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This thesis explores impact of evidence-based active-engagement courses (EBAE) on student 

achievement and gender gap in introductory physics. The first study is about the pedagogical 

content knowledge (PCK) of the physics teaching assistants (TAs) at identifying introductory 

students’ difficulties using the Conceptual Survey of Electricity and Magnetism, which is 

important for implementing evidence-based pedagogy. The second study focuses on EBAE 

physics classes in which there are potential opportunities for instructors and TAs to apply their 

PCK and other research-based instructional strategies to improve student learning. We investigated 

whether EBAE classes improved student performance compared to traditional lecture-lased (LB) 

classes and whether EBAE classes helped improve student performance. We used the Force 

Concept Inventory (FCI) in physics I and the Conceptual Survey of Electricity and Magnetism 

(CSEM) in physics II as assessment instruments. Our findings suggest that, on average, students 

in EBAE classes outperformed students in LB classes in conceptual posttests although their scores 

on pretests were not statistically significantly different. Moreover, on average, both male and 

female students in EBAE classes outperformed those of the same gender in LB classes on posttests 

although there was no difference on the pretests. However, no reduction in the gender gap in EBAE 

classes was observed. 

We also investigated the impact of stereotype threat in introductory physics classes. When 

students were asked to indicate their gender immediately before taking standardized physics tests, 

no deterioration in female students’ performance on standardized test was observed compared to 
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the case when gender was not indicated. Moreover, we also investigated the extent to which 

agreeing with the stereotype that men to generally perform better in physics than women was 

correlated with students’ performance and found that this type of belief is not very common 

(~10%). However, in some situations, female students who agreed with the stereotype performed 

worse than female students who did not agree with it. This effect appears to be stronger in the 

calculus-based courses compared to the algebra-based courses. Finally, we propose that 

implementing interventions to improve female students’ social belongingness, self-efficacy and 

growth mindset may help reduce the gender gap in physics courses. 
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1.0  INTRODUCTION 

Human learning is a complex process. The research on human learning has been a part of 

psychology since the 1800s partly because the existence of a culture depends on the ability of its 

new members to learn set of skills, whether new or existing. The application of this research in 

teaching physics, and the development of Physics Education Research as an area of research is 

rather new. Today, there are many research-validated instructional approaches that attempt to 

improve student learning and problem solving skills of introductory and advanced physics 

students. 

1.1 LEARNING 

Since my thesis will focus on student learning and in particular, improving student learning of 

physics, we will define what we mean by ‘learning’. One definition of learning, which is used in 

the book “Learning and Memory” by J. Anderson [1], is as follows: “Learning is the process by 

which long-lasting changes occur in behavioral potential as a result of experience.” Anderson 

elaborates the key terms in this definition as follows [1]: In this definition, learning typically refers 

to the process of change. Also the change must be relatively long lasting to exclude certain 

transient changes that we will not call learning. Moreover, if a person learns something, but it does 

not affect that person’s behavior because it is kept latent, there is no way to know what was learned. 
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In particular, not everything we learn has an impact on our behavior. However, learning can impact 

the potential for certain type of behavior, e.g., how we would perform on a physics test and one 

can device various tests to measure whether learning has taken place. 

In the light of Anderson’s definition of learning [1], I aspire to investigate several aspects 

of learning in introductory physics and how to improve students’ learning and performances in 

introductory physics classes. My goal in this thesis is to evaluate students’ learning of physics and 

their performances in traditional lecture-based (LB) introductory physics classes as well as in 

evidence-based active engagement (EBAE) classes. I also sought to investigate how students’ 

gender and their beliefs related to certain stereotypes about gender impact their learning. In 

particular, my research includes an investigation of the impact of stereotype threats on male and 

female students’ performance on standardized physics tests. I also studied the pedagogical content 

knowledge (PCK) of the teaching assistants (TAs) in introductory physics courses as it relates to 

electricity and magnetism concepts since this PCK can greatly impact student learning in those 

courses. 

Many cognitive science researchers have proposed different learning frameworks to 

improve student learning. Therefore, before describing each component of my research 

investigations, I will first discuss these learning frameworks from cognitive science that have 

provided foundation for my investigations. 

1.2 LEARNING FRAMEWORKS FROM COGNITIVE SCIENCE 

Cognitive scientists have developed a number of learning frameworks in order to improve student 

learning. One overarching framework that can guide effective approaches to teaching and learning 
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is described by Collins et al. and is known as the Cognitive Apprenticeship model [2]. Moreover, 

in order to develop curricula and pedagogies to help students learn concepts and develop problem 

solving [3-20], reasoning and meta-cognitive skills, Vygotsky’s Zone of Proximal Development 

(ZPD) framework, Piaget’s optimal mismatch framework and Schwartz, Bransford and Sear’s 

framework focusing on the Preparation For Future Learning (PFL) are also very useful. 

1.2.1 Cognitive Apprenticeship Model 

Cognitive apprenticeship model is a framework developed by Collins, Brown, and Newman in 

1989 [2]. The model describes the process in which a master (or a teacher) teaches a skill to an 

apprentice (or a student). The authors developed six teaching steps for cognitive apprenticeship 

framework which can be condensed into three main steps. In particular, the three main steps, 

modeling, coaching and scaffolding, and weaning are at the core of cognitive apprenticeship model 

and help with cognitive and metacognitive development. 

Modeling is the first step in which a master exemplifies or demonstrates his/her skills to 

the apprentice. In this step, the master carries out a task in front of the student so that the students 

can observe and build a conceptual model of the processes that are required to accomplish the task 

and perform well. In the second step, coaching and scaffolding, the instructor lets the student 

perform the task while observing the student do it. The instructor provides feedback and corrects 

the student’s mistakes. This active real-time feedback to improve student’s cognitive and meta-

cognitive skills is central to helping students develop desired skills and learn useful concepts. This 

step of coaching and scaffolding continues until the student reaches to a certain level of expertise. 

At this point, the student can continue performing the task on his own for self-improvement while 

getting less frequent feedback as needed. The instructor gradually removes or weans the support 
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and lets the student develop self-reliance and continue the task on his/her own. This step is called 

weaning or fading. 

1.2.2 Zone of Proximal Development (ZPD) 

The Zone of Proximal Development (often called ZPD) is a concept attributed to the Soviet 

psychologist Lev Vygotsky in the early 1930s [21]. In this framework, ZPD is the difference 

between what a learner can do without an expert’s help and what s/he can do with the help of an 

expert who is familiar with the learner’s initial knowledge and skills and takes advantage of this 

knowledge to improve learning. The ZPD framework suggests that students should be presented 

with tasks that are within their ZPD, so that optimal learning can take place. As a child gradually 

learns concepts and develops the skills to perform certain tasks, their ZPD will stretch. In this 

sense, ZPD is a dynamic construct. 

1.2.3 Optimal Mismatch 

Piaget was a Swiss cognitive psychologist whose “optimal mismatch” framework [22] proposes 

that in order to optimize learning, one should provide optimal mismatch. A related framework is 

the theory of conceptual change put forth by Posner et al. [23]. In this framework, conceptual 

changes or “accommodations” can occur when the existing conceptual understanding of students 

is not sufficient for or is inconsistent with new phenomena observed. In particular, in order for 

conceptual change to occur, instructional design should provide opportunity for students to realize 

that there is some inconsistency between what their mental models are and what they are observing. 

Then after this cognitive conflict students are in a state of disequilibrium and providing optimal 
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mismatch would imply that students are giving appropriate guidance and support via the 

instructional design in order for desired assimilation and accommodation of knowledge to occur.  

1.2.4 Preparation for Future Learning  

Schwartz et al. [24] proposed that in order to prepare students for future learning and for helping 

them develop expertise in a particular domain so that they can transfer their learning from one 

context to another, two orthogonal dimensions should be considered carefully in any instructional 

design. In this two dimensional learning space, the two dimensions correspond to efficiency and 

innovation. According to Schwartz et al., efficiency-oriented practices or exercises alone do not 

require in-depth understanding or anything innovative. So, by repeating this type of task, a student 

or an apprentice can have very high efficiency but not be able to transfer the learning to new 

situation. In this case, the learner will become a routine expert. Innovation, on the other hand, 

requires an individual to think and understand the problem deeply. However, if the task is too 

innovative and does not have sufficient efficient component to it, novice students may not be able 

to accomplish the task and become frustrated novices. What Schwartz et al. proposed is that the 

instructional design should have a balance of innovation and efficiency so that the task is neither 

too easy nor too difficult and students focus on learning while engaged with the task. This type of 

task will create an optimal learning condition for the students to become adaptive experts so that 

they do not give up. In other words, tasks that have a sufficient balance of innovation and efficiency 

can prepare students for future learning and can help them transfer their learning from one situation 

to another. 

We note that for our purposes, Vygotsky’s ZPD framework, Piaget’s optimal mismatch 

framework and Schwartz et al.’s PFL framework are very similar. In particular, all of these 
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frameworks emphasize the importance of knowing the prior knowledge and skills of the students 

in order to design instruction and employ pedagogies to help them. Knowing initial knowledge 

and skills of the students can guide an instructor to provide optimal mismatch, remain in the ZPD 

and give the instructor a good understanding of what is efficient or innovative for the students at a 

given point of time in the instructional sequence so that learning is optimized via appropriate 

curricula and pedagogies.  

Now that we have reviewed the cognitive frameworks, below, we summarize the various 

research investigations discussed in the different chapters of the thesis. 

1.3 PEDAGOGICAL CONTENT KNOWLEDGE OF TEACHING ASSISTANTS 

USING THE CONCEPTUAL SURVEY OF ELECTRICITY AND MAGNETISM 

The Conceptual Survey of Electricity and Magnetism (CSEM) is a conceptual multiple-choice 

survey [25] commonly used to assess student learning in introductory electricity and magnetism 

courses. Pedagogical content knowledge, or PCK as defined by Shulman [26, 27], includes 

“Understanding of the conceptions and preconceptions that students bring with them to the 

learning of those most frequently taught topics and lessons.” According to this definition, 

knowledge of students’ common alternate conceptions is one aspect of PCK. The research 

presented in Chapter 2 uses the CSEM to explore this aspect of the PCK of physics graduate 

Teaching Assistants (TAs) in the context of electricity and magnetism. In particular, I explore the 

extent to which physics TAs are able to identify common alternate conceptions of introductory 

students on individual items on the CSEM. Knowledge of the common difficulties and of the types 
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of reasoning used by introductory physics students can be helpful in designing pedagogical 

strategies to improve student learning [26-33]. Findings will be presented in Chapter 2. 

1.4 IMPACT OF EVIDENCE-BASED ACTIVE-ENGAGEMENT COURSES ON 

STUDENT PERFORMANCE IN INTRODUCTORY PHYSICS 

In the study presented in Chapter 3, I used the Force Concept Inventory (FCI) [34] in the first 

semester courses and the Conceptual Survey of Electricity and Magnetism (CSEM) [25] in the 

second semester introductory physics courses to assess student learning. The FCI, CSEM and other 

standardized physics surveys [25, 34-40] have been used to assess introductory student 

understanding of physics concepts by a variety of educators and physics education researchers 

[41]. One reason for their extensive use is that many of the items on the survey have strong 

distractor choices which correspond to students’ common difficulties so students are unlikely to 

answer the survey questions correctly without having good conceptual understanding. In the 

research discussed in Chapter 3, the performance of students in evidence-based active-engagement 

(EBAE) courses at a particular level is compared with primarily lecture-based (LB) courses in two 

situations: (I) the same instructor taught two courses, one of which was a flipped course involving 

EBAE methods and the other an LB course, while the homework and final exams were kept the 

same, (II) student performance in all of the EBAE courses taught by different instructors were 

averaged and compared with primarily LB courses of the same type also averaged over different 

instructors. Whenever differences between these two groups were observed (with students in 

EBAE courses performing better than students in the LB courses), we investigated which students 

were benefitting most from the EBAE courses, e.g., those who performed well or poorly on the 
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pretest given at the beginning of the course. Finally, we investigated the typical correlation 

between the performance of students on the validated conceptual surveys and their performance 

on the final exam, which typically places a heavy weight on quantitative physics problems. 

Findings will be presented in Chapter 3. 

1.5 IMPACT OF EVIDENCE-BASED ACTIVE-ENGAGEMENT COURSES ON 

GENDER GAP IN INTRODUCTORY PHYSICS 

In introductory physics, prior research has found that male students often outperform female 

students on conceptual assessments such as the Force Concept Inventory (FCI) [34, 42] and the 

Conceptual Survey of Electricity and Magnetism (CSEM) [25, 43], a phenomenon sometimes 

referred to as the “gender gap”. The origins of gender gap on the FCI [34] both at the beginning 

and end of an introductory physics course have been a subject of debate with some researchers 

arguing that the test itself is gender-biased [44]. Some of the origins of the gender gap are related 

to societal gender stereotypes [45-48] that keep accumulating from an early age. In the study 

presented in Chapter 4, we used the FCI in the first semester introductory physics courses and the 

Conceptual Survey of Electricity and Magnetism (CSEM) [25] in the second semester courses to 

assess student learning. We also investigated any possible gender gap at the beginning of the course 

as well as the extent to which evidence-based pedagogies can help reduce it. Along with FCI and 

CSEM, other standardized physics surveys [35-40] have been used to assess introductory students’ 

understanding of physics concepts by a variety of educators and physics education researchers. 

One reason for their extensive use is that many of the items on the survey have strong distractor 

choices which correspond to students’ common difficulties so students are unlikely to answer the 



 9 

survey questions correctly without having a good conceptual understanding. In addition to 

investigating the gender gap in the LB and EBAE courses on the standardized tests (FCI and 

CSEM), we also investigate the gender gap on the final exam performance. Findings will be 

presented in Chapter 4. 

1.6 IMPACT OF STEREOTYPE THREAT ON STUDENT PERFORMANCE AND 

GENDER GAP IN INTRODUCTORY PHYSICS 

Prior research has found that activation of a stereotype about a particular group in a test-taking 

situation, i.e., stereotype threat, can alter the performance of that group in a way consistent with 

the stereotype. Some researchers have found that subtle stimuli that can activate stereotype threat 

and result in deteriorated performance [49], e.g., asking students to indicate their ethnicity before 

taking a test [50]. In particular, prior research suggests that asking African American students to 

indicate their ethnicity before taking a difficult test on verbal ability resulted in decreased 

performance compared to students who were not [50]. Yet others have found that asking for gender 

or ethnicity before taking a test does not impact students’ performance on standardized tests [51-

53]. 

In a study presented in Chapter 5, I investigated whether asking introductory students to 

indicate their gender before taking the CSEM impacted their performance, both when it was 

administered as a pre-test (before instruction) and as a post-test (after instruction in relevant 

concepts). In the other study, I investigated the prevalence of the belief that men generally perform 

better in physics than women (a gender stereotype) among introductory students and the extent to 

which agreeing with this gender stereotype is correlated with the performance of female and male 
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students on the FCI. It was hypothesized that asking students for their beliefs about this gender 

stereotype may act as a stereotype threat, especially for female students who agree with the 

stereotype, and they may perform worse than female students who do not agree with it. The studies 

were conducted over several consecutive years. Findings will be presented in Chapter 5. 
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2.0  PEDAGOGICAL CONTENT KNOWLEDGE OF TEACHING ASSISTANTS 

USING THE CONCEPTUAL SURVEY OF ELECTRICITY AND MAGNETISM 

2.1 INTRODUCTION 

2.1.1 Graduate Teaching Assistants 

Graduate students in physics across the United States have been playing an important role in 

educating the next generation of students for a long time. In particular, in the US, it is quite 

common for physics graduate Teaching Assistants (TAs) to teach introductory physics recitation 

or lab sections which typically have lower enrollments than the “lecture” component of the course 

(20-40 compared to 100 or more in a lecture). In addition to the graduate TAs, in the last two 

decades, undergraduate TAs (sometimes referred to as Learning Assistants or LAs) have also 

played a role in educating students by, e.g., assisting faculty members in teaching large classes. 

Appropriate professional development of these TAs to help them perform their duties effectively 

is an important task. Physics education researchers have been involved in research on identifying 

common beliefs and practices among physics TAs that have implication for effective teaching [1-

9]. For example, research suggests that sometimes graduate TAs struggle to understand the value 

of thinking about the difficulty of a problem from an introductory student’s perspective and think 

that if they know the material and can explain it to their students in a clear manner, it will be 

sufficient to help their students learn [1, 3]. Also, while graduate TAs are able to recognize useful 

solution features and articulate why they are important when looking at sample introductory 

physics student solutions provided to them, they do not necessarily include those features in their 
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own solutions written for introductory physics courses [4-6]. Moreover, the TAs do not always 

engage in grading practices which are conducive to helping introductory physics students learn 

expert-like problem solving strategies and develop a coherent understanding of physics [7, 8]. 

It is also important to keep in mind that TAs may be given varying amounts of freedom 

regarding how to perform their teaching duties, depending on the instructor. However, discussions 

with the TAs who participated in this study and others from the University of Pittsburgh (Pitt) 

suggest that except for broader guidelines such as whether to discuss homework problems followed 

by a quiz or whether to have group problem solving [10-16] followed by a quiz in the recitation, 

the TAs often have considerable flexibility in how to perform their recitation duties. For example, 

many instructors meet with the TA only briefly at the beginning of the semester to outline general 

guidelines, e.g., answer student questions on the homework, solve problems on the board, and the 

TAs are left to their own devices for the rest of the semester except for some communication with 

the course instructor via email or during the grading of the exams. Thus, if TAs are knowledgeable 

about effective instructional approaches, they can make a significant contribution to introductory 

students’ learning of physics in the recitations because they often have sufficient flexibility to lead 

the recitation in a manner that they think is conducive to student learning. 

To help TAs learn about effective pedagogy, many institutions offer professional 

development programs which are sometimes discipline-specific [9, 17-19]. For more information 

about professional development programs and research on recruiting and educating future 

teachers, see Ref. [9] and references therein. The effectiveness of these professional development 

programs can be enhanced if those leading them are knowledgeable about TAs’ conceptions 

regarding introductory physics students’ difficulties [20]. For example, TAs may be largely 

unaware of certain introductory student alternate conceptions. If professional development 
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instructors preparing TAs discuss introductory students’ alternate conceptions and engage the TAs 

in discussions about how to help introductory physics students learn, the TAs may be better 

prepared to conduct their teaching duties. It is even possible that in order to convince the TAs, the 

professional development instructors may have to share quantitative data on introductory physics 

student performance, which show that those alternate conceptions are common. This type of 

activity in TA professional development programs has the potential to enhance TAs’ teaching 

effectiveness as they design, adopt and adapt activities to build on students’ prior knowledge and 

help them develop a robust knowledge structure so that there is less room for those alternate 

conceptions. Similarly, if TA professional development instructors are aware that TAs know about 

certain student alternate conceptions, those can only be discussed briefly. 

Thus, by focusing on what TAs know and do not know and gradually building their 

pedagogical content knowledge, or PCK for short [21-22] (more about PCK in the next section), 

they can be guided to learn and implement effective pedagogy. These considerations motivated us 

to carry out the research study discussed here using the Conceptual Survey on Electricity and 

Magnetism (CSEM), which is one of the many assessment tools often used to evaluate students’ 

conceptual understanding of introductory concepts [23]. The goal of the present study was to 

evaluate TAs’ knowledge of introductory student alternate conceptions in electricity and 

magnetism as revealed by the CSEM. For each item on the CSEM, the TAs were asked to identify 

the most common incorrect answer choice (MCI) selected by introductory physics students. This 

exercise was followed by a class discussion with the TAs related to this task, including the 

importance of knowing student difficulties and addressing them effectively in order for learning 

to be meaningful. We have found that this type of activity in a TA professional development course 

engenders a rich discussion about introductory student difficulties and promotes the importance of 
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thinking about their difficulties from their perspective in order to bridge the gap between teaching 

and learning. More information about potential uses of this type of activity in TA professional 

development is provided in the discussion and summary section. 

2.1.2 Pedagogical Content Knowledge 

There are several theoretical frameworks that inspire our research. These theoretical frameworks 

focus on the importance of the instructors familiarizing themselves with students’ prior knowledge 

(including what students learn from traditional instruction) in order to scaffold their learning with 

appropriately designed curricula and pedagogies. In the context of this study, they point to the 

importance of being knowledgeable about student difficulties in order to help students learn better. 

For example, Piaget [24] emphasized “optimal mismatch” between what the student knows and 

where the instruction should be targeted in order for desired assimilation and accommodation of 

knowledge to occur. A related framework is the theory of conceptual change put forth by Posner 

et al. [25]. In this framework, conceptual changes or “accommodations” can occur when the 

existing conceptual understanding of students is not sufficient for or is inconsistent with new 

phenomena. They also suggest that these accommodations can be very difficult for students, 

particularly when students are firmly committed to their prior understanding, unless instructional 

design explicitly accounts for these difficulties. Within this framework, students can be motivated 

by an anomaly which provides a cognitive conflict and illustrates how their conceptions are 

inadequate for explaining a newly encountered physical situation. They can become dissatisfied 

with their current understanding of concepts and thereby make efforts to improve their 

understanding. But instructors must be aware of what conceptions students have and what 
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difficulties in learning physics these conceptions can lead to in order to design instruction that 

produces the desired cognitive conflict. 

Being knowledgeable of what conceptions students have and the difficulties that these 

conceptions may lead to is one aspect of what Shulman defined as Pedagogical Content 

Knowledge (PCK) [21, 22]. Shulman defines PCK as the subject matter knowledge for teaching. 

In other words, PCK is a form of practical knowledge used by experts to guide their pedagogical 

practices in highly contextualized settings. Shulman writes “Within the category of pedagogical 

content knowledge, I include […] the most useful forms of representation of those ideas, the most 

powerful analogies, illustrations, examples, explanations, and demonstrations – in a word, the 

ways of representing and formulating the subject that make it comprehensible to others.” In 

addition, according to Shulman, PCK also includes “an understanding of what makes the learning 

of specific topics difficult: the conceptions and preconceptions that students bring with them to the 

learning of those most frequently taught topics and lessons.” [21]. Shulman developed the concept 

of PCK in response to the growing trend of proliferating general educational research in teacher 

preparation programs. The development of PCK was in part due to Shulman’s previous research 

on the reasoning processes of physicians [26], which he found to be domain specific and contrary 

to the general assumption that certain physicians possess a general trait of diagnostic acumen 

which makes them better diagnosticians than others. Shulman generalized this observation to 

conclude that good teachers not only possess domain specific knowledge, but also possess more 

practical knowledge about teaching that is domain specific (i.e., PCK). Shulman therefore 

encouraged research on teachers’ PCK and the types of teacher preparation programs that are likely 

to improve and/or develop teachers’ PCK. Since Shulman introduced the concept of PCK, much 

has been written about it [27-42]. For example, Grossman [29] includes PCK as one of the “four 
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general areas of teacher knowledge [which are] the cornerstones of the emerging work on 

professional knowledge for teaching: general pedagogical knowledge, subject matter knowledge, 

pedagogical content knowledge, and knowledge of context” and argues that PCK (as opposed to 

their subject matter knowledge) generally has the greatest impact on teachers’ classroom activities. 

Others have also stressed the importance of PCK in shaping instructional practice and discuss 

professional development programs which take PCK into account [36, 37]. For example, Borko 

and Putman [37] describe the Cognitively Guided Instruction Project, a multi-year program of 

curriculum development, professional development and research which has shown “powerful 

evidence that experienced teachers’ pedagogical content knowledge and pedagogical content 

beliefs can be affected by professional development programmes.” 

Given the importance of PCK in shaping instructional practices, it is not surprising that 

researchers have attempted to document teachers’ PCK [31, 33, 34] and others have attempted to 

document the development of teachers’ PCK [35, 38]. However, these tasks are challenging to 

carry out for multiple reasons such as the fact that much of the knowledge teachers have of their 

practice is tacit [39, 40], or the fact that although there is a general consensus among researchers 

on PCK as a construct, its boundaries are not clearly delineated [41]. Also, extended observations 

are needed in order to recognize when teachers’ PCK is instantiated in their practice [31]. To 

overcome some of these challenges, researchers have often used multi-method approaches to 

investigate teachers’ PCK. For example, observational data are not sufficient because a teacher 

may use only a small portion of the representations he/she has at his/her disposal. In addition, 

observations do not provide insight into teachers’ instructional decisions – we see what they are 

doing, but do not know why. Partly due to these issues, Loughran et al. [31] used both classroom 

observations and follow-up interviewing of teachers. The interviews encouraged teachers to 
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articulate their knowledge and explored alternative representations that the teachers did not use 

during the teaching sessions. This investigative approach is quite time-consuming both to carry 

out and analyze since both the observations and interviews provide lengthy qualitative data which 

require coding and analysis. Baxter and Lederman [42] provide a review of methods and 

techniques for studying PCK and the subject matter knowledge of teachers. 

Partly due to all of the difficulties in carrying out an involved investigation of PCK, we 

developed a relatively straightforward method for delving into one particular aspect of PCK, 

namely knowledge of student difficulties with particular topics. This method makes use of 

standardized multiple choice tests developed by physics education researchers and quantitative 

data from students taking these tests. Teachers are provided with a copy of a particular test (e.g., 

CSEM), and for each item on the test they are asked to select what they expect would be the MCI 

selected by introductory students after being instructed in the relevant topic. Then, quantitative 

student data are used to quantify the extent to which teachers are knowledgeable about common 

student difficulties which are revealed by the incorrect answer choices students commonly select. 

Previous research with K-12 teachers [20] has found that on items which have a strong distractor 

(i.e., common student alternate conception), there is a large difference in learning gains between 

students taught by teachers who could identify the alternate conception and students taught by 

teachers who could not. It is therefore valuable to explore the extent to which teachers are 

knowledgeable about student alternate conceptions on items drawn from carefully designed 

standardized tests. 

Two prior research studies conducted using the method described in the preceding 

paragraph used the Force Concept Inventory (FCI) [43, 44] and Test of Understanding Graphs in 

Kinematics (TUG-K) [45, 46]. The main findings from these studies are as follows: 
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 TAs were able to identify common student alternate conceptions in certain contexts, but 

struggled to identify them in other contexts. 

 TAs sometimes expected certain answer choices to be the MCIs, when instead, those 

answer choices were selected by very few students. 

 Think aloud interviews with TAs engaged in the task of determining the MCIs of 

introductory students suggested that the TAs were reflective and often had reasonable 

thoughts regarding how introductory students may be thinking about the questions. 

Interviews also suggested that the TAs were sometimes distracted by certain answer 

choices that were not common among introductory students, and reasoned that those 

answer choices would be common. 

 TAs performed better in identifying common student alternate conceptions when working 

in groups compared to when working individually. 

In this study, we extend our previous work and use the CSEM to investigate the extent to 

which physics graduate students enrolled in a semester-long course for teaching assistants are 

knowledgeable about introductory students’ alternate conceptions related to electricity and 

magnetism. Knowledge of the introductory student alternate conceptions that graduate students 

are and are not aware of can be especially useful in designing effective professional development 

programs and inform future research on identifying and documenting the pedagogical content 

knowledge of TAs. 
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2.2 METHODOLOGY 

2.2.1 Participants 

The participants in this study were 81 first year graduate students (three separate cohorts) enrolled 

in a semester long mandatory pedagogy oriented TA training course at Pitt, which meets once a 

week for two hours. The graduate student population at Pitt is consistent with that of a typical 

research-based state university. The TAs teach introductory recitations and labs, typically in a 

traditional manner. In the recitations, the TAs primarily answer student questions, solve problems 

on the board and give students a quiz in the last 10-20 minutes. In the labs, the TAs start by 

demonstrating the procedures needed for that lab and the students closely follow the detailed 

procedures written in the lab manual.  

Since this is the first and last pedagogy-oriented semester long course most physics 

graduate students at Pitt will ever take, it is designed to help graduate students become more 

effective teachers in general. During the course, graduate students get a general overview of 

cognitive research and PER during one two hour session and discuss their instructional 

implications. The graduate students are also introduced to curricula and pedagogies based on PER 

which emphasize the importance of being knowledgeable about introductory students’ difficulties 

in order to help them develop expertise in physics. Each week, students complete various reflective 

exercises designed to help them perform their TA duties in a student-centered manner. For 

example, in one class, they discuss how to write effective problem solutions for introductory 

physics classes and what features should be included in solutions they hand out to students [4, 5, 

6]. In another class, they are given sample student solutions and asked to grade them individually 

and in groups, followed by a discussion about how to grade students to help them learn better [7, 
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8]. In the second half of the semester each graduate student also leads an interactive discussion of 

the solution of a physics problem in the class in the manner in which he/she would lead a discussion 

if teaching introductory students and receive feedback from the other graduate students in the 

course (who are asked to pretend to be introductory students and ask questions) and the instructor. 

Thus, the TA training course (which is required of all first-year graduate students) is not focused 

on helping the TAs implement physics education research (PER) based curricula in specific 

recitations or labs (e.g., University of Washington tutorials [47]), but is a general introduction to 

pedagogical issues in physics teaching and learning. 

This study focuses on issues related to the professional development of TAs who teach 

recitations and labs for introductory physics courses and typically have a closer association with 

introductory students than the course instructors and thus, they may be in an even better position 

(compared to the course instructors) to help introductory students learn if the TAs are versed in 

effective pedagogy. At Pitt, the TAs generally hold regular office hours and interact with 

introductory students in the physics resource room where they help introductory students with any 

questions related to their introductory physics courses. In addition, recitation class sizes are usually 

much smaller than the sizes of lecture classes taught by instructors. Therefore, TAs who are 

knowledgeable about introductory student difficulties related to electricity and magnetism 

concepts can play a significant role in improving introductory student understanding of these 

concepts and they can address introductory students’ difficulties directly in their interactions with 

students. 

In addition to the quantitative study, we conducted think-aloud interviews [48] with 11 

TAs. Due to the availability of the TAs for individual interviews, some of the interviewed TAs 

participated in the quantitative study (they were in the TA professional development course in 
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which the quantitative study was carried out) but others were not. We also note that for the TAs 

who participated in the quantitative study, at least one year had passed before they were 

interviewed. Thus, the CSEM PCK task carried out in the TA professional development course 

was not fresh in their mind by the time of the interviews. Each of the 11 TAs had at least one 

semester of teaching experience in recitations. We did not find any qualitative differences in the 

reasoning of the TAs whether they had participated in the quantitative study earlier or not. More 

details about the interviews are provided in the methods section below. 

2.2.2 Materials 

The materials used in this study are the CSEM, which was given to the TAs in the TA training 

course as explained below, the post-instruction introductory students’ data that were collected over 

a period of four years from an average of 388 algebra-based introductory physics students at 30 

different institutions across the United States [23], the quantitative data obtained from the TAs in 

the TA training course, and the follow-up interview data. These data were used to determine 

introductory students’ common alternate conceptions on each item on the CSEM, to assess the 

knowledge physics TAs have of introductory student alternate conceptions and to understand the 

reasoning TAs use when selecting certain incorrect answers as the most common. 

2.2.3 Methods 

In the quantitative study, the TAs were provided with the CSEM and, for each item on the CSEM, 

they were asked to identify what they expected to be the MCI of introductory students if students 

did not know the correct answer in a posttest (after traditional instruction in relevant concepts). 
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We refer to this task as the CSEM-related PCK task. In years two and three of the study, the 

researchers also asked TAs to predict the percentage of introductory physics students who answer 

each question on the CSEM correctly in a post-test (after traditional instruction in relevant 

concepts). We investigated data from each year separately and found very few differences between 

the different years. Therefore all the data were combined (for TAs’ predictions on the percentage 

of students answering each question correctly, only years two and three were combined because 

this question was not asked during the first year). Each year, after the TAs completed the CSEM-

related PCK task, there was a full class discussion about the tasks and why knowledge of student 

difficulties is critical for teaching and learning to be effective in general. The TAs were not 

prompted to explain their reasoning for their choices, but in the class discussion certain items on 

the CSEM were discussed in detail and the TAs mentioned their reasoning about why they 

expected certain incorrect answer choices to be most common among introductory students. 

In order to obtain an in-depth account of TAs’ reasoning (related to why they expect certain 

answer choices to be most common among introductory students), think-aloud interviews were 

conducted with 11 TAs. Certain questions were selected from the CSEM based on the research 

questions of the study (described in the next section). The main goal of the interviews was to 

identify possible reasons why TAs expected that certain answer choices would be common among 

introductory students when in fact those answer choices were not common. Thus, the quantitative 

data collected was used to identify questions in which this may be occurring and the interviews 

focused on those questions. For example, Q2 on the CSEM on which roughly half the TAs 

expected that answer choice D would be most common among introductory students, but this 

answer choice was only selected by 11% of introductory students (see Table 2.1). During the 

interviews, the TAs were given a copy of the CSEM and for each question selected to be discussed 
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in the interview, the TAs were asked to first identify the correct answer after which they were 

asked to identify the MCI while thinking aloud. They were not disturbed during this time unless 

they became quiet for a long time in which case they were asked to keep talking. After discussing 

all of the questions selected by the interviewer, the TA was sometimes asked to look back at some 

of the questions and provide more details about why he/she expected a particular incorrect answer 

choice to be the MCI if his/her reasoning was not clear enough when they were thinking aloud 

without being disturbed. 

We note that the task given to TAs was framed such that they had to identify the MCI for 

each multiple choice question that introductory physics students would select after instruction if 

they did not know the correct answer (rather than before instruction), because individual 

discussions with some faculty members (who had taught introductory physics) indicated that they 

felt that they (and the TAs) had no way of knowing the “pre-conceptions” of introductory physics 

students at the beginning of the course. Their reluctance to contemplate introductory physics 

students’ difficulties about electricity and magnetism before instruction motivated us to ask them 

to identify the MCI for each question if the introductory student did not know the correct answer 

after traditional instruction in relevant concepts. We note that it does not make a significant 

difference whether the question is phrased about introductory physics students’ difficulties with 

each question in the post-test or pre-test because the common alternate conceptions of introductory 

physics students rarely changed after traditional instruction. An analysis of the pre- and post-test 

data in Ref. [23] for each item on the CSEM suggests that the percentage of students who had a 

certain alternate conception either decreased after instruction or remained roughly the same and 

the most common difficulties remained the same in the pre-test and post-test. Therefore, the 

performance of TAs at identifying the most common alternate conceptions after traditional 
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instruction also provides an indication of their understanding of the initial knowledge state of 

introductory physics students related to CSEM content. Since we asked the TAs to identify the 

alternate conceptions after traditional instruction, we performed our data analysis using the post-

test data printed in Ref. [23]. 

In order to quantify TAs’ performance at identifying the alternate conceptions of 

introductory students, scores were assigned to each TA. A TA who selected a particular incorrect 

answer choice as the MCI in a particular question received a PCK score which was equal to the 

fraction of introductory physics students who selected that particular incorrect answer choice. If a 

TA selected the correct answer choice as the MCI (a rare occurrence), his/her data was removed 

only for that specific question because he/she was explicitly asked to indicate the incorrect answer 

choice which is most commonly selected by introductory students if they did not know the correct 

answer after traditional instruction in relevant concepts.  

For example, on question 1, the percentages of algebra-based students who selected A, B, 

C, D and E are 4%, 63%, 23%, 7% and 3%, respectively (as shown in Table 2.1). Answer choice 

B is correct, thus, the PCK score assigned to TAs for each answer choice if they selected it as the 

MCI would be 0.04, 0, 0.23, 0.07 and 0.03 (A, B, C, D and E). The total PCK score a TA would 

obtain on the task for the entire CSEM can be obtained by summing over all of the questions (this 

is referred to as “CSEM-related PCK score”). These scores can be used to determine if TAs 

performed better than if they were randomly guessing. More details on how this was done are 

provided in the supplementary material. 

We note that the approach used to determine the CSEM-related PCK score weighs the 

responses of TAs by the fraction of introductory physics students who selected a particular 

incorrect response. This weighting scheme was chosen because the more prevalent an introductory 
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student difficulty is, the more important it is for a TA to be aware of it and take it into account in 

their instruction. Furthermore, this approach also provides a reasonable PCK score when there is 

more than one common alternate conception. For example, if a question has two incorrect answer 

choices that are commonly selected by introductory students, e.g., Q29 in which 26% of 

introductory students selected A and 23% selected B (both incorrect). If all the TAs selected 

answer choice A as most common, their PCK score would be 100%, but if half the TAs selected 

A and half select B, their PCK score would be 92.5%. 

The researchers jointly determined a heuristic that if a particular alternate conception is 

held by more than 20% of introductory students in a particular context, it is important for TAs to 

be aware of this alternate conception. Therefore, some of the discussion here is focused on the 

questions on the CSEM in which the introductory physics students’ national data showed that at 

least 20% of them selected an incorrect answer choice in the post-test (after instruction). Table 2.1 

shows that there were 26 such questions (out of 32 total questions) and the other 6 questions did 

not have such distractors. 

2.2.4 Research Questions and Approach for Investigation 

The following two research questions (RQ1, RQ2) were developed for the purpose of investigating 

the CSEM-related PCK of the TAs. For each research question, we provide motivation for 

investigating it as well as details about the methods used to investigate it. 

RQ1: (i) Are there situations in which a significant fraction of TAs select answer choices that very 

few introductory students select? What are some common examples of reasoning that TAs 

use to select these answer choices? 

 (ii) What alternate conceptions do TAs struggle to identify? 
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 (iii) What alternate conceptions can TAs identify? 

As noted, knowledge of introductory student alternate conceptions can be helpful in 

determining the pedagogical approaches that may be effective in helping students learn better. 

Therefore, TAs’ knowledge of introductory student difficulties can play an important role in 

improving introductory student learning. In addition, TAs should also have reasonable 

expectations regarding how many introductory students have certain alternate conceptions. If a TA 

significantly overestimates the prevalence of a certain type of alternate conception (e.g., he/she 

thinks that 50% of students have the alternate conception, whereas the percentage of introductory 

students with that difficulty is less than 10%), the TA may spend considerable time and effort 

attempting to help students with something the majority of them already know, and thus not use 

class time effectively in addressing student difficulties which are more common. Similarly, if a 

TA underestimates the prevalence of a certain type of alternate conception, he/she is unlikely to 

consider instructional strategies to address it. This prompted us to investigate instances in which a 

significant fraction of the TAs select answer choices on the CSEM which they think are most 

commonly selected by introductory students, while those answer choices are actually selected by 

very few introductory students, and instances in which few TAs identify common student alternate 

conceptions. Knowledge of what TAs think are the common alternate conceptions of introductory 

students, but which are instead not common, and also what alternate conceptions are common 

among introductory physics students, but the TAs are not aware of them, can be valuable for 

developers of professional development programs because it can provide them with an 

understanding of TAs’ prior knowledge regarding introductory students’ common reasoning 

patterns.  



 31 

Table 2.1 provides detailed data on TAs’ performance in identifying the alternate 

conceptions of introductory students that are discussed in detail in the results section. In particular, 

we discuss the following: 

 Alternate conceptions which many TAs expected to be most common among introductory 

students, which were instead not common among introductory students, 

 Alternate conceptions which were common among introductory students which were not 

identified very well by TAs as the most common, 

 Alternate conceptions that were common among introductory students which the majority 

of TAs were able to identify, and 

 Qualitative results from detailed think-aloud interviews with 11 TAs which focused on 

what common reasoning TAs used to select certain answer choices as most common (e.g., 

answer choices which were not common among introductory students). 

We note the following about the interviews: in general, during the interviews, the TAs were 

reflective and sometimes thought back to when they were teaching introductory physics in 

recitation themselves. In some of the questions, they were able to identify the MCI and had good 

ideas about the common difficulties of introductory students. However, an important goal of the 

interviews was to identify the reasoning the TAs commonly use when they select answer choices 

which were not very common among introductory students. Therefore, the discussion focusing on 

this aspect in a particular question should not be taken as an indication that the interviewed TAs 

did a poor job at identifying common alternate conceptions of introductory students on those 

questions. 

RQ2: (i) To what extent are TAs able to predict the difficulty of the questions?  
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 (ii) To what extent is TAs’ ability to identify introductory students’ alternate conceptions 

correlated with their ability to predict the difficulty of a question? 

If a TA has good knowledge of introductory students’ alternate conceptions, he/she may 

be able to also predict how difficult a question can be for introductory students. As mentioned 

earlier, in two out of three years of study, we asked a cohort of 56 TAs to also predict the difficulty 

of each question by estimating the percentage of introductory students who answered each question 

correctly after traditional instruction in relevant concepts. We then ran a correlation analysis 

between TAs’ accuracy in estimating the difficulty of a question and their average PCK score. If 

the two are correlated, we would expect to see a negative correlation. In other words, the better the 

TAs are in estimating the difficulty of a question (i.e., the difference between TAs’ estimated 

percentage and actual percentage is closer to zero), the larger the PCK score. 

2.3 RESULTS 

We note that the common incorrect answer choices of introductory students are similar for both 

algebra-based and calculus-based classes (see Ref. [23]). Therefore, the researchers performed the 

analysis of the CSEM-related PCK performance with the student data from algebra-based classes 

in Ref. [23] as discussed below: 
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2.3.1 Performance of TAs in Identifying Introductory Physics Students’ Alternate 

Conceptions Related to the CSEM 

There are 26 questions (out of 32) on the CSEM which reveal alternate conceptions held by 20% 

or more of introductory students. Analysis of the CSEM-related PCK score of the TAs was 

conducted on each of these questions and the results are displayed in Table 2.1. 

Table 2.1 shows all CSEM items, the percentages of introductory physics students who 

answered each question correctly, the percentages of introductory students who selected each 

incorrect answer choice ranked from most to least common, the incorrect answer choices most 

commonly selected by TAs (as most common among introductory students), and the percentages 

of TAs who selected these answer choices. Correct answers are indicated by the green shading in 

Table 2.1, and incorrect answer choices selected by 20% or more introductory students are 

indicated by the red font. We note that Table 2.1 lists the averages while Figs. 2.15 – 2.18 in the 

chapter appendix can be consulted for the distribution of TA’s predictions for the most common 

incorrect answer choices of introductory students for each of the CSEM questions. In addition, the 

second column (titled “>RG”) in Table 2.1 indicates whether TAs performed better than random 

guessing (RG) in identifying the MCI for a particular question: “Yes”/blank field indicate that TAs 

performed/did not perform better than random guessing. Table 2.1 also shows the normalized 

average CSEM-related PCK scores of the TAs. Their scores were normalized on a scale from zero 

to 100 because for each question on the CSEM, there is a minimum and a maximum possible score, 

which correspond to the smallest and largest fractions of introductory physics students who 

selected a particular incorrect answer choice among the four incorrect answer choices. The 

normalization was done in the following manner: 
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Average PCK Score Minimum Possible PCK Score
Normalized PCK Score 100

Maximum Possible PCK Score Minimum Possible PCK Score


 

  

The normalized CSEM-related PCK score is therefore zero if the TAs obtained the 

minimum possible score and 100 if they obtained the maximum possible score. The normalized 

score also provided a means to compare TAs’ CSEM-related PCK performance for different 

questions which have different minimum and maximum possible CSEM-related PCK scores. The 

researchers jointly determined a heuristic that the performance of the TAs was ‘good’ (and shaded 

green in Table 2.1) if their normalized CSEM-related PCK score was more than 2/3 of the 

maximum possible score, ‘average’ (and shaded yellow) if their normalized score was between 

1/2 and 2/3 of the maximum possible score and ‘poor’ (red shading) if their normalized score was 

less than 1/2 of the maximum possible score. 

2.3.2 Results Relevant to Each Research Question 

RQ1: (i) Are there situations in which a significant fraction of TAs select answer choices that very 

few introductory students select? What are some common examples of reasoning that TAs 

use to select these answer choices? 

Table 2.1 shows that out of the 26 CSEM questions in which students had an alternate conception, 

in 18 of those questions, TAs’ average normalized PCK scores were not good (less than 2/3 of the 

maximum possible). Out of those 18 questions, for 12 of them, TAs’ PCK scores were average 

(between 1/2 and 2/3 of maximum possible normalized score) and for the other 6 they were poor 

(less than 1/2 maximum possible normalized score). We now turn to discussing questions in which 

TAs’ normalized PCK score was either poor or average and focus on the questions which revealed 

that many TAs expected introductory students to have certain alternate conceptions, while few 
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introductory students actually had those alternate conceptions. In this section, we group questions 

together based on the concepts involved. 

2.3.2.1 Charge distribution on conductors/insulators (Q1, Q2) 

Q1 and Q2 ask about what happens to an excess charge placed at some point P on a conducting 

(Q1) or insulating hollow sphere (Q2). For Q1, introductory students’ most common alternate 

conception (23% of introductory students) was that the charge distributes everywhere on the inside 

and outside of the metal sphere. On Q2, introductory students had two alternate conceptions: that 

the charge distributes itself everywhere on the outside of the sphere (i.e., not distinguishing 

between insulating and conducting – answer choice B selected by 21% of introductory students) 

and that there will be no charge left (answer choice E, selected by 19% of introductory students). 

On both Q1 and Q2, TAs’ average PCK score is moderate (59% and 57%, respectively), in large 

part because many TAs expected that the MCI is choice D for both questions, namely that most of 

the charge is at point P, but some of it will spread over the sphere (19% and 49% of the TAs 

selected choice D, but only 7% and 11% of introductory students selected this choice in Q1 and 

Q2, respectively). 

On Q1, some of the TAs reasoned that D would be the MCI because students would expect 

that the charges would move, but that there isn’t enough force to move all the charges everywhere 

around the sphere, or that it takes more than a few seconds for the charge to spread everywhere 

and therefore some will remain at point P. For example, one interviewed TA stated: “They 

[students] don’t expect that for a metal [there is] enough push in order to move all the charges 

from that point [P].” Another interviewed TA motivated his selection of choice D as the MCI by 

stating: “Most people probably think it’s D […] because they might not recognize that it has to be 

an instantaneous distribution of charge. So they recognize that the charge will have to spread over 
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the surface, and since we know it’s metal, I’m assuming they understand a conductor won’t have 

charge on the inside. It [charge] is all gonna be on the surface, but they might assume that the 

majority of the charge hasn’t fully distributed yet.” 

On Q2, the TAs’ most common reasoning for selecting answer choice D was that it was 

the incorrect answer choice that is most similar to the correct one and that introductory physics 

students may have some understanding that an insulating sphere is different from a conducting 

sphere, but would not fully understand it. For example, one TA said: “If they understand this is 

insulating material [i.e., they do not miss this information when reading the question], they will 

choose D […] because they know something about insulating that it is not like the conducting, but 

they [may not know] that the charge will stay at the position [P].” This certainly seems reasonable, 

however, it appears that few introductory students selected this answer choice. 

Table 2.1. Questions on the CSEM, percentages of introductory algebra-based physics students who answered the 

questions correctly in a post-test, percentages of introductory students who selected each incorrect answer choice 

ranked from most to least common, the percentage of TAs who selected each incorrect answer choice as most 

common among introductory students, and normalized average PCK score. The first column of the table lists the 

CSEM question numbers and the second column titled “> RG” shows a “Yes” when the TAs on average performed 

better than random guessing (RG). The details of how this analysis was carried out is described in the appendix. 

CSEM 

Item # 
>RG 

Correct 

Answer 

Intro Student Choices 
TA Choices 

(Individually) 

Normalized 

Average 

PCK Score 1st 2nd 3rd 4th 1st 2nd 3rd 4th 

1 Yes 63% B 
23% 

C 

7% 

D 

4% 

A 

3% 

E 

54% 

C 

19% 

D 

15% 

E 

11% 

A 
58.9% 

2  42% A 
21% 

B 

19% 

E 

11% 

D 

5% 

C 

49% 

D 

25% 

B 

16% 

E 

10% 

C 
57.4% 

3 Yes 76% B 
9% 

C 

8% 

D 

5% 

A 

0% 

E 

54% 

A 

26% 

D 

19% 

C 

1% 

E 
72.0% 

4 Yes 40% B 
32% 

C 

21% 

D 

5% 

A 

2% 

E 

57% 

C 

22% 

A 

21% 

D 

0% 

E 
72.4% 
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5 Yes 32% C 
22% 

D 

20% 

B 

14% 

A 

11% 

E 

50% 

D 

32% 

A 

16% 

B 

1% 

E 
72.3% 

6  67% E 
13% 

B 

10% 

C 

7% 

A 

4% 

D 

51% 

A 

34% 

B 

12% 

C 

3% 

D 
58.8% 

7 Yes 31% B 
42% 

C 

19% 

A 

5% 

D 

2% 

E 

45% 

A 

43% 

C 

6% 

D 

6% 

E 
62.3% 

8 Yes 53% B 
21% 

D 

10% 

C 

8% 

E 

5% 

A 

43% 

D 

27% 

E 

16% 

C 

14% 

A 
53.1% 

9  52% B 
16% 

D 

12% 

C 

10% 

A 

5% 

E 

36% 

D 

23% 

E 

22% 

C 

19% 

A 
58.4% 

10  35% C 
25% 

E 

20% 

B 

12% 

D 

6% 

A 

47% 

B 

25% 

A 

20% 

D 

9% 

E 
49.4% 

11 Yes 33% E 
30% 

A 

14% 

B 

13% 

C 

9% 

D 

45% 

A 

26% 

C 

22% 

D 

6% 

B 
51.9% 

12  67% D 
13% 

C 

9% 

A 

8% 

B 

2% 

E 

31% 

C 

29% 

B 

23% 

A 

17% 

E 
61.5% 

13 Yes 51% E 
27% 

A 

20% 

B 

1% 

C 

0% 

D 

56% 

A 

42% 

B 

1% 

C 

1% 

D 
87.1% 

14 Yes 16% D 
54% 

A 

13% 

E 

9% 

B 

4% 

C 

46% 

A 

24% 

E 

18% 

B 

11% 

C 
52.1% 

15 Yes 24% A 
34% 

C 

24% 

B 

9% 

D 

8% 

E 

74% 

C 

17% 

B 

5% 

E 

4% 

D 
84.1% 

16  32% E 
22% 

B 

17% 

D 

13% 

A 

13% 

C 

35% 

A 

25% 

D 

24% 

C 

16% 

B 
27.3% 

17 Yes 51% E 
23% 

C 

16% 

B 

6% 

D 

2% 

A 

63% 

C 

18% 

B 

17% 

D 

2% 

A 
77.7% 

18 Yes 47% D 
28% 

E 

17% 

C 

4% 

B 

2% 

A 

52% 

E 

37% 

C 

7% 

B 

3% 

A 
74.2% 

19 Yes 34% A 
25% 

B 

14% 

C 

11% 

D 

10% 

E 

61% 

B 

18% 

E 

11% 

D 

10% 

C 
63.9% 

20 Yes 17% D 
32% 

C 

20% 

B 

18% 

A 

8% 

E 

44% 

C 

25% 

A 

20% 

B 

11% 

E 
64.3% 

21  44% E 
21% 

C 

15% 

A 

8% 

B 

8% 

D 

41% 

C 

31% 

B 

17% 

A 

12% 

D 
49.9% 

22 Yes 32% D 
28% 

C 

22% 

A 

11% 

B 

4% 

E 

59% 

C 

22% 

A 

12% 

E 

7% 

B 
77.6% 
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23 Yes 45% A 
15% 

B 

13% 

C 

11% 

E 

9% 

D 

48% 

D 

20% 

E 

17% 

B 

16% 

C 
33.8% 

24 Yes 25% C 
45% 

B 

19% 

D 

8% 

E 

2% 

A 

48% 

D 

45% 

B 

4% 

A 

3% 

E 
64.5% 

25  48% D 
20% 

C 

12% 

B 

11% 

A 

5% 

E 

35% 

E 

25% 

C 

25% 

A 

16% 

B 
42.1% 

26  49% A 
21% 

D 

11% 

B 

6% 

C 

6% 

E 

47% 

C 

29% 

D 

17% 

B 

7% 

E 
34.9% 

27  40% E 
23% 

D 

19% 

A 

8% 

C 

5% 

B 

46% 

A 

24% 

C 

18% 

B 

12% 

D 
51.6% 

28 Yes 40% C 
35% 

E 

12% 

B 

8% 

A 

3% 

D 

55% 

E 

32% 

A 

11% 

B 

2% 

D 
63.1% 

29 Yes 23% C 
26% 

A 

23% 

B 

19% 

D 

6% 

E 

51% 

B 

26% 

A 

16% 

D 

7% 

E 
80.2% 

30 Yes 48% A 
15% 

C 

14% 

D 

9% 

E 

7% 

B 

66% 

D 

17% 

C 

10% 

E 

7% 

B 
77.2% 

31  26% E 
25% 

C 

18% 

A 

17% 

D 

15% 

B 

47% 

D 

20% 

C 

17% 

B 

16% 

A 
34.3% 

32  18% D 
40% 

B 

23% 

A 

16% 

C 

1% 

E 

42% 

A 

31% 

E 

16% 

C 

11% 

B 
41.1% 

x% TAs’ CSEM-related PCK score is less than 50% 

x% TAs’ CSEM-related PCK score is between 50% and 67% 

x% TAs’ CSEM-related PCK score is more than 67% 

 

2.3.2.2 Coulomb’s force law (Q3, Q4, Q5, Q6, Q7, Q8) 

On Q3 and Q6 there are no strong alternate conceptions and on Q4 and Q5 (shown in Fig. 1), the 

TAs identified the most common alternate conceptions quite well (PCK score is over 70% on both 

of these questions). Moreover, on Q7, there is one strong distractor (answer choice C selected by 

42% of students) and another answer choice (A) is selected by 19% of the students. Nearly 

identical percentages of TAs selected these two answer choices (43% and 45% of the TAs selected 

choices C and A, respectively) as the MCI. Since choice C is much more common than choice A, 

this resulted in only a moderate PCK score on this question (62%). 
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Figure 2.1. Questions 3, 4 and 5 on the CSEM. 

 

Figure 2.2. Figure provided for Q8 on the CSEM. 

Q8 provides students with the two situations depicted in Fig. 2.2 and states that in the 

configuration on the left, charges q2 and q3 are positive and that the net force acting on q1 as the 

result of its interaction with the two charges points in the positive x direction (to the right). The 

question asks what happens to the force acting on q1 when another positive charge (+Q) is placed 

at the location shown in the configuration on the right. The MCI (choice D) selected by 21% of 
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introductory students is that the force will increase and its direction may change due to the 

interaction between Q and charges q2 and q3. While almost half the TAs (43%) selected this as the 

MCI, nearly one third (27%) of the TAs select answer choice E, which states that the answer cannot 

be determined without knowing the magnitude of q1 and/or Q. However, this answer choice was 

selected by only 8% of introductory students. In interviews, some of the TAs also selected choice 

E as the MCI. One interviewed TA, for example, motivated selecting choice E by stating: “I think 

most of them [introductory students] will go with E […] because they might think that F is kq1q2 

divided by r [squared] and then they think, ‘ok, nothing is [given], q is not [given], r is not [given]’, 

then they cannot decide [what happens to] the force.” It appears that some of the TAs think that 

students may remember the equation for the electric force acting between two charges, but since 

none of the information is explicitly given (i.e., by providing values for the charges and distances), 

the electric force cannot be calculated so the question cannot be answered. However, it appears 

that very few introductory students may be reasoning this way since only 8% of them selected this 

answer choice. 

2.3.2.3 Relation between electric field and force (Q10, Q12, Q15) 

Q10 on the CSEM states that a positive charge is released from rest in a uniform electric field and 

asks about its subsequent motion. The two most common alternate conceptions are that the charge 

remains at rest (answer choice E selected by 25% of introductory students and 9% of TAs) and 

that it will move at constant velocity (answer choice B selected by 20% of introductory students). 

Answer choice A is similar to choice B except that it says that the charge moves at constant speed 

instead of constant velocity and only 6% of the introductory students selected this answer choice. 

However, 25% of the TAs selected this answer choice, which partly accounts for their poor average 

PCK score (49%). During the interviews, some of the TAs who selected this answer choice did 
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not seem to consider B very carefully. For example, one TA stated: “They might think it will go 

at constant speed because the field is uniform so the effect is constant throughout the path.” 

However, a more common occurrence in the interviews was for TAs to consider both choices A 

and B as the most common and either say they are not sure which one is more common or that 

introductory students would select among these two answer choices equally. It is possible that in 

the quantitative study conducted in the TA professional development course, TAs had similar 

considerations and some TAs opted for choice A while others opted for choice B as the most 

common. However, as shown in Table 2.1, much fewer introductory students selected choice A 

compared to choice B. For the other two questions in this grouping, there were either no alternate 

conceptions or the TAs performed well at identifying them (on Q15, TAs exhibited the second 

highest normalized average PCK score). 

 

Figure 2.3. Diagrams provided for Q13 (a) and Q14 (b) on the CSEM. 

2.3.2.4 Induced charge and electric field/force (Q13, Q14) 

Q13 and Q14 provide students with the diagrams shown in Fig. 2.3. In Q13, the sphere is hollow 

and conducting and has an excess positive charge on its surface. The question asks for the direction 

of the electric field at the center of the sphere. In Q14, the sphere is also hollow and conducting, 

but it has no excess charge, and the question asks about the forces acting on the two charges. On 

both of these questions, the most common difficulty of introductory students is to not recognize 

that the conducting sphere alters the electric field/forces. Thus, on Q13, 27% of them selected 
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choice A on which the electric field is to the left (as though the sphere does not affect it) and on 

Q14, 54% of them also selected choice A for which the forces that the two charges feel are the 

same (once again, as though the sphere does not affect the forces). The TAs’ PCK performance is 

very good on Q13 (87% – the highest of all questions on the CSEM), but only moderate on Q14 

(52%), on which 53% of the TAs selected other answer choices (B, C, and E), which combined 

were selected by only 26% of introductory students. In the interviews, TAs who selected answer 

choice A as the MCI on Q13 usually did so because they expected that introductory students would 

only think about the electric field caused by the +Q charge and ignore the metal sphere. For 

example, one TA who selected A said: “Maybe someone would say leftward because they think 

of the positive being the source so they think of it making a [field] line and the [field] line is going 

outward from the charge, and they think it’s just going to go straight through the sphere.” On the 

other hand, on Q14, this same TA said that students would select choice E most commonly because 

they may think that the charge distribution on the sphere affects the forces that the two charges are 

experiencing. “They might think that little q at the center of the sphere […] is feeling forces from 

the charges that are distributed along the surface [of the sphere], and big Q here might feel force 

from this guy [q] and all the surface charges [on the sphere].” Other interviewed TAs cited similar 

reasoning for selecting choice E in Q14. 

On Q13, another TA selected choice A as the MCI and stated that introductory physics 

students may ignore the effect of the sphere. When looking at Q14, this TA explicitly mentioned 

his previous answer and stated: “My thought is similar to the last one, to kind of just ignore the 

sphere. So A, maybe.” In other words, students may ignore the effect of the sphere and select A. 

But after noticing answer choice E, he changed his mind and went on to say the following: “I think 

E [may be most common] because they might realize that the sphere does do something to change 
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things, so they think ‘ok, I know [the forces would normally be] equal and opposite, but now 

there’s a sphere here, so I don’t know exactly how that works’ [i.e., what the effect of the sphere 

is] so they’ll just throw in something [i.e., include some effect due to the sphere], so E is that 

something.” It appears that this TA was aware that introductory students may be guided by similar 

incorrect thinking (conducting sphere will not have an effect) on Q14 as on Q13, but on Q14, 

selected the answer choice which incorporates a correct idea (conducting sphere has an effect), but 

is missing another idea in order to be fully correct. In many other questions, TAs often selected 

answer choices which fit this category. For example, as mentioned earlier, on Q1, some TAs 

thought that introductory students would select answer choice D, which states that some of the 

charge does spread over the sphere – a partially correct answer. Similarly, on Q2, some TAs 

selected the same answer, which is partially correct because some of the charge does remain at 

point P. They also sometimes explicitly noted that they were selecting this answer choice as the 

MCI because it is the one that is most similar to the correct answer. On Q10, many interviewed 

TAs considered answer choices A and B, stating they expected that introductory physics students 

would be aware that the charge should move, but they may not know that it moves with a constant 

acceleration (more examples will be discussed below). While sometimes using this strategy to 

identify the MCI may provide a reasonable answer choice (i.e., one that is fairly common among 

introductory students), it often misled the TAs into selecting an answer choice that was not very 

common – as was the case on Q1, Q2, and Q14 (and other questions that are discussed below). On 

Q14, for example, this reasoning led some TAs to select choice E as the MCI. However, this 

answer choice was only selected by 13% of introductory students. 

On Q14, 18% of the TAs in the quantitative study selected answer choice B as the most 

common among introductory students, but only 9% of introductory students selected it. One 
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interviewed TA who selected choice B as the MCI to Q14 noted that introductory students may 

reason in the following way: “Inside the conductor there is no field. But they might think the sphere 

is shielding the field due to the inside charge also. So, everything is shielded and there is no force 

[i.e., neither +q nor +Q experience a force].” Other TAs who selected choice B used very similar 

reasoning. Similar to TAs’ reasoning for selecting choice E discussed earlier, answer choice B also 

incorporates a partially correct idea: the metal sphere “protects” the charge inside from the effect 

of outside charges, which is partly why many interviewed TAs selected it as the MCI.  

2.3.2.5 Relation between electric potential and electric field/force (Q16, Q18, Q19, Q20) 

On Q16, introductory students’ responses are spread over the four incorrect choices almost evenly. 

On Q18, the TAs performed well in identifying the alternate conception. Moreover, on Q19 and 

Q20, the TAs appear to be able to identify the alternate conceptions. 

2.3.2.6 Work/Electric potential energy (Q11, Q17) 

Q11 asks what happens to the electric potential energy of a positive charge after being released 

from rest in a uniform electric field. The most common alternate conception of introductory 

students is that it remains constant because the electric field is uniform (answer choice A selected 

by 30% of introductory students). A much less common answer choice is choice C, namely that 

the electric potential energy will increase because the charge will move in the direction of the 

electric field (selected by only 13% of introductory students). However, 26% of the TAs selected 

this answer choice, and during an interview, one TA reasoned that perhaps students are thinking 

about total energy instead of electric potential energy (or perhaps they are confusing kinetic and 

electric potential energy): “It (the charge) has an acceleration and velocity is increasing right? So 

they [students] may think that the potential [energy] should increase because velocity is 
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increasing.” Another interviewed TA who selected choice C as the MCI selected it for a very 

similar reason. On Q17, TAs’ average PCK was good (78%). 

2.3.2.7 Force on/motion of charged particle in a magnetic field (Q21, Q22, Q25, Q27) 

Q21 asks what happens to a positive charge that is placed at rest in a magnetic field. The most 

common alternate conception of introductory students is that the charge moves in a circle at 

constant speed (answer choice C selected by 21% of introductory students). On this question, many 

TAs thought that introductory students may confuse electric and magnetic field and thereby 

conclude that the charge moves with constant acceleration (answer choice B selected by 31% of 

TAs), but this answer choice is very rarely selected by students (only 8% of them selected this 

choice) and thus, TAs’ average PCK score on this question is poor (just below 50%). For example, 

one interviewed TA stated: “I can see people confusing or essentially just ignoring that it’s a 

magnetic field thinking that it should do the same thing as it does in an electric field, so, constant 

acceleration. Yea, that would be my guess – B, they would think that it would do the same thing it 

does in an electric field.” 

 
 

(A) I = II = III  (B) III > I > II  (C) II > I > III     (D) I > II > III  (E) III > II > I 

Figure 2.4. Three situations and answer choices provided in Q25 on the CSEM. 

Q25 provides the three situations shown in Fig. 2.4 of a positive charge moving in an 

external magnetic field and asks students to rank them according to the magnitude of the magnetic 

force. Interviews suggest that TAs struggled to identify the MCI which is that the force is largest 

in situation II (where the charge moves ‘against’ the magnetic field) and least in situation III (where 
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the charge moves ‘with’ the electric field), and situation II is in between – answer choice C selected 

by 20% of introductory students. TAs’ selections however are quite varied, with a significant 

percentage of them opting for each incorrect answer choice, which resulted in poor PCK 

performance (42%). 

 

Figure 2.5. Physical situation and answers provided for Q27 on the CSEM. 

Interviews suggest that the TAs had difficulty determining how introductory physics 

students may reason about this question incorrectly. The TAs sometimes opted for choice A (same 

force in all situations) because they expected that some students may only recall qvB as the 

magnetic force on a charge moving in a magnetic field and thus conclude that the forces are equal 

in the three situations. If they did not select this answer choice, they usually started by stating that 

when the velocity and magnetic field are in the same direction, students may think that this leads 

to the largest force. For example, one TA stated: “They [students] are thinking ‘oh, the magnetic 

field is pushing it along in this direction and it’s already moving in that direction’ so that’s just 

compounding the effect [i.e., force is largest in situation III].” Other interviewed TAs reasoned in 

a similar way, but after concluding that students may think the force is largest in situation III, they 

had difficulty applying the same reasoning to situations I and II. They sometimes stated that for 

situation II, students may think that the acceleration is least because the charge is moving in a 

direction (partly) opposite to the magnetic field, and conclude that the force is least in situation II 

(and select B). Other TAs stated that perhaps introductory students are somehow thinking of the 

dot product instead of the cross product and conclude that choice E is the most common answer. 
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Yet other TAs, after considering situation II, changed their minds because they thought that since 

the charge is moving ‘against’ the magnetic field, students may think that the field is exerting the 

largest force. This was one of the questions on the CSEM which took the TAs the most time to 

answer (i.e., determine what they expected would be the MCI). One TA, after trying to figure it 

out for a while, just gave up and said that maybe introductory students would just rank the 

situations in the opposite order (i.e., not read the question correctly and think the situations should 

be ranked from least to greatest). 

 

Figure 2.6. Diagram and answer choices for Q26 on the CSEM 

Q27 shows a positive charge placed at rest near two magnets, the one on the left being three 

times stronger than the one on the right (see Fig. 2.5). It asks for the magnetic force acting on the 

charge and provides the answer choices shown in Fig. 2.5. On this question, the MCIs are choice 

A (19%) and choice D (23%). Only 12% of the TAs selected choice D, and 24% of them selected 

choice C – an answer choice selected by only 8% of introductory students, which resulted in a 

moderate PCK score (52%) on this question. One interviewed TA selected choice C because he 

expected students to think that the magnet on the left is pushing the charge towards the right and 

the magnet on the right is pushing the charge towards the left. When asked why he expected 

students to think this way he stated that he did not know how to explain it, it was just his gut feeling 

based on his experience teaching recitations. 
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2.3.2.8 Magnetic field caused by a current (Q23, Q26, Q28) 

Q26 is shown in Fig. 2.6. On this question, the most common alternate conception of introductory 

students is that the magnetic field is radially outward from the wire (answer choice D selected by 

21% of introductory students). On this question, 47% of the TAs selected answer choice C in which 

the direction of the magnetic field is opposite to the correct direction (i.e., clockwise instead of 

counterclockwise), but only 6% of introductory students selected this answer choice. This resulted 

in a low average PCK score on this question (35%). All the interviewed TAs who selected this 

answer choice essentially said that students may either use their left hand or use the right hand rule 

incorrectly; however, the choices selected by many introductory students do not suggest this as a 

major difficulty. 

 

Figure 2.7. Diagram and answer choices for Q28 on the CSEM 

On Q26, some interviewed TAs used similar reasoning as some of the TAs who selected 

choice E on Q14 – students have some correct ideas (try to use the right hand rule), but are not 

fully correct (obtain the incorrect direction). It is important to point out that after recognizing that 

students may be answering the question incorrectly for this reason (which does not seem to be 

common), the interviewed TAs did not consider all the other answer choices carefully, and did not 

realize that students may have other alternate conceptions, namely that the magnetic field would 

be radially outward from the wire (i.e., confusion between electric and magnetic field). After the 
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TAs answered all the other questions in the interview, they were often asked to return to this 

question and think about whether they expected that any introductory students would select answer 

choice D (radially outward magnetic field). After being asked to consider this answer choice 

explicitly, they were often able to recognize the alternate conception guiding introductory students 

to select choice D and some interviewed TAs wanted to change their original answer. Similarly to 

Q14, some TAs attempted to identify common alternate conceptions on Q26 by arguing that 

introductory students may have some correct ideas, but miss something that causes them to not 

have the fully correct answer. However, it appears that for this question (and others mentioned 

earlier), this type of reasoning from the TAs often steered them in the wrong direction and caused 

them to identify an answer choice that is not common among introductory students while missing 

the most common alternate conception. 

Q28 on the CSEM provides the diagram and answer choices shown in Fig. 2.7. The loops 

shown in Fig. 2.7 carry currents of equal magnitude and the question asks for the direction of the 

magnetic field at point P. The MCI is that the two magnetic fields created by the two wires cancel 

out (answer choice E, selected by 35% of introductory students). Here, the majority of TAs (55%) 

selected this answer choice, but 32% of them selected choice A (an answer choice selected by only 

8% of introductory students), which resulted in a moderate PCK score (63%). Similarly to Q26 

discussed above, all of the TAs who selected this answer choice during interviews claimed that 

introductory physics students may use the right hand rule incorrectly and obtain the incorrect 

direction, however, it appears that very few students do this. 

2.3.2.9 Faraday’s law (Q29, Q30, Q31, Q32) 

On Q29 and Q30, TAs’ performance is quite good, and on Q31, introductory students seem to be 

randomly selecting from the four incorrect answer choices. 
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Figure 2.8. Q32 on the CSEM 

Q32 is one of the most challenging questions on the CSEM (only 18% of students answered 

it correctly). The question and answers are shown in Fig. 2.8. On this question, the MCI is choice 

B (selected by 40% of them) and only 11% of TAs selected this answer choice as the most common 

among introductory students. Also, 31% of the TAs selected answer choice E, but only 1% of 

introductory students selected this choice. Therefore, TAs’ average PCK on this question is quite 

low (41%). In the interviews, one TA selected this choice, explaining that it is possible that 

introductory students only think of the magnitude of the emf (once again, the TA combined a 

correct idea, i.e., only a changing flux induces an emf, with an incorrect one, i.e., introductory 

students do not recognize that the induced emf changes direction). It therefore appears that this 
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question is very challenging for introductory students (only 18% of them answer it correctly in a 

post-test), indicating that they have a lot of difficulty recognizing that the induced emf in the 

secondary coil is only non-zero when the current in the primary coil is changing. However, it 

appears that many TAs are unaware of this difficulty. 

RQ1. (ii) What alternate conceptions do TAs struggle to identify? 

We will now focus on questions in which less than 20% of the TAs identified a common 

student alternate conception. Q3, Q4 and Q5 are related. They are all shown in Fig. 1. On Q3, 76% 

of introductory students realize that the force on the +Q charge should increase by a factor of 4. 

On Q4 however, many introductory students think that after increasing the charge on the right 

from +Q to +4Q, the magnitude of the force on it remains the same, F (instead of increasing by a 

factor of 4 to 4F). This alternate conception was selected by 57% of the TAs. Q5 asks students 

what happens to the magnitude of the force when the charges are moved to be 3 times as far apart. 

Many students who selected choice C on Q4 thought that the force will now decrease by a factor 

of 3 and selected choice B on Q5 (20%), while a smaller percentage (14%) thought that the force 

will decrease by a factor of 9 (correct thinking, but incorrect conclusion because the force on the 

+4Q charge is initially 4F not F). In other words, the most common alternate conception of students 

is that when the two charges are moved three times as far apart, the force on them decreases by a 

factor of 3. If the TAs are aware that this is the most common alternate conception, then among 

the TAs who selected answer choice C on Q4, many of them should select answer choice B on Q5. 

However, while 57% of the TAs selected choice C on Q4, only 16% the TAs identified choice B 

as the MCI on Q5, and 32% selected choice A, possibly because answer choice A is a combination 

of a correct idea (force decreases by a factor of 9) and an incorrect one (force on +4Q charge before 

increasing the distance between the two charges is F). 
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On Q10, 25% of introductory students thought that a charged particle at rest in an electric 

field will stay at rest. Only 9% of the TAs identified this alternate conception. In the interviews, 

they were explicitly asked whether they expected that introductory students would harbor this 

alternate conception. Nearly all the interviewed TAs said that it is unlikely that students do not 

know that charges placed in an electric field would move and thus, the interviews highlighted how 

challenging it is for TAs to identify this alternate conception. 

 

Figure 2.9. Q15 on the CSEM 

Q15 is shown in Fig. 2.9. On this question, 24% of introductory students expected that the 

electric force points directly towards the positive charge from which all the field lines originate 

(answer choice B), but only 17% of the TAs identified this as the MCI. This is likely due to another 

alternate conception common amongst more introductory students (34%), namely that the electric 

force points to the right. The vast majority of the TAs identified this more common alternate 

conception, thus leading to a good average PCK score on this question (84%, the second largest 

among all CSEM questions). Q16 states that an electron is placed at a position on the x axis where 

the electric potential is equal to +10V and asks about the subsequent motion of the electron. On 

this question, 22% of introductory students thought that the electron would move towards the right 

(the most commonly selected incorrect answer), but this answer choice was the one least likely to 

be selected by the TAs (only 16% of them selected it). One interviewed TA thought that the 
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introductory students will place the electron on the positive x axis and a positive charge at the 

origin of the coordinate axis (to give concreteness to the situation) and claim that the electron 

would move to the left. 

On Q27 (shown in Fig. 2.5), 23% of introductory students selected choice D, but only 12% 

of the TAs selected it. In interviews too, the TAs sometimes considered it, but usually selected 

either choice A or C (selected by 19% and 8% of introductory students and 46% and 24% of the 

TAs, respectively). On Q32, shown in Fig. 2.8, the most common alternate conception, held by 

40% of introductory students, is that the reading on the voltmeter opposes the reading in the 

ammeter (i.e., reading on the ammeter increases, therefore reading on the voltmeter decreases and 

vice versa). The introductory students may be trying to apply Lenz’s law, but may not realize that 

the induced emf opposes the change in flux rather than the flux itself. Only 11% of TAs identified 

this alternate conception. 

RQ1 (iii) What alternate conceptions can TAs identify? 

In this section, we will focus on the questions in which at least 50% of the TAs identified 

a common student alternate conception (i.e., incorrect answer choice selected by 20% or more 

introductory physics students). On Q1 (discussed earlier), 23% of introductory students selected 

answer choice C which states that the excess charge spreads everywhere over the inside and outside 

surface of the sphere. This implies that students may be thinking that the positive charges spread 

as far from each other as possible [23]. This alternate conception was correctly identified by 54% 

of the TAs, which indicates that TAs are aware that students do not know that charges on a metallic 

sphere are distributed only on the outer surface. 

On Q4 (discussed earlier), 32% of introductory students selected answer choice C, which 

suggests that they might have the alternate conception that the electric force on a charge is only 
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proportional to the charge that is applying the force. Students may also not recognize that Newton’s 

3rd law applies (i.e., the electric force exerted on the +Q charge by the +4Q charge has the same 

magnitude as the electric force exerted on the +4Q charge by the +Q charge). This difficulty was 

identified by 57% of the TAs.  

On Q5 (shown in Fig. 1), 22% and 20% of introductory students selected option D and 

option B, respectively. The introductory students who selected either of these two options are 

likely to think that the electric force is inversely proportional to the distance (instead of distance 

squared), so that when the separation between two charges is tripled, the force between them 

decreases by a factor of 3. So if an introductory student answers 4F/3 on Q5, he/she probably 

thought that the force decreased by a factor of 3, and the original force was 4F (Q4). If instead, a 

student answers F/3 on Q5, that student probably thought that the original force was F. Half of the 

TAs identified option D as the MCI, whereas only 16% selected option B. This suggests that many 

of the TAs expected that most introductory students would answer Q4 correctly. 

On Q13 (discussed earlier) in which students were asked to find the direction of the electric 

field inside a hollow metal sphere due to the presence of an external positive charge, 27% of 

introductory students selected option A, which neglects to incorporate the effect of the metal 

sphere on the electric field. Roughly half of the TAs (56%) selected option A as the MCI, thus 

suggesting that they are aware that introductory students have difficulty recognizing how 

conducting objects respond to the external electric field (i.e., free charge moves in order to make 

the electric field inside the conductor zero). 

On Q15 (shown in Fig. 2.9), 34% introductory students selected option C, thus neglecting 

to incorporate the sign of the charge. This difficulty was identified by 74% of TAs. 
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Figure 2.10. Three situations provided for Q17-Q19 on the CSEM 

On Q17, students are asked to compare the work needed to move a positive charge from 

point A to point B in three different situations (shown in Fig. 2.10). 23% of introductory students 

answered that the most work is done when moving the charge in situation III. These students likely 

thought that the work is maximum in situation III because the distance over which the charge is 

moved is largest, and did not consider the potential difference between the two points. Many TAs 

(63%) identified this alternate conception. 

Q18 also relates to the three situations shown in Fig. 2.10 and asks introductory students 

to compare the magnitude of the electric field at point B in all three cases. Here, 28% of 

introductory students selected E which states that the electric fields are equal. These students only 

considered that the equipotential line on which B lies is at 40V and did not recognize that it is the 

change in electric potential (i.e. gradient) that is related to the magnitude of the electric field rather 

than the electric potential itself. Just over half the TAs (52%) identified this difficulty. 

Q19 asks students for the direction of the electric force acting on a positive charge if placed 

at point A or B in situation III. One quarter of the students selected answer choice B (right at point 

A and right at point B), possibly because “right” is the direction in which the electric potential 

increases and they expected that a positive charge would be pushed in that direction. This alternate 

conception was identified by 61% of the TAs. 
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Figure 2.11. Diagram provided for Q22 on the CSEM 

Q22 provides the diagram shown in Fig. 2.11 and asks for the direction of the magnetic 

field responsible for making the electron path curve in the way shown. 28% of introductory 

students selected “into the page” which would be correct if the electron was positively charged 

and 59% of the TAs identified this difficulty. Also, 22% of introductory students selected upward, 

suggesting that they may think that the direction of the magnetic force is the same as the direction 

of the magnetic field, significantly fewer TAs identified this alternate conception (22%). 

On Q28 (shown in Fig. 2.7), 35% of introductory students selected answer choice E which 

states that the magnetic field at point P is zero. These students likely thought that the magnetic 

fields created by the two loops are in opposite directions and they therefore cancel. This alternate 

conception was identified by 55% of the TAs. 
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Q29 asks students to identify all of the situations shown in Fig. 2.12 in which the light bulb 

is glowing. 23% of introductory students only selected situations I and IV in which there is relative 

motion between the magnet and the loop. These introductory physics students did not recognize 

that in situation II, the electric flux is changing (because the area of the loop is changing) and 

therefore there will be an induced emf in the loop (light bulb glows). Roughly half the TAs 

identified this alternate conception. Furthermore, some introductory students (26%) also selected 

situation III (i.e., answered that the light bulb glows in situations I, III and IV, answer choice A), 

sometimes due to overgeneralizing that there is an induced emf in any situation in which the loop 

is moving, while much fewer TAs (26%) identified this alternate conception. 

RQ2: (i) To what extent are TAs able to predict the difficulty of the questions? 

Fig. 2.13 shows TAs’ average predictions of the difficulty of each question on the CSEM, 

i.e., the percentage of introductory students who answered each question correctly (TAs’ 

Predictions) as well as the actual difficulty of each question (National Data in Ref. [23]). Fig. 2.13 

shows that the TAs underestimated the average difficulty of the majority of the questions on the 

CSEM. The distribution of correct and most common incorrect predictions of TAs for CSEM items 

along with the averages (connected by a red line) is shown in Figs. 2.15 – 2.18 in the chapter 

appendix. In the same figures, the average of the introductory students’ choices (National Data) is 

shown (connected by a blue line) for comparison. 

The discrepancy between TAs’ predicted difficulty and the actual difficulty in Fig. 2.13 is 

quite large for some questions, in particular, the questions that were most difficult for students 

(e.g., 14, 20, 24, 29, 31, 32). Fig. 2.13 also shows that TAs’ predicted difficulty does not fluctuate 

very much: with the exception of only five questions, the TAs’ predicted difficulty is between 45% 

and 65% for all the questions on the CSEM, thus indicating that the TAs did not have a good sense 
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of how difficult the questions are from the perspective of introductory students. This conclusion is 

further supported by averaging TAs’ predictions over all questions and comparing them to the 

actual average difficulty: TAs over-predicted introductory students’ performance on the CSEM by 

15% on average. 

 

Figure 2.13. Comparison of percentages of correct answers predicted by TAs with algebra-based introductory 

physics students’ actual performance after traditional instruction as obtained from [23]. Standard Deviations range 

between 17.7 and 24.6 and are not shown for clarity. 

RQ2: (ii) To what extent is TAs’ ability to identify introductory students’ alternate conceptions 

correlated with their ability to predict the difficulty of a question? 

The accuracy of TA predictions of the difficulty of a question can be quantified by taking 

the difference between TAs’ average prediction for the percentage of students who answer the 

question correctly and the actual percentage of students who answer the question correctly. Any 

value above zero implies that the TAs are underestimating the difficulty of the question, and a 

value below zero indicates that they are overestimating the difficulty of the question. TAs’ ability 

to identify the alternate conceptions is reflected in their average normalized PCK score for each 

question. These data are plotted in Fig. 2.14. If the TAs are more likely to identify the common 

student alternate conceptions when they are accurate in predicting the difficulty of a question, a 
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negative trend should be observed because better accuracy would correspond to a lower value for 

the difference between TAs’ predicted difficulty and actual difficulty (note that this is only true if 

the TAs typically underestimate the difficulty of a question, which can easily be seen in Fig. 2.14 

– there are only three questions in which the TAs overestimate the difficulty of a question). Two 

trends can be observed in Fig. 2.14: 

i. The TAs typically underestimate the difficulty of the questions on the CSEM. 

ii. There is nearly no correlation (correlation coefficient is 0.028) between TAs’ ability to 

predict the difficulty of a question and their ability to identify the most common alternate 

conceptions. 

The last point implies that sometimes the TAs are able to accurately predict the difficulty 

of a question, but not able to identify common student alternate conceptions, and vice versa, which 

suggests that these two abilities are different facets of pedagogical content knowledge. 

 
Figure 2.14. Scatter plot of TAs’ ability to predict the difficulty of a question (measured as the difference between 

TAs’ predicted difficulty and the actual difficulty) and their average normalized PCK score. The line shows almost 

zero correlation between these two factors. 
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2.4 DISCUSSION AND SUMMARY 

Awareness of introductory physics students’ common difficulties and being able to understand 

how challenging certain concepts are for introductory students are important aspects of 

pedagogical content knowledge. One can take advantage of introductory students’ initial 

knowledge and design effective pedagogical approaches which account for these difficulties and 

help students learn better [44, 46, 49]. Our investigation used the CSEM to evaluate this aspect of 

pedagogical content knowledge in the context of introductory electricity and magnetism for 81 

TAs who were all first-year physics graduate students enrolled in a TA training course. For each 

item on the CSEM, the TAs were asked to identify what they expect is the MCI of introductory 

physics students. Additionally, in years two and three of the study, the TAs were also asked to 

estimate the difficulty of each question on the CSEM. In all three years there was an in class 

discussion with the TAs related to the PCK task. Additionally, think-aloud interviews were 

conducted to obtain an in-depth account of what reasoning TAs use to arrive at the conclusion that 

certain alternate conceptions may be common. 

General approach often used by the TAs to identify common incorrect answer choices of 

introductory students 

When trying to decide what answer choices would be common among introductory 

students, TAs often selected answer choices which incorporate both correct and incorrect ideas. 

While this approach was sometimes productive in helping them identify the MCIs, it often led to 

TAs selecting answer choices that were not common at all. More importantly, after TAs identified 

a particular answer choice which incorporated a correct and incorrect idea, they often neglected to 

consider other answer choices carefully or think about what alternate conceptions could lead to 

students selecting them. There are many examples, for instance, Q26 (shown in Fig. 2.6) in which 
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TAs often selected the answer choice which has the direction opposite to the correct direction. 

They often stated that they were motivated to select this choice because students may try to use 

the right hand rule (correct idea), but do so incorrectly. However, the TAs did not always consider 

the other choices carefully and did not necessarily think about what alternate conceptions may lead 

introductory students to select those choices. We note that after they were explicitly asked to think 

about a particular answer choice (e.g., choice D for Q26), the TAs sometimes predicted the 

alternate conception, in this case that the magnetic field points radially outward from the wire (i.e., 

making a generalization from electric field due to a positive charge, e.g., point charge or line of 

charge), and said that they expected this answer choice to be more common than the one they 

originally selected. This suggests that a productive approach to helping TAs identify common 

incorrect answer choices of students is to explicitly ask them to first identify what alternate 

conceptions may lead introductory students to select each incorrect answer choice (for a particular 

question) and only after that ask them to decide which one they expected to be most common. 

TAs struggled to identify alternate conceptions regarding how charge distributes on 

conductors/insulators 

There are two questions on the CSEM which ask what happens to a charge placed at a 

particular point on a conducting/insulating sphere. For both questions, many TAs selected answer 

choices that were not common among introductory students. On the question in which the sphere 

is insulating, nearly half the TAs expected that students would think that most of the charge 

remains where it was placed, but some does spread over the sphere. Interviews suggested that the 

TAs selected this answer choice because it is the choice which is most similar to the correct answer 

(charge remains where it was placed), i.e., the TAs used the same strategy we described above in 

other contexts.  
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TAs struggled to identify alternate conceptions regarding the magnetic field caused by a current 

On both questions related to magnetic field caused by a current for which there was a 

common alternate conception, the TAs selected answer choices which are not at all common 

among introductory students. On both questions TAs’ often selected answer choices in which the 

right hand rule was used incorrectly, but very few introductory students selected those answer 

choices. 

TAs struggled to identify alternate conceptions regarding the motion of/force on a charged 

particle in a magnetic field. 

Out of the four questions dealing with the concept of Lorenz force (Q21, Q22, Q25, Q27), 

only on one of them (Q22) did the majority of TAs identify the MCIs. On the other ones, the TAs 

often selected answer choices that were not common. Also, Q25 was one of the most challenging 

questions for the TAs; in interviews they often spent a considerable amount of time trying to figure 

out how introductory students may answer the question and sometimes even ended up essentially 

guessing, or committing to an answer only after being asked to select one. 

Alternate conceptions held by very few students which TAs expected would be the most common 

There were multiple instances in which TAs selected certain incorrect answer choices 

which they thought would be most common among introductory students, but those answer choices 

were very rarely selected by introductory students. Three such examples are presented in the 

preceding paragraphs and there are many others. We will mention two more: on Q21, 31% of the 

TAs expected that introductory students would confuse the magnetic field with an electric field 

and think that the charge will move at constant acceleration, but only 8% of introductory students 

selected this answer choice and on Q32, 31% of the TAs selected answer choice E, but only 1% 

of the introductory students selected this incorrect option. 
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Alternate conceptions that the TAs were able to identify 

The TAs performed reasonably well at identifying alternate conceptions related to 

Coulomb’s force law (Q3-8), although, there is room for improvement, especially on Q8. On Q3 

and Q6, there are no strong alternate conceptions, and on Q4 and Q5, TAs’ average PCK score 

was high. On Q7, the majority of the TAs identified the alternate conceptions, and their 

performance was close to being considered good according to our heuristics. Q8 is the only one 

on which the TAs could improve significantly, and this is the only question of the group that has 

a complicated setup and asks students to compare two configurations side by side, one with three 

charges and the other with four. It is possible that TAs’ lower PCK performance on this question 

was due to the setup being more complicated than those used in the other questions. 

TAs performed reasonably well in identifying the alternate conception that the electric field 

inside a hollow metallic sphere due to an external charge is the same as it would be without the 

hollow metal sphere. In other words, TAs were aware that introductory students have difficulty 

understanding that the inside of a metallic sphere is shielded from outside electric fields. The TAs’ 

normalized PCK score (87%) was the highest on this question (Q 13) among all the questions on 

the CSEM. 

On two other questions involving Faraday’s Law/Lenz’s law (Q29 and Q30), TAs 

performed well in identifying introductory students’ alternate conception that an emf is induced in 

a loop whenever there is any type of relative motion between a magnet/current carrying wire and 

a loop of wire. 

TAs’ ability to predict the difficulty of the questions on the CSEM 

Our results also suggest that the TAs typically underestimated the difficulty of the 

questions on the CSEM, especially on the challenging questions. For all but five questions on the 
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CSEM, TAs’ average predictions for the percentage of introductory students who answer the 

questions correctly were between 45% and 65%, while the actual percentages varied much more 

widely. This strongly suggests that the TAs struggled to think about the difficulty of the questions 

from a student’s perspective. Furthermore, we found that TAs’ ability to predict the difficulty of a 

question was uncorrelated with their ability to identify the MCIs, thus suggesting that the two are 

separate facets of pedagogical content knowledge. 

Using a PCK task as a pedagogical tool 

Many TAs explicitly noted that the CSEM-related PCK task was challenging and it was 

difficult for them to think about physics questions from an introductory physics student’s 

perspective. In the think-aloud interviews, graduate students sometimes made comments which 

indicated that they found the task challenging (e.g., explicitly commenting “I don’t know 

introductory students well enough…”). However, many TAs noted that the CSEM-related PCK 

task was worthwhile and helped them think about the importance of putting themselves in their 

students’ shoes in order for teaching and learning to be effective, especially after receiving 

introductory student data on how students actually performed and discussing particular student 

alternate conceptions. 

If such a task is used in professional development (for example for teaching assistants), our 

interviews suggest that teaching assistants should be explicitly told to first try to identify (and 

perhaps write down) what alternate conceptions or incorrect reasoning may lead introductory 

students to select each of the incorrect answer choices before deciding which one is most common. 

In interviews, we found that TAs often identified one possible alternate conception, selected it, 

and moved on to the next question without carefully considering other answer choices. When 

prompted to consider another answer choice, they were sometimes able to identify the most 
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common (or a more common) alternate conception and even asked if they could change their 

original answer. 

We note that the authors have been using tasks similar to the one described here in the 

professional development of TAs at their institutions and have found them to be very useful in 

setting the stage for a discussion on the importance of being aware of introductory students’ 

difficulties and alternate conceptions in order to design instruction to help students learn. The TAs 

discuss questions which have been carefully selected to engender productive discussions among 

TAs, e.g., a question on which interviews and quantitative data suggest that the TAs will consider 

multiple answer choices but the introductory students are likely to select only one of them; or a 

question which has multiple common incorrect answer choices, etc. The TAs are explicitly asked 

to identify and discuss with each other what reasoning introductory students may use to select each 

incorrect answer choice before making a decision about which one is most common. Additionally, 

they are asked to predict the difficulty of each question. After the TAs complete the task, they are 

shown data from students, and some TAs explicitly express that it is very valuable for them to 

learn about the common student difficulties in concrete contexts. We found that TAs tend to trust 

student data more than statements like “research has found that…” The discussion is then focused 

on how TAs can identify common student difficulties related to various physics concepts, e.g., by 

listening to students when reasoning about physics and coming up with guiding questions in real 

time to develop a grasp of how students are thinking in specific contexts. At one of the institutions 

(A.M.), the rest of the professional development program (which meets once a week for a semester) 

is focused on the tutorials students work on and their common difficulties on specific questions on 

the tutorials, as well as effective approaches the TAs can use to help students develop a coherent 

knowledge structure of those introductory physics concepts. Using such tasks with actual data from 
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introductory students in TA professional development courses can be effective at other institutions 

as well. 

Comparison to prior studies related to TAs’ PCK for multiple choice assessments 

We note that in this study, we also found that discussions between TAs did not significantly 

improve their PCK performance on the CSEM-related PCK task; overall, working in groups only 

improved their average PCK performance on the whole test by 2%, an improvement that was not 

statistically significant. 

Our earlier studies of PCK [44, 46, 50] on both the FCI and TUG-K found that the group 

PCK performance was significantly better than individual PCK performance. Also, the benefits of 

group or collaborative work have been a consistent finding of PER in particular and educational 

research in general [51]. The fact that we found a different result here with the CSEM survey, 

especially when contrasting it with our earlier results using a PCK task with other assessments 

(FCI and TUG-K), suggests that the PCK task may be more challenging when the assessment used 

is the CSEM compared to other assessments related to force or kinematics. One potential reason 

for this is the crucial difference between the topics of mechanics (including kinematics) and 

electricity and magnetism: our daily experience with the real world leads to a relatively predictable 

(Aristotelian) world view and TAs could more easily reason their way to common misconceptions 

held by students. Electricity and magnetism, on the other hand, deals with concepts that are not 

primarily learned experientially (e.g., charges, fields and currents), which likely makes it more 

difficult to predict the most common difficulties of students. We note however, that whether the 

context is electricity and magnetism, force and motion, kinematics, or quantum mechanics, 

whether intuitive or not, student difficulties can be classified in a few categories [52, 53]. Knowing 
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the types of incorrect reasoning students engage in for a particular context can help in designing 

instruction to help students develop a robust knowledge structure [53]. 

Despite the difference mentioned above, there are many commonalities in the three PCK 

studies. In all of these three studies, there are questions for which the TAs’ performance at 

identifying common student difficulties is good, while there are also questions in which TAs 

struggled to identify student difficulties. Both interviews and the quantitative data show that it was 

often the case that TAs selected answer choices that are not very common among introductory 

students. In interviews, they sometimes considered different answer choices and struggled to select 

the most common one, sometimes only doing so after being reminded that they should try to 

identify the answer choice that is most common.  

Our earlier studies using the TUG-K and FCI showed that the ability to identify common 

introductory students’ alternate conceptions was not dependent on familiarity with US teaching 

practices and that TAs exhibited comparable performance in identifying introductory students’ 

alternate conceptions for the FCI or TUG-K regardless of whether they obtained their 

undergraduate degree in the US or elsewhere. Therefore, we did not explicitly compare the PCK 

performance of TAs with different institutional backgrounds in detail for the present study. 

However, informal observations during the TA training course as well as interviews suggest that 

the CSEM related PCK performance of TAs of different backgrounds, e.g., Chinese vs. American, 

appears to be comparable. 
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2.6 CHAPTER APPENDIX 

2.6.1 Mathematical Description of CSEM-related PCK Score Calculation 

We define indices i, j and k that correspond to the following: 

 i: index of TAs (81 TAs; it takes values from 1 to 81); 

 j: CSEM question number (32 questions; it takes values from 1 to 32); 

 k: incorrect answer choice number for each question (4 incorrect answer choices; it takes 

values from 1 to 4). 

Then, we let Fjk be the fraction of introductory physics students who selected incorrect 

answer choice k on item j (e.g. F21 = 0.04, F22 = 0.23, F23 = 0.07, F24 = 0.03). We let TAijk 

correspond to whether TAi chose incorrect answer choice k on item j (for a given i and j, TAijk=1 

only for the incorrect answer choice k, selected by TAi on item j, otherwise TAijk=0). Then, the 

http://dx.doi.org/10.1119/perc.2014.pr.039
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PCK score of the i-th TA on item j (referred to TAij) is: 𝑇𝐴𝑖𝑗 = ∑ (𝑇𝐴𝑖𝑗𝑘 ∙ 𝐹𝑗𝑘)
4
𝑘=1 . Then, the total 

PCK score of the i-th TA (TAi) on the whole survey can be obtained by summing over all of the 

questions: 

𝑇𝐴𝑖 = ∑ 𝑇𝐴𝑖𝑗
32
𝑗=1 = ∑ [∑ (𝑇𝐴𝑖𝑗𝑘 ∙ 𝐹𝑗𝑘)

4
𝑘=1 ]32

𝑗=1 . 

Also, the average PCK score of all of the TAs on item j (referred to as 𝑇𝐴𝑗̅̅ ̅̅ ̅) can be obtained 

by taking an average over the TA scores on that particular question: 

𝑇𝐴̅̅ ̅̅ 𝑗 = ∑ 𝑇𝐴𝑖𝑗
81
𝑖=1 =

1

81
∑ [∑ (𝑇𝐴𝑖𝑗𝑘 ∙ 𝐹𝑗𝑘)

4
𝑘=1 ]81

𝑖=1 . 

These can be converted to percentages by multiplying by 100. A similar approach can also 

be adopted for the groups (Gij = PCK score of the ith group on item j; Gi = PCK score of the i-th 

group on the whole survey; 𝐺�̅� = average PCK score of all groups on item j) and for random 

guessers (RGij = PCK score of ith random guesser on item j; RGi = PCK score of ith random 

guesser; 𝑅𝐺𝑗̅̅ ̅̅ ̅ = average PCK score of random guessers on item j). The PCK scores of each 

TA/group/random guesser (GSi, Gi, RGi as described above) were used to obtain averages and 

standard deviations in order to perform t-tests to compare the CSEM-related PCK performance of 

TAs with that of the groups and random guessers on the whole survey. In order to compare the 

PCK performance of these different groups on individual items, the averages and standard 

deviations of the PCK scores on that particular question (e.g., for question j on the CSEM: TAij, 

Gij, RGij) were used to perform t-tests. 

2.6.2 Comparison of TA Performance with Random Guessing 

Random guessing on this task would correspond to choosing one of the four incorrect answer 

choices for each question with equal probability (25%). Therefore, one quarter of the random 
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guessers always selected the first incorrect answer choice, one quarter selected the second incorrect 

answer choice, etc. Therefore, each individual random guesser obtains a score for each question 

and these scores were used to perform a comparison with the TA scores via t-test. We note that, 

with 80 ‘random guessers’, the TAs predictions are better than random guessing for 20 questions 

as described in Table 2.1 whereas with 40 ‘random guessers’, the TAs predictions are better than 

random guessing for 19 questions (Q3 was worse in this case). 
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Figure 2.15. The distribution of correct and most common incorrect predictions of TAs for CSEM items 

Q1–Q8 (a–h) along with the averages (connected by a red line). The average of the introductory students’ choices 

(National Data) is shown (connected by a blue line) for comparison. 
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Figure 2.16. The distribution of correct and most common incorrect predictions of TAs for CSEM items 

Q9–Q16 (a–h) along with the averages (connected by a red line). The average of the introductory students’ choices 

(National Data) is shown (connected by a blue line) for comparison. 
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Figure 2.17. The distribution of correct and most common incorrect predictions of TAs for CSEM items 

Q17–Q24 (a–h) along with the averages (connected by a red line). The average of the introductory students’ choices 

(National Data) is shown (connected by a blue line) for comparison. 
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Figure 2.18. The distribution of correct and most common incorrect predictions of TAs for CSEM items 

Q25–Q32 (a–h) along with the averages (connected by a red line). The average of the introductory students’ choices 

(National Data) is shown (connected by a blue line) for comparison. 
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3.0  IMPACT OF EVIDENCE-BASED ACTIVE-ENGAGEMENT COURSES ON 

STUDENT PERFORMANCE IN INTRODUCTORY PHYSICS 

3.1 INTRODUCTION 

3.1.1 Physics Education Research-based Active Engagement Methods 

In the past two decades, physics education research has identified the challenges that students 

encounter in learning physics at all levels of instruction [1-15]. Building on these investigations, 

researchers are developing, implementing and evaluating evidence-based curricula and pedagogies 

to reduce these challenges to help students develop a coherent understanding of physics concepts 

and enhance their problem solving, reasoning and meta-cognitive skills [16-27]. In evidence-based 

curricula and pedagogies, the learning goals and objectives, instructional design, and assessment 

of learning are aligned with each other and there is focus on evaluating whether the pedagogical 

approaches employed have been successful in meeting the goals and enhancing student learning. 

One highly successful model of learning is the field-tested cognitive apprenticeship model 

[28]. According to this model, students can learn effectively if the instructional design involves 

three essential components: “modeling”, “coaching and scaffolding”, and “weaning”. In this 

approach, “modeling” means that the instructional approaches demonstrate and exemplify the 

criteria for good performance and the skills that students should learn (e.g., how to solve physics 

problems systematically). “Coaching and scaffolding” means that students receive appropriate 

guidance and support as they actively engage in learning the content and skills necessary for good 

performance. “Weaning” means reducing the support and feedback gradually to help students 
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develop self-reliance [28]. In traditional physics instruction, especially at the college level, there 

is often a lack of coaching and scaffolding: students come to class where the instructor lectures 

and does some example problems, then students are left on their own to work through homework 

with little or no feedback. This is akin to a piano instructor demonstrating for the students how to 

play the piano and then asking students to go home and practice. This lack of prompt feedback and 

scaffolding can be detrimental to learning. 

Some of the commonly used evidence-based active-engagement (EBAE) approaches 

implemented in physics include peer instruction with clickers popularized by Eric Mazur from 

Harvard University [29-32], tutorial-based instruction in introductory and advanced courses [33-

35] and collaborative group problem solving [36-39], e.g., using context-rich problems [11-12]. In 

all of these evidence-based approaches, formative assessment plays a critical role in student 

learning [40]. Formative assessment tasks are frequent, low-stakes assessment activities which 

give feedback both to students as well as instructors about what students have learned at a given 

point. Using frequent formative assessments helps make the learning goals of the course concrete 

to students, as well as provides them with a way to track their progress in the course with respect 

to these learning goals. When formative assessment tasks such as concept-tests, tutorials and 

collaborative group problem solving are interspersed throughout the course, the distinction 

between teaching and learning is blurred [40-41]. 

Moreover, technology is increasingly being exploited for pedagogical purposes to improve 

student learning. For example, Just-in-Time Teaching (JiTT) is an instructional approach in which 

instructors receive feedback from students before class and use that feedback to tailor in-class 

instruction [42-44]. Typically, students complete an electronic pre-lecture assignment in which 

they give feedback to the instructor regarding any difficulties they have had with the assigned 
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reading material, lecture videos, and/or other self-paced instructional tools. The instructor then 

reviews student feedback before class and makes adjustments to the in-class activities. For 

example, Eric Mazur’s Perusall system [45] allows students to read the textbook and ask questions 

electronically and the system uses their questions to draft a “confusion report” which distills their 

questions to three most common difficulties. Then, during class, students may engage in 

discussions with the instructor and with their classmates, and the instructor may then adjust the 

next pre-lecture assignment based on the progress made during class. It has been hypothesized that 

JiTT may help students learn better because out-of-class activities cause students to engage with 

and reflect on the parts of the instructional material they find challenging. In particular, when the 

instructor focuses on student difficulties in lecture which were found via electronic feedback 

before class, it may create a “time for telling” [46] especially because students may be “primed to 

learn” better when they come to class if they have struggled with the material during pre-lecture 

activities. The JiTT approach is often used with peer discussion and/or collaborative group 

problem solving inter-dispersed with lectures in the classroom. 

In addition, in the last decade, the JiTT pedagogy has been extended a step further with the 

maturing of technology [47-66] and “flipped” classes with no in-class lectures have become 

common with instructors asking students to engage with short lecture videos and concept questions 

associated with each video outside of the class and using the entire class-time for active-

engagement. The effectiveness of flipped classes in enhancing student learning can depend on 

many factors including the degree to which evidence-based pedagogies that build on students’ 

prior knowledge and actively engage them in the learning process are used, whether there is 

sufficient buy-in from students and the incentives that are used to get students engaged with the 

learning tools both inside and, equally importantly, outside the classroom. 
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Moreover, research suggests that effective use of peer collaboration can enhance student 

learning in many instructional settings in physics classes including in JiTT and flipped 

environments, and with various types and levels of student populations. Although the details of 

implementation vary, students can learn from each other in many different environments. 

Integration of peer interaction with lectures has been popularized in the physics community by 

Mazur. In Mazur's approach [67], the instructor poses concrete conceptual problems in the form 

of conceptual multiple-choice clicker questions to students throughout the lecture and students 

discuss their responses with their peers. Heller et al. have shown that collaborative problem solving 

with peers in the context of quantitative “context-rich” problems [11-12] can be valuable both for 

learning physics and for developing effective problem solving strategies.  

Cognitive apprenticeship [28] is one framework that can be used to understand why the 

EBAE instructional strategies that take advantage of peer discussion and collaboration may be 

successful in helping students learn. The EBAE pedagogies provide instructors with an opportunity 

to receive feedback on common student difficulties. The instructors often use this feedback to 

adjust their in-class activities to effectively build on students’ prior knowledge, thus providing 

students with the necessary coaching and scaffolding to help them learn. Peer discussion also 

provides students with an opportunity to be coached by their peers who may be able to discern 

their difficulties even better than the instructor, and carefully designed targeted feedback from the 

instructor after the peer discussion can provide appropriate scaffolding. 
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3.1.2 Focus of the Research: Comparing Introductory Physics Student Performance in 

EBAE (Flipped and Non-flipped) Courses with LB Courses 

In this study, we used the Force Concept Inventory (FCI) [71] in the first semester courses and the 

Conceptual Survey of Electricity and Magnetism (CSEM) [72] in the second semester courses to 

assess student learning. The FCI, CSEM and other standardized physics surveys [71-78] have been 

used to assess introductory student understanding of physics concepts by a variety of educators 

and physics education researchers. One reason for their extensive use is that many of the items on 

the survey have strong distractor choices which correspond to students’ common difficulties so 

students are unlikely to answer the survey questions correctly without having good conceptual 

understanding. In the research discussed here, the performance of students in EBAE courses at a 

particular level is compared with primarily LB courses in two situations: (I) the same instructor 

taught two courses, one of which was a flipped course involving EBAE methods and the other an 

LB course, while the homework and final exams were kept the same, (II) student performance in 

all of the EBAE courses taught by different instructors were averaged and compared with primarily 

LB courses of the same type also averaged over different instructors. Whenever differences 

between these two groups were observed (with students in EBAE courses performing better than 

students in the LB courses), we investigated which students were benefitting most from the EBAE 

courses, e.g., those who performed well or poorly on the pretest given at the beginning of the 

course. Finally, we were also interested in the typical correlation between the performance of 

students on the validated conceptual surveys and their performance on the final exam, which 

typically places a heavy weight on quantitative physics problems. 
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3.1.3 Framework for Exploring the Effectiveness of EBAE Pedagogies 

We compare introductory physics student performance in EBAE flipped and active-engagement 

non-flipped courses with LB courses with inspiration from several theoretical frameworks. The 

overarching framework that is used for the instructional design of all of the EBAE courses in this 

study (whether flipped or active-engagement non-flipped) was the cognitive apprenticeship model 

[28, 79, 80]. This framework focuses on providing opportunities to coach students and scaffold 

their learning. All of the EBAE classes were designed to give students similar coaching and 

scaffolding to develop their problem solving and reasoning skills. The EBAE courses focused on 

the cognitive approach to instructional design for various learning units and building on students’ 

prior knowledge in order to help them learn better. For example, Piaget’s framework [81], which 

emphasizes “optimal mismatch” between what a student knows and where the instruction should 

be targeted in order for desired assimilation and accommodation of knowledge to occur, was 

helpful in developing the instructional design. A related framework is the theory of conceptual 

change put forth by Posner et al. [82]. In this framework, conceptual changes or “accommodations” 

can occur when the existing conceptual understanding of students is not sufficient for or is 

inconsistent with new phenomena they are learning about. These frameworks also suggest that 

these accommodations can be very difficult for students, particularly when students are firmly 

committed to their prior understanding, unless instructional design explicitly accounts for these 

difficulties. The model suggests that it is important for instructors to be knowledgeable about 

student ideas, e.g., which they may apply in inappropriate contexts to make incorrect inferences 

while solving physics problems. Within this framework, students can be motivated by an anomaly 

which provides a cognitive conflict and illustrates how their conceptions are inadequate for 

explaining a newly encountered physical situation, so they become dissatisfied with their current 
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understanding of concepts and improve their understanding. Taking inspiration from these 

frameworks, EBAE instructors tried to focus on student conceptions and their difficulties in 

learning physics in order to design instruction that produces the desired cognitive conflict and 

learning. 

3.2 METHODOLOGY 

3.2.1 Courses and Participants 

The participants in this study were students in 16 different algebra-based and calculus-based 

introductory physics courses (more than 1500 students in first semester courses and more than 

1200 students in the second semester courses) at a typical large research university in the US 

(University of Pittsburgh). The courses fall into three categories: 

1) A lecture-based (or LB) course is one in which the primary mode of instruction was via 

lecture. In addition to the three or four weekly hours for lectures, students attended an hour 

long recitation section taught by a graduate TA. In recitation, the TA typically answered 

student questions (mainly about their homework problems which were mostly textbook 

style quantitative problems), solved problems on the board and gave students a quiz in the 

last 10-20 minutes. 

2) A flipped course is one in which the class was broken up into two almost equal size groups 

with each group meeting with the instructor for half the regular class time. For example, 

for a 200 student class scheduled to meet for four hours each week (on two different days), 

the instructor met with half the class (100 students) on the first day and the other half on 
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the second day. This was possible in the flipped classes since the total contact hours for 

each instructor each week with the students was the same as in the corresponding LB 

courses. Students watched the lecture videos before coming to class and answered some 

conceptual questions which were based upon the lecture video content. They uploaded the 

answers to those conceptual questions before class onto the course website and were graded 

for a small percentage of their grade (typically 4-8%). Although students had to watch 

several videos outside of class in preparation for each class, each video was typically 5-10 

minutes long, followed by concept questions. On average, students in a flipped class had 

to watch recorded videos which took a little less than half the allotted weekly time for class 

(e.g., for the courses scheduled for four hours each week, students watched on average 1.5 

hours of videos each week, and in the courses scheduled for three hours each week, students 

watched around one hour of videos). These video times do not include the time that students 

would take to rewind the video, stop and think about the concepts and answer the concept 

questions embedded after the videos that counted for their course grade. In the spirit of 

JiTT, the instructors of the flipped courses adjusted the in-class activities based upon 

student responses to online concept questions which were supposed to be submitted the 

night before the class. About 90% of the students submitted their answers to the concept 

questions that followed the videos to the course website before coming to the class. The 

web-platforms used for managing, hosting and sharing these videos and for having online 

discussions with students about them asynchronously (in which students and the instructor 

participated) were Classroom Salon or Panopto. In-class time was used for clicker 

questions involving peer discussion and then a whole class discussion of the concept-tests, 

collaborative group problem solving involving quantitative problems in which 2-3 students 
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worked in a group (followed by a clicker question about the order of magnitude for the 

answer to the quantitative problem on which students worked collaboratively) and lecture-

demonstrations with preceding clicker questions on the same concepts. In addition to the 

regular class times, students attended an hour long recitation section which was taught the 

same way as for students in the LB courses. 

It is important to note that the instructors who taught the flipped courses also taught 

LB courses at the same time (usually teaching two courses in a particular semester: one 

flipped and one LB). Students in both flipped and LB courses completed the same 

homework and took the same final exam. For the calculus-based flipped courses, the 

students also took the same midterm exams. This was not possible for the algebra-based 

courses because the exams were scheduled at different times. However, in the algebra-based 

courses they took the same final exam and had the same homework. Additionally, the 

instructors attempted to make the actual delivery of content (done via videos in the flipped 

courses and via in-class lecture in the lecture-based courses) very similar. Essentially, the 

content of the videos was delivered in-class in the lecture based courses. 

3) EBAE interactive non-flipped course. In this course, the instructor combined lectures with 

research-based pedagogies including clicker questions with peer discussion, conceptual 

tutorials, collaborative group problem solving, and lecture demonstrations with preceding 

clicker questions on the same concepts similar to the flipped courses. In addition, students 

attended a reformed recitation which primarily used context-rich problems to get students 

to engage in group problem solving or worked on research-based tutorials while being 

guided by a TA. The instructor ensured that the problems students solved each week in the 

recitation activities were closely related to what happened in class. Students also worked 
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on some research-based tutorials during class in small groups, but if they did not finish 

them in the allotted time, they were asked to complete them as homework. 

3.2.2 Materials 

The materials used in this study are the conceptual FCI and CSEM multiple-choice (five choices 

for each question) standardized surveys which were administered in the first week of classes before 

instruction in relevant concepts (pretest) and the after instruction in relevant concepts (posttest). 

Apart from the data on these surveys that the researchers collected from all of these courses, each 

instructor administered his/her own final exam which was mostly quantitative (60%-90% of the 

questions were quantitative although some instructors had either the entire final exam or part of it 

in a multiple-choice format with five options for each question to make grading easier). Ten course 

instructors (who also provided the FCI or CSEM data from their classes) provided their students’ 

final exam scores and most of them also provided a copy of their final exam. 

3.2.3 Methods 

Our main goal in this investigation was to compare the average performance of students in 

introductory physics courses that used EBAE pedagogies with the average performance of students 

in LB courses by using standardized conceptual surveys, the FCI (for physics I) and CSEM (for 

physics II) as pre-/posttests. We not only calculated the average gain (posttest – pretest scores) for 

each group but also calculated the average normalized gain, which is commonly used to determine 

how much the students learned from pretest to posttest taking into account their initial scores on 
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the pretest. It is defined as 
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fS and iS  are the final (post) and 

initial (pre) class averages, respectively. Then, Norm 100g g  in percent [16]. This normalized 

gain provides valuable information about how much students have learned by taking into account 

what they already know based on the pretest. We wanted to investigate whether the normalized 

gain is higher in one course compared to another. 

In order to compare EBAE courses with LB courses, we performed t-tests [83] on FCI or 

CSEM pre- and posttest data. We also calculated the effect size in the form of Cohen’s d defined 
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 , where 1  and 2  are the averages of the two groups being compared (e.g., EBAE 

vs. LB) and  2 2
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pooled    ; here 1  and 2  are the standard deviations of the two groups 

being compared. 

Moreover, although we did not have control over the type of final exam each instructor 

used in his/her courses, we wanted to look for correlation between the FCI/CSEM posttest 

performance and the final exam performance for different instructors in the algebra-based and 

calculus-based EBAE or LB courses. Including both the algebra-based and calculus-based courses, 

10 instructors provided the final exam scores for their classes. We used these data to obtain linear 

regression plots between the posttest and the final exam performance for each instructor and 

computed the correlation coefficient between the performance of students on the validated 

conceptual surveys and their performance on the final exam for different instructors. These 

correlation coefficients between the conceptual surveys and the final exam (with strong focus on 

quantitative problem solving) can provide an indication of the strength of the correlation between 

conceptual and quantitative problem solving in introductory physics courses. 
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Out of all introductory physics courses (algebra-based or calculus-based physics I or II) 

included in this study, there were four EBAE courses: two completely flipped classes in algebra-

based introductory physics I and one completely flipped and one interactive active engagement 

class in calculus-based introductory physics II. 

3.3 RESULTS 

Table 3.1 shows the intra-group pre-/posttest data (pooled data for the same type of courses) on 

the FCI survey for the calculus-based and algebra-based physics I courses. For the algebra-based 

courses, some were EBAE courses while others were LB courses, whereas all the calculus-based 

courses were LB. We find statistically significant improvements from the pretest to the posttest 

for each group but the normalized gain (Norm g) is largest (30%) for the EBAE courses. 

Table 3.1. Intra-group FCI pre-/posttest averages (Mean) and standard deviations (SD) for first-semester 

introductory physics in calculus-based LB courses, and algebra-based EBAE (flipped) and LB courses. The number 

of students in each group, N, is shown. For each group, a p-value obtained using a t-test shows that the difference 

between the pre-/posttest is statistically significant and the normalized gain (Norm g) from pre- to posttest shows 

how much students learned from what they did not already know based on the pretest. 

Type of class FCI N Mean SD p-value Norm g 

Calc LB 
Pretest 461 51% 21% 

<0.001 25% 
Posttest 350 63% 20% 

Alg flipped 
Pretest 299 35% 18% 

<0.001 30% 
Posttest 262 54% 20% 

Alg LB 
Pretest 837 35% 17% 

<0.001 23% 
Posttest 738 50% 19% 
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Table 3.2 shows the intra-group (pooled data for the same type of courses) pre-/posttest 

data on the CSEM survey for algebra-based and calculus-based introductory physics II courses. 

We find that there are statistically significant differences between the pre-/posttest scores for each 

group but the normalized gain (Norm g) is largest (36%) for the EBAE courses. 

Table 3.2. Intra-group CSEM pre-/posttest averages (Mean) and standard deviations (SD) for second-semester 

introductory physics in calculus-based LB and EBAE courses (here, EBAE flipped and interactive non-flipped 

courses are combined) and algebra-based LB courses. The total number of students in each group, N, is shown. For 

each group, a p-value obtained using a t-test shows that the difference between the pre-/posttest s is statistically 

significant and the normalized gain (Norm g) from pretest to posttest shows how much students learned from what 

they did not already know based on the pretest. 

Type of Class CSEM N Mean SD p-value Norm g 

Calc LB 
Pretest 410 38% 14% 

<0.001 21% 
Posttest  346 51% 17% 

Calc EBAE 
Pretest 346 37% 16% 

<0.001 36% 
Posttest  300 60% 19% 

Alg LB 
Pretest 514 24% 11% 

<0.001 25% 
Posttest  449 43% 17% 

 

Table 3.3 shows the inter-group FCI pre-/posttest score comparison between algebra-based 

LB and EBAE courses, first holding the instructor fixed (same instructor taught both the LB and 

EBAE courses, used the same homework and final exams) and second, combining all instructors 

who used similar methods in the same group (only one instructor used EBAE methods, but several 

who taught LB courses were combined). Table 3.3 shows that there is no statistically significant 

difference between the pretest scores of students in the LB and EBAE courses in introductory 

physics I on the FCI. Table 3.3 also shows that the effect sizes for comparing FCI posttest 

performance of students in EBAE courses with students in LB courses are 0.314 (same instructor 
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teaching both courses in the same semester) and 0.233 when different courses using similar 

methods are combined (which are considered small effect sizes).  

Table 3.3. Inter-group comparison of the average FCI pre-/posttest scores of algebra-based students in LB courses 

with EBAE courses when (i) both courses are taught by the same instructor and (ii) different instructors using 

similar instructional methods are combined. The p-values and effect sizes are obtained when comparing the LB and 

EBAE courses in terms of students’ FCI scores. 

Comparison of LB and EBAE Groups  FCI-Pre FCI-Post 

(i) FCI Alg: LB vs. EBAE 

(same instructor) 

LB 

N: 466 

Mean: 35% 

SD: 17% 

N: 433 

Mean: 48% 

SD: 20% 

Comparison 

LB and EBAE 

p-value: 0.831 

effect size: 0.017 

p-value: <0.001 

effect size: 0.314 

EBAE 

N: 299 

Mean: 35% 

SD: 18% 

N: 262 

Mean: 54% 

SD: 20% 

(ii) FCI Alg: LB vs. EBAE 

(different instructors combined) 

LB 

N: 837 

Mean: 35% 

SD: 17% 

N: 738 

Mean: 50% 

SD: 19% 

Comparison 

LB and EBAE 

p-value: 0.901 

effect size: 0.009 

p-value: 0.001 

effect size: 0.233 

EBAE 

N: 299 

Mean: 35% 

SD: 18% 

N: 262 

Mean: 54% 

SD: 20% 

 

Table 3.4 shows the inter-group CSEM pre-/posttest score comparison between calculus-

based LB and EBAE courses, first holding the instructor fixed (same instructor taught both the LB 

and EBAE courses and used the same homework and final exams) and second, combining all 

instructors who taught using similar methods in the same group. Table 3.4 shows that there is no 

statistically significant difference between the pretest scores of students in the LB and EBAE 
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courses in introductory physics II on the CSEM. Table 3.4 also shows that the effect sizes for 

comparing CSEM posttest performance of students in EBAE courses with students in LB courses 

are 0.357 (same instructor teaching both courses) and 0.494 when different courses using similar 

methods are combined (which are considered medium effect sizes). 

Table 3.4. Inter-group comparison of the average CSEM pre-/posttest scores of calculus-based students in LB 

courses with EBAE courses when (i) both courses are taught by the same instructor and (ii) different instructors 

using similar instructional methods are combined. The p-values and effect sizes are obtained when comparing the 

LB and EBAE courses in terms of students’ CSEM scores. 

Comparison of LB and EBAE Groups  CSEM Pre CSEM Post 

(i) CSEM Calc: LB vs. EBAE 

(same instructor) 

LB 

N: 178 

Mean: 40% 

SD: 13% 

N: 154 

Mean: 48% 

SD: 15% 

Comparison 

LB and EBAE 

p-value: 0.895 

effect size: 0.013 

p-value: 0.001 

effect size: 0.357 

EBAE 

N: 208 

Mean: 40% 

SD: 15% 

N: 181 

Mean: 54% 

SD: 19% 

(ii) CSEM Calc LB vs. EBAE 

(different instructors pooled) 

LB 

N: 410 

Mean: 38% 

SD: 14% 

N: 346 

Mean: 51% 

SD: 17% 

Comparison 

LB and EBAE 

p-value: 0.886 

effect size: 0.011 

p-value: <0.001 

effect size: 0.494 

EBAE 

N: 346 

Mean: 37% 

SD: 16% 

N: 300 

Mean: 60% 

SD: 19% 

 

Table 3.5 shows the average FCI pre-/posttest scores for algebra-based and CSEM pre-

/posttest scores for calculus-based courses (Av-Pre/Post), gain (Post – Pre), normalized gain 

(Norm g), and final exam scores (Av-Fin) for students in the flipped and LB courses taught by the 
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same instructor (with the same homework and final exam) with students divided into three groups 

based on their pretest scores. A closer look at the gains and normalized gains for the courses taught 

by the same instructor shows that students in all of the three pretest score categories in the flipped 

courses had higher gains and normalized gains compared to those in the LB courses taught by the 

same instructor. Moreover, for algebra-based physics I, the average final exam scores of the 

students in the flipped course taught by the same instructor in all the three pretest categories are 

somewhat higher than the LB course. 

Table 3.5. Average FCI pre-/posttest scores for algebra-based and CSEM pre-/posttest scores for calculus-based 

courses (Av-Pre/Post), Gain (Post – Pre), normalized gain (Norm g) and final exam scores (Av-Fin) for students in 

the flipped and LB courses taught by the same instructor (with same homework and final exam) with students 

divided into three groups based on their pretest scores as shown. Students in the LB or flipped courses in the shaded 

region can be compared with each other and those in the unshaded region can be compared with each other. 

 Pretest Split Av-Pre Av-Post Gain Norm g Av-Fin 

FCI Alg LB 

(Instructor 1) 

bottom 1/3 18 36 18 22 48 

middle 1/3 32 45 13 20 54 

top 1/3 54 66 12 27 65 

FCI Alg Flipped 

(Instructor 1) 

bottom 1/3 17 41 24 29 54 

middle 1/3 32 49 17 25 54 

top 1/3 56 74 18 40 65 

CSEM Calc LB 

(Instructor 2) 

bottom 1/3 26 35 9 12 43 

middle 1/3 39 46 8 12 53 

top 1/3 53 60 6 14 59 

CSEM Calc Flipped 

(Instructor 2) 

bottom 1/3 25 42 18 24 51 

middle 1/3 39 49 11 18 56 

top 1/3 58 70 12 29 69 

 

Table 3.6 shows the average FCI pre-/posttest scores for algebra-based and calculus-based 

courses (Av-Pre/Post), gain (Post-Pre), and normalized gain (Norm g) for students in the flipped 
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and LB courses with students divided into three groups based on their pretest scores. All equivalent 

(algebra-based or calculus-based physics I) courses which used the same instructional strategy 

(flipped or LB) were combined and students were divided into three groups based upon their 

pretest scores. A closer look at the gains and normalized gains for the algebra-based courses (for 

which there are both flipped and LB groups) shows that students in all of the three pretest score 

categories in the flipped courses had higher gains and normalized gains compared to those in the 

traditional courses. In the calculus-based LB courses, the highest one-third of the students had 83% 

and 82% as their FCI pretest and posttest scores, respectively. In Table 3.6, we do not list the 

average final exam performance since instructors used different exams which varied in difficulty. 

Table 3.6. Average FCI pre-/posttest scores (Av-Pre/Post), Gain (Post – Pre), and normalized gain (Norm g) for 

students in the flipped and LB algebra-based and calculus-based courses. All courses in the same group were 

combined with students divided into three groups based upon their pretest scores as shown. Students in the LB or 

flipped courses in the shaded region can be compared with each other. 

 Pretest Split Av-Pre Av-Post Gain Norm g 

FCI Calc LB 

bottom 1/3 31 46 15 22 

middle 1/3 55 68 13 28 

top 1/3 83 82 -1 -7 

FCI Alg Flipped 

bottom 1/3 17 41 24 29 

middle 1/3 32 49 17 25 

top 1/3 56 74 18 40 

FCI Alg LB 

bottom 1/3 19 35 16 19 

middle 1/3 33 46 14 20 

top 1/3 55 68 14 30 

 

Table 3.7 shows the average CSEM pre-/posttest scores for algebra-based and calculus-

based courses (Av-Pre/Post), gain (Post-Pre), and normalized gain (Norm g) for students in the 

EBAE and LB courses with students divided into three groups based on their pretest scores. All 
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equivalent (algebra-based or calculus-based physics II) courses which used the same instructional 

strategy (EBAE or LB) were combined and students were divided into three groups based upon 

their pre-test scores. A closer look at the gains and normalized gains for the calculus-based courses 

(for which there are both EBAE and LB groups) shows that students in all of the three pretest score 

categories in the EBAE courses had higher gains and normalized gains than those in the traditional 

courses. 

Table 3.7. Average CSEM pre-/posttest scores (Av-Pre/Post), Gain (Post – Pre), and normalized gain (Norm g) for 

calculus-based students in the EBAE and LB courses and algebra-based students in LB courses. All courses in the 

same group were combined with students divided into three groups based upon their pretest scores as shown. 

Students in the LB or flipped courses in the shaded region can be compared with each other. 

 Pretest Split Av-Pre Av-Post Gain Norm g 

Calc EBAE CSEM 

bottom 1/3 22 51 29 37 

middle 1/3 35 57 22 34 

top 1/3 56 70 15 33 

Calc LB CSEM 

bottom 1/3 23 39 16 20 

middle 1/3 35 47 12 19 

top 1/3 51 59 8 16 

Alg LB CSEM 

bottom 1/3 15 36 22 25 

middle 1/3 23 44 21 27 

top 1/3 35 51 16 25 

 

We should note that differences in normalized gain should be interpreted carefully because 

we do not have a measure of the variability of normalized gain, and thus, differences of 5% may 

or may not be significant. We stress that we are not making statements about significant differences 

between EBAE courses and LB courses based on normalized gain, and any statements we have 

made about significant differences are supported by statistical analyses (e.g., Cohen’s d, or 

comparison of post-test results). 
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Figure 3.1 Linear regression of the CSEM posttest scores (conceptual) and final exam scores (heavy focus 

on quantitative problems) for four calculus-based introductory physics courses shows the correlation coefficients 

between 0.438-0.598. There were no clear trends in the correlation coefficients based upon whether the instructor 

(Inst) used EBAE strategies or whether the class was LB. 

Figure 3.1 shows the CSEM posttest performance along with the final exam performance 

for three different instructors in flipped and LB calculus-based courses (one instructor taught an 

EBAE and an LB course, two instructors taught LB courses). Figure 3.1 shows that the linear 

regressions [83] for the flipped and LB courses are fairly similar and that there is a moderate 

correlation between CSEM posttest scores and final exam scores. We also plotted linear 

regressions for the algebra-based courses, but the data look similar to Figure 3.1 and so are not 

included here. Instead, we include all the correlation coefficients (CSEM posttest vs. final exam) 

for all the courses for which we managed to obtain posttest data. Table 3.8 summarizes the 

correlation coefficients between post-CSEM/FCI and final exam scores for each instructor who 

provided final exam data. 
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Table 3.8. Correlation coefficients (R) between post-CSEM/FCI and final exam scores for each instructor (Inst) who 

provided final exam data. The final exam data were not provided by physics II instructors in algebra-based courses. 

Physics I (Calc) Physics I (Alg) Physics II (Calc) 

Instructor and 

course type 
R 

Instructor and 

course type 
R 

Instructor and 

course type 
R 

Inst 1: LB 0.495 Inst 1: Flipped 0.559 Inst 1: EBAE 0.696 

Inst 2: LB 0.589 Inst 1: LB 0.516 Inst 2: Flipped 0.488 

Inst 3: LB 0.787 Inst 2: LB 0.693 Inst 2: LB 0.537 

    Inst 3: LB 0.483 

3.4 DISCUSSION AND SUMMARY 

In all cases investigated, we find that on average, introductory physics students in the courses 

which made significant use of evidence-based active engagement (EBAE) methods outperformed 

students in courses primarily taught using lecture-based (LB) instruction on standardized 

conceptual surveys (FCI or CSEM) in the posttest even though there was no statistically significant 

difference on the pretest. This was true both in the algebra-based and calculus-based physics I 

(primarily mechanics) and II (primarily E&M) courses. Also, the differences between EBAE and 

LB courses were observed both among students who performed well on the FCI/CSEM pretest 

(given in the first week of classes) and also those who performed poorly, thus indicating that EBAE 

instructional strategies help students at all levels.  

On the other hand, the typical effect size for the differences between equivalent EBAE and 

traditional courses is between 0.23-0.49, which is considered small to medium. Thus, the benefits 

of these EBAE approaches were not as large as one may expect to observe. Why might that be the 
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case and how can instructors enhance student learning more than that observed in this investigation 

using EBAE instructional strategies? 

There are many potential challenges to using EBAE instructional strategies. Below, we list 

some of the possible challenges and some strategies that may reduce those challenges. Many of 

these have been described elsewhere [68, 84-96] so we provide only a short summary: 

 Lack of student engagement even with well-designed learning tools, which may occur for 

many different reasons: lack of student motivation, poor self-efficacy or poor time-

management skills on the part of the students, lack of effective incentives for students to 

engage with the self-paced learning tools, etc. Strategies to address some of these 

difficulties have been described, e.g., providing students with effective strategies to learn 

[97, 98], using certain communication activities to foster student motivation [84, 85]. Other 

strategies to address these potential issues have also been described [87-89, 91-93]. 

 Lack of student engagement with in-class active learning activities (e.g., group problem 

solving). Many strategies to help address this issue have been described, e.g., designing in-

class activities which foster both individual accountability and positive inter-dependence 

[11-12]. One example of fostering individual accountability is to include a short quiz or 

clicker questions related to content students were supposed to learn when working in 

groups, and positive interdependence means that the success of each student in a group is 

dependent on the success of others. For other strategies to help foster student engagement 

see Refs. [84, 94, 95] and references therein. 

 Student misconceptions about learning, or resistance to EBAE instructional strategies 

which could be addressed at the beginning of the term by framing the instructional design 
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of the class [68, 96] and providing data on the effectiveness of the evidence-based strategies 

being used (and conversely the ineffectiveness of e.g., instructor explanations [99]). 

 Large class sizes can be an impediment, and one approach faculty have used in flipped 

courses is to split the class in two, thus forming smaller class sizes as well as more room 

for students to form groups and move around the classroom. Undergraduate or graduate 

teaching assistants can also help in facilitating in-class activities. In group activities, 

students often work at different rates, and students who finish early can help others. 

 Content coverage. There is often a lot of content covered in introductory physics courses 

and it may be challenging to cover the same amount of content while also including 

frequent active learning activities during class. Moving some of the content delivery 

outside of class (e.g., some pre-lecture reading or videos on certain ‘easier’ concepts, or 

moving the entire content delivery outside of class like in a flipped course) can help provide 

additional time for in-class activities. 

We note that the instructors who taught the EBAE courses has control of designing the 

courses themselves and the researchers only provided them with guidance before and during they 

worked on designing the courses. The instructors may not have addressed some of the potential 

issues mentioned above sufficiently, e.g., by framing the courses at the beginning of the term, and 

providing incentives for students to engage both with in-class and out-of-class activities. However, 

these issues are challenging to fully address, especially in large classes such as those involved in 

this investigation (as suggested by the data), and iterative refinement of a course is needed in order 

to address them. Lastly, while we provided the instructors with information about active learning 

materials developed by physics education researchers, discussions indicated that they adapted or 
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created some of their own materials to fit the way the preferred to teach, and the extent to which 

the materials they adapted or created are conducive to effective learning is unclear. 

In addition, Henderson and Dancy [100] found that many instructors try certain EBAE 

instructional strategies, but some discontinue use after one or two semesters. The faculty members 

who persist are usually the ones who get support from their peers (e.g., developing faculty learning 

communities, working with instructional designers at local teaching and learning centers) because 

there may be many implementation difficulties specific to a particular university even if a 

particular EBAE approach has been found to be effective elsewhere. Interacting with others, even 

from different departments, who have been engaged in evidence-based teaching (e.g., visiting their 

classes, getting feedback from them about one’s own classes, etc.) can be extremely valuable. 

Often, teaching and learning centers are happy to send someone to observe a class and provide 

feedback as well as suggestions for future active learning activities. 

Furthermore, we note that in this study, we found that student performance in a non-flipped 

EBAE course (which used active learning interspersed with short lectures in class) was comparable 

to student performance in a flipped course. It is important to point out that the instructor in this 

EBAE course ensured that the recitations are effectively used to promote active learning and that 

the activities used in the recitation were closely tied to the course learning goals. Flipping a course 

can be a time consuming process especially if the instructor is developing his/her own lecture 

videos for the first time and he/she has not implemented the EBAE strategies in his/her class 

earlier. Therefore, it is encouraging to observe that one does not need to flip his/her course 

completely, but can introduce EBAE activities in regular class and also in recitation. These active 

learning activities and materials can be modified and improved after each use by getting feedback 

from the students (and also getting feedback from the TAs teaching recitation).  
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As discussed earlier, learning gains in EBAE courses were not as high as one might expect. 

This should not be taken as discouragement, but rather as an indication that effective teaching is 

an iterative pursuit and one should learn from each course implementation and try to improve. The 

expectation that introducing a lot of EBAE instructional strategies which have been found to be 

effective elsewhere will result in large gains without refining the material and implementation can 

deter instructors from continuing the use of EBAE instructional strategies when the results are less 

than expected, especially given the time commitment reformed teaching can take initially. Instead, 

one should continue to make refinement and remember that any improvement in student learning 

is worth the effort! 

In summary, in order to enhance student learning in EBAE classes it important not only to 

develop effective EBAE learning tools and pedagogies commensurate with students’ prior 

knowledge but also to investigate how to implement them appropriately and how to motivate and 

incentivize their usage to get buy-in from students in order for them to engage with them as 

intended. Furthermore, for flipped classes, it is especially important to investigate strategies for 

having a diverse group of students engage with self-paced learning tools effectively. Investigation 

of various factors that can deter or incentivize their use is essential in order to develop a holistic 

learning environment to help students with diverse backgrounds benefit from the self-paced 

learning tools. Additionally, it will be valuable to examine and compare the effectiveness of self-

paced learning tools, e.g., videos and concept questions provided to students in flipped classes, 

when implemented in a controlled environment in which students must effectively engage with the 

tool one-on-one in front of a researcher vs. an environment in which students are free to use the 

tool in whatever manner they choose. A framework for understanding and optimizing the factors 

that can support or hinder effective use of self-paced learning tools, e.g., those students are asked 
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to engage with in flipped courses, would be helpful in developing and implementing self-paced 

tools conducive to learning. 
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4.0  IMPACT OF EVIDENCE-BASED ACTIVE-ENGAGEMENT COURSES ON 

GENDER GAP IN INTRODUCTORY PHYSICS 

4.1 INTRODUCTION 

4.1.1 Physics Education Research-based Active Engagement Methods 

In the past few decades, physics education research has identified challenges that students 

encounter in learning physics at all levels of instruction [1-7]. Building on these investigations, 

researchers are developing, implementing and evaluating evidence-based curricula and pedagogies 

to reduce these challenges to help students develop a coherent understanding of physics concepts 

and enhance their problem solving, reasoning and metacognitive skills [8-18]. In evidence-based 

curricula and pedagogies, the learning goals and objectives, instructional design, and assessment 

of learning are aligned with each other and there is focus on evaluating whether the pedagogical 

approaches employed have been successful in meeting the goals and enhancing student learning. 

One highly successful model of learning is the field-tested cognitive apprenticeship model 

[19]. According to this model, students can learn effectively if the instructional design involves 

three essential components: “modeling”, “coaching and scaffolding”, and “weaning”. In this 

approach, “modeling” means that the instructional approaches demonstrate and exemplify the 

criteria for good performance and the skills that students should learn (e.g., how to solve physics 

problems systematically). “Coaching and scaffolding” means that students receive guidance and 

support as they actively engage in learning the content and skills necessary for good performance. 

“Weaning” means gradually reducing the support and feedback to help students develop self-
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reliance [19]. In traditional physics instruction, especially at the college level, there is often a lack 

of coaching and scaffolding: students come to class where the instructor lectures and does some 

example problems, then students are left on their own to work through homework with little or no 

feedback. This lack of prompt feedback and scaffolding can be detrimental to learning.  

Some of the commonly used evidence-based active-engagement (EBAE) approaches 

implemented in physics include peer instruction with clickers popularized by Eric Mazur from 

Harvard University [20-22], tutorial-based instruction in introductory and advanced courses [23-

25] and collaborative group problem solving [26-29], e.g., using context-rich problems [4-5]. In 

all of these evidence-based approaches, formative assessment plays a critical role in student 

learning [30]. Formative assessment tasks are frequent, low-stakes assessment activities which 

give feedback to students and instructors about what students have learned at a given point. Using 

frequent formative assessments helps make the learning goals of the course concrete to students, 

and provides them with a way to track their progress in the course with respect to these learning 

goals. When formative assessment tasks such as concept-tests, tutorials and collaborative group 

problem solving are interspersed throughout the course, learning is enhanced [30-31]. 

Moreover, technology is increasingly being exploited for pedagogical purposes to improve 

student learning. For example, Just-in-Time Teaching (JiTT) is an instructional approach in which 

instructors receive feedback from students before class and use that feedback to tailor in-class 

instruction [32-33]. Typically, students complete an electronic pre-lecture assignment in which 

they give feedback to the instructor regarding any difficulties they have had with the assigned 

reading material, lecture videos, and/or other self-paced instructional tools. The instructor then 

reviews student feedback before class and makes adjustments to the in-class activities. For 

example, during class, the instructor can focus on student difficulties found via electronic 
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feedback. Students may engage in discussions with the instructor and with their classmates, and 

the instructor may then adjust the next pre-lecture assignment based on the progress made during 

class. When JiTT was first conceived and implemented in the late 1990s in physics classes, the 

required internet technology for electronic feedback was still evolving; developments in digital 

technology since then have continued to make electronic feedback from students and the JiTT 

approach easier to implement in classes. For example, Eric Mazur’s Perusall system [34] allows 

students to read the textbook and ask questions electronically and the system uses their questions 

to draft a “confusion report” which distills their questions to three most common difficulties, which 

can be addressed in class. It has been hypothesized that JiTT may help students learn better because 

out-of-class activities cause students to engage with and reflect on the parts of the instructional 

material they find challenging [32-33]. In particular, when the instructor focuses on student 

difficulties in lecture which were found via electronic feedback before class, it may create a “time 

for telling” [35] especially because students may be “primed to learn” better when they come to 

class if they have struggled with the material during pre-lecture activities. The JiTT approach is 

often used in combination with peer discussion and/or collaborative group problem solving inter-

dispersed with lectures in the classroom. 

In addition, in the last decade, the JiTT pedagogy has been extended a step further with the 

maturing of technology [36-41] and “flipped” [42, 43] classes with limited in-class lectures have 

become common with instructors asking students to engage with short lecture videos (or read 

certain section of the textbook) and concept questions associated with each video outside of the 

class and using most of the class-time for active-engagement. The effectiveness of flipped classes 

in enhancing student learning can depend on many factors including the degree to which evidence-

based pedagogies that build on students’ prior knowledge and actively engage them in the learning 
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process are used, whether there is sufficient buy-in from students, and the incentives that are used 

to get students engaged with the learning tools both inside and outside the classroom. 

Moreover, research suggests that effective use of peer collaboration can enhance student 

learning in many instructional settings in physics classes, including in JiTT and flipped 

environments, and with various types and levels of student populations. Although the details of 

implementation vary, students can learn from each other in many different environments. For 

example, in Mazur's peer instruction approach [44], the instructor poses concrete conceptual 

problems in the form of conceptual multiple-choice clicker questions to students throughout the 

lecture and students discuss their responses with their peers. Heller et al. have shown that 

collaborative problem solving with peers in the context of quantitative “context-rich” problems [4-

5] can be valuable both for learning physics and for developing effective problem solving 

strategies.  

In evidence-based “active-engagement non-flipped” courses [45], lecture and interactive 

activities are combined during the prescribed class time to enhance student learning and students’ 

out-of-class homework assignments are often similar to those assigned in traditionally taught 

classes. On the other hand, in flipped courses, there is very limited direct instruction (lecture) and 

the majority of in-class time is used to actively engage students in learning. The effectiveness of 

flipped classes depends on how the course is designed and incentivized and how out-of-class 

activities build on in-class activities. In addition, whether instructors create a low or high anxiety 

active-learning environment can play a critical role in student engagement. It can particularly 

impact learning for women and students from other underrepresented groups, whose sense of 

belonging and self-efficacy can either be enhanced or exacerbated depending upon the design of 

the active-learning environment. More about these types of issues is discussed in the next section. 
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Also, the lecture videos that students often watch outside of the class in a flipped class are 

self-paced, which has both advantages and disadvantages. While pedagogically developed, 

implemented and incentivized self-paced videos can provide a variety of students with an 

opportunity to learn at a pace that is commensurate with their prior knowledge, without appropriate 

pedagogy in the development, implementation, and incentives to learn from these tools, students 

may not engage with them as intended, especially if they do not have good time-management and 

self-regulation skills. For example, research on Massive Open Online Courses (MOOCs) [46] 

suggests that a majority of those who complete the entire online course already have a bachelor’s 

degree. Moreover, a student who does not keep up with out-of-class activities such as watching 

videos and answering the concept questions associated with them before coming to class is 

unlikely to take full advantage of the interactive in-class activities in a flipped class. Thus, while 

a well-designed and implemented flipped course has the potential to help a variety of students 

learn to think like a physicist and can scaffold their learning of physics, many students may not 

engage and learn from the out-of-class videos if they are not intrinsically motivated and if the 

videos are not effective [36] or are not implemented and incentivized appropriately. Despite these 

caveats, well-designed and well-implemented interactive videos [47] and associated questions 

designed carefully can be beneficial as they can help a variety of students with different prior 

preparations and allow them to learn at their own pace. Moreover, if the videos are part of an 

adaptive video-suite for students with different prior knowledge and skills (for example, after a 

student views a video, he/she can be asked several questions, and if he/she struggles to answer 

those questions, he/she can be directed to another explanation video that other students who answer 

those questions correctly can skip). In particular, the videos can provide more scaffolding support 
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as needed to a student who is struggling. Then, after taking full advantage of these out-of-class 

activities, the EBAE activities can help all students. 

4.1.2 Gender Gap in Introductory Physics Courses 

Prior research has found that male students outperform female students on standardized conceptual 

assessments such as the Force Concept Inventory (FCI) [48] or the Conceptual Survey of 

Electricity and Magnetism (CSEM) [49]. The discrepancy between male and female students’ 

performance is typically referred to as a “gender gap” [50-52]. While sometimes gender gap can 

be accounted for at least in part due to different prior preparation or coursework of male and female 

students, it has also been found even after controlling for these factors [50]. Prior research has also 

found that using evidence-based pedagogies can reduce the gender gap [53-54], but the extent to 

which this occurs varies. Others have found that the gender gap is not reduced despite significant 

use of evidence-based pedagogies [55]. Prior research has also found a gender gap on other 

assessments such as a conceptual assessment for introductory laboratories [56] and physics exams 

[50-51]. Yet others have found no differences in performance between male and female students 

on exams [52, 57-58]. 

The origins of gender gap on the FCI both at the beginning and end of a physics course 

have been a subject of debate with some researchers arguing that the test itself is gender-biased 

[59]. Some of the origins of the gender gap are related to societal gender stereotypes [60-63] that 

keep accumulating from an early age. For example, research suggests that even six year old boys 

and girls have gendered views about smartness in favor of boys [63]. Such stereotypes can impact 

female students’ self-efficacy [64, 65], their beliefs about their ability to perform well, in 

disciplines such as physics in which they are underrepresented and which have been associated 
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with “brilliance”. They can also impact their intelligence mindset [66], which is related to beliefs 

about whether intelligence innate or whether it is something that can be developed and cultivated 

via focus and persistence in problem solving in a discipline such as physics. Thus, it may not be 

surprising that prior research has found that activation of a stereotype, i.e., stereotype threat (ST) 

about a particular group in a test-taking situation can alter the performance of that group in a way 

consistent with the stereotype [60-63]. In fact, some researchers have argued [60] that female 

students, when working on a physics assessment, undergo an implicit ST due to the prevalent 

societal stereotypes. In particular, Marchand and Taasoobshirazi [60] conducted a study in which 

high school students were randomly divided into three groups and all students received the 

following instructions before taking a physics test: “You will be given four physics problems to 

solve. These problems are based on physics material that you have already covered.” In the implicit 

ST condition, these were the only instructions, while in the explicit ST condition, students were 

also told: “This test has shown gender differences with males outperforming females on the 

problems” and in the nullified condition, students were told: “No gender differences in 

performance have been found on the test”. They found no statistically significant difference on the 

physics test between female students’ performance in the explicit ST condition and the implicit ST 

condition but female students in both these conditions performed significantly worse than male 

students. In contrast, the nullified condition in which female students were instead told that the 

test they are about to take is gender neutral erased the gender gap (no difference in performance 

between male and female students). The researchers hypothesized [60] that simply administering 

a physics test to female students creates an implicit stereotype threat (which is partly due to societal 

gender bias and related issue of anxiety and self-efficacy, which refers to the fact that many female 

students start doubting their own ability to perform well in a physics test). 
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4.1.3 Focus of the Research 

In this study, we used the FCI [48] in the first semester introductory physics courses and the CSEM 

[49] in the second semester courses to assess student learning. We also investigated any possible 

gender gap at the beginning of the course as well as the extent to which evidence-based pedagogies 

can help reduce it. The FCI, CSEM and other standardized physics surveys [67-72] have been used 

to assess introductory students’ understanding of physics concepts by a variety of educators and 

physics education researchers. One reason for their extensive use is that many of the items on the 

survey have strong distractor choices which correspond to students’ common difficulties so 

students are unlikely to answer the survey questions correctly without having good conceptual 

understanding. Our research focuses on the following research questions for both algebra-based 

and calculus-based introductory physics courses: 

RQ1. What is the gender gap on the FCI/CSEM pretest and posttest in LB and EBAE 

courses? By how much do both male and female students improve from pretest to 

posttest in LB and EBAE courses? 

RQ2. How does the performance on the FCI/CSEM of male and female students in LB 

courses compare to EBAE courses in both the pretest and the posttest? 

RQ3. To what extent do male and female students with high or low pretest scores perform 

differently in EBAE courses compared to LB courses when the comparison is made for 

one instructor who teaches both an EBAE and an LB course at the same time? 

RQ4. To what extent do male and female students with high or low pretest scores perform 

differently in EBAE courses compared to LB courses when the comparison is made 

between EBAE and LB courses taught by different instructors? 
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RQ5. Is there any correlation between posttest and final exam scores for male and female 

students? 

Thus, in our research, the performances of male and female students in EBAE courses in a 

particular type of course (algebra-based or calculus-based physics I or II) are compared with male 

and female students of LB courses in two situations: (I) the same instructor taught two courses, 

one of which was an EBAE course and the other an LB course with common homework and final 

exams, (II) student performances in all of the EBAE courses taught by different instructors were 

averaged and compared with LB courses of the same type, also averaged over different instructors.  

Also, the students were divided into three subgroups based upon their pretest scores: top 

1/3rd, middle 1/3rd and bottom 1/3rd. We calculated whether there was a statistically significant 

difference between male and female students’ average scores on the pretest, posttest or final exam 

in two cases: (i) male students were divided into three subgroups according to the pretest scores 

of males only and female students were also divided into three subgroups according to the pretest 

scores of females only, and then the male and female students’ average scores in each subgroup 

were compared and (ii) all students were divided into the three subgroups according to their pretest 

scores regardless of their gender and then male and female students in each of the three subgroups 

were separated and compared. This type of analysis based upon gender was carried out for the 

male and female students taught by the same instructor (teaching either LB or EBAE course) and 

also for different instructors teaching LB or EBAE courses of the same type combined. Whenever 

differences between these two groups were observed (e.g., with male or female students in the 

EBAE courses on average performing better than the corresponding students in the LB courses), 

we investigated which subgroup was benefiting most from the EBAE courses, e.g., those who 

performed well or poorly on the pretest given at the beginning of the course. Finally, we 
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investigated the typical correlation between the performance of male and female students’ posttest 

performances on the validated conceptual surveys and their performance on the instructor-

developed final exam (which typically places a heavy weight on quantitative physics problems). 

4.2 METHODOLOGY 

4.2.1 Courses and Participants 

The participants in this study were students in 16 different algebra-based and calculus-based 

introductory physics courses. Out of all introductory physics courses (algebra-based or calculus-

based physics I or II) included in this study, there were four EBAE courses: two completely flipped 

classes in algebra-based introductory physics I and one completely flipped and one interactive 

active engagement class in calculus-based introductory physics II. These courses include 

approximately 700 male and 750 female students in first semester courses and approximately 650 

male and 500 female students in second semester courses at a typical large research university in 

the US (University of Pittsburgh). The details of the courses that fall into three categories are as 

follows: 

1) A lecture-based (or LB) course is one in which the primary mode of instruction was via 

lecture. In addition to the three or four weekly hours for lectures, students attended an hour 

long recitation section taught by a graduate TA. In recitation, the TA typically answered 

student questions (mainly about their homework problems which were mostly textbook 

style quantitative problems), solved problems on the board and gave students a quiz in the 

last 10-20 minutes. 
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2) A flipped course is one in which the class was broken up into two almost equal size groups 

with each group meeting with the instructor for half the regular class time. For example, 

for a 200 student class scheduled to meet for four hours each week (on two different days), 

the instructor met with half the class (100 students) on the first day and the other half on 

the second day. This was possible in the flipped classes since the total contact hours for 

each instructor each week with the students was the same as in the corresponding LB 

courses. Students watched the lecture videos before coming to class and answered some 

conceptual questions which were based upon the lecture video content. They uploaded the 

answers to those conceptual questions before class onto the course website and were scored 

for a small percentage of their grade (typically 4-8%). Although students had to watch 

several videos outside of class in preparation for each class, each video was typically 5-10 

minutes long, followed by concept questions. On average, students in a flipped class had 

to watch recorded videos which took a little less than half the allotted weekly time for class 

(e.g., for the courses scheduled for four hours each week, students watched on average 1.5 

hours of videos each week, and in the courses scheduled for three hours each week, students 

watched around one hour of videos). These video times do not include the time that students 

would take to rewind the video, stop and think about the concepts and answer the concept 

questions placed after the videos that counted towards their course grade. In the spirit of 

JiTT, the instructors of the flipped courses adjusted the in-class activities based upon 

student responses to online concept questions which were supposed to be submitted the 

night before the class. About 90% of the students submitted their answers to the concept 

questions that followed the videos to the course website before coming to the class. The 

web-platforms used for managing, hosting and sharing these videos and for having online 
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discussions with students about them asynchronously (in which students and the instructor 

participated) were Classroom Salon or Panopto. In-class time was used for clicker 

questions involving peer discussion and then a whole class discussion of the clicker 

questions, collaborative group problem solving involving quantitative problems in which 

2-3 students worked in a group (followed by a clicker question about the order of 

magnitude of the answer), and lecture-demonstrations with preceding clicker questions on 

the same concepts. In addition to the regular class times, students attended an hour long 

recitation section which was taught the same way as for students in the LB courses. 

It is important to note that the instructors who taught the flipped courses also taught 

LB courses at the same time (usually teaching two courses in a particular semester: one 

flipped and one LB). Students in both flipped and LB courses completed the same 

homework and took the same final exam. For the calculus-based flipped courses, the 

students also took the same midterm exams. This was not possible for the algebra-based 

courses because the exams were scheduled at different times. However, in the algebra-

based courses they took the same final exam and had the same homework. 

3) In an EBAE interactive non-flipped course, the instructor combined lectures with research-

based pedagogies including clicker questions involving peer discussion, conceptual 

tutorials, collaborative group problem solving, and lecture demonstrations with preceding 

clicker questions on the same concepts, similar to the flipped courses. In addition, students 

attended a reformed recitation which primarily used context-rich problems to get students 

to engage in group problem solving or worked on research-based tutorials while being 

guided by a TA. The instructor ensured that the problems students solved each week in the 

recitation activities were closely related to what happened in class. Students also worked 
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on some research-based tutorials during class in small groups, but if they did not finish 

them in the allotted time, they were asked to complete them at home and submit as 

homework. 

From now on, we refer to the flipped and interactive non-flipped courses as EBAE courses 

except when relevant. We also note that the number of female students in algebra-based courses is 

larger than that of male students. Most of the algebra-based students have biological science or 

related majors like Biology, Psychology, Exercise Science, Neurology/Neuromedicine, 

Environmental Science, etc. In calculus-based courses, on the other hand, there are more male than 

female students. Most calculus-based students are in their first year in college, and have physical 

science related majors such as chemistry, mathematics, engineering (electrical, mechanical, 

chemical, civil etc.), and physics (typically only 5-10 physics majors out of several hundred 

students). The algebra-based or calculus-based physics courses are mandatory for these students. 

We do not have information about the background of the students, such as their prior experiences 

in physics or mathematics before college or whether they took any physics or math courses in high 

school (although a majority of these students have typically taken at least one high school physics 

course and the typical percentage of female students in calculus-based “advanced placement C” 

high school courses in the US is less than one third). 

We also note that none of the instructors teaching the EBAE courses focused explicitly on 

whether the active-learning classroom environment helped foster a sense of belonging or focused 

on improving self-efficacy and instilling a growth mindset in all students. In particular, the 

instructors did not explicitly focus on whether the active-learning classroom was a low anxiety 

classroom for all students and whether women and other underrepresented students felt supported 

and had the same level of engagement with the active-learning activities. 
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4.2.2 Materials 

The materials used in this study are the FCI and CSEM conceptual multiple-choice (five choices 

for each question) standardized surveys, which were administered in the first week of classes 

before instruction in relevant concepts (pretest) and after instruction in relevant concepts (posttest). 

The FCI was used in the first semester courses and the CSEM was used in the second semester 

courses. Apart from the data on these surveys that the researchers collected from all of these 

courses, each instructor administered his/her own final exam, which was mostly quantitative (60%-

90% of the questions were quantitative, although some instructors had either the entire final exam 

or part of it in a multiple-choice format with five options for each question to make grading easier). 

Ten course instructors (who also provided the FCI or CSEM data from their classes) provided their 

students’ final exam scores and most of them also provided a copy of their final exams. 

4.2.3 Methods 

Our main goals in this research were to compare the average performances of male and female 

students in introductory physics courses in different types of classes (e.g., Algebra-based or 

Calculus-based, EBAE or LB) and to compare male and female students’ performances between 

courses that used EBAE pedagogies with the performances of students in LB courses by using 

standardized conceptual surveys, the FCI (for physics I) and CSEM (for physics II) as 

pre/posttests. We not only calculated the average gain (posttest - pretest scores) for each group for 

males and females but also calculated the average normalized gain, which is commonly used to 

determine how much students learned from pretest to posttest taking into account their initial 

scores on the pretest, to find out whether the gender gap increased, decreased or remained the 
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same. The normalized gain is defined as 
% %

100 %

f i

i

S S
g

S





, in which 

fS and iS  are the 

final (post) and initial (pre) class averages, respectively. Then, Norm 100g g  in percent [16]. 

This normalized gain provides valuable information about how much students have learned by 

taking into account what they already know based on the pretest. We wanted to investigate whether 

the normalized gain is higher in one course compared to another, and whether it is the same or 

different for males and females. 

In order to compare EBAE courses with LB courses, we performed t-tests [73] on FCI or 

CSEM pre and posttest data for males and females. We also calculated the effect size in the form 

of Cohen’s d defined defined as 1 2

pooled
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 , where 1  and 2  are the averages of the two groups 

being compared (e.g., EBAE vs. LB or male vs. female) and  2 2

1 2

1

2
pooled    ; here 1  and 

2  are the standard deviations of the two groups being compared. We considered: d < 0.5 as small 

effect size, 0.5 ≤ d < 0.8 as medium effect size and d ≥ 0.8 as large effect size, as described in [74]. 

Moreover, although we did not have control over the type of final exam each instructor 

used in his/her courses, we wanted to look for correlations between the FCI/CSEM posttest 

performance and the final exam performance for different instructors in the algebra-based and 

calculus-based EBAE or LB courses for male and female students separately. Including both the 

algebra-based and calculus-based courses, 10 instructors provided the final exam scores for their 

classes. We used these data to obtain linear regression plots between the posttest and the final 

exam performance for males, females and all students (combined) for each instructor and 

computed the correlation coefficient between the performance of students (male/female/all) on the 
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validated conceptual surveys and their performance on the final exam for different instructors. 

These correlation coefficients between the conceptual surveys and the final exam (with strong 

focus on quantitative problem solving) can provide an indication of the strength of the correlation 

between conceptual and quantitative problem solving of male and female students in these courses. 

4.3 RESULTS 

4.3.1 Comparison of the Gender Gap on the FCI/CSEM Pretest and Posttest in LB and 

EBAE Courses (RQ1) 

4.3.1.1 Physics I 

In Table 4.1, we present intra-group pre/posttest data (pooled data for the same type of courses) of 

male and female students on the FCI for the calculus-based and algebra-based introductory physics 

I courses. For the algebra-based courses, some were EBAE courses while others were LB courses, 

whereas all the calculus-based courses were LB. We found statistically significant improvements 

from the pretest to the posttest for each group (for both male and female students) in both LB and 

EBAE courses. However, both female and male students exhibited larger normalized gains in the 

EBAE courses. In the calculus-based LB course, the gender gap increased slightly from 13% to 

17%, whereas in the algebra-based courses, the gender gap stayed roughly the same (varied 

between 11% and 13%) both in LB and EBAE courses. In both the pretest and the posttest in 

calculus-based and algebra-based courses, the difference in performance between male and female 

students was statistically significant and the effect sizes were typically in the medium range. Thus, 
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it appears that in algebra-based courses, using evidence-based pedagogies helped both female and 

male students learn more, but did not result in a reduction of the gender gap. 

Table 4.1. Intra-group FCI pre/posttest averages (Mean) and standard deviations (SD) for first-semester introductory 

male and female students in calculus-based LB courses, and algebra-based EBAE and LB courses. The number of 

students in each group, N, is shown. For each group, a p-value obtained using a t-test shows that the difference 

between the pre/posttest is statistically significant and the difference between the male and female students is also 

statistically significant. The normalized gain (Norm g) from pretest to posttest and the effect size (Eff. size) shows 

how much male and female students learned from what they did not already know based on the pretest. 

Type of Class FCI Female Gender Comparison Male 

Calc LB 

Pretest 

N: 146 

Mean: 43% 

SD: 20% 

p-value: <0.001 

← gender gap: 13% → 

Eff. size: 0.635 

N: 283 

Mean: 55% 

SD: 20% 

Pretest vs. 

Posttest 

Comparison 

↑ 

p-value: <0.001 

Eff. size: 0.468 

Norm g: 16% 

↓ 

 

↑ 

p-value: <0.001 

Eff. size: 0.686 

Norm g: 30% 

↓ 

Posttest 

N: 114 

Mean: 52% 

SD: 20% 

p-value: <0.001 

← gender gap: 17% → 

Eff. size: 0.868 

N: 200 

Mean: 68% 

SD: 19% 

Alg EBAE 

Pretest 

N: 153 

Mean: 30% 

SD: 15% 

p-value: <0.001 

← gender gap: 13% → 

Eff. size: 0.749 

N: 105 

Mean: 43% 

SD: 20% 

Pretest vs. 

Posttest 

Comparison 

↑ 

p-value: <0.001 

Eff. size: 1.176 

Norm g: 28% 

↓ 

 

↑ 

p-value: <0.001 

Eff. size: 0.955 

Norm g: 32% 

↓ 

Posttest 
N: 149 

Mean: 49% 

p-value: <0.001 

← gender gap: 12% → 

N: 106 

Mean: 61% 
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SD: 18% Eff. size: 0.653 SD: 19% 

Alg LB 

Pretest 

N: 456 

Mean: 30% 

SD: 14% 

p-value: <0.001 

← gender gap: 11% → 

Eff. size: 0.691 

N: 318 

Mean: 41% 

SD: 18% 

Pretest vs. 

Posttest 

Comparison 

↑ 

p-value: <0.001 

Eff. size: 0.930 

Norm g: 21% 

↓ 

 

↑ 

p-value: <0.001 

Eff. size: 0.863 

Norm g: 28% 

↓ 

Posttest 

N: 383 

Mean: 44% 

SD: 18% 

p-value: <0.001 

← gender gap: 13% → 

Eff. size: 0.686 

N: 255 

Mean: 57% 

SD: 20% 

4.3.1.2 Physics II 

In Table 4.2, we present intra-group (pooled data for the same type of courses) pre/posttest data 

for male and female students on the CSEM survey for algebra-based and calculus-based 

introductory physics II courses. Similar to the data shown in Table 4.1, we found statistically 

significant improvements on the CSEM for female and male students both in LB and EBAE 

courses, however, the learning gains for both female and male students were larger in EBAE 

courses. With regards to the gender gap, we found that in LB courses it stayed roughly the same 

(4% on pretest and 6% on posttest for calculus-based courses, 6% on the pretest and 8% on posttest 

for algebra-based courses). However, in the EBAE calculus-based course, the gender gap increased 

slightly from 4% to 10%, and it appears that male students may have benefited more from 

evidence-based pedagogies than female students (normalized gain for male students was 39% in 

EBAE courses compared to 29% for female students). 

Table 4.2. Intra-group CSEM pre/posttest averages (Mean) and standard deviations (SD) for second-semester 

introductory male and female students in calculus-based LB and EBAE courses and algebra-based LB courses. The 
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total number of students in each group, N, is shown. For each group, a p-value obtained using a t-test shows that the 

difference between the pre/posttest is statistically significant and the difference between the male and female 

students is also statistically significant. The normalized gain (Norm g) from pretest to posttest and the effect size 

(Eff. size) shows how much male and female students learned from what they did not already know based on the 

pretest. 

Type of Class CSEM Female Gender Comparison Male 

Calc LB 

Pretest 

N: 84 

Mean: 34% 

SD: 13% 

p-value: 0.007 

← gender gap: 4% → 

Eff. size: 0.349 

N: 234 

Mean: 38% 

SD: 13% 

Pretest vs. 

Posttest 

Comparison 

↑ 

p-value: <0.001 

Eff. size: 0.821 

Norm g: 18% 

↓ 

 

↑ 

p-value: <0.001 

Eff. size: 0.894 

Norm g: 22% 

↓ 

Posttest 

N: 78 

Mean: 45% 

SD: 16% 

p-value: 0.003 

← gender gap: 6% → 

Eff. size: 0.381 

N: 248 

Mean: 51% 

SD: 17% 

Calc EBAE 

Pretest 

N: 112 

Mean: 35% 

SD: 14% 

p-value: 0.017 

← gender gap: 4% → 

Eff. size: 0.272 

N: 220 

Mean: 39% 

SD: 16% 

Pretest vs. 

Posttest 

Comparison 

↑ 

p-value: <0.001 

Eff. size: 1.143 

Norm g: 28% 

↓ 

 

↑ 

p-value: <0.001 

Eff. size: 1.384 

Norm g: 39% 

↓ 

Posttest 

N: 98 

Mean: 53% 

SD: 18% 

p-value: <0.001 

← gender gap: 10% → 

Eff. size: 0.538 

N: 193 

Mean: 63% 

SD: 19% 

Alg LB Pretest 

N: 301 

Mean: 22% 

SD: 8% 

p-value: <0.001 

← gender gap: 6% → 

Eff. size: 0.452 

N: 201 

Mean: 27% 

SD: 13% 
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Pretest vs. 

Posttest 

Comparison 

↑ 

p-value: <0.001 

Eff. size: 1.450 

Norm g: 23% 

↓ 

 

↑ 

p-value: <0.001 

Eff. size: 1.325 

Norm g: 29% 

↓ 

Posttest 

N: 266 

Mean: 40% 

SD: 16% 

p-value: <0.001 

← gender gap: 8% → 

Eff. size: 0.451 

N: 172 

Mean: 48% 

SD: 18% 

 

4.3.2 Comparison of the Performance of Male and Female Students on the FCI/CSEM in 

LB and EBAE Courses in Pretest and Posttest (RQ2) 

4.3.2.1 Physics I 

Table 4.3 shows the between-course male and female student FCI pre/posttest score comparison 

between algebra-based LB and EBAE courses, first holding the instructor fixed (same instructor 

taught both the LB and EBAE courses, used the same homework and final exams) and second, 

combining all instructors who used similar methods in the same group (only one instructor used 

EBAE methods, but several who taught LB courses were combined). Table 4.3 shows that on the 

pretest, the performance of male and female students in the LB courses was similar to the EBAE 

courses. However, on the posttest both male (female) students in the EBAE courses outperformed 

male (female) students in the LB courses (effect sizes ranging from 0.196 to 0.324). Coupled with 

the gender gaps shown in Table 4.1, these data suggest that while both female and male students 

learned more in EBAE courses, the gender gap remained roughly the same in EBAE courses as in 

LB courses. 
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Table 4.3. Between-course comparison of the average FCI pre/posttest scores of algebra-based male and female 

students in LB courses with EBAE courses when (i) both courses are taught by the same instructor and (ii) different 

instructors using similar instructional methods are combined. The p-values and effect sizes are obtained for male and 

female students separately when comparing the LB and EBAE courses in terms of students’ FCI scores. 

 FCI 
Female-

Pretest 

Female-

Posttest 
Male-Pretest 

Male-

Posttest 

(i) FCI Alg: LB 

vs. EBAE 

(same instructor) 

 

LB 

N: 260 

Mean: 30% 

SD: 13% 

N: 246 

Mean: 43% 

SD: 18% 

N: 166 

Mean: 42% 

SD: 19% 

N: 154 

Mean: 56% 

SD: 21% 

LB vs. 

EBAE 

Comparison  

p-value: 

0.846 

Eff. size: 

0.020 

p-value: 

0.002 

Eff. size: 

0.324 

p-value: 

0.786 

Eff. size: 

0.034 

p-value: 

0.041 

Eff. size: 

0.258 

EBAE 

N: 153 

Mean: 30% 

SD: 15% 

N: 149 

Mean: 49% 

SD: 18% 

N: 105 

Mean: 43% 

SD: 20% 

N: 106 

Mean: 61% 

SD: 19% 

(ii) FCI Alg: LB 

vs. EBAE 

(different 

instructors 

combined) 

LB 

N: 456 

Mean: 30% 

SD: 14% 

N: 383 

Mean: 44% 

SD: 18% 

N: 318 

Mean: 41% 

SD: 18% 

N: 255 

Mean: 57% 

SD: 20% 

LB vs. 

EBAE 

Comparison  

p-value: 

0.861 

Eff. size: 

0.017 

p-value: 

0.009 

Eff. size: 

0.255 

p-value: 

0.432 

Eff. size: 

0.091 

p-value: 

0.088 

Eff. size: 

0.196 

EBAE 

N: 153 

Mean: 30% 

SD: 15% 

N: 149 

Mean: 49% 

SD: 18% 

N: 105 

Mean: 43% 

SD: 20% 

N: 106 

Mean: 61% 

SD: 19% 

4.3.2.2 Physics II 

Table 4.4 shows the between-course CSEM pre/posttest score comparison between calculus-based 

LB and EBAE courses, first holding the instructor fixed (same instructor taught both the LB and 

EBAE courses and used the same homework and final exams) and second, combining all 
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instructors who taught using similar methods into the same group. Table 4.4 shows that on the 

pretest, the performance of male and female students in the LB courses was similar to the EBAE 

courses. However, on the posttest, both male (female) students in the EBAE courses outperformed 

male (female) students in the LB courses (effect sizes ranging from 0.299 to 0.623). Interestingly, 

the effect sizes for male students were slightly higher than the effect sizes for female students, 

suggesting that male students may have benefited more from evidence-based pedagogies. The 

gender gap data shown in Table 4.2 can be interpreted in a similar manner. Thus, our data suggest 

that in calculus-based physics II, while both female and male students learned more in EBAE 

courses, male students may have benefited more than female students, resulting in a slight increase 

in the gender gap from pretest to posttest in EBAE courses. 

Table 4.4. Between-course comparison of the average CSEM pre/posttest scores of calculus-based male and female 

students in LB courses with EBAE courses when (i) both courses are taught by the same instructor and (ii) different 

instructors using similar instructional methods are combined. The p-values and effect sizes are obtained for male and 

female students separately when comparing the LB and EBAE courses in terms of students’ CSEM scores. 

 CSEM 
Female-

Pretest 

Female-

Posttest 
Male-Pretest 

Male-

Posttest 

(i) CSEM Calc: 

LB vs. EBAE 

(same instructor) 

LB 

N: 51 

Mean: 35% 

SD: 12% 

N: 44 

Mean: 44% 

SD: 15% 

N: 126 

Mean: 42% 

SD: 12% 

N: 110 

Mean: 50% 

SD: 16% 

LB vs. 

EBAE 

Comparison  

p-value: 

0.590 

Eff. size: 

0.097 

p-value: 

0.119 

Eff. size: 

0.299 

p-value: 

0.845 

Eff. size: 

0.024 

p-value: 

0.001 

Eff. size: 

0.455 

EBAE 

N: 75 

Mean: 36% 

SD: 14% 

N: 68 

Mean: 48% 

SD: 17% 

N: 133 

Mean: 42% 

SD: 15% 

N: 113 

Mean: 58% 

SD: 20% 

(ii) CSEM Calc 

LB vs. EBAE 
LB 

N: 84 

Mean: 34% 

N: 78 

Mean: 45% 

N: 234 

Mean: 38% 

N: 248 

Mean: 51% 
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(different 

instructors 

combined) 

 

SD: 13% SD: 16% SD: 13% SD: 17% 

LB vs. 

EBAE 

Comparison  

p-value: 

0.595 

Eff. size: 

0.077 

p-value: 

0.003 

Eff. size: 

0.448 

p-value: 

0.679 

Eff. size: 

0.039 

p-value: 

<0.001 

Eff. size: 

0.623 

EBAE 

N: 112 

Mean: 35% 

SD: 14% 

N: 98 

Mean: 53% 

SD: 18% 

N: 220 

Mean: 39% 

SD: 16% 

N: 193 

Mean: 63% 

SD: 19% 

4.3.3 Comparison between EBAE and LB Courses Taught by the Same Instructor in 

terms of Male and Female students’ Performances, Divided according to Pretest Scores 

(RQ3) 

Tables 4.5 and 4.6 show the average algebra-based FCI and calculus-based CSEM pretest, posttest, 

gain, normalized gain and final exam scores for male and female students, along with the p-values 

between each subgroup of male and female students for pretest, posttest and the final exam in the 

EBAE and LB courses taught by the same instructor (with the same homework and final exam) 

with students divided into three subgroups based on their pretest scores. The male students were 

divided into three subgroups according to the pretest scores of male students only and female 

students were also divided into three subgroups according to the pretest scores of female students 

only. (Tables 4.10 and 4.11 in the chapter appendix show similar type of information as Tables 4.5 

and 4.6 except that the total number of students was divided into three subgroups according to 

their pretest scores regardless of their gender and then male and female students were separated 

for comparison.)  
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4.3.3.1 Algebra-based Physics I 

The data in Table 4.5 show that in both the LB and EBAE algebra-based courses, on the pretest, 

there was a gender gap on the FCI between male and female students in each group (bottom 1/3, 

middle 1/3, top 1/3) and since female and male students had comparable gains, the gender gap was 

maintained in most cases on the posttest. This is consistent with the data shown in Table 4.1 which 

indicate that in both LB and EBAE courses, when including all students, the gender gap on the 

FCI stayed roughly the same from pretest to posttest. When comparing the LB with the EBAE 

course, we see that both female and male students seemed to benefit equally (gains and normalized 

gains on the FCI were higher in the EBAE course compared to the LB course), with the exception 

of the top 1/3 of the students. The top 1/3 of the female students had similar FCI gains in the LB 

and EBAE course (13% and 14%, respectively), whereas the top 1/3 of the male students showed 

larger FCI gains in the EBAE course. 

Table 4.5. Average FCI pretest scores (Pretest), posttest scores (Posttest), gain (Gain), normalized gain (Norm g) 

and final exam scores (Final) for male and female students in the EBAE and LB courses taught by the same 

instructor (with same homework and final exam). Male students were divided into three groups based upon their 

pretest scores and female students were also divided into three groups based upon their pretest scores separately. For 

each division (subgroup), a p-value was obtained using a t-test that shows whether there is statistically significant 

difference between male and female students on pretest, posttest and final exam. 

 
Pretest 

Split 
 Pretest Posttest Gain Norm g Final 

FCI Alg LB 

bottom 1/3 

Mean Female Score 17 35 18 21 47 

p-value 0.010 0.078   0.815 

Mean Male Score 23 42 19 25 48 

middle 1/3 

Mean Female Score 28 42 14 19 53 

p-value <0.001 0.012   0.078 

Mean Male Score 39 55 16 26 60 
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top 1/3 

Mean Female Score 44 57 13 23 60 

p-value <0.001 0.002   0.422 

Mean Male Score 65 74 8 24 64 

FCI Alg 

EBAE 

bottom 1/3 

Mean Female Score 15 39 23 27 54 

p-value <0.001 0.164   0.318 

Mean Male Score 21 43 22 28 50 

middle 1/3 

Mean Female Score 28 46 17 24 52 

p-value <0.001 <0.001   0.008 

Mean Male Score 38 58 21 33 61 

top 1/3 

Mean Female Score 49 63 14 28 60 

p-value <0.001 <0.001   0.011 

Mean Male Score 63 78 15 41 68 

 

On the final exam, the data in Table 4.5 suggest that in the EBAE class, the top and middle 

1/3 of the male students performed better than the top and middle 1/3 of the female students. 

Similar, although not as strong, trends can be seen in the LB course. Since students in these two 

courses took the same final exams, these data suggest that the top and middle 1/3 of the male 

students benefited slightly more from EBAE pedagogies than top and middle 1/3 of the female 

students. On the other hand, the bottom 1/3 of the female students benefited more from EBAE 

pedagogies than the bottom 1/3 of the male students (performance of bottom 1/3 of female students 

is 54% in the EBAE course and only 47% in the LB course, whereas the performance of the bottom 

1/3 of male students is 50% in the EBAE course and 48% in the LB course). 

4.3.3.2 Calculus-based Physics II 

The data in Table 4.6 indicate that in the LB course, there was a gender gap on the CSEM in the 

pretest, but on the posttest, this gender gap decreased and was no longer statistically significant. 

This result appears to be inconsistent with the data shown in Table 4.2 which indicate that in the 



 136 

LB courses, the CSEM gender gap remained roughly the same (or slightly increased). However, 

the data in Table 4.2 includes all LB courses, whereas the data in Table 4.6 includes only one 

course which was taught by the same instructor who taught the EBAE course shown in Table 4.6. 

So in this particular calculus-based LB course, the gender gap on the CSEM decreased slightly, 

but if we include all calculus-based LB courses, the gender gap was roughly the same (or increased 

slightly). 

Table 4.6. Average CSEM pretest scores (Pretest), posttest scores (Posttest), gain (Gain), normalized gain (Norm g) 

and final exam scores (Final) for male and female students in the EBAE and LB courses taught by the same 

instructor (with same homework and final exam). Male students were divided into three groups based upon their 

pretest scores and female students were also divided into three groups based upon their pretest scores separately. For 

each division (subgroup), a p-value was obtained using a t-test that shows whether there is statistically significant 

difference between male and female students on pretest, posttest and final exam. 

 
Pretest 

Split 
 Pretest Posttest Gain Norm g Final 

CSEM Calc 

LB 

bottom 

1/3 

Mean Female Score 24 36 12 16 42 

p-value 0.006 0.738   0.209 

Mean Male Score 28 38 10 13 47 

middle 

1/3 

Mean Female Score 34 44 10 16 52 

p-value <0.001 0.661   0.770 

Mean Male Score 40 46 6 10 50 

top 1/3 

Mean Female Score 49 56 8 15 53 

p-value 0.060 0.513   0.018 

Mean Male Score 54 59 5 12 62 

CSEM Calc 

EBAE 

bottom 

1/3 

Mean Female Score 22 36 14 18 48 

p-value 0.002 0.050   0.196 

Mean Male Score 27 44 18 24 53 

middle 

1/3 

Mean Female Score 34 48 14 22 52 

p-value <0.001 0.455   0.104 

Mean Male Score 41 51 10 18 58 
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top 1/3 

Mean Female Score 56 63 7 16 68 

p-value 0.382 0.003   0.621 

Mean Male Score 58 74 16 38 70 

 

For the calculus-based EBAE course, the data in Table 4.6 suggest that the gender gap 

increased. The gender gaps for bottom 1/3, middle 1/3 and top 1/3 of the students are 5%, 7% and 

2% in the pretest but 8%, 3% and 11% in the posttest, respectively. Thus, with the exception of 

the middle 1/3 of the students, the gender gap on the CSEM increased. This suggests that the 

bottom 1/3 and top 1/3 of the male students may have benefited more from EBAE pedagogies 

compared to the respective female students. It appears that this was indeed the case when we 

compare the normalized gains in the LB and EBAE courses: for the bottom 1/3 and top 1/3 of the 

male students, their CSEM normalized gains were 13% and 12% in the LB course, but 24% and 

38% in the EBAE course, respectively. For the bottom 1/3 and top 1/3 of the female students, their 

CSEM normalized gains were 16% and 15% in the LB course, and 18% and 16% in the EBAE 

course. On the final exam, in both the LB and EBAE course, it appears that male students 

performed slightly better than the female students. However, only the 9% gender gap between the 

top 1/3 of the male and female students in the LB course is statistically significant. 

4.3.4 Comparison between EBAE and LB Courses Taught by Different Instructors in 

terms of Male and Female students’ Performances, Divided according to Pretest Scores 

(RQ4) 

Tables 4.7 and 4.8 show the average algebra-based and calculus based FCI and CSEM pretest 

score, posttest score, gain and normalized gain for male and female students, along with the p-

values between each subgroup of male and female students for the pretest and posttest in the EBAE 
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and LB courses. All equivalent (algebra-based or calculus-based physics I or II) courses which 

used the same instructional strategy (EBAE or LB) were combined and students were divided into 

three groups based upon their pretest scores. Male students were divided into three subgroups 

according to the pretest scores of male students only and female students were also divided into 

three subgroups according to the pretest scores of female students only, and their scores were 

compared (cases in which male and female scores are significantly different have been 

highlighted). We note that Tables 4.12 and 4.13 in the chapter appendix show the same data except 

that the students were divided into three subgroups according to their pretest scores regardless of 

their gender. Then, male and female students were separated for comparison and the cases in which 

male and female scores are significantly different from each other have been highlighted. In these 

tables (4.7, 4.8, 4.12 and 4.13), the average final exam performance is not listed because different 

instructors used different exams which varied in difficulty. 

Table 4.7. Average FCI pretest scores (Pretest), posttest scores (Posttest), gain (Gain) and normalized gain (Norm g) 

for male and female students in the EBAE and LB algebra-based and calculus-based courses. All courses in the 

same group were combined. Male students were divided into three groups based upon their pretest scores and female 

students were also divided into three groups based upon their pretest scores separately. For each division (subgroup), 

a p-value was obtained using a t-test that shows whether there is statistically significant difference between male and 

female students on pretest and posttest. Note that FCI data for calculus-based EBAE classes are not available. 

 Pretest Split  Pretest Posttest Gain Norm g 

FCI Calc LB 

bottom 1/3 

Mean Female Score 24 39 15 19 

p-value <0.001 <0.001   

Mean Male Score 35 52 17 26 

middle 1/3 

Mean Female Score 43 52 9 16 

p-value <0.001 <0.001   

Mean Male Score 60 75 14 36 

top 1/3 Mean Female Score 67 72 6 17 
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p-value <0.001 0.023   

Mean Male Score 85 82 -3 -18 

FCI Alg EBAE 

bottom 1/3 

Mean Female Score 15 39 23 27 

p-value <0.001 0.164   

Mean Male Score 21 43 22 28 

middle 1/3 

Mean Female Score 28 46 17 24 

p-value <0.001 <0.001   

Mean Male Score 38 58 21 33 

top 1/3 

Mean Female Score 49 63 14 28 

p-value <0.001 <0.001   

Mean Male Score 63 78 15 41 

FCI Alg LB 

bottom 1/3 

Mean Female Score 17 33 15 18 

p-value <0.001 <0.001   

Mean Male Score 23 41 18 23 

middle 1/3 

Mean Female Score 29 44 15 22 

p-value <0.001 <0.001   

Mean Male Score 40 55 15 24 

top 1/3 

Mean Female Score 44 57 13 23 

p-value <0.001 <0.001   

Mean Male Score 62 76 14 36 

4.3.4.1 Physics I 

For the calculus-based LB course, the data in Table 4.7 suggest that the gender gap on the FCI 

increased from pretest to posttest for each ability level. The gender gap for the bottom, middle, 

and top 1/3 of the students was 11%, 17%, 18% in the pretest, but in the posttest, it was 13%, 23%, 

10%, respectively. This is consistent with the data in Table 4.1 which indicates that, including all 

students, the FCI gender gap increased slightly from the pretest to the posttest except the top 1/3 

group. 
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Table 4.8. Average CSEM pretest scores (Pretest), posttest scores (Posttest), gain (Gain) and normalized gain 

(Norm g) for male and female students in the EBAE and LB algebra-based and calculus-based courses. All courses 

in the same group were combined. Male students were divided into three groups based upon their pretest scores and 

female students were also divided into three groups based upon their pretest scores separately. For each division 

(subgroup), a p-value was obtained using a t-test that shows whether there is statistically significant difference 

between male and female students on pretest and posttest. Note that CSEM data for algebra-based EBAE classes 

are not available. 

 Pretest Split  Pretest Posttest Gain Norm g 

CSEM Calc EBAE 

bottom 1/3 

Mean Female Score 21 43 22 28 

p-value 0.044 <0.001   

Mean Male Score 23 57 35 45 

middle 1/3 

Mean Female Score 32 52 20 29 

p-value <0.001 0.403   

Mean Male Score 37 55 18 29 

top 1/3 

Mean Female Score 51 67 15 31 

p-value 0.039 0.017   

Mean Male Score 56 74 18 41 

CSEM Calc LB 

bottom 1/3 

Mean Female Score 21 37 16 20 

p-value 0.001 0.429   

Mean Male Score 25 40 15 20 

middle 1/3 

Mean Female Score 32 43 12 17 

p-value <0.001 0.030   

Mean Male Score 37 49 12 20 

top 1/3 

Mean Female Score 47 60 13 24 

p-value 0.025 0.744   

Mean Male Score 52 57 6 12 

CSEM Alg LB 
bottom 1/3 

Mean Female Score 15 34 20 23 

p-value 0.017 0.100   

Mean Male Score 16 39 23 27 

middle 1/3 Mean Female Score 22 40 19 24 
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p-value <0.001 0.009   

Mean Male Score 25 47 22 30 

top 1/3 

Mean Female Score 31 47 16 23 

p-value <0.001 <0.001   

Mean Male Score 40 59 19 31 

 

For the algebra-based LB and EBAE courses, the data in Table 4.7 suggest that the gender 

gap on the FCI was present at each ability level in the pretest and it remained roughly the same in 

the posttest (consistent with the data in Table 4.1). For the LB courses, the gender gap on the FCI 

for bottom, middle, top 1/3 of the students was 6%, 11%, 18% on the pretest and 7%, 11%, 19% 

on the posttest. For the EBAE courses, the gender gap for bottom, middle, top 1/3 of the students 

was 6%, 10%, 14% on the pretest and 4%, 12%, 15% on the posttest. Interestingly, in both type of 

courses, it appears that the gender gap on the FCI was more pronounced at higher ability levels 

(based on FCI pretest scores). This was especially true in the LB course where the performance of 

the top 1/3 of the male students was on the average 18% (19%) higher compared to the top 1/3 of 

the female students on the pretest (posttest). The data in Table 4.7 suggest that both female and 

male students learned more in the EBAE course compared to the LB, but the learning gains were 

not much larger in the EBAE course compared to the LB course. 

4.3.4.2 Physics II 

The data in Table 4.8 suggest that in the calculus-based EBAE courses, the gender gap on the 

CSEM increased, but only for the bottom 1/3 of the students. On the pretest, the gender gap 

between the bottom 1/3 of the male and female students was 2%, whereas in the posttest, the gender 

gap was 14%. This suggests that the bottom 1/3 male students benefited much more from EBAE 

pedagogies than the bottom 1/3 of the female students. For the middle and top 1/3 of the students, 
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the gender gap remained roughly the same. By comparison, in the calculus-based LB courses, the 

gender gap stayed roughly the same. The gender gap between bottom 1/3, middle 1/3, top 1/3 of 

the students was 4%, 5%, 5% in the pretest and 3%, 6%, -3% in the posttest. These findings are 

consistent with the data shown in Table 4.2, which indicate that the gender gap on the CSEM 

stayed roughly the same in the LB courses, but increased slightly in the EBAE courses. 

Comparing the LB with the EBAE courses in terms of normalized gain, the data in Table 

4.8 suggest that students at all levels benefit from EBAE pedagogies. However, it appears that the 

bottom 1/3 and top 1/3 of the male students benefited more from EBAE pedagogies compared to 

the corresponding female students. The normalized CSEM gains for the bottom 1/3 and top 1/3 of 

the male students were 20% and 12% in the LB course but the EBAE course they were much larger 

at 45% and 41%. For the bottom 1/3 and top 1/3 of the female students on the other hand, the 

normalized CSEM gains were 20% and 24% in the LB course but only slightly larger at 28% and 

31% in the EBAE course. A very similar trend was observed in Table 4.6. Thus, it appears that for 

calculus-based physics II, the bottom 1/3 and top 1/3 of the male students may have benefited more 

from EBAE pedagogies compared to the bottom 1/3 and top 1/3 of the female students. 

Similar to the calculus-based LB courses, for the algebra-based LB courses, the gender gap 

stayed roughly the same for students in the bottom, middle and top 1/3 of the class (based on 

CSEM pretest scores). 

4.3.5 Correlation between CSEM Posttest and Final Exam Scores for Male and Female 

Students (RQ5) 

Figure 4.1 plots the CSEM posttest performance along with the final exam performance for male, 

female and all students in calculus-based EBAE course. Figure 4.1 shows that the linear 
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regressions [73] and there are moderate to strong correlation between posttest and the final exam 

scores. We also plotted linear regressions for the other courses and the data look similar to Figure 

4.1 but are not included here. Instead, we include all the correlation coefficients (CSEM posttest 

vs. final exam) for all the courses for which we were able to obtain both the posttest and final exam 

data. Table 4.9 summarizes the correlation coefficients between CSEM/FCI posttest and final 

exam scores for each instructor who provided final exam data. 

Despite the fact that different instructors had different final exams and at least some of the 

content in the final exam does not match the FCI or CSEM tests (e.g., in physics I, many topics 

were covered which are not on the FCI, such as momentum and collisions, static equilibrium and 

rotations, fluid dynamics and others), the correlation coefficients including males and females 

range from 0.415 to 0.816, which are considered to be moderate to high correlations. Although 

there are some differences between the correlation coefficients for male and female students in a 

given course, there is no clear discernable trend. 

 

Figure 4.1. Linear regression and correlation coefficients of the CSEM posttest scores (conceptual) and final exam 

scores (heavy focus on quantitative problem solving) for male students, female students and all students (males and 
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females combined together) for Inst 1 (EBAE instructor) for calculus-based introductory physics courses. The 

correlation coefficients for other FCI/CSEM instructors have been summarized in Table 4.9. 

 

Table 4.9. Correlation coefficients (R) between CSEM/FCI posttest and final exam scores of male and female 

students for each instructor (Inst) who provided final exam data. The final exam data were not provided by physics 

II instructors in algebra-based courses. 

Physics I (Calc) Physics I (Alg) Physics II (Calc) 

Inst and 

course 
Female Male 

Inst and 

course 
Female Male 

Inst and 

course 
Female Male 

Inst 1: LB 0.427 0.525 
Inst 1: 

EBAE 
0.568 0.628 

Inst 1: 

EBAE 
0.422 0.744 

Inst 2: LB 0.674 0.573 Inst 1: LB 0.510 0.554 
Inst 2: 

EBAE 
0.571 0.415 

Inst 3: LB 0.774 0.816 Inst 2: LB 0.626 0.728 Inst 2: LB 0.553 0.540 

      Inst 3: LB 0.230 0.592 

4.4 DISCUSSION AND SUMMARY 

4.4.1 General Findings for EBAE and LB Courses Regardless of Gender 

In all cases investigated, we find that on average, introductory students in the courses which made 

significant use of EBAE methods outperformed those in courses primarily taught using LB 

instruction on standardized conceptual surveys (FCI or CSEM) on the posttest even though there 

was no statistically significant difference on the pretest. This was true both in the algebra-based 

and calculus-based physics I (primarily mechanics) and II (primarily E&M) courses. Also, the 

differences between EBAE and LB courses were observed both among students who performed 

well on the FCI/CSEM pretest (given in the first week of classes) and also those who performed 
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poorly, thus indicating that EBAE instructional strategies helped students at all levels. However, 

the typical effect sizes for the differences between equivalent EBAE and LB courses was between 

0.23-0.49, which are small. Thus, the benefits of these EBAE approaches were not as large as one 

might expect to observe. There are many potential challenges to using EBAE instructional 

strategies effectively, including but not limited to: 

 Content coverage. There is often a lot of content covered in introductory physics courses 

and it is challenging to cover the same amount of content while also including frequent 

active learning activities during class and students are expected to take responsibility for 

learning some those things outside of classes.  

 Lack of student buy-in of EBAE pedagogies, which may result in lack of appropriate 

engagement with self-paced learning tools outside of class. It is therefore important for 

instructors to frame the course for students and discuss the various instructional approaches 

that will be used in a course and why they are expected to be beneficial for student learning. 

Providing data to the students that support the use of evidence-based active learning 

strategies [47] can be helpful, and when possible, including explicit discussions connecting 

students’ and instructors' goals for taking the course can also be beneficial [75]. 

 Lack of student engagement with in-class active learning activities (e.g., clicker questions 

and group problem solving). Students may not recognize on their own that they will learn 

best if they engage with the in-class activities to the best of their ability. Therefore, ensuring 

that in-class activities help all students learn is important. Furthermore, since peer 

collaboration is exploited in many EBAE classes to enhance student learning, ensuring that 

these activities are designed and incentivized in a manner that not only fosters positive 

inter-dependence (success of one student is contingent on the success of the group) but also 
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individual accountability (students are expected to show that they learned from working in 

a group) is essential [4-5]. 

 Large class sizes may be an impediment. One approach faculty used in flipped courses was 

to split the class in two (the instructor met with each group for only half of the time as 

compared to an LB course, his/her total contact hours with students remained the same), 

thus forming smaller class sizes. But even if the class size goes from 200 to 100 students 

by this process of breaking the class into two halves, it may still be challenging to manage 

the in-class activities effectively. Undergraduate or graduate teaching assistants need to be 

trained to effectively help in facilitating in-class activities. In group activities, students 

often work at different rates, so effective approaches need to be adopted to ensure that those 

who finish early can help others. 

4.4.2 Impact on Gender Gap 

We found that the EBAE courses did not result in reducing the gender gap. For algebra-based 

courses, students at all levels learned more in the EBAE courses; however, it appears that both 

female and male students benefited from evidence-based pedagogies equally and the gender gap 

present in the pretest was also found on the posttest. For calculus-based courses, our data suggest 

that male students actually benefited more from evidence-based pedagogies, which resulted in an 

increase in the gender gap from the pretest to the posttest. One hypothesis for why the gender gap 

was steady in algebra-based courses but grew in the calculus-based courses is that in the calculus-

based courses there are significantly fewer women which can impact their sense of belonging and 

self-efficacy. These issues were not investigated in this study. 
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Previous research has also found that sometimes evidence-based pedagogies result in a 

reduction of the gender gap [53-54], while in other cases they do not [55]. The reasons for the 

gender gap even in the pretest are complex and some have attributed the persistence of gender gap 

to issues such as societal gender stereotypes, stereotype threat, high anxiety classes, lack of social 

belonging for women in physics classes, the culture promoting fixed intelligence mindset (with 

men having the innate ability to excel in subjects such as physics), and low self-efficacy [59-66].  

Some have suggested that the gender gap found on conceptual assessments may at least in 

part be due to stereotype threat [57, 60-63], and the extent to which the classroom environment is 

perceived as threatening by female students which in turn can depend on the instructor and the 

instructional design. For example, as discussed earlier, research suggests that, for high school 

female students, taking a physics test can create an ‘implicit stereotype threat’ and can degrade 

their performance [60]. Such threat may be present even when taking the FCI or CSEM test at the 

beginning of the semester as a pretest and lead to a gender gap in performance. Also, female 

students may have a lower sense of social belonging and low self-efficacy in a physics class due 

to societal stereotypes about who belongs in physics and who is capable of doing physics. 

Some have suggested that classes which are not only collaborative but also emphasize 

collaboration and reduce competition (e.g., by not grading on a curve) are likely to be perceived 

more positively by female students and may partly be responsible for the reduced gender gap in 

Ref. [53]. Even EBAE classrooms can be characterized as high or low anxiety classes depending 

on the extent to which the instruction was designed to be inclusive and whether it explicitly focused 

on promoting a sense of belongingness, self-efficacy and growth mindset for all students. The 

extent to which the instructor plays an encouraging role to promote these positive motivational 

factors, and emphasizes that he/she is there as a guide to help all students succeed and also 
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emphasizes that struggling is a stepping stone to success and should be viewed positively may also 

play a role in dispelling the negative impacts of societal gender stereotypes about physics that 

accumulate over a female student’s lifetime. Since fixed mindset about innate intelligence can be 

a factor for the poor performance of female students, instructors should take advantage of research 

finding about the importance of promoting growth mindset [66] in their physics classes. In 

particular, research shows that students who believe that the brain is like a muscle, and intelligence 

is malleable and can increase with effort are more likely to persevere and perform better than those 

who think that intelligence is fixed [66]. Moreover, research suggests that mindset can be changed 

with a very short intervention [66]. Since according to the national data [76], fewer female students 

are likely to have taken challenging high school physics courses (e.g., Advanced Placement) before 

taking the college-level course, college EBAE courses which do not explicitly take into account 

these motivational factors may unknowingly create a high anxiety classroom environment for 

students who have less prior knowledge (who are more likely to be female students). For example, 

if students work in small groups in an EBAE course and some students in the group “show off” 

their knowledge and the instructional design does not promote a growth mindset, or the importance 

of hard work and persistence in learning physics, students who have taken less challenging physics 

course may have their self-efficacy issues exacerbated as opposed to reduced. Therefore, these 

motivational issues should be addressed in all physics classes as part of the instructional design to 

create inclusive classroom environment, as suggested in Ref. [77]. 

In summary, in order to enhance student learning in EBAE courses, it important not only 

to develop effective EBAE learning tools and pedagogies commensurate with students’ prior 

knowledge but also to investigate how to implement them appropriately and how to motivate and 

incentivize their usage to get buy-in from students in order for them to engage with them as 
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intended. Furthermore, reducing the gender gap on conceptual assessments is a challenging 

endeavor and evidence-based pedagogies may not be sufficient. In order to reduce gender gap, it 

may be useful to pay attention to other factors, e.g., improving the sense of belonging and self-

efficacy of female students, improving their intelligence mindset (so that they do not think of male 

students as having an innate ability to excel in physics that they do not have and view intelligence 

as something that is malleable and can be cultivated by focus and effort), and reducing competition 

and emphasizing collaboration.  
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(with same homework and final exam) with students divided into three groups regardless of their gender based on 

their pretest scores. For each division (subgroup), a p-value was obtained using a t-test that shows whether there is 

statistically significant difference between male and female students on pretest, posttest or final exam. 

 
Pretest 

Split 
 Pretest Posttest Gain Norm g Final 

FCI Alg LB 

bottom 1/3 

Mean Female Score 19 35 17 20 48 

p-value 0.192 0.171   0.082 

Mean Male Score 15 40 25 30 40 

middle 1/3 

Mean Female Score 32 46 13 20 53 

p-value 0.967 0.955   0.772 

Mean Male Score 32 45 13 19 54 

top 1/3 

Mean Female Score 49 62 13 26 64 

p-value 0.046 0.121   0.934 

Mean Male Score 56 70 13 31 64 

FCI Alg 

EBAE 

bottom 1/3 

Mean Female Score 16 40 24 28 54 

p-value 0.149 0.610   0.438 

Mean Male Score 18 42 24 29 51 

middle 1/3 

Mean Female Score 31 45 14 21 52 

p-value 0.038 0.013   0.159 

Mean Male Score 33 54 21 32 57 

top 1/3 

Mean Female Score 53 71 18 38 63 

p-value 0.091 0.209   0.212 

Mean Male Score 58 75 17 40 67 

 

4-11. Average CSEM pretest scores (Pretest), posttest scores (Posttest), gain (Gain), normalized gain (Norm g) and 

final exam scores (Final) for male and female students in the flipped and LB courses taught by the same instructor 

(with same homework and final exam) with students divided into three groups regardless of their gender based on 
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their pretest scores. For each division (subgroup), a p-value was obtained using a t-test that shows whether there is 

statistically significant difference between male and female students on pretest, posttest and final exam. 

 
Pretest 

Split 
 Pretest Posttest Gain Norm g Final 

CSEM Calc 

LB 

bottom 

1/3 

Mean Female Score 27 37 11 15 44 

p-value 0.945 0.505   0.921 

Mean Male Score 26 35 8 11 44 

middle 1/3 

Mean Female Score 39 49 10 16 52 

p-value 0.701 0.298   0.688 

Mean Male Score 39 45 7 11 53 

top 1/3 

Mean Female Score 55 62 7 15 57 

p-value 0.507 0.613   0.578 

Mean Male Score 53 59 6 13 59 

CSEM Calc 

EBAE 

bottom 

1/3 

Mean Female Score 25 41 16 21 50 

p-value 0.542 0.480   0.436 

Mean Male Score 24 44 20 26 53 

middle 1/3 

Mean Female Score 38 49 11 18 52 

p-value 0.433 0.909   0.288 

Mean Male Score 39 49 11 17 57 

top 1/3 

Mean Female Score 57 63 6 14 69 

p-value 0.949 0.015   0.869 

Mean Male Score 57 73 16 36 69 

 

4-12. Average FCI pretest scores (Pretest), posttest scores (Posttest), gain (Gain) and normalized gain (Norm g) for 

male and female students in the flipped and LB algebra-based and calculus-based courses. All courses in the same 

group were combined with students divided into three groups regardless of their gender based upon their pretest 

scores. For each division (subgroup), a p-value was obtained using a t-test that shows whether there is statistically 

significant difference between male and female students on pretest and posttest. Note that FCI data for Calculus-

based EBAE classes are not available. 

 Pretest Split  Pretest Posttest Gain Norm g 



 157 

FCI Calc LB 

bottom 1/3 

Mean Female Score 30 43 13 19 

p-value 0.083 0.016   

Mean Male Score 32 49 17 25 

middle 1/3 

Mean Female Score 53 60 7 14 

p-value 0.049 <0.001   

Mean Male Score 55 71 16 36 

top 1/3 

Mean Female Score 83 84 1 7 

p-value 0.918 0.707   

Mean Male Score 82 82 -1 -3 

FCI Alg EBAE 

bottom 1/3 

Mean Female Score 16 40 24 28 

p-value 0.149 0.610   

Mean Male Score 18 42 24 29 

middle 1/3 

Mean Female Score 31 45 14 21 

p-value 0.038 0.013   

Mean Male Score 33 54 21 32 

top 1/3 

Mean Female Score 53 71 18 38 

p-value 0.091 0.209   

Mean Male Score 58 75 17 40 

FCI Alg LB 

bottom 1/3 

Mean Female Score 19 34 15 19 

p-value 0.467 0.427   

Mean Male Score 20 36 16 20 

middle 1/3 

Mean Female Score 32 46 13 20 

p-value 0.617 0.501   

Mean Male Score 33 47 15 22 

top 1/3 

Mean Female Score 50 64 14 27 

p-value 0.002 0.005   

Mean Male Score 56 71 15 34 

4-13. Average CSEM pretest scores (Pretest), posttest scores (Posttest), gain (Gain) and normalized gain (Norm g) 

for male and female students in the flipped and LB algebra-based and calculus-based courses. All courses in the 

same group were combined with students divided into three groups regardless of their gender based upon their 
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pretest scores. For each division (subgroup), a p-value was obtained using a t-test that shows whether there is 

statistically significant difference between male and female students on pretest and posttest. Note that CSEM data 

for algebra-based EBAE classes are not available. 

 Pretest Split  Pretest Posttest Gain Norm g 

CSEM Calc EBAE 

bottom 1/3 

Mean Female Score 23 44 22 28 

p-value 0.571 0.001   

Mean Male Score 22 57 35 45 

middle 1/3 

Mean Female Score 35 56 22 33 

p-value 0.771 0.891   

Mean Male Score 35 56 21 32 

top 1/3 

Mean Female Score 54 65 10 23 

p-value 0.718 0.033   

Mean Male Score 55 72 17 38 

CSEM Calc LB 

bottom 1/3 

Mean Female Score 23 39 16 20 

p-value 0.367 0.827   

Mean Male Score 24 39 15 20 

middle 1/3 

Mean Female Score 35 46 11 17 

p-value 0.833 0.535   

Mean Male Score 35 48 13 20 

top 1/3 

Mean Female Score 51 61 10 21 

p-value 0.966 0.460   

Mean Male Score 51 58 7 14 

CSEM Alg LB 

bottom 1/3 

Mean Female Score 15 36 21 25 

p-value 0.402 0.576   

Mean Male Score 15 38 23 27 

middle 1/3 

Mean Female Score 23 42 20 25 

p-value 0.981 0.192   

Mean Male Score 23 46 23 30 

top 1/3 
Mean Female Score 33 45 13 19 

p-value 0.002 <0.001   
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Mean Male Score 37 56 19 30 
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5.0  IMPACT OF STEREOTYPE THREAT ON STUDENT PERFORMANCE AND 

GENDER GAP IN INTRODUCTORY PHYSICS 

5.1 INTRODUCTION 

Prior research has found that in the introductory physics courses, male students often outperform 

female students on conceptual assessments such as the Force Concept Inventory or FCI [1, 2] and 

the Conceptual Survey of Electricity and Magnetism or CSEM [3], a phenomenon sometimes 

referred to as the “gender gap”. Furthermore, prior research has also found that activation of a 

stereotype about a particular group in a test-taking situation, i.e., stereotype threat (ST), can alter 

the performance of that group in a way consistent with the stereotype. For example, Spence et al. 

[4] conducted a study in which a group of students was told immediately before taking a 

mathematics test that in prior administrations of the test, a gender gap has been found (with female 

students performing worse than male students), while another group was not provided with this 

information. Female students who were informed about the stereotype right before the test 

performed significantly worse than those who were not exposed to this stereotype, but the 

performance of male students was unaffected. The researchers concluded that informing female 

students about the stereotype acts as a stereotype threat and leads to deteriorated performance [4]. 

Spence et al. [4] also describe another study in which, when students were told that the 

mathematics test they are about to take is gender neutral, no gender gap was observed, but in the 

control condition, when students were not given any such information about the gender neutrality 

of the mathematics test, a gender gap was observed. The researchers hypothesized that a stereotype 
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threat may be present for female students in a mathematics test-taking situation unless they are 

explicitly told that the mathematics test is previously found to be gender neutral [4]. 

Other researchers have found more subtle stimuli that can activate stereotype threat and 

result in deteriorated performance [5], e.g., asking students to indicate their ethnicity before taking 

a test [6]. In particular, prior research suggests that asking African American students to indicate 

their ethnicity before taking a difficult test on verbal ability resulted in decreased performance 

compared to students of the same race who were not asked for this information [6]. Yet others 

have found that asking for gender or ethnicity before taking a test did not impact students’ 

performance on standardized tests [7, 8].  

Even in the context of physics, some researchers have argued [9] that a stereotype threat is 

automatically triggered in a physics test-taking situation due to prevalent societal stereotypes. In a 

somewhat similar study to Spence et al. [4], Marchand and Taasoobshirazi [9] used three different 

conditions immediately before students took a four question quantitative physics test: an explicit 

stereotype threat condition (students were told that female students had performed worse than male 

students on this test), an implicit stereotype threat condition (no information regarding past 

performance of male and female students was given), and a nullified condition (students were told 

that no gender differences were found on previous administrations of the test). Under all three 

conditions [9], students received the following instructions: “You will be given four physics 

problems to solve. These problems are based on physics material that you have already covered.” 

In the implicit stereotype threat condition, these were the only instructions, while in the explicit 

stereotype threat condition, students were also told: “This test has shown gender differences with 

males outperforming females on the problems” and in the nullified condition, students were told: 

“No gender differences in performance have been found on the test”. While male students 



 162 

performed similarly in all three conditions, females in the explicit and implicit stereotype threat 

conditions had comparable performances but performed statistically significantly worse than 

female students in the nullified condition. 

5.2 GOALS OF THE INVESTIGATIONS 

Since the stereotype threat has the potential to exacerbate the gender gap typically found in 

conceptual physics assessments, in the Study 1 described here, our goal was to investigate whether 

asking introductory physics students to indicate their gender before taking the CSEM impacted 

their performance, both when it was administered as a pretest (before instruction) and as a posttest 

(after traditional lecture-based instruction in relevant concepts). In the Study 2 described here, our 

goal was to investigate the prevalence of the belief that men generally perform better in physics 

than women (a gender stereotype) among introductory physics students and the extent to which 

agreeing with this gender stereotype is correlated with the performance of female and male 

students in algebra-based and calculus-based introductory physics I and II on the commonly used 

conceptual standardized physics assessments, the FCI and the CSEM. We also investigated 

whether there was a difference between the condition in which the gender stereotype question was 

asked immediately before or immediately after the introductory physics students took the FCI or 

the CSEM to understand whether there was a qualitative difference between the performance of 

female students in these before and after conditions.  

As noted, Marchand and Taasoobshirazi [9] have posited that their research suggests that 

many female students automatically experience a certain level of stereotype threat while taking a 

physics test due to the societal stereotypes about physics being a discipline for intelligent men. We 
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hypothesized that while a certain level of stereotype threat may be implicitly present for many 

female students in the introductory physics courses as Marchand and Taasoobshirazi [9] have 

argued based upon their research, the stereotype threat may be worse, on average, for female 

students taking introductory physics if they agree with the gender stereotype that men generally 

perform better in physics than women. Moreover, without explicit intervention to improve 

women’s sense of belonging, self-efficacy and growth mindset (as opposed to fixed mindset, e.g., 

agreeing with the statement that according to my own belief, I expect men to generally perform 

better in physics than women), being in a physics course in which they are severely 

underrepresented can have worse negative impact on the performance of the female students who 

believe in the gender stereotype than those who do not believe in the stereotype. In particular, it is 

possible that for those female students who agree with the gender stereotype, the ecosystem of the 

physics classrooms in which they are underrepresented may act as an additional level of stereotype 

threat (over and above what Marchand and Taasoobshirazi [9] argue many female students 

experience automatically in physics test-taking situations due to common societal biases), and they 

may perform worse than female students who do not agree with the stereotype. Our goal was to 

especially investigate this issue. 

5.3 METHODOLOGY 

The participants in this study were students in various algebra-based and calculus-based 

introductory physics courses. Also, introductory physics courses (algebra-based physics I and II 

or calculus-based physics I and II) included in this study were large introductory physics courses 

at a typical large research university (University of Pittsburgh or Pitt) except in one study, as 
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described below, calculus-based introductory physics students from another large research 

university (University of Cincinnati) participated. The two semester calculus-based course 

sequence at Pitt and Cincinnati is mainly taken by college freshman who are engineering, 

chemistry, mathematics or physics majors. Approximately, 30% of the students in these calculus-

based courses are females (somewhat higher percentage at Pitt than at Cincinnati). The first 

semester course covers mainly mechanics and waves and the second semester course covers 

mainly electricity and magnetism and some wave-optics. The algebra-based introductory physics 

course sequence at Pitt is taken mainly by the biological science and neuroscience majors and 

those who are pre-medical students. It is taken in the junior or senior year. Introductory mechanics 

and waves are covered in the first semester algebra-based course and electricity and magnetism 

are covered in the second semester algebra-based course, although other topics are also included 

in the course in order to cover the topics in the medical entrance examination. Approximately, 

60% of the students in these algebra-based courses are females. 

The students in the calculus-based course had four hours of lecture time and the algebra-

based course had three hours of lecture time per week. Both calculus-based and algebra-based 

courses had one hour of recitation time. In the recitations, the graduate teaching assistants typically 

fielded questions about the homework from the students and solved example problems on the 

board. Each week, after students submitted the textbook style mostly quantitative homework on a 

particular topic, they were typically given a recitation quiz in the last 15-20 minutes of the 

recitation class. 

In order to compare the performances of students under different conditions, we performed 

t-tests [10] on FCI or CSEM pre and posttest data for males and females. We also calculated the 

effect size in the form of Cohen’s d defined as 1 2

pooled

d
 




 , where 1  and 2  are the averages 
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of the two groups being compared and  2 2

1 2

1

2
pooled    ; here 1  and 2  are the standard 

deviations of the two groups being compared. We considered: d < 0.5 as small effect size, 0.5 ≤ d 

< 0.8 as medium effect size and d ≥ 0.8 as large effect size, as described in Ref. [10]. 

5.3.1 Study 1 

In this study, 170 students in an introductory algebra-based physics II course (as noted, mostly 

biological and neuroscience majors and pre-medical students) took the CSEM as a pretest (in the 

recitation class in the first week of classes before instruction in relevant concepts) and as a posttest 

(in the recitation class during the last week of classes after instruction in relevant concepts). 

Students were assigned to two conditions, one which asked them to indicate their gender (checkbox 

format with options male, female, and prefer not to specify) before then took the CSEM and one 

in which they were asked for such information after taking the CSEM. We then compared the 

performance of students under the two conditions. 

5.3.2 Study 2 

In this study, we investigated the following: 1) the prevalence of the belief in the gender stereotype 

among introductory physics students in the algebra-based and calculus-based courses and 2) the 

extent to which believing the stereotype is correlated with female and male students’ performance 

on the FCI and CSEM. This study involved over 1800 calculus-based students (mainly 

engineering, mathematics and physical science majors) and over 1600 algebra-based students 

(mainly pre-medical and biological and neuroscience majors) enrolled in first and second semester 
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introductory physics courses. The majority of these students, after taking the FCI or CSEM, were 

asked to indicate the extent to which they agree with the following statement: “According to my 

own personal beliefs, I expect men to generally perform better in physics than women” on a five-

point Likert scale (strongly disagree, disagree, neutral, agree, and strongly agree). Then, students 

were grouped according to their beliefs (agree/strongly agree, neutral which was explained to 

students as neither agree nor disagree, disagree/strongly disagree) and we investigated 

performance differences (e.g., we compared the performance of female students who agree with 

the stereotype with that of female students in the same class who disagree with the stereotype) on 

both the pretest (before instruction) and the posttest (after instruction in relevant concepts). 

We note that if students are asked to indicate the extent to which they agree with the gender 

stereotype (according to my own belief, I expect men to generally perform better in physics than 

women) before taking the FCI or CSEM, this may act as an additional stereotype threat (over and 

above the stereotype threat that Marchand and Taasoobshirazi [9] posit many female students 

automatically experience in a physics classes in a test-taking situation), especially for the female 

students who agree with this gender stereotype. Thus, to avoid any additional stereotype threat to 

female students (and potential consequences on performance on the standardized test), all students 

at one large state-related university (University of Pittsburgh) were given the gender stereotype 

question right after they had completed answering the FCI or CSEM questions. However, we 

wanted to test whether asking the gender stereotype question before students take the conceptual 

survey qualitatively impacts female and male students’ performance. Since it was agreed that at 

Pitt, the gender stereotype question would be asked at the end (after students had taken the 

standardized test in the recitation) so that female students do not experience additional stereotype 

threat, another group of calculus-based introductory physics students at the University of 
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Cincinnati was asked the gender stereotype question right before taking the FCI, and the qualitative 

trends amongst male and female students who agreed or disagreed with the stereotype were 

compared with the corresponding calculus-based cohort at Pitt for whom the stereotype question 

was asked right after taking the FCI. 

Finally, we note that it is possible that introductory physics students who answered the 

stereotype question as neutral (which was explained to them as neither agreeing nor disagreeing 

with the gender stereotype) may instead actually agree with the stereotype but avoided stating that 

they agree with it since they were aware it is not politically correct. Therefore, we carried out a 

separate analysis in which we compared the performance of introductory physics students in a 

course who disagree with the stereotype with the performance of all the rest of the students (i.e., 

those who were either neutral or agreed with the stereotype) of a particular gender in that course. 

That type of analysis of data shows very similar trends in those data as the ones presented here by 

comparing the male and female students who only agreed or disagreed with the stereotype (and 

discarding the neutral responses provided by students). 

5.4 RESULTS 

Before discussing the results, we note that whether we use matched pretest and posttest data or 

consider all students who took the pretest or posttest (unmatched), the qualitative trends are 

unchanged, so we report data from all students who took the pretest or posttest. 
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5.4.1 Study 1 

Table 5.1 shows the pretest and posttest performance of introductory algebra-based female (N=99) 

and male (N=71) students on the CSEM in the two conditions: students were/were not asked to 

provide gender information before taking the CSEM (gender salient/not salient condition, 

respectively). Table 5.1 shows that there were no statistically significant differences between the 

performance of male or female students in the two conditions (e.g., female students who wrote 

their gender before taking the CSEM did not perform worse than female students who wrote their 

gender after taking the CSEM) in the pretest or the posttest. 

Table 5.1. Female (F) and male (M) students’ pretest and posttest performance on the CSEM depending on the 

testing condition. The standard deviations are abbreviated as SD. The p values are obtained using a t-test and d 

refers to the effect size (Cohen’s d [10]). 

Algebra PHYSICS II (CSEM) 

 PRETEST POSTTEST 

 Female Male Female Male 

NOT SALIENT 

N: 46 

Mean: 23 

SD: 10 

N: 27 

Mean: 27 

SD: 10 

N: 12 

Mean: 38 

SD: 17 

N: 7 

Mean: 46 

SD: 19 

Comparison 

↑ 

p: 0.692 

d: 0.080 

↓ 

↑ 

p: 0.603 

d: 0.124 

↓ 

↑ 

p: 0.332 

d: 0.330 

↓ 

↑ 

p: 0.866 

d: 0.074 

↓ 

SALIENT 

N: 53 

Mean: 24 

SD: 10 

N: 44 

Mean: 28 

SD: 13 

N: 80 

Mean: 43 

SD: 14 

N: 58 

Mean: 48 

SD: 16 
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5.4.2 Study 2 

Table 5.2 shows the percentage of male and female introductory students in algebra-based and 

calculus-based physics I and II courses who agreed/were neutral/disagreed with the stereotype 

(According to my own belief, I expect men to generally perform better in physics than women). 

Only 7-13% of algebra-based and calculus-based students (regardless of their gender) agreed with 

this gender stereotype. Thus, it appears that this stereotype was not very common amongst college 

introductory physics students. However, if the neutral responses are combined with those who 

agree with the stereotype, approximately 25% of the introductory physics students of both genders 

either agree with the stereotype or are neutral (neither agree nor disagree). 

Table 5.2. Percentage of female (F) and male (M) students who agreed/were neutral/disagreed with the stereotype 

that men generally perform better in physics than women in algebra-based (Alg.) and calculus-based (Calc.) 

introductory physics. The total number of female/male students is indicated at the bottom (N). 

 

Before presenting data from Study 2, we note that in all classes regardless of whether they 

were algebra-based or calculus-based, whether they were introductory physics I or II, large gender 

differences were found in our investigation between the performance of male and female students 

both on the pretest and posttest. The gender gap on the FCI is typically 10-20% depending upon 

 
Alg. Physics I 

(FCI) 

Alg. Physics II 

(CSEM) 

Calc. Physics I 

(FCI) 

Calc. Physics II 

(CSEM) 

 Pretest Posttest Pretest Posttest Pretest Posttest Pretest Posttest 

 F M F M F M F M F M F M F M F M 

Disagree 77 73 74 73 80 78 76 79 83 72 83 74 83 74 77 73 

Neutral 14 21 13 21 9 15 12 13 10 21 7 18 9 19 10 20 

Agree 9 7 13 7 11 7 12 7 8 7 10 8 9 7 13 7 

N 668 365 450 251 553 330 348 219 253 453 217 354 231 527 181 396 
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whether it is the pretest or posttest and whether it is the algebra-based or calculus-based 

introductory course. The gender gap on the CSEM is typically smaller, especially on the pretest 

since the overall scores of each group on the pretest (particularly for the algebra-based course) are 

not significantly better than random guessing (20% average). As noted earlier, some have 

attributed gender differences in student performance in a particular class on the standardized 

conceptual assessments (the FCI or the CSEM) on these tests being biased against female students 

[11]. Others have argued that many female students in a physics class automatically experience a 

stereotype threat due to societal biases especially when taking a test [9]. 

Tables 5.3 and 5.4 show the pretest and posttest performances on the FCI and CSEM of 

female and male students in the algebra-based (Table 5.3) and calculus-based physics (Table 5.4) 

courses who agreed/disagreed with the gender stereotype. The tables also list p values and effect 

sizes (Cohen’s d) for the comparison of the performance of female/male students who agree with 

the stereotype with that of female/male students who disagree with the stereotype. 

Table 5.3 shows that for the algebra-based introductory physics students, neither on the 

FCI nor on the CSEM are there major differences between the female (male) students who agree 

and female (male) students who disagree with the gender stereotype, in the pretest or in the posttest. 

Table 5.3. Numbers of algebra-based students (N), averages (Mean) and standard deviations (SD) for the 

performance on the FCI (for Physics I) or CSEM (for Physics II) in pre-/post- tests of female and male students who 

agree/disagree with the stereotype that men generally perform better in physics than women. The p values (p) and 

effect sizes (d) shown with the performance of female/male students for each class type were obtained when 

comparing the average performance of female/male students who agree with that of female/male students who 

disagree with the stereotype. These students answered the stereotype question after taking the FCI/CSEM. 

Algebra PHYSICS I (FCI) PHYSICS II (CSEM) 

 PRETEST POSTTEST PRETEST POSTTEST 

 Female Male Female Male Female Male Female Male 
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Disagree 

N: 512 

Mean: 

32  

SD: 15 

N: 265 

Mean: 

44 

SD: 19 

N: 333 

Mean: 

48 

SD: 17 

N: 182 

Mean: 

61 

SD: 19 

N: 441 

Mean: 

22 

SD: 8 

N: 257 

Mean: 

26 

SD: 10 

N: 263 

Mean: 

37 

SD: 13 

N: 174 

Mean: 

44 

SD: 16 

Comparison 

↑ 

p: 0.718 

d: 0.047 

↓ 

↑ 

p: 0.111 

d: 0.316 

↓ 

↑ 

p: 0.849 

d: 0.028 

↓ 

↑ 

p: 0.588 

d: 0.152 

↓ 

↑ 

p: 0.043 

d: 0.256 

↓ 

↑ 

p: 0.957 

d: 0.012 

↓ 

↑ 

p: 0.680 

d: 0.067 

↓ 

↑ 

p: 0.632 

d: 0.128 

↓ 

Agree 

N: 60 

Mean: 

31 

SD: 14 

N: 25 

Mean: 

50 

SD: 16 

N: 57 

Mean: 

47 

SD: 17 

N: 17 

Mean: 

57 

SD: 24 

N: 61 

Mean: 

20 

SD: 6 

N: 24 

Mean: 

26 

SD: 11 

N: 43 

Mean: 

37 

SD: 12 

N: 16 

Mean: 

46 

SD: 16 

 

Table 5.4. Numbers of calculus-based students (N), averages (Mean) and standard deviations (SD) for the 

performance on the FCI (for Physics I) or CSEM (for Physics II) in pre-/post- tests of female and male students who 

agree/disagree with the stereotype that men generally perform better in physics than women. The p values (p) and 

effect sizes (d) shown with the performance of female/male students for each class type were obtained when 

comparing the average performance of female/male students who agree with that of female/male students who 

disagree with the stereotype. These students answered the stereotype question after taking the FCI/CSEM. 

Calculus PHYSICS I (FCI) PHYSICS II (CSEM) 

 PRETEST POSTTEST PRETEST POSTTEST 

 Female Male Female Male Female Male Female Male 

Disagree 

N: 209 

Mean: 

43 

SD: 19 

N: 326 

Mean: 

60 

SD: 21 

N: 180 

Mean: 

56 

SD: 19 

N: 262 

Mean: 

70 

SD: 19 

N: 191 

Mean: 

35 

SD: 14 

N: 388 

Mean: 

40 

SD: 14 

N: 140 

Mean: 

50 

SD: 18 

N: 288 

Mean: 

58 

SD: 19 

Comparison 

↑ 

p: 0.801 

d: 0.056 

↓ 

↑ 

p: 0.592 

d: 0.102 

↓ 

↑ 

p: 0.169 

d: 0.313 

↓ 

↑ 

p: 0.249 

d: 0.231 

↓ 

↑ 

p: 0.233 

d: 0.240 

↓ 

↑ 

p: 0.954 

d: 0.011 

↓ 

↑ 

p: 0.020 

d: 0.505 

↓ 

↑ 

p: 0.185 

d: 0.283 

↓ 

Agree N: 19 N: 30 N: 22 N: 30 N: 20 N: 37 N: 23 N: 29 
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Mean: 

42 

SD: 16 

Mean: 

58 

SD: 20 

Mean: 

51 

SD: 18 

Mean: 

75 

SD: 20 

Mean: 

33 

SD: 10 

Mean: 

40 

SD: 18 

Mean: 

42 

SD: 14 

Mean: 

64 

SD: 23 

 

Table 5.4 shows that for the calculus-based introductory physics students, on the FCI, there 

are no statistically significant differences between the female (male) students who agree and the 

female (male) students who disagree with the stereotype, in the pretest or in the posttest (although 

the trends for the average scores suggest that the female students who agree with the stereotype 

perform worse than the female students who disagree with it and male students who agree with the 

stereotype perform better than the male students who disagree with it and for a larger N these 

results may become statistically significant). Also, Table 5.4 shows that for the calculus-based 

students, on the CSEM, the trends are similar to the trends on the FCI and the differences between 

female (or male) students who agree or disagree with the gender stereotype are not statistically 

significant on the pretest. However, on the CSEM posttest, there is a statistically significant 

difference (a difference of 8%) between the calculus-based female students who agree and the 

female students in the same course who disagree with the stereotype. 

As mentioned earlier, we also analyzed the performance of another group of calculus-based 

students from University of Cincinnati who answered the gender stereotype question before taking 

the FCI because we wanted to investigate whether asking students the gender stereotype question 

before taking the FCI may act as another source of stereotype threat, especially for female students 

who agree with the stereotype. The results are shown in Table 5.5 and are qualitatively similar to 

the FCI data shown in Table 5.4. One hypothesis for this similarity is that female students who 

believe in the stereotype that men generally perform better in physics than women may experience 

similar stereotype threat regardless of whether they are asked the gender stereotype question before 
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or after taking the standardized test (recall that the authors of Ref. [9] posit that implicit stereotype 

threat is there for female students in a physics exam situation even if they are not reminded of a 

gender stereotype before taking a test). In other words, our finding is consistent with the findings 

of Marchand and Taasoobshirazi in a somewhat different context [9]. 

Table 5.5. Numbers of calculus-based students (N), averages (Mean) and standard deviations (SD) for the 

performance on the FCI (for Physics I) or CSEM (for Physics II) in pre-/post- tests of female and male students who 

agree/disagree with the stereotype (that men generally perform better in physics than women). The p values (p) and 

effect sizes (d) shown with the performance of female/male students for each class type were obtained when 

comparing the average performance of female/male students who agree with that of female/male students who 

disagree with the stereotype. These students answered the stereotype question before taking the FCI. 

 PHYSICS I (FCI) 

 PRETEST POSTTEST 

 Female Male Female Male 

Disagree 

N: 151 

Mean: 40 

SD: 17 

N: 381 

Mean: 54 

SD: 20 

N: 46 

Mean: 55 

SD: 18 

N: 289 

Mean: 68 

SD: 20 

Comparison 

↑ 

p: 0.416 

d: 0.16 

↓ 

↑ 

p: 0.412 

d: 0.09 

↓ 

↑ 

p: 0.357 

d: 0.27 

↓ 

↑ 

p: 0.072 

d: 0.08 

↓ 

Agree 

N: 35 

Mean: 37 

SD: 19 

N: 103 

Mean: 52 

SD: 20 

N: 14 

Mean: 50 

SD: 19 

N: 47 

Mean: 70 

SD: 19 

 

Finally, the analysis in which students who disagreed with the stereotype were put in one 

group and all the other students were put in another is shown in Tables 5.6 and 5.7. The results are 

qualitatively the same as those shown in Tables 5.2 and 5.3. 
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Table 5.6. Numbers of algebra-based students (N), averages (Mean) and standard deviations (SD) for the 

performance on the FCI (for Physics I) or CSEM (for Physics II) in pre-/posttests of female and male students who 

agree/disagree with the stereotype that men generally perform better in physics than women. Students who selected 

‘neutral’ were considered to have agreed with the stereotype question. The p values (p) and effect sizes (d) shown 

with the performance of female/male students for each class type were obtained when comparing the average 

performance of female/male students who agree with that of female/male students who disagree with the stereotype. 

Algebra PHYSICS I (FCI) PHYSICS II (CSEM) 

 PRETEST POSTTEST PRETEST POSTTEST 

 Female Male Female Male Female Male Female Male 

Disagree 

N: 512 

Mean: 

32  

SD: 15 

N: 265 

Mean: 

44 

SD: 19 

N: 333 

Mean: 

48 

SD: 17 

N: 182 

Mean: 

61 

SD: 19 

N: 441 

Mean: 

22 

SD: 8 

N: 257 

Mean: 

26 

SD: 10 

N: 263 

Mean: 

37 

SD: 13 

N: 174 

Mean: 

44 

SD: 16 

Comparison 

↑ 

p: 0.106 

d: 0.147 

↓ 

↑ 

p: 0.288 

d: 0.125 

↓ 

↑ 

p: 0.610 

d: 0.056 

↓ 

↑ 

p: 0.784 

d: 0.040 

↓ 

↑ 

p: 0.041 

d: 0.210 

↓ 

↑ 

p: 0.596 

d: 0.073 

↓ 

↑ 

p: 0.060 

d: 0.238 

↓ 

↑ 

p: 0.704 

d: 0.065 

↓ 

Agree 

N: 156 

Mean: 

30 

SD: 15 

N: 100 

Mean: 

42 

SD: 20 

N: 117 

Mean: 

47 

SD: 18 

N: 69 

Mean: 

60 

SD: 22 

N: 112 

Mean: 

20 

SD: 7 

N: 73 

Mean: 

27 

SD: 12 

N: 85 

Mean: 

34 

SD: 13 

N: 45 

Mean: 

45 

SD: 17 

 

Table 5.7. Numbers of calculus-based students (N), averages (Mean) and standard deviations (SD) for the 

performance on the FCI (for Physics I) or CSEM (for Physics II) in pre-/post- tests of female and male students who 

agree/disagree with the stereotype that men generally perform better in physics than women. Students who selected 

‘neutral’ were considered to have agreed with the stereotype question. The p values (p) and effect sizes (d) shown 

with the performance of female/male students for each class type were obtained when comparing the average 

performance of female/male students who agree with that of female/male students who disagree with the stereotype. 

Calculus PHYSICS I (FCI) PHYSICS II (CSEM) 

 PRETEST POSTTEST PRETEST POSTTEST 
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 Female Male Female Male Female Male Female Male 

Disagree 

N: 209 

Mean: 

43 

SD: 19 

N: 326 

Mean: 

60 

SD: 21 

N: 180 

Mean: 

56 

SD: 19 

N: 262 

Mean: 

70 

SD: 19 

N: 191 

Mean: 

35 

SD: 14 

N: 388 

Mean: 

40 

SD: 14 

N: 140 

Mean: 

50 

SD: 18 

N: 288 

Mean: 

58 

SD: 19 

Comparison 

↑ 

p: 0.700 

d: 0.063 

↓ 

↑ 

p: 0.095 

d: 0.178 

↓ 

↑ 

p: 0.295 

d: 0.187 

↓ 

↑ 

p: 0.959 

d: 0.006 

↓ 

↑ 

p: 0.042 

d: 0.317 

↓ 

↑ 

p: 0.178 

d: 0.136 

↓ 

↑ 

p: 0.002 

d: 0.549 

↓ 

↑ 

p: 0.534 

d: 0.072 

↓ 

Agree 

N: 44 

Mean: 

42 

SD: 18 

N: 127 

Mean: 

56 

SD: 22 

N: 37 

Mean: 

53 

SD: 18 

N: 92 

Mean: 

70 

SD: 20 

N: 40 

Mean: 

32 

SD: 10 

N: 139 

Mean: 

38 

SD: 15 

N: 41 

Mean: 

40 

SD: 16 

N: 108 

Mean: 

59 

SD: 21 

5.5 DISCUSSION AND SUMMARY 

The research in Study 1 suggests that asking algebra-based introductory physics students to 

indicate their gender before taking the CSEM did not impact their performance, consistent with a 

previous study conducted with the AP calculus exam and the Computerized Placement test [7]. One 

possible explanation for this finding supported by previous research [9] is that stereotype threat 

for female students occurs implicitly regardless of whether or not students are asked to indicate 

their gender before taking the CSEM test because the stereotype is automatically activated for 

female students in the test-taking situation in physics and math. In other words, one possible 

explanation is that the threat may be present for this group regardless of being explicitly asked 

about such personal information explicitly [9]. Other high-stakes tests (e.g., MCAT, SAT) 

commonly require students to indicate their gender before taking the tests. If the results of Study 

1 were to hold for these tests as well, then the common practice of asking for personal information 
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such as gender may not make a difference in the performance of the stereotypically 

underperforming group. 

The data from Study 2 suggest that both in the algebra-based and calculus-based physics I 

and II, male students perform significantly better than female students both on the pretest and 

posttest. In prior studies, this type of discrepancy between male and female students’ performance 

has been found even after controlling for factors such as different prior preparation or coursework 

of male and female students [2]. Students’ intelligence mindset and self-efficacy can impact their 

performance [12-14]. The origins of gender gap on the FCI both at the beginning and end of a 

physics course have been a subject of debate with some researchers arguing that the test itself is 

gender-biased [11, 15-16]. Some of the origins of the gender gap can be attributed to societal 

gender stereotypes [9, 17-19] that keep accumulating from an early age. For example, research 

suggests that even six year old boys and girls have gendered views about smartness in favor of 

boys [19]. Such stereotypes can impact female students’ self-efficacy [12-14], their beliefs about 

their ability to perform well, in disciplines such as physics in which they are underrepresented and 

which have been associated with brilliance. As noted, some researchers have argued [9] that female 

students, when working on a physics assessment, undergo an implicit stereotype threat due to the 

prevalent societal stereotypes. Prior research has also found that using evidence-based pedagogies 

can reduce the gender gap [20], but the extent to which this occurs varies. Others have found that 

the gender gap is not reduced despite significant use of evidence-based pedagogies [21]. Prior 

research has also found a gender gap on other assessments such as a conceptual assessment for 

introductory laboratories [22]. Yet others have found no differences in performance between male 

and female students on exams [23-24]. There are other studies that shed light on different aspects 

of gender gap [25-39] which can also be used to interpret the findings of Study 2. 
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In Study 2, we investigated the prevalence of the belief that men generally perform better 

in physics than women among introductory physics students and found that this type of belief is not 

very common (around 7-13% of algebra-based and calculus-based students agreed with this 

stereotype). We also investigated the extent to which agreeing with the stereotype was correlated 

with students’ performance on the FCI and CSEM. The analysis of data from Study 2 suggests that 

algebra-based female students who agreed with the gender stereotype (men generally perform 

better in physics than women) and female students who disagreed with the stereotype showed 

similar performance (within 2%) in both the pretest and the posttest. In other words, for algebra-

based students, there were no major differences between female students who agreed with the 

stereotype and female students who disagreed with it. For calculus-based students, there were no 

differences on the FCI (although there was a discernable trend emerging and larger number of 

students may make it statistically significant), but for the CSEM, in the posttest, female students 

who agreed with the gender stereotype performed worse than female students who disagreed with 

it. In other words, at the end of the full year of a calculus-based introductory physics sequence, a 

statistically significant difference in the CSEM posttest for the calculus-based students emerged 

in that the female students who agreed with the stereotype performed significantly worse than 

female students who disagreed with the stereotype (this result is not only statistically significant 

but also has practical implications since there is 8% difference in female student performance 

between those who agree and disagree with the stereotype).  

We note that in algebra-based courses, approximately 60% of the students were female 

(compared to approximately 30% in the calculus-based courses). Thus, in a calculus-based course, 

female students who agreed with the stereotype are likely to be impacted more by the associated 

stereotype threat since they see fewer female students compared to male students in their physics 
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class. In other words, the observation that there are fewer female students in a physics class 

compared to male students can reinforce the stereotype and hence has the potential to cause a larger 

stereotype threat. This could lead to increased anxiety for female students in a test-taking situation 

in a calculus-based course compared to an algebra-based course. In an algebra-based course, the 

observation that there is a larger percentage of female students in class may mitigate the impact of 

the gender stereotype. In other words, in the algebra-based courses, the larger number of women 

has the potential to reduce the impact of the additional stereotype threat even for the female 

students who agree with the gender stereotype. 

As Marchand and Taasoobshirazi [9] have argued that, based upon their research, it is 

possible that a certain level of stereotype threat may be implicitly present for many female students 

in an introductory physics course. However, we hypothesize that the stereotype threat may be 

worse, on average, for female students taking introductory physics if they agree with the gender 

stereotype (that men generally perform better in physics than women). Moreover, without explicit 

intervention to improve women’s sense of belonging, self-efficacy and growth mindset, being in a 

calculus-based physics course in which they are severely underrepresented may have had worse 

negative impact on the performance of the female students who believe in the stereotype than those 

who do not believe in this stereotype. Thus, one reason for the emergence of the statistically 

significantly different performance between the female students who disagree and agree with the 

gender stereotype on the CSEM posttest for calculus-based students may be the cumulative impact 

of increased stereotype threat. In particular, for women who agree with the gender stereotype, there 

may be additional stereotype threat over and above what Marchand and Taasoobshirazi [9] posit 

many female students experience in a physics test taking situation implicitly. Such an additional 

threat can create added level of anxiety that can impact female students’ performance from several 
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angles. For example, due to added level of anxiety, female students who agree with the stereotype 

may, on average, be less excited about learning physics and this decreased level of excitement can 

potentially lead to task avoidance, i.e., less time learning physics. Moreover, when learning 

physics, some of the limited number of chunks in their working memory [40] may be taken up by 

the added anxiety instead of the physics involved in the problems they may be working on. Thus, 

the anxiety can reduce the level of focus and effectiveness of the study session. Moreover, during 

an exam, these female students who experience the added level of anxiety due to the additional 

stereotype threat may not be able to use all of their limited cognitive resources effectively to solve 

the problems and their working memory [40] may again be used up partly by the anxiety of taking 

the physics test. Since physics is a hierarchical discipline in which different concepts build on each 

other, it is possible that these negative effects have compounding impact over time and may at 

least partly be responsible for the statistically significantly different performance of the female 

students in the calculus-based courses on the CSEM who agreed or disagreed with the stereotype 

at the end of the entire academic year physics sequence.  

Finally, we note that the results of this investigation can be useful for designing 

professional development for instructors and TAs to help them make their classes more inclusive 

[10, 11]. Our data indicate that agreeing with the gender stereotype that men generally perform 

better in physics than women is correlated with decreased performance for female students on the 

CSEM at the end of the yearlong calculus-based course. Since one possible explanation of this 

finding is that female students who agree with the stereotype may experience increased stereotype 

threat compared to the female students who do not agree with the stereotype, TAs and instructors 

need to be careful to not propagate these types of stereotypes, both in their actions and statements. 

In particular, instructors and TAs should try to send the message to their students (both explicitly 
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and implicitly) that success in physics is primarily determined by effort and engaging in 

appropriate learning strategies rather than by something innate, e.g., gender (i.e., they should send 

the message that all students regardless of their gender can excel by effort and deliberate practice). 

In a book chapter titled “Is Math a Gift? Beliefs that Put Females at Risk” [12], Dweck argues that 

a fixed mindset (belief that intelligence is fixed or innate) is more detrimental to female students 

than male students. She describes a study in which two groups of adolescents were taught the same 

math lesson (which included historical information about the mathematicians who originated the 

ideas discussed in the lesson) in two different ways. For one group, the mathematicians were 

portrayed as geniuses and their “innate ability” and “natural talent” were highlighted, whereas for 

the other group, the mathematicians’ commitment and hard work were highlighted. After the 

lesson, students were given a difficult math test and were told that the test would measure their 

mathematical ability. Female students who received the lesson which portrayed the 

mathematicians as geniuses performed worse than their male counterparts. On the other hand, for 

students who received the lesson which highlighted the mathematicians’ hard work, there were no 

gender differences in performance. Dweck argues that when female students receive messages that 

mathematical ability is a gift, some of them may interpret that this gift is something they do not 

possess [12-14]. It is possible that accumulated societal stereotypes influence how female students 

interpret these messages and they may assume that if mathematical ability is a gift, male students 

are likely to have this gift, whereas they are not likely to have it. Therefore, it is important that 

professional development workshops for physics instructors and TAs focus on the findings of this 

research vis-à-vis other studies on stereotype threat [9, 17-19], and help instructors and TAs reflect 

upon the importance of encouraging their students to develop a growth mindset, namely that 
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intelligence is malleable and it can be cultivated with hard work and productive learning strategies 

regardless of gender or other characteristics (e.g., race/ethnicity) of an individual. 
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6.0  SUMMARY AND FUTURE DIRECTIONS 

The studies discussed in this thesis can be extended in several ways. In Chapter 2, we investigated 

the pedagogical content knowledge (PCK) of teaching assistants (TAs) at identifying introductory 

physics students’ difficulties in electricity and magnetism using the Conceptual Survey of 

Electricity and Magnetism (CSEM). In the past, the pedagogical content knowledge of teaching 

assistants has been investigated using the Force Concept Inventory (FCI) and the Test of 

Understanding Graphs in Kinematics (TUG-K). In the future, the PCK of TAs and/or instructors 

can be investigated using other standardized physics tests.  

The main goal for investigating the PCK of TAs pertaining to a particular physics concept 

is to find out how well they know about students’ difficulties in this area. This knowledge is very 

important for TAs because they need to know “where the students are” in order to determine 

“where to take them” using evidence-based curricula and pedagogies. In other words, PCK is 

necessary in order to create Piagetian ‘Optimal Mismatch’ [1] or to ensure that students are in 

Vygotsky’s Zone of Proximal Development (ZPD) [2] using appropriate curricula and pedagogies. 

In the future, knowledge about PCK of TAs can be used for TAs’ professional development to 

improve their PCK. It will also be useful to investigate how TAs (and instructors) take advantage 

of the PCK in helping students learn physics. Also, it will be useful to investigate how a TA’s level 

of confidence and teaching experience is correlated with their overall PCK. 

PCK is very important for implementing effective teaching strategies in an evidence-based 

active-engagement (EBAE) classroom. The impact of EBAE classes on student performance is 

discussed in Chapter 3. In that chapter, we have discussed the impact of EBAE classes by 

comparing students’ performances in EBAE classes with those of traditional lecture-based (LB) 
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classes. We did observe improvement in students’ performances in EBAE classes compared to 

those in LB classes on two standardized physics posttests (FCI and CSEM) but we did not observe 

as much improvement as one might expect from EBAE classes. In other words, we found that there 

is still room for improvement in implementation of EBAE pedagogies which can be studied in 

future. In particular, in Chapter 3, we briefly discussed possible reasons of not observing large 

improvements in the EBAE classes. The two big steps that can be taken for the improvement of 

EBAE pedagogies in the future are student buy-in (framing the purpose of such pedagogies 

appropriately to students so that they engage with it deeply) and instructor/TA training. Since 

EBAE pedagogies are relatively new and not used by many science instructors, students are not 

familiar with the EBAE teaching techniques which require them to be actively engaged in the 

learning process. Since learning requires effort, students may resist the fact that they have to do 

the thinking during the class. Therefore, they may expect TAs/instructors to lecture instead of 

expecting them to be involved in the learning process with the TA/instructors as their guide. More, 

we need instructors and TAs to properly implement the EBAE pedagogies (commensurate with 

their students’ prior knowledge and skills) in order to obtain its full potential advantages. 

Therefore, instructor/TA training and student buy-in are two research areas that can be explored 

in future. 

Chapter 4 also focuses on evidence-based active-engagement (EBAE) classes but here we 

explored its impact on gender gap. Whether (and what types of) EBAE classes help reduce the 

gender gap or not is still a subject not well-understood. Researchers like Lorenzo [3] and Beichner 

[4] have reported that active-engagement classes reduce the gender gap while other researchers 

including the study in Chapter 4 didn’t. In our study, we used the Force Concept Inventory (FCI) 

and the Conceptual Survey of Electricity and Magnetism (CSEM) as pretest and posttest 
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instruments in the algebra- and calculus-based introductory physics classes, both in the EBAE 

classes and traditional lecture-based (LB) classes, to investigate whether gender gap is reduced. 

We found that the gender gap is maintained almost at the same level in the algebra-based classes 

but it increased a little in the calculus-based EBAE classes. This result may be due to the fact that 

some EBAE classes may have unintended effects for some students (e.g., those who are 

underrepresented or marginalized in some ways) and that there is a large room for future 

improvements in the EBAE classes. For example, the instructors and TAs in the EBAE classes can 

use interventions to reduce stereotype threat, increase the sense of social belongingness and self-

efficacy, and help improve growth mindset [5] of the female (and other underrepresented) students. 

This may improve their performance and reduce the gender gap similar to the study of Lorenzo et 

al. [1]. Although such interventions are not common in physics classrooms, they can be integrated 

as a part of EBAE pedagogies in order to reduce the gender gap. However, focus on such 

interventions aiming at improving social belongingness, self-efficacy [6] and growth mindset is 

more important in EBAE classes since students often working in small groups. Therefore, EBAE 

classes investigated by future researchers can focus on the impact of such interventions within the 

EBAE pedagogies to reduce the gender gap. 

In Chapter 5, we presented the effect of stereotype threat on gender gap including the fact 

that asking students to indicate their gender did not affect female students’ performances on FCI 

or CSEM. We also found some evidence that female students who disagree with a statement about 

gender stereotypes in physics perform significantly better than female students who agree with the 

statement. Since interventions are extremely important for reducing stereotype threat and hence 

reducing gender gap, future investigations can focus on such interventions. Research suggests that 

such interventions focusing on improving students’ social belongingness, self-efficacy and growth 
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mindset should always be subtle so that the students do not perceive it as an intervention [7] 

(otherwise its impact can be mitigated). There are many possibilities for future research along these 

directions in physics classrooms. For example, a short essay, a paragraph or a letter from several 

senior students (from all types of students – males, females, racial/ethnic minorities and majorities) 

describing how they had struggled but successfully completed the course with a good grade at the 

end by working hard and studying smart in physics might mean a lot to a student under threat and 

can encourage her to be less anxious about their physics class. There can be interventions to 

increase female (and underrepresented minority) students’ sense of belongingness in the physics 

classroom, e.g., by having them realize that many students in their class (regardless of their 

demographical standing) face similar struggle with belonging and they are not alone. Moreover, 

future studies can also focus on the impact of interventions involving the growth mindset, e.g., that 

excelling in physics and math are not something that only male students can do because of their 

innate ability and that the brain is malleable like a muscle and everyone can become intelligence 

through systematic practice and hard work [5]. These types of interventions are widely used in 

social sciences but are still rare in the physics domain. However, the effectiveness of the 

interventions focusing on these issues and their effective implementation needs to be explored in 

the context of physics classrooms to increase all students’ self-efficacy and confidence in learning 

physics so that they are not anxious about spending the time to engage deeply in learning physics 

and can use their cognitive resources optimally while learning physics. 
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