

−∆tb(u′
n
h, η

n+1 − ηn, φn+1
h ) ≤ C1‖〈ν〉−1/2∇u′nh‖‖∇(ηn+1 − ηn)‖‖〈ν〉1/2∇φn+1

h ‖

≤ CrC
2
1∆t2

σ4

‖〈ν〉−1/2∇u′nh‖2‖∇ηt‖2
L2(tn,tn+1;L2(Ω)d) +

σ4∆t

r
‖〈ν〉1/2∇φn+1

h ‖2

≤ CrC
2
1h∆t

C†σ4

‖∇ηt‖2
L2(tn,tn+1;L2(Ω)d) +

σ4∆t

r
‖〈ν〉1/2∇φn+1

h ‖2. (4.143)

Apply the triangle inequality, Lemma 1, and the Cauchy-Schwarz-Young inequality twice.

This yields

−∆tb(φnh, u
n+1
h , φn+1

h ) ≤ C4∆t‖∇un+1
h ‖‖〈ν〉1/2∇φn+1

h ‖
√
‖〈ν〉−3/2φnh‖‖〈ν〉1/2∇φnh‖

≤ σ3∆t‖〈ν〉1/2∇φn+1
h ‖2 +

C2
4∆t

4σ3

‖∇un+1
h ‖2‖〈ν〉−3/2φnh‖‖〈ν〉1/2∇φnh‖

≤ σ3∆t‖〈ν〉1/2∇φn+1
h ‖2 +

C2
4∆t

8δ3σ3ν3
min

‖∇un+1
h ‖2‖φnh‖2

+
C2

4δ3∆t

8σ3

‖∇un+1
h ‖2‖〈ν〉1/2∇φnh‖2. (4.144)

Use Lemma 7 and the Cauchy-Schwarz-Young inequality,

−∆tb(u′
n
h, φ

n+1
h − φnh, φnh) ≤ 2C2

?∆t2

h
‖〈ν〉−1/2∇u′nh‖2‖〈ν〉1/2∇φn+1

h ‖2 +
1

4
‖φn+1

h − φnh‖2.

The Cauchy-Schwarz-Young inequality, Poincaré-Friedrichs inequality, and Taylor’s theorem

yield

(ηn+1 − ηn, φn+1
h ) ≤ C2

PCr
νminσ0

‖ηt‖2
L2(tn,tn+1;L2(Ω)d) +

σ0∆t

r
‖〈ν〉1/2∇φn+1

h ‖2. (4.145)
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Use the Cauchy-Schwarz-Young inequality,

〈ν〉∆t(∇ηn+1,∇φn+1
h ) ≤ Crνmax∆t

σ6

‖∇ηn+1‖2 +
σ6∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.146)

ν ′∆t(∇ηn,∇φn+1
h ) ≤ Crνmax∆t

σ7

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2‖∇ηn‖2 +

σ7∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.147)

−ν ′∆t(∇φnh,∇φn+1
h ) ≤ ∆t

2

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2‖〈ν〉1/2∇φnh‖2 +

∆t

2
‖〈ν〉1/2∇φn+1

h ‖2. (4.148)

The following estimates are formed using skew-symmetry, Lemma 1, and the Cauchy-Schwarz-

Young inequality,

∆t(〈Λ〉 × ηn+1, φn+1
h ) ≤ |〈Λ〉|

2C2
PCr∆t

νminσ9

‖ηn+1‖2 +
σ9∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.149)

∆t(Λ′ × ηn, φn+1
h ) ≤ |Λ

′|2C2
PCr∆t

νminσ10

‖ηn‖2 +
σ10∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.150)

−∆t(Λ′ × φnh, φn+1
h ) ≤ |Λ

′|2C2
PCr∆t

νminσ11

‖φnh‖2 +
σ11∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.151)

−∆t(λn+1,∇ · φn+1
h ) ≤ dCr∆t

νminσ12

‖λn+1‖2 +
σ12∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.152)

−∆t(βgηn, φn+1
h ) ≤ |βg|

2C2
PCr∆t

νminσ13

‖ηn‖2 +
σ13∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.153)

∆t(βgψnh , φ
n+1
h ) ≤ |βg|

2C2
PCr∆t

νminσ14

‖ψnh‖2 +
σ14∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.154)

−∆t(βg(τ − Ihτ), φn+1
h ) ≤ |βg|

2C2
PCr∆t

νminσ15

‖τ − Ihτ‖2 +
σ15∆t

r
‖〈ν〉1/2∇φn+1

h ‖2. (4.155)

Similarly, for the temperature equation, the following estimates hold

∆tb∗(un+1, ζn+1, ψn+1
h ) ≤ CrC

2
4∆t

κminσ18

‖∇un+1‖2‖‖∇ζn+1‖2 +
σ18∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2, (4.156)

∆tb∗(ηn, θn+1
h , ψn+1

h ) ≤ CrC
2
4

κ2
minσ19

‖〈κ〉1/2∇θn+1
h ‖2‖∇ηn‖2 +

σ19

r
‖〈κ〉1/2∇ψn+1

h ‖2. (4.157)

Applying Lemma 1, the Cauchy-Schwarz-Young inequality, Taylor’s theorem, and condition

(4.52) yields,

−∆tb∗(u′
n
h, ζ

n+1 − ζn, ψn+1
h ) ≤ CrC

2
4h∆t

C†σ21

‖∇ζt‖2
L2(tn,tn+1;L2(Ω))

+
σ21∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2. (4.158)
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Apply the triangle inequality, Lemma 1, and the Cauchy-Schwarz-Young inequality twice.

This yields

−∆tb∗(φnh, θ
n+1
h , ψn+1

h ) ≤ σ20∆t‖〈κ〉1/2∇ψn+1
h ‖2 +

C2
4∆t

8δ20σ20κ2
minνmin

‖∇θn+1
h ‖2‖φnh‖2

+
C2

4δ20∆t

8σ20

‖∇θn+1
h ‖2‖〈ν〉1/2∇φnh‖2 (4.159)

and

−∆tb∗(φnh, Ihτ, ψ
n+1
h ) ≤ σ25∆t‖〈κ〉1/2∇ψn+1

h ‖2 +
C2

4C
2
I∆t

2κ2
minνminδ25σ25

‖τ‖2
1‖φnh‖2

+
C2

4C
2
I δ25∆t

2σ25

‖τ‖2
1‖〈ν〉1/2∇φnh‖2. (4.160)

Use Lemma 7 and the Cauchy-Schwarz-Young inequality. Then,

−∆tb∗(u′
n
h, ψ

n+1
h − ψnh , ψn+1

h ) ≤ 2C2
??∆t

2

h
‖〈κ〉−1/2∇u′nh‖2‖〈κ〉1/2∇ψn+1

h ‖2

+
1

4
‖ψn+1

h − ψnh‖2. (4.161)

Use Lemma 1 and the Cauchy-Schwarz-Young inequality on both terms. Also, use interpolant

estimates on the second, then

∆tb∗(un, τ − Ihτ, ψn+1
h ) ≤ CrC

2
4∆t

κminσ23

‖∇un‖2‖∇(τ − Ihτ)‖2 +
σ23∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2, (4.162)

∆tb∗(ηn, Ihτ, ψ
n+1
h ) ≤ CrC

2
4C

2
I∆t

κminσ24

‖τ‖2
1‖∇ηn‖2 +

σ24∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2. (4.163)

The Cauchy-Schwarz-Young inequality, Poincaré-Friedrichs inequality and Taylor’s theorem

yield

(ζn+1 − ζn, ψn+1
h ) ≤ C2

PCr
κminσ17

‖ζt‖2
L2(tn,tn+1;L2(Ω)) +

σ17∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2. (4.164)

Lastly, use the Cauchy-Schwarz-Young inequality,

∆tκ(∇(τ − Ihτ),∇ψn+1
h ) ≤ Cr(1 + κmax)∆t

σ26

∣∣∣∣ κ′〈κ〉
∣∣∣∣2‖∇(τ − Ihτ)‖2

+
σ26∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2, (4.165)

〈κ〉∆t(∇ζn+1,∇ψn+1
h ) ≤ Crκmax∆t

σ27

‖∇ζn+1‖2 +
σ27∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2, (4.166)
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κ′∆t(∇ζn,∇ψn+1
h ) ≤ Crκmax∆t

σ28

∣∣∣∣ κ′〈κ〉
∣∣∣∣2‖∇ζn‖2 +

σ28∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2, (4.167)

−κ′∆t(∇ψnh ,∇ψn+1
h ) ≤ ∆t

2

∣∣∣∣ κ′〈κ〉
∣∣∣∣2‖〈κ〉1/2∇ψnh‖2 +

∆t

2
‖〈κ〉1/2∇ψn+1

h ‖2. (4.168)

Add equations (4.139) and (4.140) together and use all of the above estimates. For 0 ≤

k ≤ 16, let r = 80 and σk = 1 and, for 17 ≤ k ≤ 29, let r = 96 and σk = 1. Letting

C# = Cν−1
min max{ν−2

min, |βg|2, |Λ′|2, κ−2
min} and reorganizing yields

1

2

(
‖φn+1

h ‖2 − ‖φnh‖2 + ‖ψn+1
h ‖2 − ‖ψnh‖2

)
+

1

4

(
‖φn+1

h − φnh‖2 + ‖ψn+1
h − ψnh‖2

)
+

∆t

4

(
‖〈ν〉1/2∇φn+1

h ‖2 + ‖〈κ〉1/2∇ψn+1
h ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇φn+1

h ‖2 − ‖〈ν〉1/2∇φnh‖2 + ‖〈κ〉1/2∇ψn+1
h ‖2 − ‖〈κ〉1/2∇ψnh‖2

)
≤ C#∆t

(
‖φnh‖2 + ‖ψnh‖2

)
+ C∆t

(
ν−1
min‖∇un+1‖2‖‖∇ηn+1‖2 + κ−1

min‖∇un+1‖2‖‖∇ζn+1‖2

+ ν−2
min‖〈ν〉1/2∇un+1

h ‖2‖∇ηn‖2 + κ−2
min‖〈κ〉1/2∇θn+1

h ‖2‖∇ζn‖2 + hC−1
†

(
‖∇ζt‖2

L2(tn,tn+1;L2(Ω))

+ ‖∇ηt‖2
L2(tn,tn+1;L2(Ω))

)
+ ν−1

min∆t−1‖ηt‖2
L2(tn,tn+1;L2(Ω)d) + κ−1

min∆t−1‖ζt‖2
L2(tn,tn+1;L2(Ω))

+ κ−1
min‖∇un‖2‖∇(τ − Ihτ)‖2 + κ−1

min‖∇ηn‖2 + νmax‖∇ηn+1‖2

+ κmax‖∇ζn+1‖2 + (1 + κmax)C††‖∇(τ − Ihτ)‖2 + C††νmax‖∇ηn‖2 + C††κmax‖∇ζn‖2

+ |〈Λ〉|2ν−1
min‖ηn+1‖2 + (|Λ′|2 + |βg|2)ν−1

min‖ηn‖2 + ν−1
min‖λn+1‖2 + |βg|2ν−1

min‖τ − Ihτ‖2

+ ν−1
min∆t

(
‖utt‖2

L2(tn,tn+1;L2(Ω)d) + |Λ′|2‖ut‖2
L2(tn,tn+1;L2(Ω)d) + |βg|2‖θt‖2

L2(tn,tn+1;L2(Ω))

)
+ κ−1

min∆t‖θtt‖2
L2(tn,tn+1;L2(Ω)) + ∆t

(
ν−1
min‖∇un+1

h ‖2 + C†h∆t−1 + |ν ′|2
)
‖∇ut‖2

L2(tn,tn+1;L2(Ω)d)

+ ∆t
(
κ−1
min‖∇θn+1

h ‖2 + C†h∆t−1 + κ−1
min‖τ‖2

1 + |κ′|2
)
‖∇ut‖2

L2(tn,tn+1;L2(Ω)d)

)
. (4.169)

Sum over n from n = 0 to n = N − 1 and apply Lemma 3. Then,

1

2

(
‖φNh ‖2 + ‖ψNh ‖2

)
+

1

4

N−1∑
n=0

(
‖φn+1

h − φnh‖2 + ‖ψn+1
h − ψnh‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇φn+1

h ‖2 + ‖〈κ〉1/2∇ψn+1
h ‖2

)
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+
∆t

2

(
‖〈ν〉1/2∇φNh ‖2 + ‖〈κ〉1/2∇ψNh ‖2

)
≤ C exp(C#t

∗)

(
ν−1
min|||∇u|||

2
2,0|||∇η|||

2
∞,0

+ κ−1
min|||∇u|||

2
2,0|||∇ζ|||

2
∞,0 + ν−2

min

(
∆t

N−1∑
n=0

‖〈ν〉1/2∇un+1
h ‖2

)
|||∇η|||2∞,0

+κ−2
min

(
∆t

N−1∑
n=0

‖〈κ〉1/2∇θn+1
h ‖2

)
|||∇ζ|||2∞,0 +h∆tC−1

†

(
‖∇ηt‖2

L2(0,t∗;L2(Ω)d) +‖∇ζt‖2
L2(0,t∗;L2(Ω))

)
+ ν−1

min‖ηt‖2
L2(0,t∗;L2(Ω)d) + κ−1

min‖ζt‖2
L2(0,t∗;L2(Ω)) + κ−1

min|||∇u|||
2
2,0‖∇(τ − Ihτ)‖2 + κ−1

min|||∇η|||
2
2,0

+ νmax|||∇η|||22,0 + κmax|||∇ζ|||22,0 + (1 + κmax)C††t
∗‖∇(τ − Ihτ)‖2 + C††νmax|||∇η|||22,0

+ C††κmax|||∇ζ|||22,0 + (|〈Λ〉|2 + |Λ′|2 + |βg|2)ν−1
min|||∇η|||

2
2,0 + ν−1

min|||λ|||
2
2,0

+ |βg|2ν−1
mint

∗‖τ − Ihτ‖2 + ν−1
min∆t2

(
‖utt‖2

L2(0,t∗;L2(Ω)d) + |Λ′|2‖ut‖2
L2(0,t∗;L2(Ω)d)

+ |βg|2‖θt‖2
L2(0,t∗;L2(Ω))

)
+ κ−1

min∆t2‖θtt‖2
L2(0,t∗;L2(Ω))

+
(
ν−1
min|||∇uh|||

2
∞,0 + C†h∆t−1 + |ν ′|2

)
∆t2‖∇ut‖2

L2(0,t∗;L2(Ω)d)

+
(
κ−1
min|||∇θh|||

2
∞,0 + C†h∆t−1 + κ−1

min‖τ‖2
1 + |κ′|2

)
∆t2‖∇ut‖2

L2(0,t∗;L2(Ω)d)

+
1

2

(
‖φ0

h‖2 + ‖ψ0
h‖2
)

+
∆t

2

(
‖〈ν〉1/2∇φ0

h‖2 + ‖〈κ〉1/2∇ψ0
h‖2
))

. (4.170)

Apply the triangle inequality and the identity θn = T n − τ , take infimums over Vh, Wh, and

Qh, apply Lemma 4, and collect constants. The result follows.

We move now to the second-order algorithm, i = 2.

Theorem 14. Consider second-order eBDF. Suppose that the hypotheses of Theorem 13

and that (u1
h, p

1
h, T

1
h ) ∈ (Xh, Qh,Wh) are approximations of (u1, p1, T 1) to within the accuracy

of the interpolant. Then, there exists constants C, C# > 0 such that

‖eNu ‖2 + ‖2eNu − eN−1
u ‖2 +

1

2
‖eNT ‖2 +

1

2
‖2eNT − eN−1

T ‖2

+
1

2

N−1∑
n=0

(
‖en+1

u − 2enu + en−1
u ‖2 + ‖en+1

T − 2enT + en−1
T ‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇en+1

u ‖2 + ‖〈κ〉1/2∇en+1
T ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇eNu ‖2 + ‖〈κ〉1/2∇eNT ‖2

)
+

∆t

4

(
‖〈ν〉1/2∇eN−1

u ‖2 + ‖〈κ〉1/2∇eN−1
T ‖2

)
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≤ C exp(C#t
∗)
{

inf
Sh∈Wh

(
(1 + κ−1

min)κ−1
min|||∇(T − Sh)|||2∞,0 + κmax|||∇(T − Sh)|||22,0

+ κ−1
min‖(T − Sh)t‖2

L2(0,t∗;L2(Ω)) + h∆t3‖∇(T − Sh)tt‖2
L2(0,t∗;L2(Ω))

)
+ inf
vh∈Xh

(
(1+ν−1

min)ν−1
min|||∇(u− vh)|||2∞,0+

(
κ−1
min+νmax+(|〈Λ〉|2+|Λ′|2)+|βg|2)

)
|||∇(u− vh)|||22,0

+ ν−1
min‖(u− vh)t‖2

L2(0,t∗;L2(Ω)d) + h∆t3‖∇(u− vh)tt‖2
L2(0,t∗;L2(Ω)d)

)
+ inf

qh∈Qh
ν−1
min|||p− qh|||

2
2,0 + t∗ inf

Sh∈Wh

(
|βg|2ν−1

min‖τ − Sh‖2 + (1 + κ−1
min + κmax)‖∇(τ − Sh)‖2

)
+ h∆t3 +

(
ν−1
min(1 + |Λ′|2 + |βg|2) + |κ′|2 + |ν ′|2

)
∆t4
}

+ ‖e1
u‖2 + ‖2e1

u − e0
u‖2 + ‖e1

T‖2 + ‖2e1
T − e0

T‖2

+ ∆t
(
‖〈ν〉1/2∇e1

u‖2 + ‖〈κ〉1/2∇e1
T‖2
)

+ ∆t
(
‖〈ν〉1/2∇e0

u‖2 + ‖〈κ〉1/2∇e0
T‖2
)
.

Proof. The following estimates are formed using skew-symmetry, Lemma 1, and the Cauchy-

Schwarz-Young inequality,

∆tb(2ηn − ηn−1, un+1
h , φn+1

h ) ≤ 8CrC
2
1

ν2
minσ2

‖〈ν〉1/2∇un+1
h ‖2

(
‖∇ηn‖2 + ‖∇ηn−1‖2

)
+
σ2

r
‖〈ν〉1/2∇φn+1

h ‖2. (4.171)

Applying Lemma 1, the Cauchy-Schwarz-Young inequality, Taylor’s theorem, and condition

(4.52) yields,

−∆tb(E 2(u′
n+1
h ), ηn+1 − 2ηn + ηn−1, φn+1

h ) ≤ CrC
2
1h∆t

C†σ4

‖∇ηtt‖2
L2(tn−1,tn+1;L2(Ω)d)

+
σ4∆t

r
‖〈ν〉1/2∇φn+1

h ‖2.

Apply the triangle inequality, Lemma 1 and the Cauchy-Schwarz-Young inequality twice.

This yields

−∆tb(2φnh − φn−1
h , un+1

h , φn+1
h ) ≤ σ3,1∆t‖〈ν〉1/2∇φn+1

h ‖2

+
C2

4∆t

2δ3,1σ3,1ν3
min

‖∇un+1
h ‖2‖φnh‖2 +

C2
4δ3,1∆t

2σ3,1

‖∇un+1
h ‖2‖〈ν〉1/2∇φnh‖2

+ σ3,2∆t‖〈ν〉1/2∇φn+1
h ‖2 +

C2
4∆t

8δ3,2σ3,2ν3
min

‖∇un+1
h ‖2‖φn−1

h ‖2

+
C2

4δ3,2∆t

8σ3,2

‖∇un+1
h ‖2‖〈ν〉1/2∇φn−1

h ‖2. (4.172)
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Using Lemma 7 and the Cauchy-Schwarz-Young inequality yields

−∆tb(E 2(u′
n+1
h ), φn+1

h − 2φnh + φn−1
h , φnh) ≤ 4C2

?∆t2

h
‖〈ν〉−1/2∇E 2(u′

n+1
h )‖2‖〈ν〉1/2∇φn+1

h ‖2

+
1

8
‖φn+1

h − 2φnh + φn−1
h ‖2. (4.173)

The Cauchy-Schwarz-Young inequality, Poincaré-Friedrichs inequality and Taylor’s theorem

yield

(
3ηn+1 − 4ηn + ηn−1

2
, φn+1

h ) ≤ C2
PCr

νminσ0

‖ηt‖2
L2(tn−1,tn+1;L2(Ω)d) +

σ0∆t

r
‖〈ν〉1/2∇φn+1

h ‖2. (4.174)

Use the Cauchy-Schwarz-Young inequality,

〈ν〉∆t(∇ηn+1,∇φn+1
h ) ≤ Crνmax∆t

σ6

‖∇ηn+1‖2 +
σ6∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.175)

ν ′∆t(∇(2ηn − ηn−1),∇φn+1
h ) ≤ 8Crνmax∆t

σ7

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2(‖∇ηn‖2 + ‖∇ηn−1‖2

)
+
σ7∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.176)

−ν ′∆t(∇(2φnh − φn−1
h ),∇φn+1

h ) ≤ ∆t

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2‖〈ν〉1/2∇φnh‖2

+
∆t

2

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2‖〈ν〉1/2∇φn−1

h ‖2 +
3∆t

2
‖〈ν〉1/2∇φn+1

h ‖2. (4.177)

The following estimates are formed using skew-symmetry, Lemma 1, and the Cauchy-Schwarz-

Young inequality,

∆t(〈Λ〉 × ηn+1, φn+1
h ) ≤ |〈Λ〉|

2C2
PCr∆t

νminσ9

‖ηn+1‖2 +
σ9∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.178)

∆t(Λ′ × (2ηn − ηn−1), φn+1
h ) ≤ 8|Λ′|2C2

PCr∆t

νminσ10

(
‖ηn‖2 + ‖ηn−1‖2

)
+
σ10∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.179)

−∆t(Λ′ × (2φnh − φn−1
h ), φn+1

h ) ≤ |Λ
′|2C2

PCr∆t

νminσ11

‖2φnh − φn−1
h ‖2

+
σ11∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.180)

−∆t(βg(2ηn − ηn−1), φn+1
h ) ≤ 8|βg|2C2

PCr∆t

νminσ12

(
‖ηn‖2 + ‖ηn−1‖2

)
+
σ12∆t

r
‖〈ν〉1/2∇φn+1

h ‖2, (4.181)
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∆t(βg(2ψnh − ψn−1
h ), φn+1

h ) ≤ |βg|
2C2

PCr∆t

νminσ13

‖2ψnh − ψn−1
h ‖2

+
σ13∆t

r
‖〈ν〉1/2∇φn+1

h ‖2. (4.182)

Similarly, for the temperature equation, the following estimates hold

∆tb∗(2ηn − ηn−1, θn+1
h , ψn+1

h ) ≤ 8CrC
2
4

κ2
minσ16

‖〈κ〉1/2∇θn+1
h ‖2

(
‖ηn‖2 + ‖ηn−1‖2

)
+
σ16

r
‖〈κ〉1/2∇ψn+1

h ‖2. (4.183)

Applying Lemma 1, the Cauchy-Schwarz-Young inequality, Taylor’s theorem, and condition

(4.52) yields,

−∆tb∗(E 2(u′
n+1
h ), ζn+1 − 2ζn + ζn−1, ψn+1

h ) ≤ CrC
2
4h∆t

C†σ18

‖∇ζtt‖2
L2(tn−1,tn+1;L2(Ω))

+
σ18∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2. (4.184)

Apply the triangle inequality, Lemma 1 and the Cauchy-Schwarz-Young inequality twice.

This yields

−∆tb∗(2φnh − φn−1
h , θn+1

h , ψn+1
h ) ≤ σ17,1∆t‖〈κ〉1/2∇ψn+1

h ‖2

+
C2

4∆t

2δ17,1σ17,1κ2
minνmin

‖∇θn+1
h ‖2‖φnh‖2 +

C2
4δ17,1∆t

2σ17,1

‖∇θn+1
h ‖2‖〈ν〉1/2∇φnh‖2

+ σ17,2∆t‖〈κ〉1/2∇ψn+1
h ‖2 +

C2
4∆t

8δ17,2σ17,2κ2
minνmin

‖∇θn+1
h ‖2‖φn−1

h ‖2

+
C2

4δ17,2∆t

8σ17,2

‖∇θn+1
h ‖2‖〈ν〉1/2∇φn−1

h ‖2, (4.185)

−∆tb∗(2φnh − φn−1
h , Ihτ, ψ

n+1
h ) ≤ σ22∆t‖〈κ〉1/2∇ψn+1

h ‖2 +
C2

4C
2
I∆t

2κ2
minνminδ22σ22

‖τ‖2
1‖φnh‖2

+
C2

4C
2
I δ22∆t

2σ22

‖τ‖2
1‖〈ν〉1/2∇φnh‖2 + σ22,2∆t‖〈κ〉1/2∇ψn+1

h ‖2

+
C2

4C
2
I∆t

8κ2
minνminδ22,2σ22,2

‖τ‖2
1‖φnh‖2 +

C2
4C

2
I δ22,2∆t

8σ22,2

‖τ‖2
1‖〈ν〉1/2∇φnh‖2. (4.186)

Use Lemma 7 and the Cauchy-Schwarz-Young inequality. Then,
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−∆tb∗(E 2(u′
n+1
h ), ψn+1

h −2ψnh+ψn−1
h , ψn+1

h ) ≤ 4C??∆t
2

h
‖〈κ〉−1/2∇E 2(u′

n+1
h )‖2‖〈κ〉1/2∇ψn+1

h ‖2

+
1

8
‖ψn+1

h − 2ψnh + ψn−1
h ‖2. (4.187)

Use the Cauchy-Schwarz-Young inequality on the first term. Apply Lemma 1, interpolant

estimates, and Taylor’s theorem on the remaining. Then,

∆tb∗(2un − un−1, τ − Ihτ, ψn+1
h ) ≤ 8CrC

2
4∆t

κminσ20

(
‖∇un‖2 + ‖∇un−1‖2

)
‖∇(τ − Ihτ)‖2

+
σ20∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2, (4.188)

∆tb∗(2ηn − ηn−1, Ihτ, ψ
n+1
h ) ≤ 8CrC

2
4C

2
I∆t

κminσ21

‖τ‖2
1

(
‖∇ηn‖2 + ‖∇ηn−1‖2

)
+
σ21∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2. (4.189)

The Cauchy-Schwarz-Young inequality, Poincaré-Friedrichs inequality and Taylor’s theorem

yield

(
3ζn+1 − 4ζn + ζn−1

2
, ψn+1

h ) ≤ C2
PCr

κminσ14

‖ζt‖2
L2(tn−1,tn+1;L2(Ω))

+
σ14∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2. (4.190)

Lastly, use the Cauchy-Schwarz-Young inequality,

κ′∆t(∇(2ζn − ζn−1),∇ψn+1
h ) ≤ 8Crκmax∆t

σ25

∣∣∣∣ κ′〈κ〉
∣∣∣∣2(‖∇ζn‖2 + ‖∇ζn−1‖2

)
+
σ25∆t

r
‖〈κ〉1/2∇ψn+1

h ‖2, (4.191)

−κ′∆t(∇(2ψnh − ψn−1
h ),∇ψn+1

h ) ≤ ∆t

∣∣∣∣ κ′〈κ〉
∣∣∣∣2‖〈κ〉1/2∇ψnh‖2 +

∆t

2

∣∣∣∣ κ′〈κ〉
∣∣∣∣2‖〈κ〉1/2∇ψn−1

h ‖2

+
3∆t

2
‖〈κ〉1/2∇ψn+1

h ‖2. (4.192)

Add equations (4.139) and (4.140) and use the above estimates. Let for 1 ≤ k ≤ 14

let r = 96 and σk = 1 and for 15 ≤ k ≤ 27 let r = 80 and σk = 1. Let C4 =

Cν−1
min max{ν−2

min, |βg|2, |Λ′|2, κ−2
min}, sum over n from n = 1 to n = N − 1, apply Lemma

3, and reorganize. Then,

1

2

(
‖φNh ‖2 + ‖2φNh − φN−1

h ‖2 + ‖ψNh ‖2 + ‖2ψNh − ψN−1
h ‖2

)
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+
1

4

N−1∑
n=1

(
‖φn+1

h − 2φnh + φn−1
h ‖2 + ‖ψn+1

h − 2ψnh + ψn−1
h ‖2

)
+

∆t

4

N−1∑
n=1

(
‖〈ν〉1/2∇φn+1

h ‖2 + ‖〈κ〉1/2∇ψn+1
h ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇φNh ‖2 + ‖〈κ〉1/2∇ψNh ‖2

)
+

∆t

4

(
‖〈ν〉1/2∇φN−1

h ‖2 + ‖〈κ〉1/2∇ψN−1
h ‖2

)
≤ C exp(C4t

∗)

(
ν−1
min|||∇u|||

2
2,0|||∇η|||

2
∞,0

+ κ−1
min|||∇u|||

2
2,0|||∇ζ|||

2
∞,0 + ν−2

min

(
∆t

N−1∑
n=1

‖〈ν〉1/2∇un+1
h ‖2

)
|||∇η|||2∞,0

+ κ−2
min

(
∆t

N−1∑
n=1

‖〈κ〉1/2∇θn+1
h ‖2

)
|||∇ζ|||2∞,0

+ h∆tC−1
†

(
‖∇ηt‖2

L2(0,t∗;L2(Ω)d) + ‖∇ηt‖2
L2(0,t∗;L2(Ω)d)

)
+ ν−1

min‖ηt‖2
L2(0,t∗;L2(Ω)d)

+ κ−1
min‖ζt‖2

L2(0,t∗;L2(Ω)) + κ−1
min|||∇u|||

2
2,0‖∇(τ − Ihτ)‖2 + κ−1

min|||∇η|||
2
2,0

+ νmax|||∇η|||22,0 + κmax|||∇ζ|||22,0 + (1 + κmax)C††t
∗‖∇(τ − Ihτ)‖2 + C††νmax|||∇η|||22,0

+ C††κmax|||∇ζ|||22,0 + (|Λ|2 + |βg|2)ν−1
min|||∇η|||

2
2,0 + ν−1

min|||λ|||
2
2,0 + |βg|2ν−1

mint
∗‖τ − Ihτ‖2

+ ν−1
min∆t4

(
‖utt‖2

L2(0,t∗;L2(Ω)d) + |Λ|2‖ut‖2
L2(0,t∗;L2(Ω)d) + |βg|2‖θt‖2

L2(0,t∗;L2(Ω))

)
+ κ−1

min∆t4‖θtt‖2
L2(0,t∗;L2(Ω)) +

(
ν−1
min|||∇uh|||

2
∞,0 + C†h∆t−1 + |ν ′|2

)
∆t4‖∇ut‖2

L2(0,t∗;L2(Ω)d)

+
(
κ−1
min|||∇θh|||

2
∞,0 + C†h∆t−1 + κ−1

min‖τ‖2
1 + |κ′|2

)
∆t4‖∇ut‖2

L2(0,t∗;L2(Ω)d)

+
1

2

(
‖φ1

h‖2 + ‖2φ1
h − φ0

h‖2 + ‖ψ1
h‖2 + ‖2ψ1

h − ψ0
h‖2
)

+
∆t

4

(
2‖〈ν〉1/2∇φ1

h‖2 + ‖〈ν〉1/2∇φ0
h‖2 + 2‖〈κ〉1/2∇ψ1

h‖2 + ‖〈κ〉1/2∇ψ0
h‖2
))

. (4.193)

Apply the triangle inequality and the identity θn = T n − τ . Taking infimums over Vh, Wh,

and Qh, applying Lemma 4, and collecting constants yields the result.

As a corollary, the pressure approximation is shown to have the same order of accuracy.

Corollary 4. Suppose the hypotheses of Theorem 13 hold. Then, the pressure approximation

satisfies, for i = 1,

α∆t
N−1∑
n=0

‖en+1
p ‖ ≤ (1 + C−1

∗ )

(
2
(
C1ν

−1/2
min |||∇u|||2,0 + C1C

1/2
† (Nh)1/2

+ (νmaxt
∗)1/2 + C2

P |〈Λ〉|ν
−1/2
min t

∗1/2 + (νmaxt
∗)1/2

∣∣∣∣ ν ′〈ν〉
∣∣∣∣t∗1/2)∣∣∣∣∣∣〈ν〉1/2∇eu∣∣∣∣∣∣2,0
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+ (α + d1/2)t∗1/2 inf
qh∈Qh

|||p− qh|||22,0 + C(α)CP
√
t∗ inf
vh∈Xh

‖(u− vh)t‖L2(0,t∗;L2(Ω)d)

+ C∆t

(
t∗1/2

(
‖utt‖L2(0,t∗;L2(Ω)d) + |Λ′|2‖ut‖L2(0,t∗;L2(Ω)d) + |βg|‖Tt‖0,t∗;L2(Ω))

)
+
(
ν−1
min

(
∆t

N−1∑
n=0

‖〈ν〉1/2∇un+1
h ‖2

)1/2

+ (C†h)1/2 + |ν ′| ∆t1/2
)
‖∇ut‖L2(0,t∗;L2(Ω)d)

))
.

Further, let i = 2 and suppose the hypotheses of Theorem 14 hold. Then,

α∆t
N−1∑
n=1

‖en+1
p ‖ ≤ (1 + C−1

∗ )

(
4
(
C1ν

−1/2
min |||∇u|||2,0 + C1C

1/2
† (Nh)1/2

+ (νmaxt
∗)1/2 + C2

P |〈Λ〉|ν
−1/2
min t

∗1/2 + (νmaxt
∗)1/2

∣∣∣∣ ν ′〈ν〉
∣∣∣∣t∗1/2)∣∣∣∣∣∣〈ν〉1/2∇eu∣∣∣∣∣∣2,0

+ (α + d1/2)t∗1/2 inf
qh∈Qh

|||p− qh|||22,0 + C(α)CP
√
t∗ inf
vh∈Xh

‖(u− vh)t‖L2(0,t∗;L2(Ω)d)

+ C∆t2
(
t∗1/2

(
‖uttt‖L2(0,t∗;L2(Ω)d) + |Λ′|‖utt‖L2(0,t∗;L2(Ω)d) + |βg|‖Ttt‖L2(0,t∗;L2(Ω))

)
+
(
ν−1
min

(
∆t

N−1∑
n=0

‖〈ν〉1/2∇un+1
h ‖2

)1/2

+ (C†h)1/2 + |ν ′| ∆t1/2
)
‖∇utt‖L2(0,t∗;L2(Ω)d)

)
.

Proof. Recall the error equation for velocity (4.137): for all vh ∈ Xh,

(∂i∆t(e
n+1
u ), vh) + b(un+1, en+1

u , vh) + b(E i(en+1
u ), un+1

h , vh) + b(E i(u′
n+1
h ), en+1

u − E i(en+1
u ), vh)

+ 〈ν〉(∇en+1
u ,∇vh) + ν ′(∇E i(en+1

u ),∇vh) + (〈Λ〉 × en+1
u , vh)

+ (Λ′ × E i(en+1
u ), vh)− (en+1

p ,∇ · vh) = ς iu(u
n+1, vh).

Decompose (∂i∆t(e
n+1
u ), vh) into (∂i∆t(η

n+1), vh) + (∂i∆t(φ
n+1
h ), vh), let vh ∈ Vh, and rearrange.

Then,

(∂i∆t(φ
n+1
h ), vh) = (∂i∆t(η

n+1), vh) + b(un+1, en+1
u , vh) + b(E i(en+1

u ), un+1
h , vh)

+ b(E i(u′
n+1
h ), en+1

u − E i(en+1
u ), vh) + 〈ν〉(∇en+1

u ,∇vh) + ν ′(∇E i(en+1
u ),∇vh)

+ (〈Λ〉 × en+1
u , vh) + (Λ′ × E i(en+1

u ), vh)− (λn+1,∇ · vh)− ς iu(un+1, vh).

The following estimates hold,

b(un+1, en+1
u , vh) ≤ C1ν

−1/2
min ‖∇un+1‖‖〈ν〉1/2∇en+1

u ‖‖∇vh‖, (4.194)

b(E i(en+1
u ), un+1

h , vh) ≤ C1ν
−1/2
min ‖∇un+1‖‖〈ν〉1/2∇E i(en+1

u )‖‖∇vh‖, (4.195)

81



〈ν〉(∇en+1
u ,∇vh) ≤ ν1/2

max‖〈ν〉1/2∇en+1
u ‖‖∇vh‖, (4.196)

ν ′(∇E i(en+1
u ),∇vh) ≤ ν1/2

max

∣∣∣∣ ν ′〈ν〉
∣∣∣∣‖〈ν〉1/2∇E i(en+1

u )‖‖∇vh‖, (4.197)

(〈Λ〉 × en+1
u , vh) ≤ C2

P |〈Λ〉|ν
−1/2
min ‖〈ν〉1/2∇en+1

u ‖‖∇vh‖, (4.198)

(Λ′ × E i(en+1
u ), vh) ≤ C2

P |Λ′|ν
−1/2
min ‖〈ν〉1/2∇E i(en+1

u )‖‖∇vh‖, (4.199)

−(λn+1,∇ · vh) ≤ d1/2‖λn+1‖‖∇vh‖. (4.200)

Also,

b(E i(u′
n+1
h ), en+1

u − E i(en+1
u ), vh)

≤ C1‖〈ν〉−1/2∇E i(u′
n+1
h )‖‖〈ν〉1/2∇(en+1

u − E i(en+1
u ))‖‖∇vh‖. (4.201)

Now, consider (∂i∆t(η
n+1), vh) and ς iu(u

n+1, vh). For i = 1,

(
ηn+1 − ηn

∆t
, vh) ≤ CP∆t−1/2‖ηt‖L2(tn,tn+1;L2(Ω)d)‖∇vh‖, (4.202)

−ς1
u(un+1, vh) ≤ C∆t1/2

((
‖utt‖L2(tn,tn+1;L2(Ω)d) + |Λ′|2‖ut‖L2(tn,tn+1;L2(Ω)d) (4.203)

+ |βg|‖Tt‖L2(tn,tn+1;L2(Ω))

)
+
(
ν−1
min‖〈ν〉1/2∇un+1

h ‖+ ‖〈ν〉−1/2∇u′nh‖

+ |ν ′|
)
‖∇ut‖L2(tn,tn+1;L2(Ω)d)

)
‖∇vh‖,

and for i = 2,

(
3ηn+1 − 4ηn + ηn−1

2∆t
, vh) ≤ CCP∆t−1/2‖ηt‖L2(tn−1,tn+1;L2(Ω)d)‖∇vh‖, (4.204)

−ς2
u(un+1, vh) ≤ C∆t3/2

((
‖uttt‖L2(tn−1,tn+1;L2(Ω)d) + |Λ′|‖utt‖L2(tn−1,tn+1;L2(Ω)d)

+ |βg|‖Ttt‖L2(tn−1,tn+1;L2(Ω))

)
(4.205)

+
(
ν−1
min‖〈ν〉1/2∇un+1

h ‖+ ‖〈ν〉−1/2∇E 2(u′
n+1
h )‖

+ |ν ′|
)
‖∇utt‖L2(tn−1,tn+1;L2(Ω)d)

)
‖∇vh‖.

Apply the above estimates, divide by ‖∇vh‖, and take an infimum over Vh. Then,

‖∂i∆t(φn+1
h )‖V ∗h

≤
(
C1ν

−1/2
min ‖∇un+1‖+ C1‖〈ν〉−1/2∇E i(u′

n+1
h )‖+ ν1/2

max + C2
P |〈Λ〉|ν

−1/2
min

)
‖〈ν〉1/2∇en+1

u ‖
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+
(
C1ν

−1/2
min ‖∇un+1‖+C1‖〈ν〉−1/2∇E i(u′

n+1
h )‖+ν1/2

max

∣∣∣∣ ν ′〈ν〉
∣∣∣∣+C2

P |〈Λ〉|ν
−1/2
min

)
‖〈ν〉1/2∇E i(en+1

u )‖

+ d1/2‖λn+1‖+ CP∆t−1/2‖ηt‖L2(tn,tn+1;L2(Ω)d)

+ C∆t1/2
((
‖utt‖L2(tn,tn+1;L2(Ω)d) + |Λ′|2‖ut‖L2(tn,tn+1;L2(Ω)d) + |βg|‖Tt‖L2(tn,tn+1;L2(Ω))

)
+
(
ν−1
min‖〈ν〉1/2∇un+1

h ‖+ ‖〈ν〉−1/2∇u′nh‖+ |ν ′|
)
‖∇ut‖L2(tn,tn+1;L2(Ω)d)

)
.

Lemma 5 implies

‖∂i∆t(φn+1
h )‖X∗h ≤ (1 + C−1

∗ )

((
C1ν

−1/2
min ‖∇un+1‖+ C1‖〈ν〉−1/2∇E i(u′

n+1
h )‖

+ ν1/2
max + C2

P |〈Λ〉|ν
−1/2
min

)
‖〈ν〉1/2∇en+1

u ‖

+
(
C1ν

−1/2
min ‖∇un+1‖+C1‖〈ν〉−1/2∇E i(u′

n+1
h )‖+ν1/2

max

∣∣∣∣ ν ′〈ν〉
∣∣∣∣+C2

P |〈Λ〉|ν
−1/2
min

)
‖〈ν〉1/2∇E i(en+1

u )‖

+ d1/2‖λn+1‖+ CP∆t−1/2‖ηt‖L2(tn,tn+1;L2(Ω)d)

+ C∆t1/2
((
‖utt‖L2(tn,tn+1;L2(Ω)d) + |Λ′|2‖ut‖L2(tn,tn+1;L2(Ω)d) + |βg|‖Tt‖L2(tn,tn+1;L2(Ω))

)
+
(
ν−1
min‖〈ν〉1/2∇un+1

h ‖+ ‖〈ν〉−1/2∇u′nh‖+ |ν ′|
)
‖∇ut‖L2(tn,tn+1;L2(Ω)d)

))
. (4.206)

Reconsider the error equation (4.137) and rewrite −(en+1
p ,∇·vh) = −(λn+1,∇·vh)+(πn+1

h ,∇·

vh). Isolating (πn+1
h ,∇ · vh), applying the estimates (4.194) - (4.203), dividing by ‖∇vh‖,

taking a supremum over vh ∈ Xh, and using the discrete inf-sup condition (2.23) and estimate

(4.206) yields

β‖πn+1
h ‖ ≤ (1 + C−1

∗ )

((
C1ν

−1/2
min ‖∇un+1‖+ C1‖〈ν〉−1/2∇E i(u′

n+1
h )‖

+ ν1/2
max + C2

P |〈Λ〉|ν
−1/2
min

)
‖〈ν〉1/2∇en+1

u ‖

+
(
C1ν

−1/2
min ‖∇un+1‖+C1‖〈ν〉−1/2∇E i(u′

n+1
h )‖+ν1/2

max

∣∣∣∣ ν ′〈ν〉
∣∣∣∣+C2

P |〈Λ〉|ν
−1/2
min

)
‖〈ν〉1/2∇E i(en+1

u )‖

+ d1/2‖λn+1‖+ CP∆t−1/2‖ηt‖L2(tn,tn+1;L2(Ω)d)

+ C∆t1/2
((
‖utt‖L2(tn,tn+1;L2(Ω)d) + |Λ′|2‖ut‖L2(tn,tn+1;L2(Ω)d) + |βg|‖Tt‖L2(tn,tn+1;L2(Ω))

)
+
(
ν−1
min‖〈ν〉1/2∇un+1

h ‖+ ‖〈ν〉−1/2∇u′nh‖+ |ν ′|
)
‖∇ut‖L2(tn,tn+1;L2(Ω)d)

))
.
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Multiply by ∆t, sum over n from n = 0 to n = N − 1, and apply both the Cauchy-Schwarz

inequality and condition (4.52). Then,

β∆t
N−1∑
n=0

‖πn+1
h ‖ ≤ (1 + C−1

∗ )

(
2
(
C1ν

−1/2
min |||∇u|||2,0 + C1C

1/2
† (Nh)1/2

+ (νmaxt
∗)1/2 + C2

P |〈Λ〉|ν
−1/2
min t

∗1/2 + (νmaxt
∗)1/2

∣∣∣∣ ν ′〈ν〉
∣∣∣∣t∗1/2)∣∣∣∣∣∣〈ν〉1/2∇eu∣∣∣∣∣∣2,0

+ (dt∗)1/2|||λ|||2,0 + CP
√
t∗‖ηt‖L2(0,t∗;L2(Ω)d)

+ C∆t

(
t∗1/2

(
‖utt‖L2(0,t∗;L2(Ω)d) + |Λ′|2‖ut‖L2(0,t∗;L2(Ω)d) + |βg|‖Tt‖0,t∗;L2(Ω))

)
+
(
ν−1
min

(
∆t

N−1∑
n=0

‖〈ν〉1/2∇un+1
h ‖2

)1/2

+ (C†h)1/2 + |ν ′| ∆t1/2
)
‖∇ut‖L2(0,t∗;L2(Ω)d)

))
.

Lastly, apply the triangle inequality, take infimums over Qh and Vh, and use Lemma

4. This yields the first result. The second follows similarly, utilizing estimates (4.204) and

(4.205) in place of (4.202) and (4.203).

Although we do not prove it here, it is possible to prove both stability and error estimates

for the pressure in L2(0, t∗;L2(Ω)); see, e.g., [41, 69]. It will be useful to specify the explicit

dependencies on the mesh parameter h and timestep ∆t after common choices of finite

elements.

Corollary 5. Suppose the assumptions of Theorem 13 hold with k = m = 1. Further suppose

that the finite element spaces (Xh,Qh,Wh) are given by P1b-P1-P1b (MINI), then the errors

in velocity, temperature, and pressure satisfy

‖eNu ‖2 + ‖eNT ‖2 +
1

2

N−1∑
n=0

(
‖en+1

u − enu‖2 + ‖en+1
T − enT‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇en+1

u ‖2 + ‖〈κ〉1/2∇en+1
T ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇eNu ‖2 + ‖〈κ〉1/2∇eNT ‖2

)
+ α∆t

N−1∑
n=1

‖en+1
p ‖ ≤ C

(
h2 + h∆t+ ∆t2 + initial errors

)
.

Furthermore, if the assumptions of Theorem 14 hold with k = m = 2 and the finite ele-

ment spaces (Xh,Qh,Wh) are given by P2-P1-P2 (Taylor-Hood), then the errors in velocity,

temperature, and pressure satisfy
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‖eNu ‖2 + ‖2eNu − eN−1
u ‖2 +

1

2
‖eNT ‖2 +

1

2
‖2eNT − eN−1

T ‖2

+
1

2

N−1∑
n=0

(
‖en+1

u − 2enu + en−1
u ‖2 + ‖en+1

T − 2enT + en−1
T ‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇en+1

u ‖2 + ‖〈κ〉1/2∇en+1
T ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇eNu ‖2 + ‖〈κ〉1/2∇eNT ‖2

)
+

∆t

4

(
‖〈ν〉1/2∇eN−1

u ‖2+‖〈κ〉1/2∇eN−1
T ‖2

)
+α∆t

N−1∑
n=1

‖en+1
p ‖ ≤ C

(
h4+h∆t3+∆t4+initial errors

)
.

Interestingly, these results can be extended to the averages of the error quantities.

Corollary 6. Suppose the assumptions of Theorem 13 hold with k = m = 1. Further suppose

that the finite element spaces (Xh,Qh,Wh) are given by P1b-P1-P1b (MINI), then the errors

in velocity, temperature, and pressure satisfy

‖〈eNu 〉‖2 + ‖〈eNT 〉‖2 +
1

2

N−1∑
n=0

(
‖〈en+1

u − enu〉‖2 + ‖〈en+1
T − enT 〉‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇〈en+1

u 〉‖2 + ‖〈κ〉1/2∇〈en+1
T 〉‖2

)
+

∆t

2

(
‖〈ν〉1/2∇〈eNu 〉‖2 + ‖〈κ〉1/2∇〈eNT 〉‖2

)
+ α∆t

N−1∑
n=1

‖〈en+1
p 〉‖ ≤ C

(
h2 + h∆t+ ∆t2 + 〈initial errors〉

)
.

Furthermore, if the assumptions of Theorem 14 hold with k = m = 2 and the finite ele-

ment spaces (Xh,Qh,Wh) are given by P2-P1-P2 (Taylor-Hood), then the errors in velocity,

temperature, and pressure satisfy

‖〈eNu 〉‖2 + ‖〈2eNu − eN−1
u 〉‖2 +

1

2
‖〈eNT 〉‖2 +

1

2
‖〈2eNT − eN−1

T 〉‖2

+
1

2

N−1∑
n=0

(
‖〈en+1

u − 2enu + en−1
u 〉‖2 + ‖〈en+1

T − 2enT + en−1
T 〉‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇〈en+1

u 〉‖2 + ‖〈κ〉1/2∇〈en+1
T 〉‖2

)
+

∆t

2

(
‖〈ν〉1/2∇〈eNu 〉‖2 + ‖〈κ〉1/2∇〈eNT 〉‖2

)
+

∆t

4

(
‖〈ν〉1/2∇〈eN−1

u 〉‖2 + ‖〈κ〉1/2∇〈eN−1
T 〉‖2

)
+ α∆t

N−1∑
n=1

‖〈en+1
p 〉‖ ≤ C

(
h4 + h∆t3 + ∆t4 + 〈initial errors〉

)
.
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Proof. This follows from Corollary 5 and the following sequence of inequalities: For all

χ ∈ L2(Ω),

‖ < χ > ‖ ≤< ‖χ‖ >≤
√
< ‖χ‖2 >.

As in Section 4.2, we will not state analogs of both Corollary 5 and Corollary 6, which

hold, for PEA and ACE.

Theorem 15. Consider first-order PEA. For (u,p,T) satisfying (4.14) - (4.17), suppose that

(u0
h, p

0
h, T

0
h ) ∈ (Xh, Qh,Wh) are approximations of (u0, p0, T 0) to within the accuracy of the in-

terpolant. Further, suppose that conditions (4.52) and (4.53) hold and pt ∈ L∞(0, t∗;L2(Ω)).

Then, there exists constants C, C# > 0 such that

‖eNu ‖2 + ‖eNT ‖2 +
1

2

N−1∑
n=0

(
‖en+1

u − enu‖2 + ‖en+1
T − enT‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇en+1

u ‖2 + ‖〈κ〉1/2∇en+1
T ‖2 + 4ε‖en+1

p ‖2
)

+
∆t

2

(
‖〈ν〉1/2∇eNu ‖2 + ‖〈κ〉1/2∇eNT ‖2

)
≤ C exp(C#t

∗)
{

inf
Sh∈Wh

(
(1 + κ−1

min)κ−1
min|||∇(T − Sh)|||2∞,0 + κmax|||∇(T − Sh)|||22,0

+ κ−1
min‖(T − Sh)t‖2

L2(0,t∗;L2(Ω)) + h∆t‖∇(T − Sh)t‖2
L2(0,t∗;L2(Ω))

)
+ inf
vh∈Xh

(
(1+ν−1

min)ν−1
min|||∇(u− vh)|||2∞,0+

(
κ−1
min+νmax+(|〈Λ〉|2+|Λ′|2)+|βg|2)

)
|||∇(u− vh)|||22,0

+ ν−1
min‖(u− vh)t‖2

L2(0,t∗;L2(Ω)d) + h∆t‖∇(u− vh)t‖2
L2(0,t∗;L2(Ω)d)

)
+ inf

qh∈Qh
ε2ν−1

min|||p− qh|||
2
2,0 + t∗ inf

Sh∈Wh

(
|βg|2ν−1

min‖τ − Sh‖2 + (1 + κ−1
min + κmax)‖∇(τ − Sh)‖2

)
+ h∆t+ ε+

(
ν−1
min(1 + |Λ′|2 + |βg|2) + |κ′|2 + |ν ′|2

)
∆t2
}

+ ‖e0
u‖2 + ‖e0

T‖2 + ∆t
(
‖〈ν〉1/2∇e0

u‖2 + ‖〈κ〉1/2∇e0
T‖2
)
.

Moreover, for second-order PEA, there exists constants C, C# > 0 such that

‖eNu ‖2 + ‖2eNu − eN−1
u ‖2 +

1

2
‖eNT ‖2 +

1

2
‖2eNT − eN−1

T ‖2
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+
1

2

N−1∑
n=0

(
‖en+1

u − 2enu + en−1
u ‖2 + ‖en+1

T − 2enT + en−1
T ‖2

)
+

∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇en+1

u ‖2+‖〈κ〉1/2∇en+1
T ‖2+4ε‖en+1

p ‖2
)

+
∆t

2

(
‖〈ν〉1/2∇eNu ‖2+‖〈κ〉1/2∇eNT ‖2

)
+

∆t

4

(
‖〈ν〉1/2∇eN−1

u ‖2 + ‖〈κ〉1/2∇eN−1
T ‖2

)
≤ C exp(C#t

∗)
{

inf
Sh∈Wh

(
(1 + κ−1

min)κ−1
min|||∇(T − Sh)|||2∞,0 + κmax|||∇(T − Sh)|||22,0

+ κ−1
min‖(T − Sh)t‖2

L2(0,t∗;L2(Ω)) + h∆t3‖∇(T − Sh)tt‖2
L2(0,t∗;L2(Ω))

)
+ inf
vh∈Xh

(
(1+ν−1

min)ν−1
min|||∇(u− vh)|||2∞,0+

(
κ−1
min+νmax+(|〈Λ〉|2+|Λ′|2)+|βg|2)

)
|||∇(u− vh)|||22,0

+ ν−1
min‖(u− vh)t‖2

L2(0,t∗;L2(Ω)d) + h∆t3‖∇(u− vh)tt‖2
L2(0,t∗;L2(Ω)d)

)
+ inf

qh∈Qh
ε2ν−1

min|||p− qh|||
2
2,0 + t∗ inf

Sh∈Wh

(
|βg|2ν−1

min‖τ − Sh‖2 + (1 + κ−1
min + κmax)‖∇(τ − Sh)‖2

)
+ h∆t3 + ε+

(
ν−1
min(1 + |Λ′|2 + |βg|2) + |κ′|2 + |ν ′|2

)
∆t4
}

+ ‖e1
u‖2 + ‖2e1

u − e0
u‖2 + ‖e1

T‖2 + ‖2e1
T − e0

T‖2

+ ∆t
(
‖〈ν〉1/2∇e1

u‖2 + ‖〈κ〉1/2∇e1
T‖2
)

+ ∆t
(
‖〈ν〉1/2∇e0

u‖2 + ‖〈κ〉1/2∇e0
T‖2
)
.

Proof. Our strategy is to consider the error equation for the continuity equation, utilize

the Stokes projection (2.24) - (2.25) to negate additional problem terms, and augment the

techniques and estimates of Theorems 13 and 14. The error equation for continuity and

momentum are,

(∂i∆t(e
n+1
u ), vh) + b(un+1, en+1

u , vh) + b(E i(en+1
u ), un+1

h , vh) + b(E i(u′
n+1
h ), en+1

u − E i(en+1
u ), vh)

+ 〈ν〉(∇en+1
u ,∇vh) + ν ′(∇E i(en+1

u ),∇vh) + (〈Λ〉 × en+1
u , vh) + (Λ′ × E i(en+1

u ), vh)

− (en+1
p ,∇ · vh) = ςu(u

n+1, vh) ∀vh ∈ Xh, (4.207)

ε(en+1
p , qh) + (∇ · en+1

u , qh) = ε(pn+1, qh), (4.208)

where 1
ε
(∇ · un+1

h ,∇ · vh) = (pn+1
h ,∇ · vh) was used in (4.43). Use the relations (4.112) and

(4.114), where the velocity and pressure interpolant is chosen to be the Stokes projection.

Let qh = ∆tπn+1
h ∈ Qh, and rearrange. Then,

ε∆t‖πn+1
h ‖2 + ∆t(∇ · φn+1

h , πn+1
h ) = ε∆t(λn+1, πn+1

h )− ε∆t(pn+1, πn+1
h ). (4.209)
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Note that in the velocity error equation, (en+1
p ,∇ · vh) = −(πn+1

h ,∇ · vh) for all vh ∈ Xh.

Consider equation (4.208). The Cauchy-Schwarz-Young inequality yields

ε∆t(λn+1, πn+1
h ) ≤ ε∆t‖λn+1‖2 +

ε∆t

4
‖πn+1

h ‖2, (4.210)

−ε∆t(pn+1, πn+1
h ) ≤ ε∆t‖pn+1‖2 +

ε∆t

4
‖πn+1

h ‖2. (4.211)

Set vh = ∆tφn+1
h in equation (4.207), combine with equation (4.208), and rearrange. Then,

(∂i∆t(φ
n+1
h ),∆tφn+1

h ) + ∆t‖〈ν〉1/2∆tφn+1
h ‖2 + ε∆t‖πn+1

h ‖2 = (∂i∆t(η
n+1),∆tφn+1

h )

+ ∆tb(un+1, ηn+1, φn+1
h ) + ∆tb(E i(ηn+1), un+1

h , φn+1
h )−∆tb(E i(φn+1

h ), un+1
h , φn+1

h )

+ ∆tb(E i(u′
n+1
h ), ηn+1 − E i(ηn+1), φn+1

h )−∆tb(E i(u′
n+1
h ), φn+1

h − E i(φn+1
h ), φn+1

h )

+ 〈ν〉∆t(∇ηn+1,∇φn+1
h ) + ν ′∆t(∇E i(ηn+1),∇φn+1

h )

− ν ′∆t(∇E i(φn+1
h ),∇φn+1

h ) + ∆t(Λ× ηn, φn+1
h )−∆t(Λ× φnh, φn+1

h )

−∆t(λn+1,∇ · φn+1
h ) + ε∆t(λn+1, πn+1

h )− ε∆t(pn+1, πn+1
h )

+ ∆t(βgE i(ζn+1), φn+1
h )−∆t(βgE i(ψn+1

h ), φn+1
h )

+ ∆t(βg(τ − Ihτ), φn+1
h )−∆tςu(u

n+1, φn+1
h ). (4.212)

Use the estimates (4.210) and (4.211) together with, e.g., estimates (4.141) - (4.155),

from Theorem 13, on the above. The result then follows using the techniques of Theorems

13 and 14.

Lastly, we prove convegence estimates for ACE.

Theorem 16. Consider ACE. For (u,p,T) satisfying (1) - (5), suppose that (u0
h, p

0
h, T

0
h ) ∈

(Xh, Qh,Wh) are approximations of (u0, p0, T 0) to within the accuracy of the interpolant.

Further, suppose that conditions (4.52) and (4.53) hold and pt ∈ L∞(0, t∗;L2(Ω)). Then,

there exists constants C, C4 > 0 such that

1

2
‖eNT ‖2 + ‖eNu ‖2 + ε‖eNp ‖2 +

1

2

N−1∑
n=0

{
‖en+1

T − enT‖2 + ‖en+1
u − enu‖2 + 2ε‖en+1

p − enp‖2
}

+
∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇en+1

u ‖2 + ‖〈κ〉1/2∇en+1
T ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇eNu ‖2 + ‖〈κ〉1/2∇eNT ‖2

)
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≤ Cexp(C4t
∗)
{

inf
Sh∈Wh

(
(1 + κ−1

min)κ−1
min|||∇(T − Sh)|||2∞,0 + κmax|||∇(T − Sh)|||22,0

+ κ−1
min‖(T − Sh)t‖2

L2(0,t∗;L2(Ω)) + h∆t‖∇(T − Sh)t‖2
L2(0,t∗;L2(Ω))

)
+ inf
vh∈Xh

(
(1+ν−1

min)ν−1
min|||∇(u− vh)|||2∞,0+

(
κ−1
min+νmax+(|〈Λ〉|2+|Λ′|2)+|βg|2)

)
|||∇(u− vh)|||22,0

+ ν−1
min‖(u− vh)t‖2

L2(0,t∗;L2(Ω)d) + h∆t‖∇(u− vh)t‖2
L2(0,t∗;L2(Ω)d)

)
+ t∗ inf

Sh∈Wh

(
|βg|2ν−1

min‖τ − Sh‖2 + (1 + κ−1
min + κmax)‖∇(τ − Sh)‖2

)
+ h∆t+ ε∆t+

(
ν−1
min(1 + |Λ′|2 + |βg|2) + |κ′|2 + |ν ′|2

)
∆t2
}

+ ‖e0
u‖2 + ‖e0

T‖2 + ε‖e0
p‖2 + ∆t

(
‖〈ν〉1/2∇e0

u‖2 + ‖〈κ〉1/2∇e0
T‖2
)
.

Moreover, for second-order ACE, exists constants C, C4 > 0 such that

‖eNu ‖2 + ‖2eNu − eN−1
u ‖2 +

1

2
‖eNT ‖2 +

1

2
‖2eNT − eN−1

T ‖2 + ε‖eNp ‖2

+
1

2

N−1∑
n=0

(
‖en+1

u − 2enu + en−1
u ‖2 + ‖en+1

T − 2enT + en−1
T ‖2 + 2ε‖en+1

p − enp‖2
)

+
∆t

4

N−1∑
n=0

(
‖〈ν〉1/2∇en+1

u ‖2 + ‖〈κ〉1/2∇en+1
T ‖2

)
+

∆t

2

(
‖〈ν〉1/2∇eNu ‖2 + ‖〈κ〉1/2∇eNT ‖2

)
+

∆t

4

(
‖〈ν〉1/2∇eN−1

u ‖2 + ‖〈κ〉1/2∇eN−1
T ‖2

)
≤ C exp(C4t

∗)
{

inf
Sh∈Wh

(
(1 + κ−1

min)κ−1
min|||∇(T − Sh)|||2∞,0 + κmax|||∇(T − Sh)|||22,0

+ κ−1
min‖(T − Sh)t‖2

L2(0,t∗;L2(Ω)) + h∆t3‖∇(T − Sh)tt‖2
L2(0,t∗;L2(Ω))

)
+ inf
vh∈Xh

(
(1+ν−1

min)ν−1
min|||∇(u− vh)|||2∞,0+

(
κ−1
min+νmax+(|〈Λ〉|2+|Λ′|2)+|βg|2)

)
|||∇(u− vh)|||22,0

+ ν−1
min‖(u− vh)t‖2

L2(0,t∗;L2(Ω)d) + h∆t3‖∇(u− vh)tt‖2
L2(0,t∗;L2(Ω)d)

)
+ t∗ inf

Sh∈Wh

(
|βg|2ν−1

min‖τ − Sh‖2 + (1 + κ−1
min + κmax)‖∇(τ − Sh)‖2

)
+ h∆t3 + ε∆t+

(
ν−1
min(1 + |Λ′|2 + |βg|2) + |κ′|2 + |ν ′|2

)
∆t4
}

+ ‖e1
u‖2 + ‖2e1

u − e0
u‖2 + ‖e1

T‖2 + ‖2e1
T − e0

T‖2 + ε‖e0
p‖2

+ ∆t
(
‖〈ν〉1/2∇e1

u‖2 + ‖〈κ〉1/2∇e1
T‖2
)

+ ∆t
(
‖〈ν〉1/2∇e0

u‖2 + ‖〈κ〉1/2∇e0
T‖2
)
.

Proof. We follow similarly as in Theorem 15. The error equation for continuity is

ε(∂i∆t(e
n+1
p ), qh) + (∇ · en+1

u , qh) = ςp(p
n+1, qh). (4.213)
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Use the relations (4.112) and (4.114), where the interpolant is chosen to be the Stokes

projection. Let qh = ∆tπn+1
h ∈ Qh, and rearrange. Then,

ε

2

{
‖πn+1

h ‖2 − ‖πnh‖2 + ‖πn+1
h − πnh‖2

}
+ ∆t(∇ · φn+1

h , πn+1
h )

= ε(λn+1 − λn, πn+1
h )−∆tςp(p

n+1, πn+1
h ). (4.214)

Note that in the velocity error equation, ∆t(en+1
p ,∇ · vh) = −(πn+1

h ,∇ · vh) for all vh ∈ Xh.

Consider equation (4.214). Add and subtract ε(λn+1−λn, πnh) and −∆tυp(p
n+1, πnh). Use

Taylor’s theorem and the Cauchy-Schwarz-Young inequality. This leads to

2ε(λn+1 − λn, πn+1
h ) = 2ε(λn+1 − λn, πn+1

h − πnh) + 2ε(λn+1 − λn, πnh)

≤ 4εCr∆t
2

δ26

‖λt‖2
L2(tn,tn+1;L2(Ω)) +

εδ26

r
‖πn+1

h − πnh‖2

+
4εCr∆t

δ27

‖λt‖2
L2(tn,tn+1;L2(Ω)) +

εδ27∆t

r
‖πnh‖2, (4.215)

−2∆tςp(p
n+1, πn+1

h ) ≤ 4εCr∆t
2

δ28

‖pt‖2
L2(tn,tn+1;L2(Ω)) +

εδ28

r
‖πn+1

h − πnh‖2

+
4εCr∆t

δ29

‖pt‖2
L∞(tn,tn+1;L2(Ω)) +

εδ29∆t

r
‖πnh‖2. (4.216)

The remainder is routine: use the above estimates together with estimates and techniques

from Theorems 13 and 14 to yield the result.

4.4 NUMERICAL TESTS

In this section, we illustrate proven qualities of the proposed algorithms. In particular,

convergence rates are calculated and speed comparisons are provided. The numerical ex-

periments include a convergence experiment with an analytical solution devised through

the method of manufactured solutions and the double pane window benchmark [136]. The

software platform used is FreeFem++ [60].

90



4.4.1 Stability condition

Recall, each algorithm is stable provided conditions (4.52) and (4.53) hold:

∆t

h
max

1≤j≤J
‖∇E i(u′

n+1
h )‖2 ≤ C†min{〈ν〉, 〈κ〉},

max

{
max

1≤j≤J

∣∣∣∣ ν ′〈ν〉
∣∣∣∣2, max

1≤j≤J

∣∣∣∣ κ′〈κ〉
∣∣∣∣2} ≤ C††.

Moreover, for ACE-T, condition (4.52) can be replaced with condition (4.54):

∆t max
1≤j≤J

‖∇ · E i(u′
n+1
h )‖2

L4(Ω) ≤ C†min{〈ν〉, 〈κ〉},

provided Cν ≥ C††† and Cν
σturb

≥ C††††. In general, the stability constant C† is determined

via pre-computations; see Appendix B for theoretical determinations. Herein, we estimate

it for the double pane window benchmark; it is set to 1. Condition (4.52) is checked at each

timestep. The timestep is halved and the timestep is repeated if violated. The timestep is

never increased. Moreover, the condition (4.53) can be checked once before any computations

are performed. If violated, the ensemble set can be broken into smaller subsets which satisfy

the condition.

4.4.2 Perturbation generation

The bred vector (BV) algorithm [135] is used to generate perturbations in Section 4.4.4

and Chapter 5. The BV algorithm simulates growth errors due to uncertainty in the initial

conditions; for practical problems, this is necessary and random perturbations are not suffi-

cient [135]. With the BV algorithm, the nonlinear error growth in the ensemble average is

reduced, which is witnessed in Chapter 5. Our experimental results are drastically different

when using BVs compared to random perturbations, consistent with the above. In particu-

lar, predictability calculations in 5 Section 5.1 are more pessimistic (smaller average effective

Lyapunov exponents and variance) when using BVs over random perturbations.

To begin, an initial random positive and negative perturbation pair is generated, ±ε =

±(δ1, δ2, ..., δM); δi ∈ (0, 0.01) or (0, 0.1) ∀1 ≤ i ≤M , for the double pane window and man-

ufactured solution problems of Sections 4.4.4 and 4.4.3, respectively. Denoting the control
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and perturbed numerical approximations χnh and χnp,h, respectively, a bred vector bv(χ; δi) is

generated via:

Algorithm: BV

Step one: Given χ0
h and δi, put χ0

p,h = χ0
h + δi. Select time reinitialization interval

δt ≥ ∆t and let tk = kδt with 0 ≤ k ≤ k∗ ≤ N .

Step two: Compute χkh and χkp,h. Calculate bv(χk; δi) = δi
‖χkp,h−χ

k
h‖

(χkp,h − χkh).

Step three: Put χkp,h = χkh + bv(χk; δi).

Step four: Repeat from Step two with k = k + 1.

Step five: Put bv(χ; δi) = bv(χk
∗
; δi).

The bred vector pair generates a pair of initial conditions via χ± = χ0 + bv(χ;±δi). We

let k∗ = 5 and choose δt = ∆t for all tests. A perturbation pair is associated with each

component of velocity and the temperature. If a pressure initial condition is needed, as in

ACE and ACE-T, then a perturbation pair is also prescribed.

4.4.3 Convergence Tests

We now illustrate convergence rates for the proposed algorithms. Typically, a solution is

specified, inserted into the set of governing equations, and the forcing terms are calculated.

This technique is known as the “method of manufactured solutions”. The known solution is

then compared to the numerical approximation at successive refinements of the mesh and/or

timestep. Rates of convergence are then calculated. The calculated rates prove nothing. They

suggest convergence rates for numerical methods indicating what can possibly be proven and

are used to illustrate theoretical conclusions.

The domain and unperturbed parameters are Ω = (0, 1)2 and ν = κ = β = Λ = 1. The

unperturbed solution is given by

u(x, y, t) = (A(t)x2(x− 1)2y(y − 1)(2y − 1),−A(t)x(x− 1)(2x− 1)y2(y − 1)2)T ,

T (x, y, t) = u1(x, y, t) + u2(x, y, t),

p(x, y, t) = A(t)(2x− 1)(2y − 1),
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Figure 4.1: Domain & BCs: manufactured solution problem.

with A(t) = 100 cos (t). We select random perturbations of O(10−1) for each of the param-

eters and initial conditions (σj, below), see Table 4.1. Letting B(x, y) = x(x − 1)y(y − 1),

the perturbed solutions are given by

u(x, y, t;ωj) = (u1(x, y, t) + σ1(ωj)B(x, y), u2(x, y, t) + σ2(ωj)B(x, y))T (4.217)

T (x, y, t;ωj) = T (x, y, t) + σ3(ωj)B(x, y), (4.218)

p(x, y, t;ωj) = p(x, y, t), (4.219)

for j = 1, 2, 3. Forcings are adjusted as needed. Notice that u ∈ X
⋂
P7(Ω)2, T ∈

H1
0 (Ω)

⋂
P7(Ω), and p ∈ Q

⋂
P4(Ω); the domain together with the boundary conditions

are presented in Figure 4.1.

The finite element mesh is constructed via Delaunay triangulation generated from m

points on each side of the domain; see Figure 4.2. We set ε = 100∆ti for PEA methods and

ε = ∆ti for ACE methods. Errors in approximations of the average velocity and temper-

ature are calculated with the L∞(0, t∗;L2(Ω)) and L2(0, t∗;H1(Ω)) norms. For the average

pressure, L1(0, t∗;L2(Ω)), and L2(0, t∗;L2(Ω)) norms are used for eBDF and PEA. For
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Figure 4.2: Mesh: manufactured solution problem.

ACE, average pressure errors are calculated using the L∞(0, t∗;L2(Ω)) and L2(0, t∗;L2(Ω))

norms. Rates are calculated from the errors at two successive ∆t1,2 via

log2(eχ(∆t1)/eχ(∆t2))

log2(∆t1/∆t2)
,

respectively, with χ = u, T, p. We set ∆t = 0.5/m and vary m between 4, 8, 16, 24, and 32.

Results are presented in Tables 4.2 - 4.7.

Optimal-order convergence is observed for velocity and temperature and these results

are consistent with the results of our theoretical analyses. Further, all pressure results are

consistent with the theoretical analyses when considering the
√
ε scaling of our estimates.

This indicates that the
√
ε factor cannot be removed.

We also see an anomaly arise in the last row and column of Table 4.7. It is uncertain

what this is due to, however, it should be recalled that the choice of ε can strongly effect

the behavior and accuracy of the method for either PEA or ACE. As a last comment,

these numerical results suggest that eBDF provides more accurate results across the board.

Moreover, both PEA and ACE produce substantially inferior pressure accuracy, with PEA

being the worst performer. Therefore, for practical computing, one should consider both

timestep/mesh requirements and whether the pressure is a desired quantity or not when

selecting a method.
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Table 4.1: Perturbations to associated parameters and initial conditions.

Parameters

j u(x, 0) T (x, 0) ν Λ β κ

1 (0.038293264, 0.0461225485) 0.01199364526 0.01551310425 0.01481403912 0.0864345507 0.0464799222

2 (0.0510703744, 0.02141882264) 0.0740124158 0.0561074383 0.01743837107 0.013325773 0.01888897295

3 (0.01736815896, 0.0680989749) 0.01669886031 0.01594498955 0.01520503142 0.030090834 0.01835103811

Table 4.2: eBDF (1st-order): Errors and rates for average velocity, temperature, and pressure

in corresponding norms.

m |||〈eu〉|||∞,0 Rate |||〈∇eu〉|||2,0 Rate |||〈eT 〉|||∞,0 Rate |||〈∇eT 〉|||2,0 Rate |||〈ep〉|||1,0 Rate |||〈ep〉|||2,0 Rate

4 8.75E-02 - 1.71 - 6.96E-02 - 1.49 - 1.29 - 1.32 -

8 2.43E-02 1.85 8.57E-01 1.00 1.93E-02 1.85 8.60E-01 0.79 5.05E-01 1.36 5.13E-01 1.36

16 4.98E-03 2.29 3.68E-01 1.22 3.94E-03 2.29 3.64E-01 1.24 1.37E-01 1.88 1.39E-01 1.88

24 2.49E-03 1.71 2.65E-01 0.81 1.96E-03 1.72 2.61E-01 0.82 1.01E-01 0.77 1.02E-01 0.77

32 1.29E-03 1.95 1.86E-01 0.98 1.02E-03 2.27 1.83E-01 1.24 6.15E-02 1.71 6.23E-02 1.71

Table 4.3: eBDF (2nd-order): Errors and rates for average velocity, temperature, and pres-

sure in corresponding norms.

m |||〈eu〉|||∞,0 Rate |||〈∇eu〉|||2,0 Rate |||〈eT 〉|||∞,0 Rate |||〈∇eT 〉|||2,0 Rate |||〈ep〉|||1,0 Rate |||〈ep〉|||2,0 Rate

4 3.00E-02 - 5.42E-01 - 5.15E-03 - 9.01E-02 - 8.11E-01 - 8.81E-01 -

8 4.54E-03 2.72 1.51E-01 1.84 5.24E-04 3.30 1.80E-02 2.32 1.77E-01 2.20 1.86E-01 2.25

16 5.36E-04 3.08 3.37E-02 2.16 5.06E-05 3.37 3.59E-03 2.33 3.33E-02 2.41 3.44E-02 2.43

24 2.09E-04 2.32 1.70E-02 1.69 1.86E-05 2.47 1.99E-03 1.45 1.66E-02 1.72 1.70E-02 1.73

32 1.35E-04 1.52 8.46E-03 2.42 6.85E-06 3.47 9.17E-04 2.69 9.62E-03 1.90 9.83E-03 1.90
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Table 4.4: PEA (1st-order): Errors and rates for average velocity, temperature, and pressure

in corresponding norms.

m |||〈eu〉|||∞,0 Rate |||〈∇eu〉|||2,0 Rate |||〈eT 〉|||∞,0 Rate |||〈∇eT 〉|||2,0 Rate |||〈ep〉|||1,0 Rate |||〈ep〉|||2,0 Rate

4 4.45E-01 - 3.48 - 6.99E-02 - 1.49 - 19.79 - 20.14 -

8 3.72E-01 0.26 2.61 0.41 2.00E-02 1.81 8.60E-01 0.79 13.50 0.55 13.72 0.55

16 2.24E-01 0.73 1.56 0.75 5.10E-03 1.97 3.64E-01 1.24 7.22 0.90 7.34 0.90

24 1.59E-01 0.85 1.12 0.81 3.05E-03 1.27 2.62E-01 0.81 4.77 1.03 4.84 1.03

32 1.21E-01 0.93 8.60E-01 0.92 2.08E-03 1.34 1.83E-01 1.24 4.09 0.53 4.15 0.53

Table 4.5: PEA (2nd-order): Errors and rates for average velocity, temperature, and pressure

in corresponding norms.

m |||〈eu〉|||∞,0 Rate |||〈∇eu〉|||2,0 Rate |||〈eT 〉|||∞,0 Rate |||〈∇eT 〉|||2,0 Rate |||〈ep〉|||1,0 Rate |||〈ep〉|||2,0 Rate

4 1.23E-01 - 9.27E-01 - 5.49E-03 - 8.95E-02 - 10.64 - 11.56 -

8 3.20E-02 1.94 3.02E-01 1.62 8.41E-04 2.71 1.83E-02 2.29 6.18 0.78 6.48 0.84

16 8.06E-03 1.99 8.54E-02 1.82 1.66E-04 2.34 3.71E-03 2.30 3.09 1.00 3.19 1.02

24 3.58E-03 2.00 4.14E-02 1.79 6.70E-05 2.23 2.04E-03 1.48 2.07 0.99 2.12 1.00

32 2.02E-03 1.98 2.64E-02 1.56 3.60E-05 2.16 9.49E-04 2.66 1.59 0.91 1.63 0.92

Table 4.6: ACE (1st-order): Errors and rates for average velocity, temperature, and pressure

in corresponding norms.

m |||〈eu〉|||∞,0 Rate |||〈∇eu〉|||2,0 Rate |||〈eT 〉|||∞,0 Rate |||〈∇eT 〉|||2,0 Rate |||〈ep〉|||∞,0 Rate |||〈ep〉|||2,0 Rate

4 4.10E-01 - 2.56 - 6.96E-02 - 1.49 - 12.40 - 6.86 -

8 3.66E-01 0.16 1.91 0.42 1.93E-02 1.85 8.61E-01 0.79 8.41 0.56 4.55 0.59

16 2.02E-01 0.86 1.05 0.86 3.96E-03 2.29 3.64E-01 1.24 4.22 0.99 2.40 0.92

24 1.32E-01 1.04 7.36E-01 0.89 1.98E-03 1.70 2.62E-01 0.82 2.71 1.10 1.61 0.99

32 1.05E-01 0.79 5.96E-01 0.74 1.19E-03 1.77 1.83E-01 1.24 2.26 0.63 1.35 0.60
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Table 4.7: ACE (2nd-order): Errors and rates for average velocity, temperature, and pressure

in corresponding norms.

m |||〈eu〉|||∞,0 Rate |||〈∇eu〉|||2,0 Rate |||〈eT 〉|||∞,0 Rate |||〈∇eT 〉|||2,0 Rate |||〈ep〉|||∞,0 Rate |||〈ep〉|||2,0 Rate

4 1.18E-01 - 6.55E-01 - 5.36E-03 - 9.16E-02 - 7.23 - 4.20 -

8 3.03E-02 1.96 1.95E-01 1.75 5.59E-04 3.26 1.82E02 2.33 4.05 0.56 2.11 0.99

16 7.61E-03 2.00 5.00E-02 1.96 7.76E-05 2.85 3.63E-03 2.33 1.86 2.17 9.78E-01 1.11

24 3.33E-03 2.04 2.32E-02 1.89 3.13E-05 2.24 2.01E-03 1.47 1.12 3.27 5.46E-01 1.44

32 1.82E-03 2.10 1.29E-02 2.05 1.62E-05 2.29 9.26E-04 2.69 1.06 3.26 5.77E-01 -0.19

4.4.4 The double pane window problem

The double pane window problem is a classic test for numerical methods designed for natural

convection [137]. The problem is the flow of air, Pr = 0.71, in a unit square cavity subject to

no-slip boundary conditions. The horizontal walls are adiabatic and vertical wall temperature

is maintained at constant temperature [136]; see Figure 4.3.

This problem setup simulates a window consisting of two glass walls with a column of air

between: a double pane window. From the practical viewpoint, the objective is to calculate

the average Nusselt numbers at the vertical (glass) walls. The Nusselt number measures the

flux of heat and, therefore, is a measure of the quality of the window as an insulator. For

our purposes, the quantities of interest are: maxy∈Ωh u1(0.5, y, t∗), maxx∈Ωh u2(x, 0.5, t∗), the

local Nusselt number at vertical walls, and average Nusselt number at the hot wall. The

latter two are calculated via

Nu(x, t) = −n · ∇T,

Nuavg =

∫
ΓD1

Nu(x, t)ds.

We first validate each of ensemble algorithms. We set J = 2 and varyRa ∈ {103, 104, 105, 106}.

In this range of Ra, the fluid possesses a core flow enveloped by a boundary layer of thickness

O(Ra−1/4) [49]. Consequently, we specify the finite element mesh as a division of (0, 1)2 into

642 squares with diagonals connected with a line within each square in the same direction;

see Figure 4.4.
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Figure 4.3: Domain & BCs: double pane window problem.

Figure 4.4: Mesh: double pane window problem, 103 ≤ Ra ≤ 106 (left) and 107 ≤ Ra ≤ 108

(right).

98



This problem has two fundamentally important timescales. The conductive timescale

t∆ = L2

ν
, where L is the length of the square and ν is the fluid viscosity, determines the time to

reach steady state. The convective timescale t∇ = t∆Ra
−1/2 determines the required timestep

[61]. Thus, we set the timestep ∆t = C(Ra)Ra−1/2 with C(Ra) = {0.025, 0.1, 0.025, 0.1},

respectively. We set ε = 100∆ti for PEA and ε = 0.01∆t and ε = ∆t2 for first- and second-

oder ACE and ACE-T, respectively. Moreover, for ACE-T, the tuning parameters Cν and

σT are set to
√

2
2

and 1, respectively.

The initial conditions are generated via the BV algorithm,

u±(x, y, 0) := u(x, y, 0;ω1,2) = (uprev1 + bv(u1;±δ1), uprev2 + bv(u2;±δ2))T ,

T±(x, y, 0) := T (x, y, 0;ω1,2) = T prev + bv(T ;±δ3),

p±(x, y, 0) := p(x, y, 0;ω1,2) = pprev + bv(p;±δ4),

where the subscript prev denotes the solution from the previous value of Ra; for Ra = 103,

the previous values are all set to 0 (rest). The BV, bv(T ; +δ3), is presented in Figure 4.5 for

first-order ACE and varying Ra. Forcings are identically zero for j = 1, 2. Since the fluid

reaches a steady state in this setting, a stopping condition is prescribed:

max
0≤n≤N−1

{
‖un+1

h − unh‖
‖un+1

h ‖
,
‖T n+1

h − T nh ‖
‖T n+1

h ‖

}
≤ 10−5. (4.220)

Plots of Nu at the hot and cold walls are presented in Figures 4.6 and 4.7. Com-

puted values of the remaining quantities are presented, alongside several of those seen in

the literature, in Tables 4.8 - 4.10. Figures 4.8 and 4.9 present the velocity streamlines and

temperature isotherms for the averages. All results are consistent with benchmark values in

the literature [22, 99,136,138,145].

We also compare the run times of each the algorithms. Standard GMRES, with residual

tolerance TOL = 10−7, is used for the velocity and temperature solves. Results are presented

in Figure 4.10. ACE and ACE-T are comparable, as expected. We see that ACE is at

least 1.5 times faster than its eBDF counterpart. The speed gain of first-order PEA and

ACE over first-order eBDF is most dramatic with a 2.5 to 22.5 speed up. Interestingly,

they do not suffer from increased run time, over this range of Ra, as eBDF does. Further,

the penalty and artificial compression based second-order algorithms do not see the same
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Figure 4.5: BV (bv(T ; +δ3)): Ra = 103, 104 (top row), 105, and 106 (bottom row), left to

right.
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gains as their first-order counterparts over eBDF. This is likely due to the 1
ε

and ∆t
ε

scaling

in front of the grad-div matrix.

For the Rayleigh number range specified above, the fluid reached a steady state. If Ra

is increased, the fluid transitions to non-stationary behavior and eventually turbulent. As

mentioned earlier in this chapter, our numerical methods are designed for laminar flows; near

and into the onset of turbulence, these algorithms will breakdown owing to condition (4.52).

This issue motivated, impart, the development of ACE-T. Thus, we use this algorithm to

quantify the behavior for Ra ∈ {107, 108}. We utilize the graded mesh seen in Figure 4.4

to resolve the boundary layer. Results are reported for second-order ACE-T. The local

variation of the Nusselt number is presented in Figure 4.11. Streamlines and isotherms are

presented in Figure 4.12 and pertinent quantities are presented in Table 4.11. Once again,

all results are consistent with the literature [2, 104,138].

4.5 CONCLUSION

In this chapter, we presented eight new ensemble time-stepping schemes for numerically sim-

ulating Boussinseq flow subject to uncertain data. The first pair of algorithms eBDF (4.40)

- (4.42) were based upon linearly implicit BDF schemes. The convective, diffusive, rotation,

and conductive terms were treated in implicit-explicit fashion by decompositions of the con-

vective velocity, viscosity, rotation rate, and thermal conductivity into ensemble averages

and fluctuations. The resulting algorithms require J linear solves with the same coefficient

matrix but different right-hand sides, at each timestep, for the velocity and temperature

equations. Therefore, storage requirements and turnaround times are reduced. Nonlinear,

energy stability and optimal-order convergence were proven for each algorithm under both

a CFL-type condition (condition (4.52)), involving fluctuations of the velocity, and a condi-

tion involving the ratio between fluctuations of viscosity and thermal conductivity and their

means (condition (4.53)).

Building upon this, PEA (4.43) - (4.44) and ACE (4.46) - (4.47) were developed using

the penalty and artificial compressibility methods to further reduce complexity and com-
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Figure 4.6: Variation of the local Nusselt number at the hot wall: Ra = 103, 104 (top row),

105, and 106 (bottom row), left to right.
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Figure 4.7: Variation of the local Nusselt number at the cold wall: Ra = 103, 104 (top row),

105, and 106 (bottom row), left to right.
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Table 4.8: Comparison: maximum horizontal velocity at x = 0.5 & mesh size, double pane

window problem.

Ra eBDF1 eBDF2 PEA1 PEA2 ACE1 ACE2 ACE-T1 ACE-T2

103 3.65 3.65 3.64 3.65 3.64 3.64 3.64 3.64

104 16.18 16.18 16.18 16.18 16.16 16.16 16.16 16.16

105 34.76 34.73 34.65 34.62 34.69 34.62 34.69 34.62

106 64.80 64.79 63.84 63.86 65.26 64.25 65.26 64.25

Table 4.9: Comparison: maximum vertical velocity at y = 0.5 & mesh size, double pane

window problem.

Ra eBDF1 eBDF2 PEA1 PEA2 ACE1 ACE2 ACE-T1 ACE-T2

103 3.70 3.70 3.82 3.73 3.70 3.70 3.70 3.70

104 19.60 19.60 19.63 19.66 19.65 19.64 16.65 19.64

105 68.53 68.52 68.78 68.79 68.89 68.79 68.89 68.79

106 215.96 215.79 217.19 217.20 218.35 217.45 218.35 217.45

Table 4.10: Comparison: average Nusselt number at the hot wall.

Ra eBDF1 eBDF2 PEA1 PEA2 ACE1 ACE2 ACE-T1 ACE-T2

103 1.12 1.12 1.13 1.12 1.12 1.12 1.12 1.12

104 2.24 2.24 2.24 2.25 2.24 2.24 2.24 2.24

105 4.53 4.53 4.52 4.52 4.50 4.51 4.50 4.51

106 8.88 8.88 8.83 8.83 8.76 8.82 8.76 8.82
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Figure 4.8: Streamlines: Ra = 103, 104 (top row), 105, and 106 (bottom row), left to right.

105



Figure 4.9: Isotherms: Ra = 103, 104 (top row), 105, and 106 (bottom row), left to right.
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Figure 4.10: Time to steady state: ACE performs best followed by eBDF.

putation time by effectively decoupling the velocity and pressure solves. Nonlinear, energy

stability and optimal-order convergence were proven for each algorithm, under appropriate

choice of ε, under the same conditions. Lastly, the ACE-T (4.49) - (4.50) algorithm was de-

veloped for turbulent flow. It was proven stable under a less restrictive condition (condition

(4.54)) on the velocity fluctuations.

Numerical experiments were performed to verify and validate each algorithm. In par-

ticular, we illustrated the expected convergence rates developed by our theoretical analyses.

It was found that our convergence estimates are sub-optimal for the pressure solution with

respect to the penalty/artificial compression parameter ε. In particular, Theorem 15 re-

quired ε = O(∆t2i) for first- and second-order convergence of the pressure approximation in
√
ε|||·|||2,0. Further, in Theorem 16, second-order ACE required ε = O(∆t3) for second-order

convergence of pressure in
√
ε|||·|||∞,0. Otherwise, our estimates are consistent with what

is seen experimentally; that is, optimal-order convergence of velocity and temperature in

|||·|||∞,0 and |||·|||2,1.

We also utilized these algorithms on a problem of technological significance: the double

pane window problem. All algorithms produced accurate results but at varying turnaround
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Figure 4.11: Variation of the local Nusselt number: hot wall (top) and cold wall (bottom).
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Figure 4.12: Streamlines (top row) and isotherms (bottom row), Ra = 107, 108, left to right.

Table 4.11: Second-order ACE-T is consistent with literature.

Ra maxy∈Ωh u1(0.5, y, t∗) maxx∈Ωh u2(x, 0.5, t∗) Nuavg

- Present study Ref. [138] Ref. [104] Ref. [2] Present study Ref. [138] Ref. [104] Ref. [2] Present study Ref. [138] Ref. [2]

107 146.23 143.56 145.27 148.60 698.45 714.48 703.25 699.20 16.51 16.66 16.52

108 311.10 296.71 283.69 322.7 2209.34 2223.44 2259.08 2223.00 30.16 31.49 30.31
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times. PEA and ACE are fastest, ACE-T next, and eBDF is last. Second-order methods

tended to be slower than their first-order counterparts but required fewer timesteps. Fur-

thermore, second-order PEA was too ill-conditioned to operate effectively with standard

GMRES. Moreover, for ∆t << 1, PEA and ACE are both subject to potential solver

breakdown.

A myriad of open questions still exist, which we collect in Chapter 6. For example, it

is expected that Theorems 15 and 16 can be improved so that they reflect the numerical

experiments: ε = O(∆ti) yields optimal-order convergence in appropriate norms. Addition-

ally, recent developments suggest that it is possible to alleviate solver breakdown due to

the grad-div matrix [36]. Lastly, uncertain boundary conditions and domain have not been

included, but would be an important next step.
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5.0 PREDICTABILITY

It is difficult to make predictions, especially about the future.

Unknown (Danish proverb)

Predictability of a flow is the extent to which it is possible to accurately predict the flow

given a theoretically complete knowledge of the governing equations [134]. The ensemble al-

gorithms developed in the previous chapter addressed the competition between mesh density

and ensemble size. We recall that ensemble calculations are necessary since uncertainties in

the initial data or model can destroy the fidelity of the approximate solutions. Potential

solution fidelity can be quantified, in a sense, by the notion of predictability.

Some of the early pioneering works surrounding this discovery (of predictability) are

recalled below. Notably, it is the weather community that has been at the forefront; see,

e.g., [80,91]. Early meteorological studies using computing systems encountered the issue of

predictability and paved a path toward understanding and, consequently, developing tools for

quantifying it. Charney [15], noting that the geostrophic approximation could produce poor

results, revisited the primitive equations. In this setting, he noted that inaccurate initial

values of wind and pressure gave rise to spurious oscillations that obscured meteorologically

significant motions.

Later, Philips’ [112] computations exhibited “explosive” kinetic energy growth after a

certain simulation time while studying the general circulation of the atmosphere. Thompson

[134] surmises that the growth of inherent errors produce increasing errors in wind predictions

over a period of a few days. Moreover, this error depends on the final simulation time and

perturbations to the initial value of wind, among others.

Lorenz [92] noticed that if present and past states are not known with absolute accu-

racy, the fidelity of the numerical approximation will severely degrade. Investigating fur-
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ther [93–95], he concludes that even if the perfect models and observations were known,

the state of the atmosphere could be predictable up to about two weeks. Since the days of

this startling conclusion, many tools have been utilized/devised to quantify and reach this

predictability horizon. Leading Lyapunov exponents and ensemble calculations are examples

of such tools.

In more recent years, it has been argued that the leading Lyapunov exponent is inade-

quate for quantifying predictability [9]. For example, it is a global quantity associated with

a large time limit; that is, the maximal time averaged (exponential) rate of divergence of

nearby trajectories. Thus, it does not account for local fluctuations of this rate which can

be important: exponential divergence need not occur everywhere at all times. As a solution,

researchers have proposed finite time leading Lyapunov exponents [9, 59], local Lyapunov

exponents [29], etc. We utilize the former.

Recent works involving applications to predictability of ensemble algorithms include

[72, 83]. In particular, Jiang [72] studied predictability of 2d iso-thermal flow between two

offset cylinders. The flow is driven by a counter-clockwise rotation that decays to zero after

a prescribed time. The average effective Lyapunov exponent was utilized to estimate the

predictability horizon.

Khankan [83] studied the predictability of temperature spatial averages for 2d non-

isothermal flow within an annulus; a 2d representation of the earth’s atmosphere. Average

effective Lyapunov exponents were calculated and it was found that the average (in space)

temperature distribution has an infinite predictability horizon, for the selected parameter

choices. Moreover, predictability increased as the size of the domain was increased.

Herein, we will utilize second-order ACE to investigate predictability horizons of two

numerical experiments. The numerical experiments considered are the double pane window

problem and manufactured solution problem in Chapter 4 Sections 4.4.3 and 4.4.4. Alto-

gether, we will quantify the predictability of solution quantities and their spatial averages

subject to rotational effects.
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5.1 NUMERICAL TESTS

As stated in the introduction, we seek to quantify the predictability of certain natural con-

vection problems. The following quantities will play a central role towards this goal. We

define the relative energy fluctuation, average effective Lyapunov exponent, and predictabil-

ity horizon as follows.

Definition 2. Let χ = u, T, p be the solution to the Boussinesq equations (4.14) - (4.17).

Denote χ± as solutions generated with a positive/negative pair of perturbed initial conditions.

Then, the relative energy fluctuation is defined as

r(t) :=
‖χ+ − χ−‖2

‖χ+‖‖χ−‖
,

and the average effective Lyapunov exponent is

γτ (t) :=
1

2τ
log
(r(t+ τ)

r(t)

)
,

with 0 < t+ τ ≤ t∗. Let tol > ‖(χ+ − χ−)(0)‖, then the tol-predictability horizon is

tp :=
1

γt∗(0)
log
( tol

‖(χ+ − χ−)(0)‖

)
.

The definitions above indicate that the average effective Lyapunov depends on the time

t that a perturbation is introduced and the delay or time that the system is measured τ .

Further, the tol-predictability horizon is dependent on the prescribed tolerance tol ; that is,

the acceptable level of deviation of a prediction from the true state.

Recall, the discrete differential filter is: Given χh ∈ L2(Ω)d or L2(Ω), find χh ∈ Xh or

Wh satisfying

δ2(∇χh,∇vh) + (χh, vh) = (χh, vh), ∀vh ∈ Xh or WΓD,h.

We utilize the new second-order ACE algorithm presented in Chapter 4 and apply a filter

to each member of the ensemble at each timestep. For instance, consider the following

algorithm: For each 1 ≤ j ≤ J ,

Step zero: Compute χ± = χ0 + bv(χ;±δi) for χ = u, T, p using the BV algorithm.

113



Step one: Compute (un+1
h , pn+1

h , T n+1
h ) with second-order ACE (4.46) - (4.47).

Step two: Find χh
n+1 = uh

n+1 or Th
n+1

via

δ2(∇χhn+1,∇vh) + (χh
n+1, vh) = (χn+1

h , vh) ∀vh ∈ Xh or WΓD,h. (5.1)

where δ is the filter radius. Below, we will focus on predictability of temperature averages;

that is, χ = T . For each value of 1
m
≤ δ ≤ 1, we can compute a filtered temperature Th and

calculate average effective Lyapunov exponents and predictability horizons defined above.

For our first tests, we consider the double pane window problem. The effects of increasing

domain size and spatial filtering on the predictability of the flow are studied. For the

former, the domains are defined as (0, L)2 with L ∈ {1, 1.2, 1.4, 1.6} and associated Rayleigh

number RaL = Ra1L
3; herein, Ra1 = 103. The spatial mesh is constructed via Delaunay

triangulation generated from mL points on each side of the domain. The timesteps are

chosen the same as in Section 4.4.4. The final simulation time t∗ is defined as the time for

which the steady state criterion (4.220) is met. For simplicity, we set tol = e‖(χ+−χ−)(0)‖,

χ = u, T , and p. Thus, 1
γt∗ (0)

corresponds to a solutions predictability horizon associated

with this tolerance.

The average effective Lyapunov exponent γt∗(0) is presented together with domain size

in Table 5.1. We see that, as the length of the square domain increases, the average effective

Lyapunov exponent becomes increasingly more negative. Thus, the temperature becomes

increasingly predictable.

To study the effect of spatial filtering, the differential filter is applied to each temperature

ensemble member, at each timestep. Filter radii of δ ∈ {0, 1
30L

, 1
10
, 3L

10
, L} are selected; the

second corresponding to the mesh length h. These filtered quantities Th
n+1

(x;ωj) are used

to calculate average effective Lyapunov exponents. The results are also tabulated in Table

5.1. As the filter radius increases, the temperature averages become increasingly predictable.

Our results are consistent with those presented by Khankan [83].

The test problem with manufactured solution is now considered. We first consider Ra ∈

{102, 103, 104} and calculate average effective Lyapunov exponents and both energies and

variances, with the aim of providing an alternative viewpoint. The results are presented in

Figures 5.1 - 5.4. Although we do not present results for filtered values, the conclusion is
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reversed: temperature averages become decreasingly predictable with increasing filter radii.

The energy and variance are defined below.

Definition 3. The energy is given by

Energy := ‖T‖+
1

2
‖u‖2.

Definition 4. The variance of χ is

V (χ) := 〈‖χ‖2〉 − ‖〈χ〉‖2 = 〈‖χ′‖2〉.

In Figures 5.1 and 5.2, we see that as the Rayleigh number increases, velocity and

temperature predictability decreases while pressure maintains high predictability. In Figure

5.3, we compare the energy of the approximate solutions associated with the positive and

negative bred vectors and the ensemble average with the true solution for increasing Ra.

It is clear that the ensemble average performs best. Evidently, the bred vector algorithm

is doing as it should: generating highly divergent solutions which, when averaged, mitigate

nonlinear error growth.

The variances of each solution are plotted in Figure 5.4. We see that higher Rayleigh

numbers are associated with increased variance. Equivalently, approximate solutions become

decreasingly reliable for faster flows. The variance of the pressure is especially interesting.

Essentially, the approximate pressure rapidly deviates to a different “solution”. However,

once it reaches this solution, it does not deviate much. This is consistent with Figures 5.1 and

5.2 and our convergence tests in Chapter 4; that is, artificial compressibility methods tend

to produce good velocity and temperature approximations, but pressure approximations can

be grossly inaccurate.

Lastly, we fix the Rayleigh number to 104 and consider rotations such that 107 ≤ Ta ≤

1013. The average effective Lyapunov exponent is calculated and the results are plotted in

Figure 5.5. For this test problem, rotations have little to no effect on predictability until

Ta ≈ 1010. Interestingly, we see that sufficiently large rotation rates can turn a flow with

a finite predictability horizon into one with an infinite predictability horizon. This appears

to be consistent with improvements in solution stability with rotation rate, reported in the

literature [5, 17, 100,130].
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Table 5.1: γt∗(0): Larger domain sizes and filter radius increase predictability.

δ/L 1 1.2 1.4 1.6

0 -0.46 -0.52 -0.60 -0.65

1
30L

-6.84 -5.56 -4.89 -4.39

1
10

-7.57 -6.26 -5.58 -5.07

3L
10

-8.30 -6.97 -6.29 -5.77

L -8.77 -7.35 -6.63 -6.08

5.2 CONCLUSION

Predictability of non-isothermal fluid flow was studied. We considered two test problems,

the double pane window benchmark and a problem with manufactured solution. Second-

order ACE was used in conjunction with the BV algorithm to quantify predictability. In

particular, average effective Lyapunov exponent, predictability horizons, and variance were

defined and calculated. These quantities indicate how predictable a flow is and therefore the

potential reliability of the numerical approximation.

From the first test, it was concluded that larger domains are more predictable. Moreover,

filtering out small spatial scales increased predictability. In the second test, it was found that

the ensemble average is the most likely temperature distribution and variance gives an esti-

mate of prediction reliability. Further, sufficiently large rotations increase the predictability

of a flow. Lastly, filtering out small spatial scales decreased predictability. Evidently, pre-

dictability is complex and highly problem-dependent. Additional tests are needed to draw

more robust conclusions.
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Figure 5.1: Lyapunov exponent: Increasing Ra reduces predictability; velocity (top) and

temperature (bottom).
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Figure 5.2: Lyapunov exponent: Increasing Ra reduces predictability; pressure (top) and all

solutions for Ra = 104 (bottom).
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Figure 5.3: Energy: Ra = 102 to 104, top to bottom.
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Figure 5.4: Variance: Increasing Ra reduces predictability; velocity, temperature, and pres-

sure, top to bottom.
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Figure 5.5: Lyapunov exponent: Large rotations can stabilize and increase predictability;

varying Ta (top) and zoomed in (bottom).
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6.0 CONCLUSIONS AND OPEN QUESTIONS

I open at the close.

Albus Dumbledore, Harry Potter and the Deathly Hallows [120]

The underlying motivation of this thesis was practical computing. Our concerns were

three fold. Firstly, producing approximations that reproduce stability properties of the

simulated physical phenomenon. Secondly, the development of efficient numerical methods

that address the uncertainty in initial data. Lastly, we sought to apply our numerical methods

to study predictability. In our pursuit, much was learned, failures were many, successes few,

and the journey worth the effort. The mathematician can choose to pursue topics without

immediate perceivable consequence, however, it is satisfying to perceive the tiniest sliver of

the natural world previously unseen.

Recounting, longtime stability of approximate solutions to the Boussinesq equations us-

ing FEM in space and the BDF family in time was studied in Chapter 3. The discrete Hopf

interpolant was introduced as a mathematical tool. It was then shown that, the velocity

and temperature approximations can exhibit, at most, sub-linear growth in the final sim-

ulation time t∗ under a mesh condition. The pressure approximations could grow at most

linearly. The mesh condition required that, at the hot wall, the first mesh-line must be

within O(Ra−1). It was noted that practitioners carry out numerical simulations on graded

meshes, typically of O(Ra−1/4) near the boundaries, to resolve the boundary layer and,

thereby, improve accuracy. Thus, our condition is more restrictive, possibly owing to a gap

in the analysis, however, it is indicative of the value of graded meshes for both stability and

accuracy.

In Chapter 4, we developed efficient algorithms addressing the need to run multiple re-

alizations of a code with perturbed initial data. Understanding that ensemble calculations
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are essential, our aim was to improve upon them by decreasing storage requirements and

turnaround time. Our tactic was to first decompose certain parameters (viscosity, ther-

mal conductivity, and rotation rate) and the convective velocity into ensemble mean and

fluctuating components. We then applied an IMEX discretization to the associated terms.

Further, we introduced the artificial compression and penalty methods to remove the ex-

isting saddle point structure. We concluded with introducing a turbulence model based on

the eddy viscosity hypothesis, Boussinesq assumption, Kolmogorov-Prandtl relation, and

gradient-diffusion hypothesis. The fully discrete algorithms resulted in linear systems that

share the same coefficient matrix, reducing storage and computation time. We proved that

these algorithms were conditionally, nonlinearly, energy stable and optimally-order accurate

in appropriate norms. Numerical experiments illustrated these properties.

We utilize our flagship algorithm, second-order ACE, to illustrate the use of ensembles

in Chapter 5. We introduced several quantities including the average effective Lyapunov

exponent, predictability horizon, and variance, to quantify predictability of flow variables.

With these quantities, we studied the effect of domain size, averages with respect to spatial

scales, and rotations on predictability. It was found that fixing all other variables, increasing

the domain size increases predictability and sufficiently large rotations increase predictability.

Filtering out smaller spatial scales could either increase or decrease predictability.

The remainder of this chapter, is devoted to open questions that have arisen in our

pursuits. We hope that others will be inspired to tackle them. In Chapter 3, we saw that

the interpolant appearing within the buoyancy term, PrRa(ξτ, vh), prevented a uniform in

time result. Perhaps, under certain circumstances, e.g., Rayleigh-Bénard flow within the

unit square, improvements could be made. In particular, if there exists φ ∈ Qh such that

(ξτ, vh) = (∇φ, vh) = (−φ,∇ · vh),

then uniform in time stability would follow. Such a result would require Qh to contain

piecewise continuous quadratics.

Alternatively, the mesh condition that arose, δ = O(Ra−1), is extremely restrictive for

most practical flows. Practitioners often use the laminar boundary layer scaling O(Ra−1/4)

when constructing meshes, with good results. Thus, it would be interesting to see if our
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results could be improved to δ = O(Ra−1/a) for a > 0. We conjecture that a = 1/2 is

achievable. Experiments indicate that the boundary layer scales with a = 1/4, 2/7, 1/3, and

1/2, as we approach and enter the turbulence regime; see, e.g., [49, 62, 63]. One entry point

would be to improve the estimate (3.1) of Theorem 3:

|b∗(χ1, τ, χ2)| ≤ Cδb
(
ε−1‖∇χ1‖2 + ε‖∇χ2‖2

)
, (6.1)

with b > 1. This, in turn, may lead one to consider a variant of the discrete Hopf interpolant,

e.g., using piecewise quadratics or cubics instead of linears; non-conforming spaces could even

allow piecewise constants.

Another interesting problem would be to use the discrete Hopf interpolant to quantify

the energy dissipation rate and heat flux through the hot wall. In this direction, a first

step would be to consider the semi-discrete (FEM space + continuous time) problem first.

The “background flow” technique can be used followed by a time average; see, e.g., [77]. If

the former is successful, the fully-discrete setting should then be considered. The discrete

analogs of the “background flow” (discrete Hopf interpolant) and time average ( 1
N

∑N−1
n=i−1)

can then be employed.

In Chapter 4, all presented algorithms were conditionally, nonlinearly, energy stable.

Condition (4.53) was a condition on the parameters, but was not especially restrictive since

the ensemble set could be broken into several sets for which the condition held. Condition

(4.54) was not very restrictive, however, the condition (4.52) could be and motivated the

turbulence model used. It is an open question as to whether this condition could be improved

through analysis or by modifying the algorithms. Regarding the latter, operator splitting

seems to be a potential path forward. If exactly divergence-free elements [58, 78] are used,

ACE-T is unconditionally stable.

We proved optimal-order convergence, in appropriate norms, of PEA provided ε =

O(∆t2i). A similar result was proven for second-order ACE with ε = O(∆t3). Numerical

experiments suggested that these results were sub-optimal with respect to ε. We leave it as

an open problem to determine whether the ε scaling can be improved. In particular, proving

optimal-order accuracy, in appropriate norms, provided ε = O(∆ti).
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The above results appear to be achievable, at least for ACE, owing to the work of

Shen [123]. Shen analyzed the NSE with artificial compressibility and variants, drawing

connections to projection methods. In particular, he proves an error estimate for the solutions

of the model compared to solutions of the NSE; that is, under sufficient regularity [123], the

solutions uε and pε, of the artificial compressibility model, satisfy

‖u(t)− uε(t)‖+
(∫ t

t0

‖u(s)− uε(s)‖2
1ds
)1/2

+
√
ε‖p(t)− pε(t)‖ ≤ Cε. (6.2)

Thus, by the triangle inequality

‖(u, p)− (un+1
h , pn+1

h )‖ ≤ ‖(uε, pε)− (u, p)‖+ ‖(uε, pε)− (un+1
h , pn+1

h )‖

≤ Cε+ ‖(uε, pε)− (un+1
h , pn+1

h )‖,

with ‖(u, p)‖ := ‖u‖ +
( ∫ t

t0
‖u(s)‖2

1ds
)1/2

+
√
ε‖p‖. Comparing the model and our method,

we see that

ςp(p
n; qh) := ε

(pn+1 − pn

∆t
− pn+1

t , qh
)
≤ Crε∆t

σ
‖ptt‖2

L2(tn,tn+1;L2(Ω)) +
σε

r
‖qh‖2

or

ςp(p
n; qh) ≤

Crε∆t

σ
‖ptt‖2

L∞(tn,tn+1;L2(Ω)) +
σε∆t

r
‖qh‖2,

which would yield the result. Clearly, details must be worked out for the Boussinesq

equations and regularity assumptions required for (6.2) would be imposed in addition to

ptt ∈ L∞(0, t∗;L2(Ω)).

Recall, for PEA and ACE, a grad-div term arose in the momentum equation (4.14). This

term proved to be potentially disastrous for second-order PEA. Recently, first-order [33] and

second-order [119] modular algorithms were devised that add minimally intrusive modules

which implement grad-div stabilization. These algorithms do not suffer from either solver

breakdown or debilitating slow down for large values of grad-div parameters. This is precisely

the issue we witness with PEA; ACE is susceptible as well. For simplicity, consider a single

realization of the NSE. Then, candidates include:
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Modular Penalty NSE

Step 1: Given un, find ûn+1 satisfying

ûn+1 − un

∆t
+ un · ∇ûn+1 − ν∆ûn+1 = fn+1. (6.3)

Step 2: Given ûn+1, find un+1 satisfying

un+1 − ûn+1

∆t
− 1

ε
∇∇ · un+1 = 0. (6.4)

Step 3: Given un+1, find pn+1 satisfying

pn+1 = −1

ε
∇ · un+1. (6.5)

For artificial compressibility:

Modular AC NSE

Step 1: Given un and pn, find ûn+1 satisfying

ûn+1 − un

∆t
+ un · ∇ûn+1 − ν∆ûn+1 +∇pn = fn+1. (6.6)

Step 2: Given ûn+1, find un+1 satisfying

un+1 − ûn+1

∆t
− ∆t

ε
∇∇ · un+1 = 0. (6.7)

Step 3: Given un+1, find pn+1 satisfying

pn+1 = pn − ∆t

ε
∇ · un+1. (6.8)

The first algorithm can be proven to be unconditionally, nonlinearly, energy stable and is

consistent provided ε = O(∆t). The second algorithm is consistent provided ε = O(∆t),

however, stability is an open question. Numerical experiments suggest that it is first-order

convergent in appropriate norms. Fully-discrete error analyses are open questions for both

algorithms.

It is well known that the viscosity and thermal conductivity of a fluid can vary with

temperature, pressure, volume fraction of solute, and etc; see, e.g., [33,56,66] and references

therein. Some technologically important applications that utilize models for these quanti-

ties are metal 3D printing, industrial lubricants between bearings, and biomass transport.
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Recently, DeCaria, Khankan, and McLaughlin [24] developed first- and quasi-second-order

accurate time-stepping methods for the NSE with viscosity depending explicitly on space

and time. In particular, they make the following first-order accurate approximation:

∇ · (ν(x, tn+1)∇un+1) ≈ ∇ · (νnmax∇un+1) +∇ · (
√
ν ′nν ′n−1∇un),

where νnmax = supx∈Ω ν(x, tn) and ν ′n = νnmax − ν(x, tn). The algorithm is proven to be

unconditionally, nonlinearly, energy stable and first-order accurate. Interestingly, we can

modify this algorithm to account for temperature dependent viscosities. In particular,

∇ · (ν(θ(x, tn+1;ωj))∇un+1) ≈ ∇ · (νmax∇un+1) +∇ · (
√
ν ′nν ′n−1∇un),

where νmax = max1≤j≤J sup
(x,t)∈Ω×[0,t∗]

ν(T (x, t;ωj)) and ν ′n = νmax − ν(T (x, tn)). Provided

ν(ωj) is Lipschitz continuous and bounded uniformly for all (x, t) ∈ Ω × [0, t∗], then the

resulting algorithm can similarly be proven stable and convergent [41]; thermal conductivity

can be approximated in similar fashion. It is an open question whether provably second-order

accurate variants exist.

From the viewpoint of efficient computation, an important next step is to compare the

speed of our algorithms using block solvers with deflation [43, 57]. This is a much needed

comparison of significant interest. As a first step, one could fix the timestep and compare

solution times of our algorithms over alternatives; in general, comparisons for a well-selected

array of test problems would be convincing.

Other important next steps include extending these results to the primitive equations

and other physical problems. The primitive equations, used for atmosphere and ocean simu-

lations, are based off the Boussinesq equations. The development of fast ensemble algorithms

for these equations would draw significant interest. The applicable boundary conditions are

more complex and therefore interesting for the mathematician.

Penetrative convection is another important physical phenomenon that occurs in the

lower atmosphere, ocean, and lakes [107]. From the mathematical standpoint, this can

be modeled with the Boussinesq equations with βT ← β1T + β2T
2. For the nonlinear

term β2T
n+12

, a second-order accurate approximation is β2(2(T n)2 − (T n−1)2) [117]. Other
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phenomenon include, doubly diffusive convection, flow through porous media, and additive

manufacturing processes.

Boundary conditions define new physical systems as well. Recall, for the velocity and

temperature, we prescribed no-slip and mixed boundary conditions. Consideration of alter-

native boundary conditions would be interesting. For example, slip with friction for velocity

and Robin boundary conditions for temperature. This could be a stepping stone towards

treating the primitive equations, for instance.

In our algorithms, we used 〈u〉n = 1
J

∑J
j=1 u(x, tn;ωj), however, this can be replaced with

the weighted arithmetic mean; that is, 〈u〉nw =
∑J

j=1wju(x, tn;ωj) such that
∑J

j=1wj = 1.

With this weighted arithmetic mean and associated fluctuation, all results proven hold. The

weights form an additional parameter that can be used to optimize the stability conditionn.

In particular, an additional step can be implemented:

max
1≤j≤J

min
w∈BJ (0,1)

‖∇E i
w(u′

n+1
h )‖,

where BJ(0, 1) is the J-dimensional unit ball and E i
w(·) is the fluctuation associated with

〈·〉w. The aim would be to produce a more stable algorithm allowing for larger timesteps

and, therefore, increased efficiency.

In the works [72–75], the authors consider alternative turbulence models and perspec-

tives. For instance, the Prandtl relation is used instead of the Kolmogorov-Prandtl relation.

Moreover, Leray regularizations are considered. Each of these can be considered here. In

addition, it would be interesting to consider Smagorinsky and deconvolution models for the

eddy viscosity and alternative models, such as the algebraic flux and differential flux models,

for the turbulent heat flux.

Charnyi, Heister, Olshanskii, and Rebholz [16] study conservation properties of certain

numerical methods with several trilinear forms. They consider the convective, explicitly

skew-symmetric, rotational, and EMAC formulations of the trilinear form. They found that

these formulations can produce very different results for certain test problems. Thus, it

would be interesting to study these in the context of ensemble simulations. It would also be

interesting to study the rotational form of the NSE and its Boussinesq counterpart in this

context.
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Table 6.1: CR element: Consistent with literature up to Ra = 105.

Ra Time (s) maxy∈Ωh u1(0.5, y, t∗) maxx∈Ωh u2(x, 0.5, t∗) Nuavg

103 1153.67 3.66 3.73 1.12

104 705.41 16.21 19.81 2.24

105 1210.95 34.45 72.17 4.63

106 1829.71 97.78 271.07 10.09

Recall that we considered uncertain initial conditions, forcings, and parameters. How-

ever, the boundary conditions and domain boundary cannot be known exactly either. Con-

sidering these uncertainties would be an important next step. The latter is a delicate issue.

However, a path forward for the former is clear. A first step would be to study ensemble

algorithms for shear driven flow where the shear velocity U is perturbed.

In the aim of increased efficiency, the non-conforming Crouzeix-Raviart element (P1nc-

P0) has great potential. For PEA, ACE, and ACE-T, the pressure update is a true

algebraic update. Preliminary numerical tests indicate optimal-order accuracy and speed

ups, over Taylor-Hood (P2-P1), of between 2.1-2.7; see Table 6.1. Theoretical analysis is an

open question, however, a clear path forward exists; the non-conformity is dealt with as a

“variational crime” [12,18].

Lastly, in Chapter 5, we concluded that sufficiently large rotations can act to increase

predictability, larger domains are more predictable, and that spatial averaging can either act

to reduce or increase predictability. Our studies applied to the double pane window problem

and a manufactured solution. It would be interesting to study Rayleigh-Bénard convection

with rotation on various geometry (in a cube, between two concentric spheres, or planes).

These results would have implications for weather prediction.
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APPENDIX A

NON-DIMENSIONALIZATION

Recall, the Boussinesq equations are given by: Find u(x, t) : Ω × (0, t∗] → Rd, p(x, t) :

Ω× (0, t∗]→ R, and T (x, t) : Ω× (0, t∗]→ R satisfying

ρ(ut + u · ∇u+ Λ× u)− µ∆u+∇p = ρβg(T − Tref ) + f1 in Ω, (A.1)

∇ · u = 0 in Ω, (A.2)

ρcV (Tt + u · ∇T )− κ∆T = f2 in Ω, (A.3)

u = 0 on ∂Ω, T = TH on ΓD1 , T = TC on ΓD2 , n · ∇T = 0 on ΓN . (A.4)

Consider the following relationships,

x = Lx̃, t = τ t̃, u = Uũ, (A.5)

p = ρU2p̃, T = (TH − TC)T̃ + Tref , Λ = |Λ|eΛ, (A.6)

where U = κ
ρcV L

is the conductive velocity and τ = L
U

is the associated timescale; ρU2 is

often called the dynamic pressure. Introduce the relations (A.5) - (A.6) into equation (A.1)

first:

ρ(
U

τ
ũt̃ +

U2

L
ũ · ∇̃ũ+ U |Λ|eΛ × ũ)− µU

L2
∆̃ũ+

ρU2

L
∇̃p̃ = ρβg(TH − TC)T̃ + f1. (A.7)

Dividing both sides by ρU
τ

= ρU2

L
yields

ũt̃ + ũ · ∇̃ũ+
|Λ|L
U

eΛ × ũ−
ν

LU
∆̃ũ+ ∇̃p̃ =

βgL(TH − TC)

U2
T̃ +

L

ρU2
f1, (A.8)
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where ∇̃ and ∆̃ denote the non-dimensional del and Laplace operators. Denote κ̃ = κ
ρcV

and

define the Rayleigh number Ra = |g|β(TH−TC)L3

νκ̃
, Prandtl number Pr = ν

α
, Taylor number

Ta = |Λ|2L4

ν2
, and unit vector in the direction of gravity ξ = g

|g| . Then, the above is equivalent

to

ũt̃ + ũ · ∇̃ũ+ PrTa1/2eΛ × ũ− Pr∆̃ũ+ ∇̃p̃ = PrRaξT̃ + f̃1. (A.9)

Similarly, for the temperature equation (A.3), use the relations (A.5) - (A.6), and divide

both sides by τ(TH−TC)
ρCV

. Then,

T̃t̃ + ũ · ∇̃T̃ − κ̃∆̃T̃ = f̃2. (A.10)

The temperature boundary conditions become

T̃ =
TH − Tref
TH − TC

on ΓD1 , T̃ =
TC − Tref
TH − TC

on ΓD2 , n · ∇̃T̃ = 0 on ΓN . (A.11)

Selecting Tref = TC yields

T̃ = 1 on ΓD1 , T̃ = 0 on ΓD2 . (A.12)

Dropping the tilde notation, we have the following non-dimensional form of the Boussinesq

equations,

ut + u · ∇u− Pr∆u+ PrTa1/2eΛ × u+∇p = PrRaξT + f1 in Ω, (A.13)

∇ · u = 0 in Ω, (A.14)

Tt + u · ∇T − κ∆T = f2 in Ω, (A.15)

u = 0 on ∂Ω, T = 1 on ΓD1 , T = 0 on ΓD2 , n · ∇T = 0 on ΓN . (A.16)

Non-dimensionalization is not unique. For example, choosing U =
√
|g|βL(TH − TC), defin-

ing the Rossby number Ro = U
|Λ|L , and using the same techniques as in the above yields,

ut + u · ∇u−
√
Pr

Ra
∆u+Ro−1eΛ × u+∇p = ξT + f1 in Ω, (A.17)

∇ · u = 0 in Ω, (A.18)

Tt + u · ∇T − 1√
RaPr

∆T = f2 in Ω, (A.19)

u = 0 on ∂Ω, T = 1 on ΓD1 , T = 0 on ΓD2 , n · ∇T = 0 on ΓN . (A.20)

Here, U is the convective velocity and τ the associated timescale.
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APPENDIX B

DETERMINATION OF C†

In this section, we concern ourselves with forming estimates for C? and C?? used in deter-

mining C† for condition (4.52). Recall, for d = 2 or 3,

sup
u,v,w∈Xh

b(u, v, w)

‖∇u‖‖∇v‖‖w‖
≤ C?h

−1/2,

sup
u∈Xh
T,S∈Wh

b∗(u, T, S)

‖∇u‖‖∇T‖‖S‖
≤ C??h

−1/2.

Now, consider a uniform mesh on the unit square. The perimeter and area of each

element K is (2 +
√

2)h and h2

2
. The following upper bound hold,

b(u, v, w) = (u · ∇v, w) +
1

2

(
(∇ · u)v, w

)
(B.1)

≤ ‖u‖L4‖∇v‖‖w‖L4 +
1

2
‖∇ · u‖‖v‖L4‖w‖L4 (B.2)

≤ C2
L

√
‖u‖‖∇u‖‖∇v‖

√
‖w‖‖∇w‖+

C2
L

√
d

2
‖∇u‖

√
‖v‖‖∇v‖

√
‖w‖‖∇w‖ (B.3)

≤ C2
LC

1/2
P (1 +

√
d

2
)‖∇u‖‖∇v‖

√
‖w‖‖∇w‖ (B.4)

≤ C2
LC

1/2
P C

1/2
inv (1 +

√
d

2
)h−1/2‖∇u‖‖∇v‖‖w‖, (B.5)

where CL = 21/4 is the Ladyzhenskaya constant, CP = 1/2, Cinv =
(4+2

√
2)
√
Cj

h
[110], and Cj

is a constant associated with piecewise polynomials of total degree j. Thus,

C? ≤
√

4 + 2
√

2C
1/4
j h−1/2,
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where C1 = 6, C2 = 45/2, and C3 = 56.8879. Thus, for Taylor-Hood C? ≤ 3.44 and for the

MINI element C? ≤ 4.34.

For a general polyhedral domain in Rd, the Poincaré-Friedrichs inequality holds with

constant CP = 2diam(Ω)
d

[115]. Consider the unit cube with uniform mesh using regular

tetrahedrons with surface area and volume of
√

3h2 and h3

6
√

2
. Then,

b(u, v, w) ≤ ‖u‖L6‖∇v‖‖w‖L3 +
1

2
‖∇ · u‖‖v‖L6‖w‖L3 (B.6)

≤ CGCL‖∇u‖‖∇v‖
√
‖w‖‖∇w‖+

CSCL
√
d

2
‖∇u‖‖∇v‖

√
‖w‖‖∇w‖ (B.7)

≤ CGCLC
1/2
P C

1/2
inv (1 +

√
d

2
)h−1/2‖∇u‖‖∇v‖‖w‖, (B.8)

where CG = 1
31/4

is the Gagliardo-Nirenberg constant, CL = 2√
3

is the Ladyzhenskaya con-

stant, CP = 4
√

2
3

, and Cinv =
√

3
√
Cj

6
√

2h
[110]. Thus,

C? ≤
2
√

2

3

(1

2
+

√
3

3

)
C

1/4
j h−1/2,

where C1 = 10, C2 = 63/2, and C3 = 42 + 12
√

7. Thus, for Taylor-Hood C? ≤ 3.41 and for

the MINI element C? ≤ 4.21.

For b∗(u, T, S), we must be careful as the temperature is not zero on the entirety of the

boundary; thus, we cannot extend by zero. Using the extension operator from [32], we find

that there exists C > 0 such that C?? ≤ (1 + C
2

)C?. Determination of C > 0 on certain

mesh/domain combinations is left open. However, the estimates above will hold for T |∂Ω = 0.
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APPENDIX C

EXISTENCE AND UNIQUENESS

In Chapter 4, we proposed eight efficient algorithms for computing an ensemble of solutions

to the Boussinesq system. We stated but did not prove well-posedness, which we provide

herein. The following result is extraordinarily useful.

Theorem 17. (Lax-Milgram) Consider the problem: Find u ∈ H such that

a(u, v) = f(v), ∀v ∈ H. (C.1)

Let H be a Hilbert space. Suppose a : H ×H → R is a bilinear form satisfying

a(u, v) ≤ Ccont‖u‖H‖v‖H (continuous),

a(u, u) ≥ Ccoer‖u‖2
H (coercive),

and f ∈ H ′ a linear functional satisfying

f(v) ≤ C‖v‖H (continuous).

Then, the problem (C.1) is well posed; that is, there exists a unique solution u satisfying

(C.1). Moreover,

‖u‖H ≤ C−1
coer‖f‖H′ , ∀f ∈ H ′.

Proof. See Lemma 2.8 on p. 85 of [31].
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Theorem 18. Consider the ensemble algorithms: eBDF (4.40) - (4.42), PEA (4.43) -

(4.44), ACE (4.46) - (4.47), and ACE-T (4.49) - (4.50). Suppose fn+1
1 ∈ H−1(Ω)d,

fn+1
2 ∈ H−1(Ω), unh ∈ Xh, T nh ∈ Wh, and pnh ∈ Qh(when required). Then, there exists unique

solutions un+1
h , T n+1

h ∈ Wh, and pn+1
h ∈ Qh.

Proof. We will provide two proofs. For the first, we note that each algorithm reduces to a

finite dimensional linear system after picking a basis. Consider Algorithm eBDF, equation

(4.40) is equivalent to

1

i∆t
(un+1

h , vh)+b(E i(〈uh〉n+1), un+1
h , vh)+〈ν〉(∇un+1

h ,∇vh)+(〈Λ〉×un+1
h , vh)−(pn+1

h ,∇·vh)

=
1

i∆t
(un+1

h , vh)− (∂i∆t(u
n+1
h ), vh) + (βgE i(T n+1

h ), vh) + (fn+1
1 , vh)

+ b(E i(u′
n+1
h ),E i(un+1

h ), vh) + ν ′(∇E i(un+1
h ),∇vh)

+ (Λ′ × E i(un+1
h ), vh) := Data. (C.2)

Existence is equivalent to uniqueness, thus we must show (un+1
h , pn+1

h , T n+1
h ) ≡ (0, 0, 0) pro-

vided the right-hand sides are zero; that is, Data ≡ 0. Let vh = un+1
h ∈ Vh in (C.2),

then

‖un+1
h ‖2 + i∆t‖〈ν〉1/2∇un+1

h ‖2 = 0,

which implies un+1
h ≡ 0. Similarly, rewrite T n+1

h = θn+1
h + Ihτ , rearrange (4.42), set the

right-hand sides to zero, and let Sh = θn+1
h ∈ WΓD,h. Then,

‖θn+1
h ‖2 + i∆t‖〈κ〉1/2∇θn+1

h ‖2 = 0.

Consequently, T n+1
h − Ihτ = T n+1

h = θn+1
h ≡ 0. Uniqueness of the pressure follows via the

discrete inf-sup condition (2.23). In particular,

β‖pn+1
h ‖ ≤ (1 + C−1

∗ )
( C1

νmin
‖〈ν〉1/2∇E i(〈uh〉n+1)‖+ ν1/2

max +
C2
P |〈Λ〉|
ν

1/2
min

)
‖〈ν〉1/2∇un+1

h ‖. (C.3)

Thus, pn+1
h ≡ 0 since un+1

h ≡ 0, as needed.
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For PEA, rearrange (4.43) and set the right-hand sides to zero. Select vh = un+1
h ∈ Xh,

then

‖un+1
h ‖2 + i∆t‖〈ν〉1/2∇un+1

h ‖2 +
i∆t

ε
‖∇ · un+1

h ‖2 = 0.

Consequently, un+1
h ≡ 0 and pn+1

h ≡ 0 since ε‖pn+1
h ‖2 = 1

ε
‖∇ · un+1

h ‖2 = 0. Temperature

follows as in the above. Both ACE and ACE-T follow similarly.

Alternatively, we can use the Lax-Milgram theorem. Consider eBDF. At each timestep,

we must find un+1
h ∈ Vh satisfying equation (C.2). Define a and f as follows,

a(un+1
h , vh) =

1

i∆t
(un+1

h , vh) + b(E i(〈uh〉n+1), un+1
h , vh)

+〈ν〉(∇un+1
h ,∇vh) + (〈Λ〉 × un+1

h , vh), (C.4)

f(vh) =
1

i∆t
(un+1

h , vh)− (∂i∆t(u
n+1
h ), vh) + (βgE i(T n+1

h ), vh) + (fn+1
1 , vh)

+ b(E i(u′
n+1
h ),E i(un+1

h ), vh) + ν ′(∇E i(un+1
h ),∇vh) + (Λ′ × E i(un+1

h ), vh). (C.5)

We see that

a(un+1
h , un+1

h ) =
1

i∆t
‖un+1

h ‖2 + ‖〈ν〉1/2∇un+1
h ‖2 ≥ C‖∇un+1

h ‖2, (C.6)

a(un+1
h , vh) ≤

C2
P

i∆t
‖∇un+1

h ‖‖∇vh‖+ C1‖∇E i(〈uh〉n+1)‖‖∇un+1
h ‖‖∇vh‖

+|〈ν〉|‖∇un+1
h ‖‖∇vh‖+ |〈Λ〉|C2

P‖∇un+1
h ‖‖∇vh‖

≤ C‖∇un+1
h ‖‖∇vh‖. (C.7)

By similar arguments,

f(vh) ≤ C‖∇vh‖. (C.8)

Thus, at each timestep, a is a continuous and coercive bilinear form on Vh ⊂ V and f is

a linear functional on V ′h. Thus, by the Lax-Milgram theorem (17), a solution un+1
h exists

uniquely, and therefore pn+1
h . Applying the same techniques to equation (4.42) yields unique

existence of the temperature approximation T n+1
h . It is then routine to apply this technique

to the other algorithms.
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[22] A. Çibik and S. Kaya, A projection-based stabilized finite element method for steady-state
natural convection problem, J. Math. Anal. Appl., 381 (2011), pp. 469-484.

[23] E. Colmenares and M. Neilan, Dual-mixed finite element methods for the stationary
Boussinesq problem, Computers and Mathematics with Applications, 72 (2016), pp. 1828-
1850.

[24] V. DeCaria, S. Khankan, and M. McLaughlin, Time-stepping methods for the Navier-
Stokes equations with fluctuating viscosity, in preparation.

139



[25] V. DeCaria, W. Layton, and M. McLaughlin, A conservative, second order, uncondi-
tionally stable artificial compression method, Comput. Methods Appl. Mech. Engrg., 325
(2017), pp. 733-747.

[26] J. W. Demmel, N. J. Higham, and R. S. Schreiber, Stability of block LU factorization,
Numerical linear algebra with applications, 2 (1995), pp. 173-190.

[27] C. R. Doering and P. Constantin, Energy dissipation in shear driven turbulence, Phys.
Rev. Lett., 69 (1992), pp. 1648-1651.

[28] C. R. Doering and P. Constantin, Variational bounds on energy dissipation in incom-
pressible flows. III. Convection, Phys. Rev. E, 53 (1996), pp. 5957-5981.

[29] B. Eckhardt and D. Yao, Local Lyapunov exponents in chaotic systems, Physica D, 65
(1993), pp. 100-108.

[30] A. El Guennouni, K. Jbilou, and H. Sadok, A block version of BiCGSTAB for linear
systems with multiple right-hand sides, Electronic Transactions on Numerical Analysis,
16 (2003), pp. 129-142.

[31] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer-Verlag,
New York, 2004.

[32] A. Ern and J.-L. Guermond, Mollification in strongly Lipschitz domains with applica-
tion to continuous and discrete de Rham complexes, Computational Methods in Applied
Mathematics, 16 (2016), pp. 51-75.

[33] J. A. Fiordilino, M. Massoudi, and A. Vaidya, On the heat transfer and flow of a non-
homogeneous fluid, Applied Mathematics and Computation, 243 (2014), pp. 184-196.

[34] J. A. Fiordilino and S. Khankan, Ensemble Timestepping Algorithms for Natural Con-
vection, Int. J. Numer. Anal. Model, 15 (2018), pp. 524-551.

[35] J. A. Fiordilino, A Second Order Ensemble Timestepping Algorithm for Natural Con-
vection, SIAM J. Numer. Anal., 56 (2018), pp. 816-837.

[36] J. A. Fiordilino, W. J. Layton, and Y. Rong, An Efficient and Modular Grad-Div Sta-
bilization, Comput. Methods Appl. Mech. Engrg., 335 (2018), pp. 327-346.

[37] J. A. Fiordilino, Ensemble time-stepping algorithms for the heat equation with uncertain
conductivity, Numer. Methods Partial Differential Eq., 00 (2018), pp. 1-16.

[38] J. A. Fiordilino and A. Pakzad, A Discrete Hopf Interpolant and Stability of the Fully
Discrete Finite Element Method for Natural Convection Problems, submitted.

[39] J. A. Fiordilino and M. McLaughlin, An Artificial Compressibility Ensemble Timestep-
ping Algorithm for Flow Problems, submitted.

140



[40] J. A. Fiordilino, On pressure estimates for the Navier-Stokes equations, arXiv preprint
arXiv:1803.04366 (2018).

[41] J. A. Fiordilino, A new ensemble algorithm for the Boussinesq equations with
temperature-dependent viscosity and conductivity, in preparation.

[42] C. Foias, O. Manley, and R. Temam, Attractors for the Bénard problem: existence and
physical bounds on their fractal dimension, Nonlinear Anal., 11 (1987), pp. 939-967.

[43] R. W. Freund and M. Malhotra, A Block QMR Algorithm for Non-Hermitian Lin-
ear Systems With Multiple Right-Hand Sides, Linear Algebra and its Applications, 254
(1997), pp. 119-157.

[44] J. M. Fritsch, J. Hilliker, J. Ross, and R. L. Vislocky, Model consensus, Wea. Forecasting,
15 (2000), 571-582.

[45] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations:
Steady-state problems, Springer Science+Business Media, New York, 2011.

[46] K. J. Galvin, New subgrid artificial viscosity Galerkin methods for the Navier-Stokes
equations, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 242-250.

[47] B. Gebhart, Buoyancy induced fluid motions characteristic of applications in technology,
J. Fluids Eng., 101 (1979), pp. 5-28.

[48] M. Germano, Differential filters for the large eddy numerical simulation of turbulent
flows, Phys. Fluids, 29 (1986), pp. 1755-1757.

[49] A. E. Gill, The boundary-layer regime for convection in a rectangular cavity, Journal of
Fluid Mechanics, 26 (1966), pp. 515-536.

[50] V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equa-
tions, Springer, Berlin, 1979.

[51] R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator-splitting methods in
nonlinear mechanics, SIAM, Philadelphia, 1989.

[52] J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incom-
pressible flow, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 6011-6045.

[53] J.-L. Guermond and P. D. Minev, High-order time stepping for the Incompressible
Navier-Stokes equations, SIAM J. Sci. Comput., 37 (2015), pp. A2656-A2681.

[54] M. Gunzburger, N. Jiang and Z. Wang, An Efficient Algorithm for Simulating Ensembles
of Parameterized Flow Problems, submitted, 2016.

[55] M. Gunzburger, N. Jiang and Z. Wang, A Second-Order Time-Stepping Scheme for
Simulating Ensembles of Parameterized Flow Problems, submitted, 2017.

141



[56] G. Gupta and M. Massoudi, Flow of a generalized second grade fluid between heated
plates, Acta Mech., 99 (1993), pp. 21-33.

[57] M. H. Gutknecht, Block Krylov Space Methods for Linear Systems with Multiple Right-
Hand Sides: An Introduction, Modern Mathematical Models, Methods and Algorithms
for Real World Systems, Anamaya Publishers, New Delhi, India, 2006.

[58] J. Guzmán and M. Neilan, Inf-sup stable finite elements on barycentric refine-
ments producing divergence-free approximations in arbitrary dimensions, arXiv preprint
arXiv:1710.08044 (2017).

[59] G. Haubs and H. Haken, Quantities Describing Local Properties of Chaotic Attractors,
Z. Phys. B, 59 (1985), pp. 459-468.

[60] F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), pp. 251-265.

[61] R. A. W. M. Henkes, F. F. Van Der Vlugt, and C. J. Hoogendoorn, Natural-convection
flow in a square cavity calculated with low-Reynolds-number turbulence models, Int. J.
Heat Mass Transfer., 34 (1991), pp. 377-388.

[62] R. A. W. M. Henkes and C. J. Hoogendoorn, Scaling of the laminar natural-convection
flow in a heated square cavity, Int. J. Heat Mass Transfer, 36 (1993), pp. 2913-2925.

[63] F. Heslot, B. Castaing, and A. Libchaber, Transitions to turbulence in helium gas,
Physical Review A, 36 (1987), pp. 5870-5873.

[64] J. G. Heywood and R. Rannacher, Finite-Element Approximation of the Nonstationary
Navier-Stokes Problem Part IV: Error Analysis for Second-Order Time Discretization,
SIAM J. Numer. Anal., 27 (1990), pp. 353-384.

[65] E. Hopf, Lecture series of the symposium on partial differential equations, Berkeley,
1955.

[66] J. Hron, J. Malek, and K.R. Rajagopal, Simple flows of fluids with pressure-dependent
viscosities, Proc. R. Soc. Lond., 457 (2001) 1603-1622.

[67] N. Z. Ince and B. E. Launder, On the computation of buoyancy-driven turbulent flows
in rectangular enclosures, Int. J. Heat and Fluid Flow, 10 (1989), pp. 110-117.

[68] R. Ingram, Approximating fast, viscous fluid flow in complicated domains, Ph.D. thesis,
University of Pittsburgh, Pittsburgh, PA, 2011.

[69] R. Ingram, A new linearly extrapolated Crank-Nicolson time-stepping scheme for the
Navier-Stokes equations, Mathematics of Computation, 82 (2013), pp. 1953-1973.

[70] K. Jbilou, A. Messaoudi, and H. Sadok, Global FOM and GMRES algorithms for matrix
equations, Appl. Numer. Math., 31 (1999), pp. 49-63.

142



[71] N. Jiang and W. Layton, An Algorithm for Fast Calculation of Flow Ensembles, Int. J.
Uncertain. Quantif., 4 (2014), pp. 273-301.

[72] N. Jiang, A Higher Order Ensemble Simulation Algorithm for Fluid Flows, J. Sci. Com-
put., 64 (2015), pp. 264-288.

[73] N. Jiang, S. Kaya, and W. Layton, Analysis of model variance for ensemble based turbu-
lence modeling, Computational Methods in Applied Mathematics, 15 (2015), pp. 173-188.

[74] N. Jiang and W. Layton, Numerical analysis of two ensemble eddy viscosity numerical
regularizations of fluid motion, Numerical Methods for Partial Differential Equations, 31
(2015), pp. 630-651.

[75] N. Jiang and W. Layton, Algorithms and models for turbulence not at statistical equi-
librium, Computers & Mathematics with Applications, 71 (2016) pp. 2352-2372.

[76] V. John, Finite Element Methods for Incompressible Flow Problems, Springer Nature,
Cham, Switzerland, 2017.

[77] V. John, W. Layton, and C. C. Manica, Convergence of Time-Averaged Statistics of
Finite Element Approximations of the Navier-Stokes Equations, SIAM J. Numer. Anal.,
46 (2007), pp. 151-179.

[78] V. John, A. Linke, C. Merdon, M. Neilan, and L. G. Rebholz, On the Divergence Con-
straint in Mixed Finite Element Methods for Incompressible Flows, SIAM Review, 59
(2017), pp. 492-544.

[79] D. D. Joseph, Nonlinear Stability of the Boussinesq Equations by the Method of Energy,
Archive for Rational Mechanics and Analysis, 22 (1966), pp. 163-184.

[80] E. Kalnay, Atmospheric modeling, data assimilation and predictability, Cambridge Uni-
versity Press, New York, 2003.

[81] E. Kalnay and M. Ham, Forecasting forecast skill in the Southern Hemisphere, Preprints
of the 3rd International Conference on Southern Hemisphere Meteorology and Oceanog-
raphy, Buenos Aires, 1989, pp. 13-17.

[82] W. Thomson, Popular Lectures and Addresses, Macmillan and Company, New York,
1889.

[83] S. Khankan, Ensembles for the Predictability of Average Temperatures, Ph. D. thesis,
University of Pittsburgh, Pittsburgh, PA, 2016.

[84] W. Layton and L. Tobiska, A Two-Level Method with Backtracking for the Navier-Stokes
Equations, SIAM J. Numer. Anal., 35 (1998), pp. 2035-2054.

[85] W. Layton, Introduction to the Numerical Analysis of Incompressible, Viscous Flows,
SIAM, Philadelphia, 2008.

143



[86] W. J. Layton and C. Trenchea, Stability of the IMEX methods, CNLF and BDF2-
AB2, for uncoupling systems of evolution equations, Applied Numerical Mathematics, 62
(2012), pp. 112-120.

[87] J. Leray, Essay sur les mouvements plans dune liquide visqueux que limitent des parois,
J. Math. Pur. Appl., Paris Ser. IX, 13 (1934), pp. 331-418.

[88] J. Leray, Sur les mouvements dune liquide visqueux emplissant lespace, Acta Math., 63
(1934), pp. 193-248.

[89] P. Lermusiaux, Uncertainty estimation and prediction for interdisciplinary ocean dy-
namics, J. Comput. Phys., 217 (2006), pp. 860-877.

[90] M. Leutbecher and T. N. Palmer, Ensemble forecasting, Journal of Computational
Physics, 227 (2009), pp. 3515-3539.

[91] J. M. Lewis, Roots of Ensemble Forecasting, Monthly Weather Review, 133 (2005), pp.
1865-1885.

[92] E. N. Lorenz, The predictability of hydrodynamic flow, Trans. NY Acad. Sci., Series II,
25 (1963), pp. 409-432.

[93] E. N. Lorenz, Deterministic non-periodic flow, J. Amots. Sci., 20 (1963), pp. 130-141.

[94] E. N. Lorenz, A study of predictability of a 28-variable atmospheric model, Tellus, 17
(1965), pp. 321-333.

[95] E. N. Lorenz The predictability of a flow which possesses many scales of motion, Tellus,
21 (1968), pp. 289-307.

[96] T. Ma and S. Wang, Dynamic bifurcation and stability in the Rayleigh-Bénard convec-
tion, Communications in Mathematical Sciences, 2 (2004), pp. 159-183.
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fornia, 1998.

[141] K. H. Winters, Hopf Bifurcation in the Double-Glazing Problem with Conducting
Boundaries, J. Heat Transfer, 109 (1987), pp. 894-898.

[142] J. Wu, D. Gui, D. Liu, and X. Feng, The characteristic variational multiscale method
for time dependent conduction-convection problems, Int. Comm. Heat Mass Trans., 68
(2015), pp. 58-68.

[143] N. Yanenko, The Method of Fractional Steps, Springer, Berlin, 1971.

[144] G. Zukav, The Dancing Wu Li Masters: An Overview of the New Physics, Bantam
Books, (1979).

147



[145] Y. Zhang and Y. Hou, The Crank-Nicolson Extrapolation Stabilized Finite Element
Method for Natural Convection Problem, Mathematical Problems in Engineering, 2014
(2014), pp. 1-22.

148


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	4.1. Perturbations to associated parameters and initial conditions.
	4.2. eBDF (1st-order): Errors and rates for average velocity, temperature, and pressure in corresponding norms.
	4.3. eBDF (2nd-order): Errors and rates for average velocity, temperature, and pressure in corresponding norms.
	4.4. PEA (1st-order): Errors and rates for average velocity, temperature, and pressure in corresponding norms.
	4.5. PEA (2nd-order): Errors and rates for average velocity, temperature, and pressure in corresponding norms.
	4.6. ACE (1st-order): Errors and rates for average velocity, temperature, and pressure in corresponding norms.
	4.7. ACE (2nd-order): Errors and rates for average velocity, temperature, and pressure in corresponding norms.
	4.8. Comparison: maximum horizontal velocity at x = 0.5 & mesh size, double pane window problem.
	4.9. Comparison: maximum vertical velocity at y = 0.5 & mesh size, double pane window problem.
	4.10. Comparison: average Nusselt number at the hot wall.
	4.11. Second-order ACE-T is consistent with literature.
	5.1. t(0): Larger domain sizes and filter radius increase predictability.
	6.1. CR element: Consistent with literature up to Ra = 105.

	LIST OF FIGURES
	3.1. The discrete Hopf interpolant on a FE mesh.
	4.1. Domain & BCs: manufactured solution problem.
	4.2. Mesh: manufactured solution problem.
	4.3. Domain & BCs: double pane window problem.
	4.4. Mesh: double pane window problem, 103 Ra 106 (left) and 107 Ra 108 (right).
	4.5. BV (bv(T;+3)): Ra = 103, 104 (top row), 105, and 106 (bottom row), left to right.
	4.6. Variation of the local Nusselt number at the hot wall: Ra = 103, 104 (top row), 105, and 106 (bottom row), left to right.
	4.7. Variation of the local Nusselt number at the cold wall: Ra = 103, 104 (top row), 105, and 106 (bottom row), left to right.
	4.8. Streamlines: Ra = 103, 104 (top row), 105, and 106 (bottom row), left to right.
	4.9. Isotherms: Ra = 103, 104 (top row), 105, and 106 (bottom row), left to right.
	4.10. Time to steady state: ACE performs best followed by eBDF.
	4.11. Variation of the local Nusselt number: hot wall (top) and cold wall (bottom).
	4.12. Streamlines (top row) and isotherms (bottom row), Ra = 107, 108, left to right.
	5.1. Lyapunov exponent: Increasing Ra reduces predictability; velocity (top) and temperature (bottom).
	5.2. Lyapunov exponent: Increasing Ra reduces predictability; pressure (top) and all solutions for Ra = 104 (bottom).
	5.3. Energy: Ra = 102 to 104, top to bottom.
	5.4. Variance: Increasing Ra reduces predictability; velocity, temperature, and pressure, top to bottom.
	5.5. Lyapunov exponent: Large rotations can stabilize and increase predictability; varying Ta (top) and zoomed in (bottom).

	PREFACE
	1.0 INTRODUCTION
	2.0 MATHEMATICAL PRELIMINARIES
	2.1 Finite Element Preliminaries

	3.0 STABILITY OF FINITE ELEMENT METHODS FOR THE BOUSSINESQ EQUATIONS
	3.1 Construction of the discrete Hopf extension
	3.2 Numerical Schemes
	3.3 Stability Analysis
	3.4 Conclusion

	4.0 ENSEMBLE ALGORITHMS FOR THE BOUSSINESQ EQUATIONS WITH UNCERTAIN DATA
	4.1 Numerical Schemes
	4.2 Stability Analysis
	4.3 Error Analysis
	4.4 Numerical Tests
	4.4.1 Stability condition
	4.4.2 Perturbation generation
	4.4.3 Convergence Tests
	4.4.4 The double pane window problem

	4.5 Conclusion

	5.0 PREDICTABILITY
	5.1 Numerical Tests
	5.2 Conclusion

	6.0 CONCLUSIONS AND OPEN QUESTIONS
	APPENDIX A. NON-DIMENSIONALIZATION
	APPENDIX B. DETERMINATION OF C
	APPENDIX C. EXISTENCE AND UNIQUENESS
	APPENDIX D. PUBLICATIONS
	BIBLIOGRAPHY

