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BRINGING HALO MODELING TOWARD PRECISION COSMOLOGY

Antonio S. Villarreal, PhD

University of Pittsburgh, 2018

The study of cosmology is entering an era of higher quality and higher quantity data that

shifts us from limitations due to raw statistics of our data to limitations due to the accuracy

of our underlying physical models. A specific set of models where this problem is prominent

is the use of halo models to connect the invisible world of dark matter to the visible world

of stars and galaxies. Most of these halo models make their predictions by taking the

mass of dark matter halos as the sole parameter. The literature has demonstrated that

secondary halo properties can have enhanced clustering compared to the general population

of dark matter halos, in an effect that is referred to as “halo assembly bias.” Neglecting halo

assembly bias from our models can result in severe biases. I add to the literature by making

the first detailed study on the choice of halo definition on common measures of halo assembly

bias. I utilize non-traditional halo definitions seeking a choice that minimizes the impact of

environmental effects which may drive halo assembly bias. I find that halo assembly bias

is a strong function of halo definition for the properties of halo concentration, halo shape,

and halo spin. I demonstrate that the impact of halo redefinition is primarily caused by the

changing host halo populations, as neighboring halos are demoted to substructure. I further

show that these results are consistent with those of the “halo splashback radius”; however,

halo splashback radius does not increase halo sizes sufficiently to remove halo assembly

bias for most scales or masses. I discuss how these results give us insight to the relevant

scales of what might be driving these relations and how they give a better understanding of

galaxy formation and galaxy evolution. I conclude by laying out a course for the future with

multiple paths to better understanding halo assembly bias and constraining how it impacts
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the models as well as utilizing it as a probe of galaxy formation.
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1.0 INTRODUCTION

Cosmology is the study of the evolution, content, and inevitable fate of the universe. It

is a field of study that has gone through an enormity of changes over the last century;

we have moved from being a field that was contemplating whether distant nebulae were

truly extragalactic objects (Hubble, 1929) to one that has been rapidly narrowing in on a

single model for explaining the universe with a mere six parameters (cite LCDM review

papers + early LCDM papers here). In modern times, the rapid increase in data quality

and quantity has allowed us to determine these parameters to greater and greater precision

(Riess et al., 1998; Planck Collaboration et al., 2016). Yet the model of the universe that

we have developed has many unanswered questions that require further study. What is the

dark energy necessary to explain the accelerating expansion of the universe at recent times

(Mortonson et al., 2014)? What is the dark matter that fits the extra gravitational force

that we observe from the rotation curves of galaxies (Garrett & Dūda, 2011)? Why do we

have tensions between cosmological parameters such as the Hubble parameter at early times

versus late times (Freedman, 2017)? Do we see signals of modified gravity or does general

relativity continue to hold in our observations (Clifton et al., 2012)?

These unanswered questions have only served to raise the need for more advanced

and precise experiments in a search for answers; and where our current data is potentially

insufficient for teasing out the answers we desire, the future is very promising! There are

many funded experiments that may shed light on some of these unanswered questions. The

Large Synoptic Survey Telescope (LSST) will be able to take images of the entire night sky

once every three nights and gather petabytes of data over ten years of operation (LSST Sci-

ence Collaboration et al., 2009; LSST Dark Energy Science Collaboration, 2012). The James

Webb Space Telescope (JWST) (Gardner et al., 2006) and Wide Field Infrared Survey Tele-
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scope (WFIRST) (Spergel et al., 2015) will gather high quality data without the troublesome

properties of the Earth’s atmosphere, with image quality only limited by their optics. We

are even starting to see the Universe in new ways that were previously just the limits of our

imagination, with gravitational waves being observed multiple times by the ever-improving

Laser Interferometry Gravitational-Wave Observatory (LIGO) (Abbott et al., 2017).

As data quality and quantity continues to increase within the field of observational

cosmology, we find that the statistical limitations on our cosmological parameter constraints

continue to decline. For some fields, this is a foray into a new era of precision cosmology; we

now find ourselves in a situation where, rather than our ability to learn about our universe

being limited by the raw statistics of our datasets, we are instead limited by how accurately

we can model the underlying physics. This is a stark reversal of the past few decades, in

which the observational errors far exceeded the theoretical! In fact, it has been shown that for

a project such as LSST, the systematic error can lead to a significant bias in the cosmology

parameters of interest (Eifler et al., 2015). This makes understanding of the underlying

models that we are working with a critical problem of modern cosmology.

A valuable approach to handling these upcoming problems in modern cosmology is

that of cosmological simulations. These computer simulations model the universe at early

times and propagate these initial conditions forward to today. This allows us higher precision

at smaller scales where most analytic approaches break down. In addition, it potentially

allows us to battle a problem known as “cosmic variance.” In short, cosmic variance is the

noise caused by random fluctuations in the early universe. Even an individual cosmological

simulation can be limited by this fact, making direct interpretation difficult with regards to

rare objects and events; this problem is most prominent for those simulations which are too

computationally expensive to run many iterations. For most purposes though, simulations

have the advantage of giving us a unique look at many different cosmological models and

serves the form of experiment in lieu of being able to create an experiment in a laboratory.

By drawing comparisons between these simulations and the observable universe, we can gain

a better understanding of the world around us.

Roughly, these simulations break into two broad groups. The first is numerical
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simulations only containing gravitational physics1. These simulations then trace the behavior

of massive particles of collisionless dark matter from a set of initial conditions drawn from

our understanding of the early universe to the future. These dark matter particles can be

seen to cluster together under the force of gravity based on these early density fluctuations;

commonly, we attempt to identify these clumps of dark matter as units known as “halos”.

The resulting clustering of dark matter can be seen to behave much like the visi-

ble matter in our observable universe. Dark matter halos merge hierarchically into large

structures that match the “cosmic web”. It has even been shown that some of the largest

structures, such as the Great Wall (Vogeley et al., 2004; Gott et al., 2005) feature in the

Sloan Digital Sky Survey (SDSS) can be reproduced in sufficiently sized dark matter only

simulations (Park et al., 2012). However, the ultimate limitation with dark matter only sim-

ulations is their inability to directly connect the structures of dark matter to the observable

universe of stars and galaxies; for that step, some secondary modeling or assumptions need

to be made.

This leads naturally to the other major approach: fully hydrodynamic simulations.

These simulations use laborious calculations to solve the coupled differential equations that

the baryonic particles of the universe obey. Computational advances have made this far more

feasible in the last few years, allowing us to create galaxies that are comparable to those

witnessed in the observed universe (Nelson et al., 2015; Schaye et al., 2015; Feng et al., 2016).

There exist two primary limitations to this approach. The first is the fact that the complex

calculations that must be solved still require state of the art computational resources and

vast amounts of computing time. This has three major consequences: it makes it difficult

to battle cosmic variance through large sample sizes, it makes it difficult to sample for

many different sets of cosmological parameters, and it makes very large box sizes potentially

unfeasible.

The second problem is perhaps more insidious: the limited mass and spatial reso-

lution of these simulations forces us to consider “subgrid physics”. Consider for a moment

that the masses of these particles are typically many orders of magnitude larger than that

1This is generally treated to be standard Newtonian gravity with an effective potential to account for
expansion, although simulation frameworks utilizing modified gravity or including full general relativity are
being explored in the field.
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Figure 1 The large scale distribution of dark matter in the Millennium Run (Springel et al.,

2005). Note the distinct “cosmic web” features, with many qualitative similarities to the

Great Wall feature in SDSS.
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of an individual star; however, the feedback driven by supernovae may have a significant

impact on the formation of low mass galaxies (Katz, 1992; Smith et al., 2018, e.g.). In order

to capture these effects which are smaller than the scales that we are able to simulate, we

have to effectively add in the end result of the physics by hand. As of the time of this

writing, there is no strong consensus in the field on how to include these subgrid models,

nor is there a consensus on which subgrid physics can potentially be excluded or is most

important, nor is there a consensus on how well different simulations should agree with each

other considering different implementations. This leaves us with what is essentially a fine

tuning problem; different choices of subgrid models and their input parameters may end up

converging on the same resulting observables and may obscure the real galaxy formation

physics or bias our cosmological predictions.

In lieu of being able to fully model all the necessary physics of galaxy formation,

models must be developed in order to connect us from the density peaks of dark matter

or our definitions of dark matter halos to the galaxies that we observe in the night sky.

These range from more physically motivated to more empirically motivated, but typically are

grouped together under the description of the “galaxy-halo connection.” The more physically

motivated models include cases such as semi-analytic models (Benson, 2012; Croton et al.,

2016, e.g.); these effectively use the knowledge that we have gained on the evolution of the

density peaks over the history of the universe and galaxy formation. We add on a combination

of analytic models and empirical relations for the underlying physics of star formation, gas

cooling, feedback, and more. The more empirically motivated models focus more on the

structures we refer to as dark matter halos and relating those directly to galaxies; for example,

Halo Abundance Matching populates the most massive halos with the most massive galaxies

(Hearin et al., 2013, 2014; Klypin et al., 2013; Desmond & Wechsler, 2017, e.g.), while the

Halo Occupation Distribution takes a probabilistic view at populating individual dark matter

halos with galaxies (Berlind & Weinberg, 2002, e.g.). These models, though fairly simplistic

and seemingly näıve, reproduce many of the general clustering relations that we observe in

the real universe, showcasing the strength of such techniques.

We group those models that create a direct link between dark matter halos to the

observed galaxies as “halo models”. These models typically make two common assumptions
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that are worth further consideration. The first is that all dark matter in the universe collapses

into the halo structures that we observe. The second is that clustering and occupation of

halo is a function of halo mass alone. But just how well do these two assumptions hold up

in practice?

The former assumption deals more directly with a fundamental question I have left

unanswered: “What is a dark matter halo?” The exact specifications as to how we choose to

define a halo are left to be discussed in a further chapter, but there are broadly two classes

of halo definition algorithms. It should be noted that implementations exist which are

variants on these two general approaches2 and many additional details exist on the specifics

of individual halo finding algorithms.

The first is the “Friends-of-Friends” approach of halo finding. In this case a sep-

aration distance is chosen, called a linking length, by which dark matter particles can be

separated by and still be considered a single halo object. Dark matter particles are then

linked together in chains by this distance or smaller in order to generate large halos of ir-

regular size and shape. Smaller halos, as might be expected with hierarchical formation,

can be found by looking at smaller linking lengths within an existing group of dark matter

particles. The resulting dark matter halos will have a halo mass determined by the number

of linked particles (and the mass of the particle) and may have a considerably non-spherical

shape. Note that halos generated using this method are highly sensitive to the choice of

linking length; one can imagine a linking length which connects all particles as a single halo

or entirely misses structure on the fringes of the halo. A known problem with this method is

the identification of substructures within larger halos. This algorithm can easily artificially

identify overdensities which are not gravitationally bound as the linking length is reduced.

As these objects are merely transient structures, this may bias halo statistics, particularly

for the least massive halos.

The second is the “Spherical Overdensity” approach of halo finding. Peaks are

identified in the underlying matter density field; for each peak above a threshold height, a

spherical halo is created such that the encompassed mass results in an average density that

is a multiple, ∆, of the mean matter density or critical density of the simulated universe. In

2Including the ROCKSTAR method discussed in our methodology.
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this case, substructure is identified by having a halo center within the radius of a larger halo.

The main advantage to this technique is a direct link to models of spherical collapse, where

analytic calculations can be computed. For an Einstein-de Sitter universe, the resulting

value of ∆ for a gravitationally bound object is 178 with respect to the critical density of

the universe (Mo et al., 2010, e.g.). A common halo definition used in the literature chooses

the different value of ∆ = 200 with respect to the mean matter density of the simulation

(Miyatake et al., 2016; Paranjape et al., 2018, e.g.). This methodology carries the advantage

of being easily linked to the multitude of properties associated with spherical halos, including

that of the Navarro-Frenk-White (NFW) (Navarro et al., 1997) profile for the distribution

of halo mass.

Note now that neither halo definition adequately addresses the question of “does all

dark matter mass reside in dark matter halos”. Work has been done to demonstrate that

potentially considerable amounts of matter reside outside of spherically defined halos (van

Daalen & Schaye, 2015). One interpretation is that significant matter density exists inside of

filamentary structures connecting halos; another is that traditional spherical halo definitions

simply miss a large amount of matter on scales larger than the virial radius. But while a

spherical overdensity method may miss matter, a FOF approach runs the risk of linking

together halos in an artificial manner.

I note the arbitrary nature of the cutoff of what defines a halo as a particular point

of interest to us. While the Spherical Overdensity method is more physically motivated, note

that the fiducial choice of ∆ is considerably different from the analytic result of an Einstein-

de Sitter universe (a value of ∆ = 178) or even the ΛCDM universe that we reside in (a value

of ∆ = 337. Changing this value of ∆ can considerably change the definition of the halo

radius and thus the contained dark matter and the measured distribution; this could impact

any number of halo properties of interest. In fact, different analysis groups in the field choose

to look at different definitions simply due to matters of convenience and little attention has

gone into the careful analysis of how halo definition matters. This makes it exceedingly

difficult to compare the results of studies at the level of precision necessary to address future

high-quality data. I will refer back to this problem to motivate our methodology of halo

redefinition in later chapters.
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I now draw attention to the second assumption: that at fixed halo mass, halos are

self-similar (with some scatter). Setting aside the matter that the measured halo mass is

a function of your choice of halo definition, it has been shown in the literature extensively

that this assumption is false. In fact, the clustering of halos has been shown to depend on

halo formation time (Gao et al., 2005; Harker et al., 2006; Wechsler et al., 2006; Gao &

White, 2007; Croton et al., 2007; Zentner, 2007; Dalal et al., 2008; Li et al., 2008; Lacerna &

Padilla, 2011), halo concentration (Wechsler et al., 2006; Faltenbacher & White, 2010), and

other halo properties (Bett et al., 2007; Hahn et al., 2007b,a, 2009; Faltenbacher & White,

2010; Hester & Tasitsiomi, 2010; Lacerna & Padilla, 2012; van Daalen et al., 2012; Fisher

& Faltenbacher, 2016; Sunayama et al., 2016; Chaves-Montero et al., 2016). But with such

a wealth of the literature pointing toward this seeming breakdown in the halo model, why

even persist with such a method?

One reason is that it is clear that halo mass is the dominant variable in determining

halo clustering and occupation (Efstathiou et al., 1990; Bond et al., 1991; Cole & Lacey,

1996; Zentner, 2007). Another reason is that the halo model is important in providing us

a physical intuition for how to connect the underlying matter power spectrum of the early

universe to the observed universe around us. The hierarchical formation of structure in dark

matter simulations has motivated much of our current understanding of how galaxies form.

Understanding the connection between dark matter and galaxies helps us to gain further

insight, even using empirical models with the currently identified flaw.

However, ignoring this breakdown of our assumptions could lead to unexpected con-

sequences. As such, it is important to study the impact of this; the most common method is

to look at the “halo assembly bias”, measured as the difference in clustering that is demon-

strated as a function of a secondary halo property. I study the impact of halo assembly bias

as a function of halo definition (and necessarily halo size in terms of the halo radius) for halo

concentration, halo spin, and halo shape. I extend the choice of halo definition outside the

bounds of the customary definitions in order to explore just how much impact this can have

on measure of halo assembly bias and as an attempt to find a potentially more physically

motivated halo definition that minimizes assembly bias. This provides the first detailed look

in the literature on how our choice of halo definition can drastically change how we identify
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halo assembly bias and how it may be impacting our predictions. An additional benefit is a

firm understanding of the relationship between measured halo bias and halo definition allows

us to better compare the results of previous authors from each other.

A halo definition free from assembly bias would be applicable to all of our previous

halo models without needing to involve additional parameterizations. I motivate drastically

different choices of the overdensity parameter ∆ based on the fairly arbitrary choices that

have become the fiducial definitions in the literature and explore these for the first time. I

focus on halo definitions that yield significantly larger halo radii than traditional choices in

the literature, in the hope of encompassing changes driven by the local environment. I also

examine the physically motivated “splashback” definition, in which infalling material clumps

in caustics. I look at this both in a broad statistical sense using a fitting function, as well

as with the more computationally expensive methods of assigning splashback radius to each

halo individually.

In the remainder of this thesis, I go into further detail on each of these topics. In

Chapter 2, I look into further detail on the definition of common halo models and their

application in the field. I further demonstrate how halo assembly bias is defined and has

been measured in the existing literature. In Chapter 3, I discuss the simulations that I utilize

in my analysis and the ROCKSTAR halo finder used in my halo identification. I additionally

discuss two common measures of halo assembly bias: the correlation function (or two-point

autocorrelation function) and the marked correlation function. In Chapter 4, I show our

detection of halo assembly bias in my simulation suite as a function of four distinct halo

properties. In Chapter 5, I examine how changing halo definition can directly impact the

measure of halo assembly bias and how this, itself, is dependent on which halo property

is examined. In Chapter 6, I study if the “splashback radius” explains the differences in

halo assembly bias as a function of halo redefinition. This is also tested as a possible more

physically motivated definition that may be free of these problems. In Chapter 7, I narrow

down on the technical results and how they compare to existing results in the literature. In

Chapter 8, I discuss the larger context of those results within cosmology and what my future

aims are for developing a better understanding of these models for cosmological predictions.
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2.0 DARK MATTER AND HALO MODELING

In the previous chapter, I briefly mentioned one of the fundamental mysteries of modern

cosmology: “What is dark matter?” As this work focuses on the nature of how dark matter

structures evolve in the universe and how we can utilize our knowledge of dark matter

clustering and occupation in order to push cosmology forward, this enigma merits close

examination. The history of this question can ultimately be traced back to the early work

by Fritz Zwicky, who identified that the velocity dispersions of seven galaxies in the Coma

cluster implied a gravitational mass that was significantly more than the observed stellar

mass (Zwicky, 1933). This extra matter received the name “dunkle Materie”, rather than

being simply described as something along the lines of missing matter. This work soon

expanded to the Virgo cluster (Smith, 1936), though with significant amounts of room for

error due to the methodologies of the time.

The following years would unveil more hints of the presence of dark matter. Galaxy

rotation curves were measured to higher precision and larger distances by independent groups

within the literature (Freeman, 1970; Bosma, 1978; Rubin et al., 1980). The general result

was the measurement of a flattened rotation curve out to large distances from the center

of the galaxy; this observation is exceedingly difficult to reconcile with the observed mass,

leading to two competing conclusions. The first conclusion is that the inability to resolve the

difference between the observed mass and gravitational interaction implies a breakdown in

our understanding of gravity; this motivates the field of modified gravity within the literature

as one starting point. The other conclusion is that there is some source of mass invisible to

the electromagnetic spectrum: “dark matter”. Turner et al. (1984) additionally demonstrate

that structure cannot develop fast enough to produce the galaxies that we observe today with

baryonic matter alone; one solution suggested is the existence of a relic particle such as dark
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matter.

I choose to examine dark matter in a phenomenological sense throughout this work.

Specifically, I am less interested in dark matter on the level of individual particles1, but

rather I focus on the bulk behavior of the dark matter. With regards to this, I consider the

most common model of cold dark matter. These particles are cold in that their velocities are

significantly smaller than the speed of light and dark in the sense that they are not observed

electromagnetically. I note this is not the only possible model: warm dark matter has enjoyed

some popularity due to the ability to help explain the density profiles of dark matter that

are inferred (Bode et al., 2001; Götz & Sommer-Larsen, 2003) and some annihilating or

interacting dark matter models can produce Standard Model particles that could potentially

be observed (Bertone et al., 2005, for a thorough review of the particle approach). As of the

time of writing, constraints tend to favor the CDM model (Inoue et al., 2015; Yèche et al.,

2017); it does remain an active discussion within the literature, however.

For the paradigm of cold dark matter, there has been extensive work carried out in

the literature to study the behavior with computer simulations. This work was carried out

with analog computers for galaxies as early as 1941, where the flux of light bulbs was used to

measure the gravitational potential (Holmberg, 1941). From there, simulations were made

digital alongside the development of the cold dark matter model itself. The rapid acceleration

of computational power, known as Moore’s Law, has lead us to an era where we carry out

simulations of unprecedented resolution year after year. For models with only dark matter

and their gravitational interactions in consideration, we have the Millennium Simulation

(Springel et al., 2005) and the Bolshoi Cosmological Simulation (Klypin et al., 2011). Far

more complicated simulations take into account baryonic physics such as star formation and

feedback from Active Galactic Nuclei (AGN) in simulations such as the Illustris Simulation

(Vogelsberger et al., 2014) or the BLUETIDES Simulation (Feng et al., 2016). However, this

field of hydrodynamic simulations still requires significant progress to be made to converge

to agreements between simulations (Scannapieco et al., 2012). As such, I focus on the results

of dark matter only simulations and their interpretation.

1If it is indeed a particle...
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2.1 HALO MODELS

Consider the endpoint of a numerical, dark matter only simulation: a collection of particle

positions and velocities. This is a far cry from the observations that we make of the galaxies

on a night sky! The ways we can make the connection between the two range from the

semianalytic to the phenomenological, but most take the following broad form:

1. Identify collections of dark matter particles referred to as “halos”.

2. Calculate properties of the dark matter halos.

3. Use these properties to populate dark matter halos with galaxies.

The first step requires us to identify some collection of dark matter as “halos” A

major motivation for this approach is the ease at connecting this to early analytic approaches.

One can make the assumption that non-linear objects form from a spherically symmetric

collapse starting from density perturbations in the early universe (Gunn & Gott, 1972). For

an Einstein-de Sitter universe, this calculation can be carried out analytically, resulting in

determining that a virialized object in the universe has a density equal to

∆vir ≡
9π2

16
× 8× 4 = 18π2 ≈ 178 (2.1)

times the background density of the universe at the time of virialization (Cooray & Sheth,

2002, for a derivation). This calculation can be carried out for the ΛCDM universe and

yields ∆vir ≈ 337. The idea of following spherical collapse was developed into the formalism

of Press & Schechter (1974) and extended (Bond et al., 1991; Bower, 1991; Kauffmann et al.,

1993; Lacey & Cole, 1993) to allow the prediction for the clustering of dark matter halos

and the evolution of the halo mass function, a measure of the number density of halos of a

given mass in the universe.

These results motivate one of the common methods of identifying halos in simula-

tions: “spherical overdensity” (SO) identification. One of the most prominent early uses of

this method rests on Lacey & Cole (1994), where the method was used as a numerical test

as to the accuracy of their Extended Press-Schechter formalism from Lacey & Cole (1993).

These halo finders comb through the density field, identify local density peaks that exceed
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this required limit to be virialized, and creates a spherical halo around these points. In

particular, the Klypin & Holtzman (1997) algorithm to carry out this calculation remains in

extensive use to this day.

A complementary approach is the “Friends-of-Friends” (FOF) method of halo find-

ing, which chooses to identify halos through a linking length parameter, b. This tunable

parameter serves as a length by which particles in a simulation are connected together; all

connected particles constitute a single halo (Davis et al., 1985). While this approach has a

weaker connection to the underlying analytical theory, it serves as a powerful approach for

dealing with the real data which is both highly non-spherical and asymmetric.

The overwhelming majority of halo finding algorithms utilized by the field build

off the work of these two approaches. For a specific example, Behroozi et al. (2013b) pro-

vides the ROCKSTAR halo finding algorithm. This approach identifies the equivalent to FOF

groups inside of a 6D phase space before calculating halo properties in spherical overdensity

apertures. Overall, while many halo finders struggle to identify substructure, these phase

space oriented halo finders are able to resolve substructure down to a small number of par-

ticles (Knebe et al., 2011), though a larger number of particles is often needed to accurately

determine the properties of these smaller halos (Onions et al., 2012).

A particular quantity of interest to anybody carrying out calculations from dark

matter halos is that of the halo mass function, or the number of halos of a given mass in the

universe. While analytic methods do exist of estimating this function (Linke et al., 2017),

these functions are typically determined from simulation. By far the most common halo mass

function in the literature is that of Tinker et al. (2008), reproduced as Fig. 2. Note the shape

of the halo mass function; there exist many more halos of small mass than halos of large

mass. As the universe advances through time, these small halos merge to form more massive

halos, pushing this distribution toward higher mass. Note also that very high mass objects

become increasingly rare, especially past the visible turnover in the halo mass function. Even

more modern advances in the study of the halo mass function remain rooted in the study

of simulation; it is now popular to generate emulators which are able to interpolate between

the results of many halo simulation boxes in order to generate even more robust estimates

of the halo mass function as a function of cosmology (McClintock et al., 2018).
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Figure 2 The halo mass function from Tinker et al. (2008) as the number density of galaxies in

bins of logarithmic mass. Note that the function monotonically declines, with the beginning

of a turn-over to a more rapid decline visible at the highest mass bins.
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Once a dark matter halo has been defined, there are a number of properties that

are of interest for studying. The first (and potentially one of the more varying) property to

be considered is that of the halo mass. Once a decision has been made on which particles

belong in a halo, it is a simple matter of addition to determine the total mass of dark matter

particles contained in the halo. It is often beneficial to assign a “halo radius” to a given

object; for a spherical overdensity halo a common choice is to define the radius as the scale

such that the average density within a sphere of that radius exceeds some multiple of the

background. As the halo size increases, the expectation is for the average density to decrease,

leading to a threshold size. Other properties include: “halo concentration”, which provides

a measure of how a characteristic scale in the density profile of dark matter compares to the

total size of the halo; “halo shape”, which is a measure of how much the halo deviates from

the assumption of a perfect sphere; and “halo spin”, which measures how much energy is

stored in angular momentum for the halo, often with very different normalization between

chosen definitions. These properties are all able to be directly pulled from the simulation

data at the particle level and serve as our input parameters to various models.

With our dark matter halo properties, we can now move to populate these dark

matter halos with galaxies and get a sense of how both halos and the objects that they live

in cluster together. This connection is motivated by the work of White & Rees (1978), which

proposed that dark matter halos are occupied by galaxies as luminous cores. The simplest

property that one might connect from halo to galaxies is that of halo mass. The intuition

behind this is fairly straightforward; a sufficiently massive halo will have a gravitational

potential that will attract more matter. This will cause the halo to effectively evolve faster

(undergoing more mergers at earlier times) and gather more material in the early universe

(increasing the baryonic mass within). In fact, one can observe this in simulation fairly

straightforwardly; the clustering of halos at a given mass can be enhanced from a uniform

distribution in what is referred to as the halo bias. I show this in Fig. 3 using the fitting

function provided in Tinker et al. (2010); here the halo bias is determined from simulation

as

b2(k) = Ph(k)/Plin(k), (2.2)

where the bias is a ratio of the halo power spectrum to the linear dark matter power spectrum.
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As the halo bias is a very strong function of the halo mass and we expect that galaxies

trace the underlying dark matter population, we can infer the following: the most clustered

galaxies tend to populate the most massive dark matter halos. This idea allows us to link

together our understanding of dark matter halos and their clustering to the study of galaxy

formation and galaxy clustering in a fundamental way.

This motivates further methods such as the Halo Occupation Distribution (HOD)

(Mo & White, 1996; Berlind et al., 2003; Kravtsov et al., 2004; Zheng et al., 2005, 2007) to

that of Halo Abundance Matching (Hearin et al., 2013, 2014; Klypin et al., 2013; Desmond

& Wechsler, 2017). These models can often match observables such as the galaxy-galaxy

clustering quite well and serve as a valuable first step for gaining insight into both the

formation of galaxies and their connection to the underlying dark matter halos. As a result

of this strong connection, many models have been generated that assume that only halo

mass matters for the halo-galaxy connection or even halo-halo clustering. This assumption

is bolstered by the fact that many of the halo properties discussed are strongly correlated

with halo mass. The breakdown of this assumption is often referred to as “halo assembly

bias” (when referring to halo-halo clustering) or “galaxy assembly bias” (when referring to

how this might impact the halo-galaxy connection). As of the time of writing, the topic of

how failure to address assembly bias impacts various observation remains a source of heated

debate. In the next chapter, I will detail what progress has been made and where the field

currently stands.

2.2 HALO ASSEMBLY BIAS

In the previous section, I discussed the matter of halo models that are focused on halo

mass as the most important and (often) only parameter. Early work by Gao et al. (2005)

demonstrated that the clustering of dark matter halos exhibited dependence on an additional

property: halo age. This sparked the study of the excess clustering of dark matter halos as

a result of a secondary halo property, typically referred to as “halo assembly bias.” Halo

assembly bias has been detected in association with halo formation time (Harker et al.,
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Figure 3 The large scale halo bias as measured by the ratio (Ph/Plin)1/2 using the Tinker

et al. (2010) halo bias fitting function, assuming a ∆ = 200m halo definition.
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2006; Wechsler et al., 2006; Gao & White, 2007; Croton et al., 2007; Zentner, 2007; Dalal

et al., 2008; Li et al., 2008; Lacerna & Padilla, 2011), halo concentration (Wechsler et al.,

2006; Faltenbacher & White, 2010), and other halo properties (Bett et al., 2007; Hahn et al.,

2007b,a, 2009; Faltenbacher & White, 2010; Hester & Tasitsiomi, 2010; Lacerna & Padilla,

2012; van Daalen et al., 2012; Fisher & Faltenbacher, 2016; Sunayama et al., 2016; Chaves-

Montero et al., 2016). For an example of what halo concentration driven assembly bias can

look like, I present Fig. 4, which demonstrates halo assembly bias when the halo sample

is split in half based on high or low concentration at fixed halo mass. Those halos with

higher concentrations at fixed mass have enhanced clustering, while those halos of lower

concentrations at fixed mass have decreased clustering.

The impact halo assembly bias has on existing results in the literature remains

unknown. Gallart et al. (2015) suggests that the difference between dwarf galaxy types can

be linked to the impact of halo assembly bias. Mao et al. (2015b) notes that halo assembly

bias can have an impact on subhalo abundances that should be observable in future deep

surveys, allowing for the possibility of halo assembly bias being verified observationally.

Wang et al. (2018) demonstrates that while halo mass is the primary driving force between

galaxy quenching in their sample, there remains a residual environmental dependence which

can be modeled out as halo assembly bias. The ability of halo assembly bias, which is

unsurprisingly difficult to determine through direct observation, to impact galaxy formation

and observation is more than ample motivation to study the impact of it in depth. Yet even

more motivation exists! It has been demonstrated that as we move to higher quality, higher

quantity, and deeper cosmological surveys, we begin to enter a regime in which not accounting

for halo assembly bias will hamper your ability to measure cosmological parameters correctly:

in particular dark energy (e.g., Croton et al., 2007; Wu et al., 2008). A better understanding

of halo assembly bias will be critical to being able to mitigate any potential systematic biases

that this might introduce.

In the next chapter, I will detail our own procedure of detecting halo assembly bias.

Our prescription is similar to that of Wechsler et al. (2006), with modifications to removing

the underlying secondary halo property to halo mass relations. I go into detail on the dark

matter only simulations that were utilized in this analysis. I discuss our choice of halo finding
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algorithm and cuts on our overall halo sample to assure that properties are well resolved. I

finally discuss the actual mathematics of halo assembly bias, in particular the less familiar

“Marked Correlation Function.”
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3.0 METHODOLOGY

In this chapter I shall discuss in detail the methods utilized in our analysis. In Section 3.1, I

cover the Diemer & Kravtsov (2015) simulations that have been provided to me for analysis

and their cosmology in detail. In Section 3.2, I describe the ROCKSTAR halo finding algorithm

that I run on our simulations for different choices of halo definition. I further describe the

various halo properties that are utilized in the analysis and how these properties are deter-

mined by ROCKSTAR. In Section 3.3, I discuss how I measure halo assembly bias, both with

more traditional correlation functions and the potentially more powerful marked correlation

functions.

3.1 SIMULATIONS

I make use of three cosmological N-body simulations in order to study the impacts of halo

assembly bias throughout this work. These simulations are a subsample of the Diemer &

Kravtsov (2015) simulations that have been performed using cosmological parameters of

ΩM = 0.32, ΩΛ = 0.68, h0 = 0.67, σ8 = 0.834, and ns = 0.9624. This cosmology was chosen

due to its close resemblance to the Planck best-fit cosmology as presented in Planck Col-

laboration et al. (2014). The initial matter power spectrum was generated using the CAMB

code for this set of cosmological parameters (Lewis & Bridle, 2002). Each simulation further

has initial conditions generated using the second-order Lagrangian perturbation theory code

2LTPCIC (Crocce et al., 2006) from a starting redshift of z = 49. This initial redshift is suffi-

ciently high to avoid potential transient effects that are present with simpler approximations

at low initial redshifts (Crocce et al., 2006). In addition, I focus on the z = 0 redshift snap-
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shots for this study. The force solving algorithm used in these simulations is the GADGET2

code from Springel et al. (2005).

Together, the simulations cover box sizes of 125, 250, and 500 h−1Mpc respectively; I

refer to them throughout this work as L0125, L0250, and L0500 from now on. Each contains

10243 particles, leading to particle masses of 1.6 × 108, 1.3 × 109, and 1.0 × 1010h−1M� in

each simulation volume. For purposes of this study, the key difference between simulation

boxes is the mass resolution available. L0125 contains few massive halos, but a large number

of small mass halos; L0500 is incapable of resolving the least massive halos, but has many

more of the most massive halos. This allows me to do a comprehensive study of the potential

impacts of halo assembly bias as a function of halo mass. Each simulation also contains a

slightly different force softening length as a result of different particle loading; 2.4, 5.4, and

14h−1kpc from smallest box size to largest. I note that these lengths are significantly smaller

than the physical scales of interest.

3.2 HALO FINDING

The matter of identifying dark matter halos is a very non-trivial part of this analysis.

It is clear that while halo finders asymptote to agreement on most statistical properties,

the specifics between a FOF halo finder versus a Spherical Overdensity halo finder can be

considerably different. I identify dark matter halos in the simulation snapshots using the

ROCKSTAR halo finder from Behroozi et al. (2013a), which uses a variant approach to the

latter. Schematically, the approach of ROCKSTAR is as follows:

1. Divide the simulation volume into rough Friends-of-Friends groups, using some set linking

length, b.

2. Inside of each FOF group, normalize member positions and velocities by the group po-

sition and velocity.

3. Adaptively link particles together in the 6D phase-space such that 70% of particles are

linked together into smaller groups.

4. Repeat this to find more levels of substructure until new levels cannot be found.
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5. Place seed halos inside the lowest level of substructure and assign nearby particles in

phase-space membership to these halos.

6. Remove any unbound particles and calculate halo properties using their member parti-

cles.

This particular algorithm has several advantages over the more basic algorithms

discussed previously in the text. The first is that phase-space algorithms are exceptionally

good at being able to identify substructures (Knebe et al., 2011). The second is that the

this analysis combines the easily interpreted SO halo properties with the more robust halo

identification of FOF halo finding. Note that I have chosen the linking length for our analysis

as a relatively large linking length of 0.4. I have varied this choice and found that it makes

no qualitative difference in the following analysis.

3.2.1 Halo Properties

As briefly mentioned above, ROCKSTAR calculates halo properties primarily through spherical

overdensity methods. This addresses an issue in which FOF groups will often be grouped to-

gether well in advance of SO halos (Klypin et al., 2011). I detail below the specific procedure

by which ROCKSTAR handles each given property that is of interest in this work.

3.2.1.1 Halo Masses and Radii The definition of halo mass, on the exterior, is a

fairly straightforward calculation. One needs to merely add up the total number of particles

belonging to a dark matter halo; since one knows the mass of each individual particle, the

mass of the dark matter halo is trivially known. However, the size of a dark matter halo is

not necessarily a simple choice to make.

In practice, for SO halos, we determine the halo size with respect to a multiple of

the mean background density, ρm:

ρ̄(R∆) = ∆ρm. (3.1)

Here, ∆ is a (typically) integer multiple and ρ̄(R) is the mean density inside a sphere of given

radius, R. I choose to mark our numerical choices of ∆ with an “m” if the value is with

23



respect to the mean background density and a “c” if it is with respect to the critical density.

This choice of ∆ directly relates to earlier discussion of spherical collapse and has lead to a

common choice in the literature of ∆ = 200m for most studies related to halo assembly bias.

However, this decision is not universal; ranges of values from ∆ ≈ 178m to ∆ ≈ 340m are

fairly common in the literature. Even the choice of choosing the mean background density is

not without consequence, as some analysis is done using the critical density instead (roughly

resulting in ∆ = 200c ≈ 625m). Another common choice is the virial overdensity (Bryan

& Norman, 1998), which comes out to ∆ = 100c ≈ 300m. Outside of the field of assembly

bias, even larger values of ∆ are chosen to focus on the innermost regions of galaxy clusters,

sometimes reaching values as high as ∆ = 625m. Once a halo size is defined using this

overdensity definition, calculating the halo mass is straightforward; Fig. 5 demonstrates how

the choice of halo size impacts the determination of halo mass.

I provide a toy diagram in Fig. 6 to provide an intuition on how the choice of

halo definition could have significant impact on halo mass. In this cartoon, the solid lines

correspond to a traditional halo definition with ∆ = 200m and the dashed lines correspond

to a significantly extended halo of ∆ = 20m. Note that the drastically increased halo

definition will lead to a halos C and D to cease to be distinct “host” halos in the larger halo

definition; their inclusion in the halo mass calculation could considerably change this and

other properties.

3.2.1.2 Halo Positions and Velocities ROCKSTAR follows an approach by which the

center of the halo is measured by following the density peaks rather than through averaging.

It first determines the inner substructure of the halo such that the expected Poisson error,

σx/
√
N is minimized. This central substructure then has its particles utilized to calculate

the halo center. The velocity of the halo is then calculated averaging the velocities of those

particles within the innermost 10% of the halo radius.

3.2.1.3 Halo Concentrations I investigate two distinct definitions of halo concentra-

tion. Halo concentration comes out of the NFW profile that describes the spatial distribution

of dark matter halos in simulation. While this is known not to match up with observations
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Figure 5 The ratio of halo properties as a function of ∆ in the L0250 catalog. The sample

contains all host halos with masses greater than M200m ≥ 7.1× 1011. The black (dark gray)

line shows the median value of the ratio of the halo mass (halo radius) at a value of ∆ to

the value at ∆ = 200m. The error bars contain 68% of values of this ratio for the sample.
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Figure 6 A qualitative illustration of the choice of halo definition. The figure shows five

halos, labeled by the letters A-E. Halo A is the largest halo in the illustration. The solid halo

boundaries correspond to the halo radii defined with respect to an overdensity of ∆ = 200m,

namely R200m. The dashed boundaries correspond to the halo radii defined with respect to

an overdensity of ∆ = 20m, R20m. In all cases, halos become larger as ∆ decreases. Halos

A and E are host halos according to both halo definitions. Halo B is a subhalo of halo A

according to both halo definitions. Halos C and D are distinct host halos according to the

∆ = 200m halo definition, but they are reclassified as subhaloes of halo A according to the

∆ = 20m halo definition.
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(the so-called “cusp-core” problem (de Blok, 2010, e.g.)), it serves as a useful tool for many

semianalytic models. As such, halo concentration is defined with respect to the density

profile of the halo,

ρ(r) =
ρ0

r
rs

(
1 + r

rs

)2 , (3.2)

where ρ0 is a density scale and rs is the scale radius, both of which vary from halo to halo.

The latter parameter is of interest for halo concentration as it represents where the profile

transitions from a steep “cuspy” profile to that of an isothermal sphere. Halo concentration

is traditionally defined as

cNFW =
R∆

rs

. (3.3)

As such, this can be calculated with the inclusion of the scale radius, rs, which is determined

by ROCKSTAR by binning halo particles and carrying out a maximum-likelihood analysis to

find a best fit NFW profile.

I further choose to use a “velocity-defined” halo concentration (Prada et al., 2012;

Klypin et al., 2016),

cV =
Vmax

V∆

, (3.4)

where Vmax is the maximum circular velocity of the halo and V∆ is the velocity of the halo

at the halo radius, R∆. Both of these values are calculated from the quantity
√
GM(r)r−1;

the shallow dependence of this function on radius means there is minimal error due to finite

sampling. This quantity, cV has the advantage of being non-parametric and is more robust

to halo density profile parameterization and fitting procedures. It is directly related to the

NFW profile; if this profile is assumed, the halo concentrations can be related as:

cV = 0.465

[
ln (1 + cNFW)

cNFW

− 1

1 + cNFW

]−1/2

. (3.5)

For considering halo assembly bias, halo concentration is a useful parameter for

many reasons. Halo concentration is known to be highly correlated with halo environment

in standard halo definitions (Lee et al., 2017, e.g.). It is further of interest for modeling

galaxy clustering and gravitational lensing statistics (and their cross-correlations). Galaxy

clustering requires this indirectly as satellite galaxies in their groups may not necessarily trace

the mass densities of their host halos. Gravitational lensing finds probing the underlying
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mass density field as the primary goal and halo concentrations are thus of direct consequence

for these predictions.

Additionally, halo concentration is known to be strongly correlated with the forma-

tion time of dark matter halos. Earlier forming halos trend toward higher values of halo

concentration at fixed halo mass (Wechsler et al., 2002, 2006; Zhao et al., 2003, 2009). Ex-

ploring the impact of halo concentration allows us to probe the formation history of the halo

within a single physical snapshot. The advantages to this computationally are significant; if

one were to probe many different halo definitions, the procedure of calculating a halo merger

tree for each halo definition is a not inconsiderable computational load. Utilizing halo con-

centration allows us to limit ourselves to snapshots at redshift z = 0 and still explore a little

of the halo’s formation history.

Note that while halo concentrations are known to correlate with halo formation time,

there is significant scatter and this correlation may itself depend on halo environment. This

limits our ability to draw conclusions on the environmental dependence of halo formation

from our results on halo concentration. Exploration of halo formation time directly remains

an intriguing topic for the future, especially in light of studies that demonstrate that assembly

bias holds information in many different halo properties (Han et al., 2018).

A final motivation to explore halo concentration is that non-trivial manner with

which halo concentration should inherently depend upon halo definition. Wechsler et al.

(2002) demonstrated that clustering dependence on halo concentration changes sign near the

collapse mass. I propose the following toy model by which halo definition should inherently

result in changes to the both halo density profiles and the inferred halo concentrations.

As subhalos preferentially reside on the outskirts of dark matter halos, their inclusion (or

exclusion) has the potential to dramatically change inferred parameters. I demonstrate how

this effect could take place in the Fig. 6 This might lead to halo concentration being the

most sensitive parameter with respect to halo definition.

The upper-left panel of Fig. 7 shows the mean cNFW-M∆ relation for halos with a

fiducial ∆ = 200m definition. In each simulation, halos are considered only above a minimum

mass threshold chosen to ensure that property measurements are not compromised due to

insufficient mass resolution. The minimum mass threshold for each sample is depicted as
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a downward arrow and are listed in Table 1 alongside the associated minimum number of

particles. The upper-right panel of Fig. 7 shows the same relationship for the velocity-defined

concentration, cV. Halo concentration is a decreasing function of halo mass for each relation,

consistent with the literature (Bullock et al., 2001; Macciò et al., 2007; Duffy et al., 2008;

Prada et al., 2012; Klypin et al., 2016).

Fig. 8 demonstrates the strong correlation between NFW-defined and velocity-defined

halo concentrations, with the prediction for a perfect connection assuming NFW halos as

a red line. As is evident, these two parameters are strongly correlated and exhibit a ∼6%

scatter around this correlation. This suggests that these two parameters roughly encode the

same information about the underlying dark matter halo.

3.2.1.4 Halo Shapes The halo shape is another interesting halo parameter to study the

impact of assembly bias. I study halo assembly bias with respect to the halo shape defined

as,

s = c/a, (3.6)

where c and a are the halo minor and major axis, respectively. These shapes are measured

in ROCKSTAR using the method in Allgood et al. (2006), which calculates the modified inertia

tensor,

Mij =
1

N

N∑
k=1

xi,kxj,k
r2
k

. (3.7)

here xi,k is the location of particle k along axis i with respect to the halo center and rk is the

distance between the particle and the halo center. The normalization factor of 1/r2
k is not

part of the standard definition of the inertia tensor and serves the purpose of diminishing the

influence of massive subhalos with large halocentric distances on the measure of halo shape.

The calculation begins with all particles within a sphere of the halo radius and iterates

the sample based on the previous shape measurement; particles associated with identified

substructure are part of this shape measurement. The final inertia tensor is sorted for the

eigenvalues which represent the squares of the principle ellipsoid axes with a > b > c.

The mean relations for halo shapes as a function of halo mass for ∆ = 200m are

shown in the lower-left panel of Fig. 7. Note the mass thresholds (shown in Table 1) for halo
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Figure 7 The relationship between mean halo properties and halo mass for each of our

simulations with ∆ = 200m. These properties are the halo NFW-defined concentration, the

velocity ratio defined concentration, the halo shape, and the halo spin. For example, in the

top left panel, the blue (red/cyan) line corresponds to the concentration-mass relation from

simulation L0125 (L0250/L0500). The red error bars show the 68% spread in parameter

values within that mass bin for L0250. I show with arrows the minimum M200m mass

thresholds using the same color code as the concentration-mass relations.
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Figure 8 The relationship between the two different measures of concentration, using halos

in L0250 defined with ∆ = 200m. The color scale, shown at the right, encodes the number

of halos within a single two-dimensional bin in the cNFW − cV space. The dark (light) blue

regions on the plot show where the most (fewest) halos exist with those values of the two

concentration parameters. The white regions indicate where no halos hold these values. The

scatter on this relationship ranges from 5% for intermediate concentration values, to a high

of 13% at high masses. The red line shows the prediction from assuming an NFW profile.
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shape and halo spin are considerably more aggressive than some in the literature; however,

our summary statistics used coupled with the normalization discussed below minimize the

impact of outliers. The relationship between halo shape and halo mass is such that halos

become somewhat less spherical as halo mass increases and agrees with previous studies of

halo shape (Jing & Suto, 2002; Allgood et al., 2006).

3.2.1.5 Halo Spins For understanding how halo angular momentum may be associated

with halo clustering, I make use of the spin parameter, λ, as quantified by Peebles (1969),

λ =
J
√
|E|

GM2.5
∆

, (3.8)

where J is the the halo angular momentum, E is the total energy associated with the dark

matter halo, and M∆ is the mass enclosed by the halo radius, R∆. Essentially, this spin

parameter measures the amount of energy in angular momentum in units of the amount

necessary to support the halo against collapse through rotation. I use the measurements

determined by ROCKSTAR for this calculation, which determines these three quantities within

the halo radius with the bound particles of the halo. The mean relations of halo spin with

halo mass can be seen in the lower-right panel of Fig. 7 along with the mass thresholds to

avoid being compromised due to insufficient mass resolution (shown in Table 1). Note that

halo spins are typically λ ∼ 0.4 and exhibit a very weak dependence with halo mass; this is

consistent with the literature (Bullock et al., 2002; Macciò et al., 2007).

For much the same reasons as concentration dependent clustering, one could expect

that the chosen halo definition has a large impact on the determination of halo spin. As seen

in Fig. 6, it is quite possible that as size of a halo increases, a new subhalo can be subsumed

into the larger structure. A new, high mass subhalo could potentially add a great deal to the

angular momentum of a halo and increase the spin. The potential for this parameter to be

sensitive to a choice of halo definitions motivates a thorough study of the clustering effects

upon it.
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Table 1 Minimum mass thresholds for each of our analyses. In the columns below each value

of ∆, I show the minimum host halo masses considered in units of h−1M�, the associated

minimum number of particles, and the total number of host halos identified between this

lower mass threshold and an upper mass threshold to avoid overlapping mass bins.

Simulation ∆ = 625m ∆ = 340m ∆ = 200m ∆ = 100m ∆ = 75m ∆ = 50m ∆ = 20m

L0125 mass cut 1.34× 1011 1.67× 1011 1.83× 1011 1.94× 1011 1.97× 1011 2× 1011 2.03× 1011

# particles 837 1043 1143 1212 1231 1250 1268

# halos 33623 29572 28467 27938 27754 27454 25329

L0250 mass cut 5.23× 1011 6.49× 1011 7.1× 1011 7.55× 1011 7.66× 1011 7.77× 1011 N/A

# particles 402 499 546 580 589 597

# halos 88045 79795 78465 78851 79344 79152

L0500 mass cut 2.99× 1012 3.71× 1012 4.06× 1012 4.31× 1012 4.38× 1012 4.44× 1012 N/A

# particles 299 371 406 431 438 444

# halos 168742 158512 161339 169361 172175 175791

3.2.2 Halo Samples

In practice, the mean relations between the various halo properties and the mass thresholds

for these analyses must be determined separately for each combination of simulation, halo

property (e.g., cNFW, cV, λ, or s), and halo definition (i.e., value of ∆). For each analysis,

I set mass thresholds in order to avoid the regime in which halo parameters are not well

measured due to resolution limits of the simulations; I draw attention to the deviation in

the upper-left panel of Fig. 7 as an example of this. The NFW defined halo concentration

follows an approximate power law with halo mass; however, at low particle numbers it is

difficult to fit to an NFW profile and significant deviation from the mean relation exists.

Simulations with larger number of particles at lower masses do not demonstrate this same

effect, implying that this is primarily driven by simulation resolution.

For ease of comparison between halo definitions, I choose to use a single mass thresh-

old for each simulation and for each value of ∆. The mass thresholds are chosen to simul-

taneously minimize resolution effects and to include a similar population of halos above the

threshold for each value of ∆. I summarize the mass thresholds I have used for a subset

of ∆ values in Table 1. Note that because halo abundance is a rapidly-declining function
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of halo mass, the statistics quoted are always dominated by halos near the lower edge of

the mass range. All statistics have been recomputed with mass threshold samples (rather

than mass bins) and I find results that are both qualitatively and quantitatively similar. At

most values of ∆, the minimum mass thresholds are driven by the requirement that the halo

properties do not suffer significantly from finite resolution effects. Be warned to the fact that

the mass of an individual halo will vary as ∆ varies. This effect can be seen in Fig. 5, which

demonstrates that while a decreased value of ∆ leads to larger masses on average, there is

a scatter due to changes in halo identification. Roughly speaking, the threshold masses in

Table 1 vary in such a way that the same physical objects are selected at each halo definition.

3.2.2.1 Property Normalization As seen in Fig. 7, many of these secondary halo

properties exhibit strong mass dependence. Any analysis of clustering needs to be able to

separate out this trend in order to avoid capturing the well known effect that high mass halos

cluster stronger than low mass halos. In order to avoid accidentally drawing inference from

this effect, I subtract off this gross mass dependence from each property with the following

procedure:

1. Divide all halos above the mass threshold for resolution into equally spaced bins in

logarithmic mass.

2. Calculate the rank of each halo with respect to an auxiliary halo property, from 1 to N,

where N is the total number of halos in the mass bin.

3. Normalize each rank by the total number of halos, N.

In this manner I replace each halo property value with a percentile ranking at fixed mass. A

halo with a normalized concentration of 0.74 has a concentration higher than 74% of halos

at fixed mass. By construction, this removes the underlying mass trends in the initial data,

allowing me to narrow in on the impact due to the halo properties themselves. This method

is both qualitatively and quantitatively robust to different choices of bin widths (e.g. more

bins, necessitating smaller bins) and binning schemes (e.g. equally populated bins), making

little changes in my final results. The new formalism of using normalized ranks between 0

and 1 also provides computational benefits to be discussed later.
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3.3 MEASURES OF ASSEMBLY BIAS

Halo assembly bias is defined as an excess clustering from that of the entire sample when

subsampling along a secondary property. Measuring this can be done in several ways, of

which I look at two that are fairly common in the literature. The first is that of using the

correlation function directly; from this, a relative bias can be constructed. This method

does require several fairly arbitrary choices, however, which leads to potential conclusion

in the literature when comparing to other results. To evade this problem, I further make

use of marked correlation functions; simply, these are correlation functions that have been

weighted by an additional property. I discuss both in detail below, as well as how to identify

assembly bias using these methodologies and halotools, a Python-based code that I use to

carry out the numerical calculations.

3.3.1 Correlation Function

The standard correlation function1 (CF) used in the field of cosmology measures the prob-

ability that two objects are separated by a given distance. In this specific case, the objects

that I am choosing to focus on is that of the dark matter halo. The calculation is carried

out using the halotools function with an estimator of

1 + ξ(r) ≡ DD(r)/RR(r), (3.9)

where DD(r) is the number of halo pairs with a given separation, r, and RR(r) is the number

of randoms with the same separation. The random positions are drawn from a uniform

distribution and has been chosen to have the same number of randoms as the examined halo

sample. I specifically examine the range of r = 3 to 10h−1Mpc, matching the range at which

the impact of halo assembly bias is typically observed. The impact of halo assembly bias can

then be determined by determining if different sampling cuts for a given property, p, lead to

different values of clustering. At the simplest level, we choose to examine how behavior of

ξp,80% − ξp,20%

ξall

, (3.10)

1Formally a 2-point autocorrelation function.
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where ξp,80% is the clustering of the 80th percentile of halos in property p (the 20% with

the highest rankings) and ξp,20% is the clustering of the 20th percentile of halos in the same

property (the 20% with the lowest rankings).

In order to determine the impact of halo assembly bias for a wide variety of halo

definitions, I choose to examine the relative halo clustering bias of high-p halos, where p is

the property of interest, to all halos:

b2(r) = ξp,80%/ξall, (3.11)

where ξp,80% is again the clustering of the 80th percentile of halos in property p. Choosing

different percentile values for the cut does quantitatively change this measure, but does not

qualitative change the results. Errors are then estimated on the relative bias by recomputing

ξall using randomly-selected subsamples of equal number to the subsample used to compute

ξp,80%, that is, using one fifth of all halos.

3.3.2 Marked Correlation Function

In addition to the more traditional correlation function, I utilize a Marked Correlation Func-

tion (MCF) to examine auxiliary halo properties. MCFs quantify the manner in which a

halo property (the “mark”) correlates among halo pairs as a function of a given separation

between the pairs. MCFs have the advantage that they effectively stack signal from all val-

ues of the halo auxiliary property, or mark, in contrast to selecting subsets of haloes based

on the auxiliary property. This removes one of the (somewhat) arbitrary choices discussed

in the previous section on CFs. MCFs also stack signal from all environments and do not

require any specific definition of halo environment in order to detect “environmental” trends

that are usually referred to as assembly bias in the literature. MCFs have been used in many

previous papers to quantify environmental dependence of halo properties other than mass

(Beisbart & Kerscher, 2000; Faltenbacher et al., 2002; Sheth & Tormen, 2004; Sheth, 2005;

Skibba et al., 2006; Harker et al., 2006; Wechsler et al., 2006; Mao et al., 2015a).

For a specific halo property, or mark m, I use the MCF normalization of Wechsler

et al. (2006), namely

Mm(r) ≡
〈mimj〉 i,j∈P (r) − 〈m〉2

Var(m)
, (3.12)
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where 〈mimj〉 i,j∈P (r) is the mean of the product of two marks of a pair of halos separated

by a distance about r, 〈m〉 is the mean of the mark for all halos, and Var(m) the variance

of the mark for all halos.

In the absence of any correlation between a halo property among neighbors of a

separation r away,Mm(r) ' 0 and its absolute value would be much less than 1. Deviations

of the MCF from zero indicate such correlations exist and the magnitude ofMm(r) gives the

excess of the mark among pairs compared to the one-point mean of the mark 〈m〉 in units

of the one-point variance. The marks that I use are the normalized ranks of halo auxiliary

properties described in Section 3.2.1, which are uniformly distributed between 1
N

and 1.

Identifying halo assembly bias using MCFs is fairly intuitive; absent halo assembly

bias, the halo marks are expected to be uncorrelated across pairs. Additionally, as I make use

of a normalized rank as the property mark, the error can be calculated using a single set of

randoms. I assign randoms drawn uniformly between 1
N

and 1 to each halo and calculate the

MCF for these marks. I then shuffle the position of the marks around halos to simulate the

finite sampling impact, for 200 total realizations, allowing us to gain a strong understanding

of the fluctuations associated with this finite sampling. By examining the 2% and 98%

percentile limits of this sampling, I approximate a 2σ error region that would be consistent

with no halo assembly bias. While the results from MCF analysis need not necessarily agree

with those of the CFs, I find that the two are in broad qualitative agreement for this analysis.

In the next chapter I will make use of these two analysis techniques on the Diemer

& Kravtsov (2015) simulation data. I will demonstrate that each sample has assembly bias

consistent with previous results with the literature and that both CFs and MCFs are valuable

means of analyzing this. I will show that assembly bias is a strong function of halo mass,

even with the removal of the underlying mass-secondary property relations.
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4.0 HALO ASSEMBLY BIAS IN DIEMER ET AL.

The first focus of this work is to determine the strength of halo assembly bias within the

Diemer & Kravtsov (2015) simulations that have been provided to us. This analysis can be

done with both correlation functions and marked correlation functions; I choose to examine

assembly bias driven by halo concentration with correlation functions in order to draw con-

nections with similar works in the literature. Beyond that, I choose to focus on the marked

correlation function, which is more robust to assumptions (e.g. no particular choice has to

be made on where percentile cuts are made on a property). I focus on a fiducial definition

that is common across many halo models and simulation analysis of ∆ = 200m; this number

has presumably become popular in the literature due to being a little more generous than

the virial radius for spherical collapse in a ΛCDM universe and bearing similarities to the

number examined for an Einstein-de Sitter universe.

4.1 CORRELATION FUNCTION RESULTS

The difference between the correlation function for the top 20% and bottom 20% of halos as

ranked by NFW concentration for a fiducial ∆ = 200m halo definition for three simulation

boxes (L0125, L0250, and L0500) can be seen in Fig. 9. Here the blue (magenta/cyan) solid

line corresponds with the L0125 (L0250/L0500) simulation volumes. Accordingly, the blue

line corresponds with the least massive halos (M200m > 1.8×1011) and the cyan line contains

the most massive halos (M200m > 4× 1011). In order to scale out the gross scale dependence

of the CF, these differences are normalized by the CF of the clustering strength of the

entire halo sample. The shaded band contains 98% of 200 CF ratios computed by randomly
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subsampling halos in the L0500 sample and is a representative constraint on assembly bias

non-detection.

If the clustering strength of halos was independent of NFW-defined halo concentra-

tion, all three lines in Fig. 9 would be clustered around zero with some statistical fluctuation

(which is represented by the shaded band). Note that halos of small mass exhibit a consider-

ably stronger degree of halo assembly bias than halos of larger mass, even after the removal

of the underlying halo mass-concentration relation. This is consistent with concentration

driven assembly bias as seen in the literature as a function of halo mass (Wechsler et al.,

2006). This result is further robust to the choice of where to slice samples with respect to

halo percentiles and is qualitatively similar to the result when examining the halo concen-

tration as defined by the velocity ratio. These results are omitted for the sake of brevity, as

they merely duplicate the results that will be examined more thoroughly with MCFs, which

have distinct advantages for reproducibility.

4.2 MARKED CORRELATION FUNCTION RESULTS

4.2.1 Halo Concentration

The NFW concentration, cNFW, MCF is shown in Fig. 10. The shaded band delineates the

fluctuations expected from finite sampling as discussed in Section 3.3.2 and is generated for

the L0500 simulation volume; this choice is representative of the fluctuations for the other

simulation boxes as well. Qualitatively, Fig. 10 contains the same information that can be

seen in Fig. 9. The least massive halos in the sample exhibit a stronger assembly bias with

respect to halo concentration in comparison, while the most massive halos in the sample

demonstrate a weaker assembly bias signal. It can be assumed that if a simulation with

larger volume were available (containing more of the most massive halos), it would continue

the trend of reverse halo assembly bias signal along these same trends. This is consistent

with existing work in the literature (Wechsler et al., 2006; Sunayama et al., 2016).

The velocity concentration, cV, MCF is shown in Fig. 11. The shaded band delineates
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Figure 9 NFW concentration-dependent correlation functions. The solid lines plot the

difference between the correlation function for the top 20% and the bottom 20% of halos by

NFW concentration and a fiducial ∆ = 200m halo definition, normalized by the correlation

function of the entire halo sample. The lines correspond to different simulation samples

and accordingly different halo mass ranges, as seen in Table 1, with blue corresponding to

the lowest mass halos and cyan corresponding to the highest mass halos. The shaded band

contain 98% of 200 CF ratios computed from randomly subsampling halos in the L0500

sample and is a representative constraint on assembly bias non-detection.
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Figure 10 NFW concentration marked correlation functions. The solid lines plot the marked

correlation function of halos weighted by NFW concentration for a fiducial ∆ = 200m halo

definition. The lines correspond to different simulation samples and accordingly different

halo mass ranges, as seen in Table 1, with blue corresponding to the lowest mass halos and

cyan corresponding to the highest mass halos. The shaded band contain 98% of 200 MCFs

computed from shuffling uniform random marks among the L0500 halo sample.
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the same fluctuations expected from finite sampling as the previous Fig. 10 by construction.

For ease of comparison, these two plots are plotted using the same range of possible MCF

values. The reader should draw attention to the exceedingly minor differences between

the two plots; the two marks have MCFs that are both qualitatively and quantitatively

very similar. This should not be surprising, as cNFW and cV quantify largely redundant

information about dark matter halos. This is suggestive that these results are not driven

by intricacies in the fitting procedure to an NFW profile, which is known to be a poor

description for halo profiles at large halocentric distances compared to R200m (Diemer &

Kravtsov, 2014).

In order to draw a physical intuition regarding these clustering result, consider that

halo concentration is known to have a strong correlation with halo formation time. Halos

with high values of concentration trend toward earlier formation times. A common result

from hierarchical merger of dark matter halos is that overdense regions of the universe tend

to evolve more rapidly than underdense regions. Thus, concentration driven assembly bias

is a fairly natural expectation: those halos with high concentrations will tend to live in

overdense regions and thus have enhanced clustering. My results demonstrate that this

exists even when comparisons are drawn at fixed halo mass.

4.2.2 Halo Shape

In addition to halo concentrations, I can explore the halo assembly bias with respect to less

explored halo properties such as halo shape. The MCF results for this are demonstrated in

Fig. 12, where the shaded band quantifies the fluctuations due to limited sample size. For

all three simulations studied, the result agrees that the more spherical halos (and thus larger

shape, as c/a = 1 for a spherical halo) cluster together more strongly than less spherical

halos. Further, this correlation does not have a strong dependence on halo mass, in contrast

to the concentration driven assembly bias.

The physical picture for halo shape driven assembly bias is a little more difficult to

motivate; one assumption that could be drawn is that those halos living in highly overdense

regions are preferentially undergoing a larger number of mergers, which tends to create more
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Figure 11 As Fig. 10, for the mark of halo cV.
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spherical halos over sufficient time. However, this is difficult to confirm without merger tree

information which is beyond the scope of this research.

4.2.3 Halo Spin

Halo spin weighted MCFs are shown in Fig. 13. For the entire sample examined, halos with

larger values of the spin parameter (that is, more energy in angular momentum compared

to that necessary to support against collapse with rotation at fixed halo mass) correlate

stronger than the zero assembly bias case. It is also evident in Fig. 13 that, contrary to the

result of halo concentration, the clustering strength increases with respect to halo mass. This

mass dependence is consistent with the previous literature on spin-dependent halo clustering,

though the underlying physical reason remains a matter of intense debate.

Regarding the clustering itself, one might guess that those halos with more angular

momentum preferentially live inside of overdense regions, such as inside the filamentary

structure of dark matter distributions. As such, a preferred direction of infall for mergers

may be able to add significant spin to dark matter halos. As with halo shape though, this

is difficult to confirm without additional merger tree information.
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Figure 12 As Fig. 10, for the mark of halo shape.
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Figure 13 As Fig. 10, for the mark of halo spin.
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5.0 HALO REDEFINITION IN DIEMER ET AL.

5.1 MOTIVATION

The previous Chapter 4 demonstrated the existence within the (Diemer & Kravtsov, 2015)

simulations of halo assembly bias in agreement with the existing literature. With this in

mind, I now set in mind to attempting to mitigate the impact of halo assembly bias through

the use of a method referred to as “halo redefinition.” I direct the reader to Fig. 6, in

which the size of the halo is changed with manipulation of the overdensity parameter, ∆.

A halo that increases in size may encompass nearby halos, leading them to be identified as

substructure in a smaller value of ∆.

The motivation behind this exploration is straightforward: the choice of halo defini-

tion as ∆ = 200m is not necessarily a physically motivated decision. It is well-known that

not all gravitationally bound material associated with a halo lies inside of r200m for a given

halo. It is also well-known that not all halos identified are virialized. One can imagine a

case where nearby, independent halos in ∆ = 200m are on their first infall into a larger halo

and well on their way to becoming substructure; a larger halo size might encompass these

physical effects and allow us to isolate halo assembly bias as being driven by this behavior,

usually referred to broadly as “environmental effects”. Further, within the literature it is

exceedingly common for the value of ∆ to change fairly arbitrarily; one prominent example

of this is the choice of ∆ = 200c, where the critical density is used in place of the mean

density. This roughly corresponds to ∆ = 625m at z = 0, which leads to a substantial

difference in halo mass and size as seen in Fig. 5. With such arbitrary choices within the

literature, it is worth an exploration for the sake of comparison alone!

Our methodology for this procedure is fairly straightforward. The ROCKSTAR halo
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finder allows for different values of ∆ to be examined. I have re-run the halo finder to

identify halos for an extremely broad range of halo definitions, from that of ∆ = 625m

(which is comparable with using the critical density of the universe as opposed to the mean

density) to ∆ = 20m (which is an exceedingly small value that has been unexplored in the

literature). This necessitates a change in halo masses examined, which broadly matches the

change of halo size and can be seen in Table 1.

5.2 RESULTS

5.2.1 Halo Concentration

I begin by studying the CFs of halos in our mass threshold samples, sub-selected by auxiliary

properties. As an example, Fig. 14 exhibits the difference between the clustering strengths of

halos in the top 20th percentile of NFW concentration compared to the halos in the bottom

20th percentile of NFW concentrations as a function of the overdensity parameter, ∆, used to

define the halos. Again, the gross scale dependence of the CFs have been normalized by the

clustering strength of the entire halo sample. Now, the different colors express the different

possible values of ∆, with dark blue representing those halos with ∆ = 625m (a very small

halo definition) and changing in color to light blue as ∆ = 50m (a very large halo definition).

Note that the trends demonstrated in Fig. 9 can be seen now separated into three panels,

allowing us to examine how halo redefinition changes observed halo assembly bias at fixed

halo masses.

Draw your attention to the middle panel of Fig. 14. Note that the general trend

of decreasing ∆ (and increasing halo size accordingly, as r∆ roughly varies in proportion

with ∆−1/3) is to reduce the strength of halo clustering in the high concentration sample

compared to the low concentration sample. In particular, the red dashed line in this panel

is the value calculated for a choice of halo definition of ∆ = 40m and has little detection

of a clustering difference between the high and low concentration samples. It is clear from

this behavior that both the strength and sense of halo assembly bias depend on the choice
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of halo definition. While this may seem an obvious effect in hindsight, it is one that has not

been well documented or studied in the existing literature, despite the clear impact of this

choice.

Compare this across all three panel of Fig. 14. The rightmost panel (corresponding

to the most massive halos)finds that a definition of ∆ = 250m has little detection of a

difference between the two halo samples. In fact, reducing halo definition further than that

starts to result in the low concentration sample exhibiting stronger halo clustering than the

high concentration sample. The reverse behavior is true looking at the leftmost panel (and

least massive halos), where a ∆ = 20m definition has very little detection of halo assembly

bias. The reason for these changes is of interest and the implications are discussed below.

Note that in Fig. 14 that the scale dependence persists regardless of choice of halo definition.

The implication of this is that no single halo definition will mitigate halo assembly bias

across the entire range of studied halo masses.

This same information is encoded into Fig. 15 and Fig. 16. As previously demon-

strated, these two measures of halo concentration are tightly correlated and contain much

of the same information about the underlying halo; as such, it is not surprising that their

response to halo redefinition is near identical. Note again that in each panel, the scale de-

pendences changes with both halo mass and halo definition, making it impossible for a single

value of the halo definition to entirely remove assembly bias across the full sample of three

simulation volumes.

5.2.2 Halo Shape

Fig. 17 demonstrates how halo redefinition impacts the measure of shape assembly bias.

Note that the red dashed lines indicate the ∆ values that reduce assembly bias in the

concentration dependent MCF; this has not been changed in these plots in order to give

a comparison against how an optimal definition for one parameter may not be optimal

for a secondary information; essentially, this is giving information that these additional

parameters contain different information about the clustering of the dark matter halo. I

draw the reader’s attention to the impact of the choice of halo definition in Fig. 17. The
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Figure 14 Concentration-dependent correlation functions. In each panel, the solid lines plot

the difference between the correlation function for the top 20% and the bottom 20% of halos

by NFW concentration, normalized by the correlation function of the entire halo sample.

The lines correspond to different values of ∆, with dark blue (light blue) corresponding to

∆ = 625m (∆ = 50m). The red dashed line in each panel corresponds to an overdensity

that significantly reduces concentration-dependent halo clustering selected from the various

values of halo overdensity that I explore. I will refer to these values throughout the text. The

left (middle/right) panel shows the results for L0125 (L0250 /L0500) utilizing the low-mass

(mid-mass/high-mass) halo threshold samples. To guide the reader, each panel is labeled by

the minimum value of M200m in the sample. Different values of ∆ correspond to different

mass thresholds as shown in Table 1. The shaded bands in each panel represent the level of

statistical fluctuations due to finite sampling. In particular, the shaded bands contain 98%

of 200 CF ratios computed from randomly subsampling halos in the ∆ = 200m sample. In

principle, each sample with a distinct ∆ should have a distinct error band, but in practice

they are all very similar to that of the ∆ = 200m sample.
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Figure 15 The marked correlation function for the concentration defined according to the

NFW profile, cNFW. The solid lines plot the marked correlation function using normalized

ranks of NFW concentration as the mark. In each plot the lines correspond to different

values of ∆, with dark blue (light blue) corresponding to ∆ = 625m (∆ = 50m). The

red dashed lines correspond to the overdensities that greatly mitigate assembly bias for

concentration (the same values of ∆ as depicted by the red dashed lines in Fig. 14). The

top (middle/bottom) panel shows the results for the L0125 (L0250/L0500) data set utilizing

the low mass (mid mass/high mass) thresholds. To guide the reader, each panel is labeled

by the minimum value of M200m in the sample. Different values of ∆ correspond to different

mass thresholds as shown in Table 1. The shaded bands in each panel represent the level

of statistical fluctuations due to finite sampling. In particular, the shaded bands contain

98% of 200 MCFs computed from shuffling the halo marks among all of the halos in the

∆ = 200m sample. In principle, each sample with a distinct ∆ should have a distinct error

band, but in practice they are all very similar to that of the ∆ = 200m sample.
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Figure 16 The same as Fig. 15 for the mark of cV. Red dashed lines indicate the ∆ values

that remove assembly bias from concentration.

smallest halo definition (∆ = 625m) demonstrates a larger assembly bias detection than the

largest halo definitions, independent of mass bin. The direction of this effect matches the

behavior of the halo concentration marks that were explored in Fig. 15 and Fig. 16. However,

there exists no halo definition explored that removes the assembly bias impact on the scales

that I study. While it is possible an even more extreme halo definition may move into that

territory, the consequences of a halo with overdensity ∆ of that size is unexplored at this

time.

5.2.3 Halo Spin

The results for halo redefinition on halo spin are shown in Fig. 18. First, note that the

red dashed lines which correspond to removing halo assembly bias with respect to halo

concentration are (again) not able to remove halo assembly bias with respect to halo spin.

I draw reader attention to the reversal of the trend with halo redefinition compared to the

other three explored halo properties. As I reduce the value of ∆ (therefore increasing the

size of the identified dark matter halos), the enhanced clustering with respect to halo spin is

increased. One speculative means of explaining this result is that material on the fringes of

the halo can carry a large amount of angular momentum with respect to the halo center (due

to the large value of the impact parameter to the halo center). As such, increasing the size of
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Figure 17 The same as Fig. 15 for a halo shape MCF. Red dashed lines indicate the ∆

values that remove assembly bias from concentration.

the halo may make the halo spin parameter more sensitive to overdense halo environments

rather than weakening the environmental dependence. Follow-up work is necessary in order

to verify whether this speculative theory is accurate and this will be explored in the future.

5.3 SUMMARY OF HALO CLUSTERING AND HALO REDEFINITION

5.3.1 Halo Bias and Halo Redefinition

Various forms of assembly bias, and their mass dependences, have already been identified in

the literature. This work confirms these previous results for halo concentrations (Wechsler

et al., 2006; Faltenbacher & White, 2010; Sunayama et al., 2016), halo shapes (Bett et al.,

2007; Hahn et al., 2007b,a; Faltenbacher & White, 2010; Lacerna & Padilla, 2012; van Daalen

et al., 2012), and halo angular momenta (Bett et al., 2007; Hahn et al., 2007b,a; Lacerna

& Padilla, 2012). It emphasizes the fact that auxiliary property dependent halo clustering,

which I refer to as assembly bias, is strongly dependent upon halo definition. Fig. 19 sum-

marizes these results for each of the properties of interest. For ease of comparison with other

works in the literature, I now plot the relative halo bias of a high-p halo sample to that of

the overall halo sample, where p is the halo property of interest. As previously discussed,
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Figure 18 The same as Fig. 15 for a halo spin MCF. Red dashed lines indicate the ∆ values

that remove assembly bias from concentration.

the high-p sample consists of halos above the 80th percentile and above in a given property

at fixed halo mass. Though quantitatively different, a different choice of percentile quantity

does not qualitatively change the results. I estimate the errors on the relative bias by re-

computing ξall using randomly-selected subsamples of equal number to the subsample used

to compute ξp,80%, that is, using one fifth of all halos. The error bars show the 68% range,

centered on the median, about which the values of b2(r) lie.

Each panel of Fig. 19 allows one to focus on the mass dependence of halo clustering

and the dependence on halo definition. Focus first on the top two panels, which deal with our

two halo concentration measurements, NFW concentration and velocity ratio concentration.

Both measures of concentration exhibit a strong mass dependence to assembly bias. Halos

at high masses (M∆ ≥ 1013 h−1M�) exhibit assembly bias that is quite distinct from that

of low mass (M∆ ≤ 10 × 1012 h−1M�) halos. At high masses, high-concentration halos are

less strongly clustered than low-concentration halos. At low-masses the sense of assembly

bias is reversed and high-concentration halos cluster more strongly. Notice also that at high

masses, concentration-dependent halo clustering is only a modest function of halo mass.

Concentration dependent halo clustering has a significant dependence upon halo

definition. In particular, the strength of clustering of the halos above the 80th percentile in

concentration varies by as much as ∼ 50% among the overdensities that I have investigated.

For all halo definitions, concentration-dependent clustering exhibits a similar trend with

54



halo mass. For no value of ∆ does the trend with mass become significantly less prominent,

suggesting that a simple mass-independent re-definition of halo boundaries alone cannot

eliminate halo assembly bias. Concentration-dependent clustering changes sense at a mass

that varies by an order of magnitude, from ∼ 3 × 1012 h−1M� to ∼ 3 × 1013 h−1M�, as ∆

varies from ∆ = 50 to ∆ = 625. These significant variations in the strength of concentration-

dependent clustering as a function of halo definition suggest that significant care must be

taken in comparisons of various results in the extant literature.

The bottom two panels of Fig. 19 demonstrate that auxiliary property dependent

clustering can behave in a markedly different manner depending upon the halo property un-

der consideration. These two panels show shape (left) and spin (right) dependent clustering

as a function of halo mass and halo definition (∆). Each demonstrates halo assembly bias

that is only weakly dependent on halo mass in comparison to concentration-dependent clus-

tering. In the lower-left panel, note that changing to smaller values of ∆ results in reduced

assembly bias, though no definition explored was sufficient to remove assembly bias entirely.

It is worth emphasizing that the ∆ dependence of assembly bias in Fig. 19 is non-

trivial. At first glance, the reader may be tempted to think that each of the lines in any

individual panel of Fig. 19 could be made to overlap by plotting the bias with respect to a

common mass scale for each halo, rather than for M∆ for each value of ∆. In other words,

the reader may be tempted to think that the only reason that the lines in Fig. 19 do not

overlap is trivially due to the shift in halo masses caused different ∆ (e.g., Fig. 5). However,

this is not the case. Consider the panels of Fig. 19 depicting halo concentration. Suppose

that I had chosen to plot halo relative bias as a function of the independent variable M200m,

the ∆ = 200m mass of each halo. For any individual object, if ∆′ < ∆, then M∆′ > M∆.

Consequently, for any individual halo M200m > M625m while M200m < M50m. Therefore,

representing the relative halo bias on a common mass scale (e.g., M200m) for all halos moves

the curves in Fig. 19 further away from one another. The analogous statement is true for all

panels of Fig. 19. The point is profound because it demonstrates that the ∆ dependence of

assembly bias is not caused simply by the shift in mass scale, but rather by the selection of

host halos to include in the halo sample.
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Figure 19 The relative clustering bias of halos as a function of halo mass for various halo

auxiliary properties. I show the clustering strength of the highest 20-percentile according

to each halo property relative to the population of all halos. Within each panel, I show

clustering biases for six values of ∆. The dark blue (light blue) line uses a halo definition

drawn from ∆ = 625m (∆ = 50m). The solid (dot-dashed, dashed) lines use host halos from

the L0125 (L0250, L0500) catalogs. The error bars on the ∆ = 200m samples are similar to

the errors from other samples, which are not shown for clarity.
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5.3.2 How Does Halo Redefinition Help?

Note that the results above indicate that one may mitigate some auxiliary property depen-

dent clustering through a mass-dependent choice of halo definition. There are restrictions

to this statement: notably, one cannot remove halo assembly bias across all halo properties.

In this subsection I discuss the possible reasons behind the mitigation of concentration-

dependent halo bias, as it is the most promising of the halo properties under this method.

Halo redefinitions may mitigate concentration-dependent halo bias for at least two

reasons. The first reason is the physical motivation for exploring alternative halo definitions.

In particular, it may be that alternative halo definitions (presumably with smaller ∆) provide

a more effective grouping of objects that have been strongly affected by interactions into

one single halo as illustrated in the cartoon in Fig. 6. If this is the case, alternative halo

definitions may offer a more practical separation between the linear and highly nonlinear

regimes and may represent a pragmatic step forward. However, alternative halo definitions

may also reduce auxiliary property dependent clustering through a second mechanism. To

be specific, it is possible that the details of measuring halo properties using these new

halo definitions introduce new sources of noise into the measurements. These inherently

noisier measurements then lead to reduced correlations between pairs. In this second case,

the reduction in correlations simply arises because the property of interest may be less

informative about the halo itself - a concerning proposition.

In the case of halo concentration, noise may be introduced in numerous ways. For

example, the NFW concentration cNFW is determined by a fit to the NFW profile. Inferred

values of cNFW will depend upon the degree to which the density profiles of the halos follow

the NFW functional form within some radius R∆ that is different from traditional halo

radii, such as ∼ R200m. At large halocentric distances (r & R200m) halo profiles are known

to deviate markedly from the NFW form. It may be possible to reduce assembly bias by

redefinitions if one probes scales on which halos deviate from NFW in a way that is not well

correlated with the interior structure of the halo (particularly the location of the NFW scale

radius); however, such a reduction in assembly bias is of limited practicality because it arises

from characterizing a halo by a quantity that is less informative about its interior structure.
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Of course, it is worth noting that the velocity-defined concentration cV is a non-parametric

measure of concentration and should be less subject to such effects.

I explore in more detail the degree to which the mitigation of environmental effects by

halo redefinition is due to the introduction of noise that is uncorrelated with environment into

the measurement of halo properties. I describe one method for doing this in the remainder

of this section. The cartoon of Fig. 6 may be a useful reference for the reader.

Consider first that all host halos that are present in the halo catalogs constructed

from any one specific value of the overdensity threshold (e.g., ∆ = 40m) are also present as

host halos in the halo catalogs constructed with all higher values of threshold density (e.g.,

∆ = 200m and, in fact, all ∆ ≥ 40m). The converse is not true because lowering ∆ increases

halo radii so that host halos at higher values of ∆ may become subhalos at lower values of

∆1. This reclassification as subhalos is the fate of halos C and D in Fig. 6 as the overdensity

threshold is decreased from ∆ = 200m to ∆ = 20m.

Consider the exercise of matching halos across different catalogs, constructed using

different values of ∆. I match halos to a baseline catalog corresponding to a value of ∆ that

best mitigates concentration-dependent clustering2 at each mass bin. These baseline values

of ∆ are those delineated by the dashed, red lines in Fig. 14–18. In this exercise, I consider

the clustering of only those halo that are classified as host halos in the baseline catalog.

Specific examples may help to clarify this procedure. Consider, for example, the low-

mass sample constructed from the L0125 simulation. The baseline overdensity in this case is

∆ = 20m. For the low-mass sample, I study the clustering of halos designated as host halos

according to a ∆ = 20m halo definition. However, I assign these halos properties according

to their definitions using other values of ∆. For example, I may study the clustering of

these halos as a function of the masses and concentrations defined using a ∆ = 200m halo

definition. Referring back to Fig. 6, I would take the clustering of halos A and E using halo

properties derived from the particles within R200m. This is useful because it preserves the

original halo properties defined using a conventional halo definition (such as ∆ = 200m),

but it removes those halos from consideration that I expect to be altered by interactions

1Indeed, this is largely the motivation for exploring various ∆, as discussed previously.
2For my limited explorations of ∆; there may be a choice which better mitigates halo assembly bias.
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with neighboring halos. In the cartoon of Fig. 6, this removes halos C and D and ceases to

consider their impact on clustering. They are now subhalos in the ∆ = 20m halo catalog.

A second example may be useful and is relevant to the high-mass sample that I study,

constructed from the L0500 simulation. In this case, the baseline overdensity is ∆ = 250m.

I consider the clustering of all objects that are host halos in the ∆ = 250m halo catalog.

If I define properties relative to any ∆ ≥ 250m, then this is very much the same as in the

previous example in that using the baseline catalog serves to eliminate some halos from

consideration. However, for ∆ < 250m, some of the objects that I consider are subhalos. In

the context of Fig. 6, this is analogous to studying the clustering of halos A, C, D, and E

using properties defined by all particles within the dashed boundaries. They key point in

all of these examples, is that the baseline halo catalog is used to define the sample of halos

whose clustering I study.

Figure 20 shows the results of this investigation. As a reference for the reader, the

dashed lines in Fig. 20 reproduce the same MCFs depicted in Fig. 15. The solid lines in

Fig. 20 show MCFs using the samples matched to the baseline halo catalogs. To be explicit,

in the left panel of Fig. 20 I show the MCFs of all halos that are host halos in the ∆ = 20m

baseline halo catalog for which the mass and concentration (the mark in this case) of each

halo has been computed using the value of ∆ that corresponds to the color of the curve.

The analogous statement is true for the middle and right panels. For both the solid and

dashed dark blue lines, corresponding to ∆ = 625m, the halos are assigned masses and

concentrations using a ∆ = 625m. In the case of the solid line, only halos defined as hosts

in the ∆ = 20m baseline catalog are included in the computation of the MCF. For each

halo sample, the baseline values of ∆ are chosen effectively to remove assembly bias at large

scales based on the results in Fig. 15 and Fig. 16. These baseline overdensities are ∆ = 20m

for the L0125 sample, ∆ = 40m for the L0250 sample, and ∆ = 250m for the L0500 sample.

Compare pairs of dashed and solid lines at the same ∆ threshold (same color) in

Fig. 20. The difference between a pair of solid and dashed lines at fixed ∆ is caused entirely

by the exclusion of some halos from the lower ∆ catalog due to a change in halo definition. For

the low-mass sample (L0125) and mid-mass sample (L0250), the solid lines exhibit greatly

reduced concentration-dependent clustering. I conclude that for relatively low halo masses
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Figure 20 The marked correlation function for the NFW-defined halo concentration param-

eter matched to baseline halo catalogs. The dashed lines reproduce the MCFs of Fig. 15

for reference. The solid lines plot the marked correlation function using NFW-defined halo

concentration as the mark, for a catalog of host halos matched to the host halos in the

baseline catalog corresponding to the ∆ that best mitigates assembly bias (shown as a red

dashed line in each panel). For each value of ∆ only host halos that also appear in the

baseline ∆ halo catalog are used in constructing the MCF shown by the solid lines. For

each value of ∆, halo properties are determined using the indicated value of ∆ and not the

baseline value. The baseline ∆ only determines which halos are included in the sample.

See the main text for further details on sample selection. All lines correspond to different

values of ∆, with dark blue (light blue) corresponding to ∆ = 625m (∆ = 50m). The left

(middle/right) panel shows the results for the L0125 (L0250/L0500) data set utilizing the

low mass (mid mass/high mass) cutoffs. The shaded bands represent 2-sigma confidence

regions generated by randomization of the marks. This figure demonstrates that most of

the assembly bias is removed by the classification of host and satellite halos, rather than by

altering the measurement of halo properties such as concentration.
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Figure 21 As Fig. 20, with the mark defined as velocity ratio defined concentration.

(M200m . 4 × 1012 h−1M�), selecting particular halos as hosts eliminates the majority of

concentration-dependent clustering. In other words, the majority of the assembly bias signal

in this mass range is caused by halos that are nearby neighbors of other, larger halos.

At high mass (the L0500 sample), the story is somewhat different. The reclassification of

halos as hosts or satellites dependent upon ∆ makes little difference (dashed and solid lines

of the same color are similar). Fig. 21 displays analogous results for the velocity-defined

concentration parameter cV, suggesting that these results are not driven by any subtle effect

of fitting to an NFW density profile.

These results suggest that much of concentration-dependent clustering at relatively

low mass (M200m . 4 × 1012 h−1M�, masses corresponding to other values of ∆ can be

approximated from Fig. 5) is driven by the interactions of nearby halos. They also suggest

that subsuming larger regions into halo definitions to accommodate these interactions may

be well motivated and practically useful in the context of halo occupation models. It may

even be possible to optimize halo definitions for specific applications. Likewise, these results

suggest that at high mass (M200m & 4× 1012 h−1M�), interactions among neighboring halos

does not appear to be the predominant cause of concentration-dependent clustering. This is

consistent with previous literature suggesting that concentration-dependent clustering may

be understood as a property of the initial conditions on large-scales according to the excursion

set approach (Zentner, 2007; Dalal et al., 2008) for high-mass halos, but is caused by nonlinear

interactions at the low-mass end of the halo mass spectrum (e.g., Wang et al., 2008; Warnick
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et al., 2008; Dalal et al., 2008; Hahn et al., 2009; Ludlow et al., 2009; Lacerna & Padilla,

2011; Borzyszkowski et al., 2017).

Lastly, notice that in the left and middle panels of Fig. 20, there is some modest

residual assembly bias displayed by the solid lines; the solid lines are not all consistent

with zero. This suggests that a small part of the reduction in concentration-dependent

clustering is caused by the change in the concentration mark values when halo definition

changes. Some of the change may come from the introduction of noise in the concentration

measurement that is more weakly correlated with large-scale environment upon redefining

halos with larger radii (smaller ∆). Changes in halo masses would also result in changes in

the mark values. Nonetheless, for low-mass halos, this residual assembly bias is generally

quite modest compared with the concentration-dependent clustering of halos defined with

more traditional values of the overdensity threshold.

5.3.3 How Does Halo Redefinition “Fail?”

The reader may have noticed that Fig. 18 demonstrates a situation where our change of halo

redefinition to smaller values of ∆ increases the measured halo assembly bias. This flies in

the face of one of the key goals of this project: finding a halo definition which minimizes

halo assembly bias across all halo properties, such that halo modeling can continue unabated

with a new definition. The fact that this has the opposite trend as the other halo properties

ultimately renders this method impossible across all halo properties; any definition that

reduces halo assembly bias with respect to spin will increase halo assembly bias with respect

to shape, as both of these marks have a fiducial halo definition with positive spin assembly

bias. As a result, the näıve conclusion may be to state that halo redefinition has failed to

address the problem at hand.

Rather, I would note that this actually gives us information that we did not previ-

ously have before on the problem. As shown in Fig. 5, the change of halo definition roughly

corresponds to a change in halo size. There is some noise upon this, as halos in overdense

environments need to extend their halo size more significantly to reduce their average den-

sity compared to halos in underdense environments which are typically not adding additional
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material. The general trend of this behavior allows us to utilize the choice of halo definition

as a way to determine how halo assembly bias arise; in this way, I move from a primary goal

of attempting to mitigate assembly bias to understanding the underlying nature and physics

that might lead toward assembly bias.

With regards to this, there are three key trends to interpret, in the context of chang-

ing the size of the halo with definition.

1. As the average radius of a halo increases, halos of high concentration become less strongly

clustered.

2. As the average radius of a halo increases, halos of high shape become less strongly

clustered.

3. As the average radius of a halo increases, halos of high spin become more strongly

clustered.

In the case of halo concentration, I have mentioned above there is a distinct mass

dependence which is suggestive of concentration dependent clustering being driven by two

separate physical processes. However, as seen in Fig. 19, the change in halo definition has

a similar impact across a broad range of halo masses. This suggests that some level of

halo assembly bias across all masses is driven by halos that are within a few multiples of

the ∆ = 200 halo radius. I interpret the result as being driven by the encompassing of

neighbor halos as substructure. Since the most clustered halos have higher concentrations

and halos in overdense regions tend to increase their halo size more, the method of halo

redefinition will preferentially change populations in a way that reduces the clustering of

high concentration halos. This will leave halos in underdense regions to have their clustering

relatively unchanged and (as these are preferentially low concentration) lead to the reversal

of the sign of halo assembly bias.

In the case of halo shape, the mass dependence is fairly weak (as seen in Fig. 19 and

halo assembly bias exists for all definitions of halo size that I attempt to utilize. As Lee

et al. (2017) has shown that halos of low shape parameter preferentially live in underdense

environments (where the halo is expected not to have considerable changes in halo size

comparatively), I draw attention to the overdense environments that are anticipated to have
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higher values of the shape parameter initially. As the size of the halo increases, the inclusion

of new halo substructure may lead to the removal of neighboring high shape parameter host

halos while simultaneously decreasing the value of the shape parameter (becoming more

prolate). The net result is to drive the clustering signal of high shape objects down for

objects in large filamentary structures while having a minimal change on halos existing in

underdense filaments.

Finally, in the case of halo spin, I again see a weak mass dependence in Fig. 19,

but the trend with halo definition is reversed. As Lee et al. (2017) demonstrates, the spin

parameter tends to be smaller for halos in the most underdense and the most overdense

environments. Yet as I increase the halo size (again, with a preferential size increase in

overdense environments), I find that the clustering as a result of the high spin parameter

halos increases. I suggest that this result is driven by neighboring halos being converted into

subhalos and serving to significantly increase the measured value of the halo spin by having

both large halocentric distances and velocities that are preferentially aligned with the spin

in filaments. While I cannot confirm this theory from the present data, I intend to look into

this further in the future using a version of ROCKSTAR tuned to remove substructure from

halo property calculations.
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6.0 HALO SPLASHBACK RADIUS AND ASSEMBLY BIAS

The reader may note that this study carries many similarities in procedure to recent work on

the literature focusing on the “splashback radius” (More et al., 2015; Mansfield et al., 2017;

Diemer, 2017; Diemer et al., 2017) Indeed, the possibility of a more physically inspired halo

definition is a strong motivator behind this work. The splashback radius of a halo is the halo-

centric distance where infalling material reaches the apocenter of its first orbit. By analogy

with the spherical collapse model (e.g., Fillmore & Goldreich, 1984), this radius separates

the halo region, within which material is orbiting the halo and we expect interactions to be

important, from material on first infall, for which we expect interactions to be less important.

The average overdensity enclosed by the splashback radii of halos is not constant, but varies

with halo mass, accretion rate, and redshift (Mansfield et al., 2017; Diemer, 2017; Diemer

et al., 2017). I note that, a priori, there is no reason to expect that using splashback

radii and masses would mitigate assembly bias. However, investigating the relation between

splashback radii and halo assembly bias gains us a better understanding of what may be the

underlying cause of the previously observed mitigation.

6.1 RESULTS

6.1.1 Statistical Comparisons

The work of Diemer et al. (2017) allows for a broad connection between the results of

Chapter 5 and the splashback radii, presented as Fig. 22. The blue points show the radii

(in units of r200m) of halos selected at each of the ∆ thresholds that minimize concentration-
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dependent halo clustering as a function of halo mass, M200m. The previous result suggests

that halo definition must be a strong function of halo mass in order to mitigate assembly

bias. The red line shows the median splashback radius of halos as a function of M200m

(Diemer et al., 2017) which exhibits a much weaker dependence on halo mass than needed

to mitigate assembly bias. This comparison, however, ignores that the red line is merely

an average relation with significant scatter. The overdensities enclosed by the splashback

radii of individual halos do span a range similar to the overdensities found in this paper,

where the overdensity is a strong function of the mass accretion rate. Since mass accretion

rates are expected to be correlated with large-scale environment, the overall effect of using

splashback radii is hard to predict.

6.1.2 SPARTA Comparisons

To address the matter that the splashback radii of individual halos could have significant

differences, I make use of SPARTA catalogs provided to me for the L0500 simulation volume.

SPARTA, the Subhalo and PARticle Trajectory Analysis code (Diemer, 2017), allows for the

identification of the splashback radius at the level of individual halos (as opposed to the

bulk relation that was utilized in the above analysis). Put simply, the algorithm is fairly

straightforward. First, individual particles are identified as members of a halo and traced

through time in order to identify the apocenter of their first orbit; effectively this is the

splashback radius of an individual particle. From the distribution of splashback radius for

a given halo, you can define a halo splashback radius from that distribution. I choose to

examine two specific splashback radius: rsp,50% and rsp,87%, where the number represents

which percentile in the splashback radius distribution is being used to represent the overall

halo. For each of these halo radius definitions, catalogs have been provided to me with

host halo identification carried out for that specific definition. As previously seen, changing

the distribution of host halos compared to subhalos can have a considerable impact on the

resulting halo assembly bias. From this data, I divide the halo distribution into three samples:

1. Host halos as defined by the ∆ = 200m halo definition.

2. Host halos as defined by the rsp,50% halo definition.
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Figure 22 A comparison of the average ratio between r200m and the splashback radius as

determined by Diemer et al. (2017) fitting function (red line) to the average ratio between

r200m and the halo radius determined as our best choice of ∆ for removal of assembly bias

as discussed above (blue circles). The red shaded region represents the 0.07 dex scatter

in the Diemer et al. relation. There is some dispersion in r∆ but it is quite small (see

Fig. 5) so I do not show it on the blue points. Note that the halo mass chosen for the blue

points is determined by the mass cutoff in the simulation analysis, as the smallest (and most

numerous) halos dominate the calculation.
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3. Host halos as defined by the rsp,87% halo definition.

Note that the first set of halos only includes those host halos which also have identified halo

splashback radius; this pushes the sample to the high mass end. In particular, only halos

that exceed M200m > 1013h−1M� are utilized in this analysis. Beyond this, halo properties

are calculated using a ∆ = 200m spherical aperture and normalized identically to the MCF

results above. Any change in the MCF is thus driven by a change in the population of host

halos.

I present the results for halo concentration as Fig. 23. The solid lines plot the MCF

of halos using the NFW concentration, with each line containing a different halo sample.

I emphasize that the only change between these lines is the host halo population; e.g. a

splashback radius definition may have less host halos due to the change in size causing a

number of nearby host halos to be identified as subhalos. At the given mass range, the fitting

relation from Diemer et al. (2017) suggests that the average halo will have a radius roughly

20% larger than r200m. Note that even when dealing with each splashback radius being

defined for individual halos, the net result is a mild increase in the strength of halo assembly

bias with respect to halo concentration. This matches the naive anticipation derived from

the functional form above.

I also provide the results in Fig. 24 as an example of this relation matching the

behavior expected from the mean relation. Note that a large positive halo assembly bias

signal is seen for all three halo definitions chosen. Further, the behavior of the splashback

radius to reducing halo assembly bias is consistent with the results of Fig. 17. This serves as

an additional verification that the halo splashback radius does not appear to mitigate halo

assembly bias for either halo concentration or halo shape.

Consider, however, Fig. 25. A first inspection will note that there remains a signifi-

cant halo assembly bias signal, as to be anticipated for the given mass range given previous

results. However, note the minimal impact that a change of halo splashback radius has upon

the signal of halo spin driven assembly bias. This contrasts with Fig. 18, where a change in

halo definition can lead to a considerable change in the assembly bias signal. This result,

while puzzling, may provide some insight into the underlying nature of spin driven assembly

bias. Note that halos with large accretion rates are known to have smaller rsp,50%/r200m on
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Figure 23 NFW concentration marked correlation functions. The solid lines plot the marked

correlation function of halos weighted by NFW concentration for a fiducial ∆ = 200m halo

definition. The lines correspond to different halo samples, with red corresponding to the

fiducial ∆ = 200m definition and blue (green) for those halos defined in SPARTA using the

50th (87th) percentile determined splashback radius. The shaded band contain 98% of 200

MCFs computed from shuffling uniform random marks among the L0500 halo sample.
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Figure 24 As Fig. 23, using the shape parameter as the property mark.
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average. Perhaps those halos with the most halo assembly bias signals do not increase their

halo size as aggressively under the splashback radius definition as opposed to the direct halo

redefinition carried out in Chapter 5. Examining the cause of this effect is a subject for

future work and beyond the scope of this current analysis, as many potential caveats exist

to prevent drawing firm conclusions from this particular analysis.
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Figure 25 As Fig. 23, using the spin parameter as the property mark.
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7.0 TECHNICAL DISCUSSION

I have examined the dependence of halo assembly bias upon halo definition, parametrized,

for simplicity, by spherical overdensity threshold ∆. Fig. 6 presents a pictorial representation

of our procedure. This work was motivated as an effort to determine whether or not the

dependence of halo clustering strength on halo properties other than mass could be mitigated

by judicious choice of halo definition. I further presented results for comparison using the

SPARTA splashback radius algorithm, exploring another more physically motivated definition

and drew comparisons against my ∆ = 200m assembly bias measures. I now summarize the

results of this analysis below, with a focus on the details for the expert in the field. A more

broad view is taken in Chapter 8 below.

• I confirm the results of the literature using the (Diemer & Kravtsov, 2015) simulations

regarding halo assembly bias as a function of halo concentration, halo spin, and halo

shape (see Fig. 10, Fig. 12, and Fig. 13. I look at the broad mass dependence at a

redshift of z = 0 and note the particularly strong mass dependence of halo concentration

dependent assembly bias, even when the underlying halo mass-halo concentration relation

has been removed.

• I show that the degree to which halo clustering depends upon auxiliary halo properties

varies considerably with halo definition. Even among commonly used halo definitions,

such as ∆ = 625m (∆ = 200c), ∆ = 340m, and ∆ = 200m, the strength of assembly bias

varies considerably with ∆. This is particularly true of halo concentration (see Fig. 19).

• A judicious definition of a halo can greatly mitigate concentration-dependent halo clus-

tering (see Fig. 15 and Fig. 16). However, this requires a halo definition that has a
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strong mass dependence; a threshold of ∆ = 20 mitigates assembly bias at low masses

(M200m ∼ 1.8× 1011 h−1M�) but induces assembly bias of opposite sense at high masses

(M200m & 4× 1012 h−1M�). At high masses, an overdensity of ∆ ≈ 340m results in very

weak concentration-dependent clustering.

• At low mass (M200m . 4× 1012 h−1M� samples from the L0125 and L0250 simulations),

concentration dependent clustering is mostly driven by low-mass halos in the immediate

neighborhood of larger halos that have had their properties altered through interactions

with the larger neighbors. This is not the case for more massive halos (Fig. 20 and

Fig. 21). Assembly bias at the high-mass end has a distinct origin.

• Halo shape-dependent clustering is significant over a wide range of halo definitions, but

does not exhibit a strong mass dependence for any particular halo definition (Fig. 17

and Fig. 19). While the trend is for shape dependent halo clustering to be weakened as

∆ is reduced, it cannot be mitigated with any of the halo definitions examined between

20m ≤ ∆ ≤ 625m.

• Halo spin-dependent clustering demonstrates assembly bias that increases weakly with

halo mass. Spin-dependent assembly bias can be mitigated with a threshold of ∆ ∼

340− 625m for the lowest masses (M200m ∼ 1.8× 1011 h−1M�), while considerably larger

values of ∆ must be used at higher masses (M200m & 4 × 1012 h−1M�, see Fig. 18 and

Fig. 19).

• Although our study was partly motivated by recent studies of the “splashback radius,”

there is no clear connection between our preferred halo definitions and the average splash-

back radii of halos as a function of halo mass (Fig. 22).

• Similarly, I see no significant mitigation of assembly bias when utilizing individual splash-

back radii generated through the SPARTA algorithm (See Fig. 23, Fig. 24, and Fig. 25).

The changes in the results for halo concentration and halo shape are consistent with a

picture in which the splashback radius is larger on average than the ∆ = 200m halo

definition, which maps well onto our previous results.
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• However, I note that those halos with the largest accretion rates (which may be expected

to have the most irregular shapes) are those whose halos do not have significantly in-

creased splashback radius. This may be the source for the inconsistency with Fig.25 with

respect to the results of Fig. 18, in which increasing halo size typically increases the halo

assembly bias. This suggests a connection between halo accretion rate and halo spin

assembly bias.

• I compile many of our the results in Fig. 19, which gives an example of the mass and

halo definition (∆) dependence of the strength of halo assembly bias. This is the first

detailed exploration of halo definition impacting assembly bias in the literature.

I conclude that a single, simple, definition of halo size based on overdensity or a

similar criterion cannot, by itself, be exploited as a method to mitigate halo assembly bias.

At the very least, mitigation requires any such halo definition to be mass dependent, and

likely requires halo definitions that are considerably more complicated than what I have

explored here. It is possible that these strategies may be more fruitful when applied to

halo properties that have not studied in the present work. A prominent example of such

a property would be a measure of halo formation history, though this potentially raises

the computational cost due to needing to trace through the halo merger history in some

form. A thorough examination of other potential properties may still merit further analysis.

Nonetheless, as more and more precise galaxy clustering data become available, we must

continue to seek tools that may be used to interpret such high-quality data. Revisiting and

reconsidering the concept of a dark matter halo may continue to be one aspect of this search.

The results of this study offer several promising extensions in the near immediate

future, to be resolved in future publications. The most straightforward analysis I intend to

explore is to continue utilizing the ROCKSTAR halo finder in order to confirm the hypothetical

models I have made to explain the current results. For example, the previous analysis has

proposed that halo properties can become modified by the inclusion of new substructure

inside of the expanding host halo. I currently have access to a modified version of ROCKSTAR

which explicitly excludes subhalos from the property analysis; it is possible that if the inclu-

sion of subhalos is the fundamental driver of halo assembly bias, halo properties calculated
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in the absence of subhalo contamination should be more robust. Another possibility in the

search for a more robust halo definition is to attempt a halo definition dependent upon

the local environment; this could vary from defining halo definitions with respect to some

aperture centered upon the density peak rather than the total background of the universe

to using this same aperture to choose different halo definitions for different local environ-

ments. Testing this would be more computationally intensive due to needing to determine

how various apertures for determining the local density and other similar assumptions would

impact the result; there may also be nontrivial coding issues regarding the parallelization of

the ROCKSTAR algorithm. The latter method bears some similarities to the suggestion of a

mass based halo definition, in which a halo could be defined M200m, which is then utilized

to choose a more optimal halo definition based on the results in Fig. 19. The ultimate goal

would be to attempt to find more self-similar halos, though the different dependences as a

function of halo property still suggests that no global solution will be found to fit all halo

parameters.

I reiterate that one of the major take-aways from this study is the fact that the

impact of halo definition on the measured assembly bias is comparable to the impact from

the choice of halo mass observed. The results of this study then serve to help quantify

this effect for ease of comparison between different studies. This is especially important for

those attempts that seek to measure the level of halo assembly bias in observational data;

the difference between choice of halo definition, choice of halo mass, and halo properties

examined can potentially conspire to lead one to measure zero assembly bias. Extra care

ultimately needs to be taken to make a true “apples-to-apples” comparison between results

in the literature. Note that I have not explored at this time the potential impact of other

halo definition choices other than spherical overdensity halos; careful exploration may be

necessary of options such as FOF halos as well. One can easily imagine a universe where

different choices of the linking length can have an impact on the measured assembly bias,

under motivation similar to that of this work for expanding the halo radius.

To summarize the technical discussion, the above analysis finds the following major

effects that need to be accounted for in future halo analysis. Halo concentration driven

assembly bias is a strong function of both halo mass and halo definition; while best choice
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halo definitions to mitigate assembly bias are possible for this parameter, they are not

universal across all halo mass possibilities. Halo shape and halo spin have assembly bias

that is a function of halo definition, but only a weak function of halo mass. This makes

these properties better candidates for halo redefinition, though the impact of changing halo

size is different in size for each; increasing halo size tends to increase halo spin assembly

bias and decrease halo shape assembly bias. Finally, the splashback radius halo definition

does not demonstrate any significant preference over our näıve method of halo redefinition to

justify the greatly increased computational load. It does, however, give teasing hints toward

the understanding of the origin of halo spin assembly bias, however. Finally, future work can

focus on the continued exploration of halo definition choices, the choice to include or exclude

substructure in halo modeling, and improving the ability to make proper comparisons within

the literature.

The next chapter shall provide more a more broad, all-encompassing view of the

potential for this research to impact the field as a whole, without necessarily becoming bogged

down in a technical morass. I will present many possibilities based off these technical results

which have the potential to become entire dissertations in their own right; while some of these

projects may continue with my personal touch, the sheer breadth of what halo redefinition

can offer to the field necessitates working on future graduate students to truly explore all

the potential.
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8.0 CONCLUSIONS

The previous chapter of discussion focused primarily on the more technical aspects of our

results from the perspective of an expert in the field. However, it should be demonstrated

that the results of this study have broad reach across the field of both cosmology and galaxy

evolution. In this chapter, I present several key fields that the results of this study will

impact, what current experiments or surveys will likely need to account for these methods

and results, and what possibilities for future work exist. The first major thing to consider is

comparison within the literature, with a particular focus on the attempts to detect halo as-

sembly bias; this study allows an entirely new means by which to ascertain that comparisons

are being done in a robust way. There is also the broad sense in which halo assembly bias

can serve as a probe on the nature of galaxy formation and evolution. Finally, an important

consideration to consider is the application to improving halo model driven calculations,

where halo assembly bias can be a potential source of systematic errors. This final case has

broad impact to cosmological parameter estimation. I discuss possible applications of these

results to each of these major considerations and possible avenues for future study.

Let us first examine the case of comparison within the literature. As has been shown

throughout this work (most prominently in Fig. 19), halo definition and halo mass are both

important parameters to the understanding of halo assembly bias. In fact, after the removal

of any underlying halo mass-halo shape or halo mass-halo spin relations, halo definition

impacts the measure of halo assembly bias more significantly than halo mass. Consider that

the comparison between ∆ = 200m and ∆ = 625m is approximately the difference between

∆ = 200m and ∆ = 200c; this is the level of difference that is common even within work on

halo assembly bias. The difference can be significantly greater in other fields! In the context

of reproducibility, it is clear that neglecting clear definition of the process of halo finding
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is a serious problem. Clarity is necessary for the field to be able to work on this problem

adequately.

For the future of this question though, further work needs to be carried out. An

observational detection of halo assembly bias necessitates two major changes in the approach

laid out here utilizing only simulations. The first is being able to connect halo properties

to observables in the universe; mapping out halo concentrations in the observable universe

is too difficult for the raw statistical power that is necessary for being able to pull out halo

assembly bias. As such, proxies for halo concentration (or halo formation time) are utilized

in typical analysis. A second change of approach is the matter of satellite contamination.

In this work, it is a trivial step to separate host halos from subhalos and substructure. In

observation, this can be a potentially dominant source of error. One future extension to

our work will be to apply these same physical procedures to catalogs created with known

halo assembly bias and test how the ability to parameterize this assembly bias changes as a

function of halo definition. This may determine that some potential halo definitions are less

sensitive to effects such as satellite contamination.

I opened this study with a key question: “can a halo definition be chosen such

that there is no halo assembly bias across multiple halo properties.” Our answer is there

exists no clear solution to the problem of halo assembly bias. In a way, this work serves

to recontextualize the problem of halo assembly bias. The fact that halo assembly bias is

likely unable to be removed through halo redefinition as a result of the complex and differing

halo mass and halo definition dependences necessitates a change of approach. Rather than

a sharp focus on the removal of halo assembly bias, we now shift to a desire to understand

halo assembly bias in the greater context of galaxy formation and galaxy clustering. Instead

of considering it a potential nuisance, it is likely time to shift to models which explore

halo assembly bias as a potential marker to teach us about how the halo-galaxy connection

depends upon other parameters. For example, the signal of halo assembly bias with respect

to halo spin seen in Fig. 18 implies that halo spin is intrinsically tied to large halocentric

distances. As halo spin is known to be connected to galaxy spin (Jiang et al., 2018), this may

imply that the source of galaxy spin should also be motivated by physics on large halocentric

distances. Thus, halo assembly bias can now motivate our study of galaxy formation and
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evolution.

A natural extension then is to consider how we can leverage this new connection.

The first possibility is to consider the direction of moving from halo catalog to a mock galaxy

catalog, utilizing different methods of halo redefinition. As host halos and substructure are

frequently treated differently in these halo models, the resulting mock galaxy catalog should

simultaneously change as a function of halo redefinition. Consider tracking a statistic to

compare the mock galaxy catalog to actual observations at realizing the same populations,

such as the expected clustering of galaxies. By seeing how this changes as a function of

halo redefinition, one can attempt to probe where specific parts of the model are breaking

down. For example, if halo definitions are chosen where galaxy spin assembly bias should be

minimal, but the observation still demonstrates an excess clustering, it suggests that galaxy

spin assembly bias is driven through what is now host and subhalo interactions. Our models

can then be iterated upon in order to determine what scales matter for which parameters

and which sections are more important to subhalos versus hosts. While this work may be of

considerable technical detail, it provides an interesting new outlook on the field.

Of course, the reverse situation is also possible. Rather than considering how we

can move from halos to galaxies, we can take the opposite approach. Working with smaller

halo definitions than normal may allow us to avoid some of the possible fear of satellite

contamination. A confined halo definition can be used in order to relate galaxy clustering

properties back to their underlying halos with less risk, due to the relatively small halos

necessitating that other galaxies be within their own host halos. In this case, our work paves

the way for the necessary corrections that allow us to relate back to definitions that we are

more familiar with. We can assign halos of one definition and then imagine a situation in

which one uses relations such as the relative assembly bias and relative masses to transition

from a collection of very small halos to a collection of larger and interacting halos more

in line with our expectations. In this case, using a very tightly confined halo serves as a

temporary working definition.

In the immediate future, we will remain motivated by a need to determine accurate

cosmological parameters; as discussed in Section 2.2, the literature suggests that not account-

ing for halo assembly bias correct will lead to a biasing of inferences about the behavior of
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dark energy. This work gives a stronger understanding of how halo definition changes the

measured assembly bias; this will be of critical importance to combining different probes for

the evolution of the universe, which can often have drastically different choices in halo defi-

nition. Even within a single cosmological probe, there are exciting opportunities for research

with halo redefinition. I lay out several possibilities below.

One possible analysis is that of cluster count cosmology. The idea here is straight-

forward: by counting the number of galaxy clusters of a given total mass, you can connect

to expectations from a given cosmology (Campanelli et al., 2012, e.g.). Naturally, as dark

matter is the dominant source of mass, this makes the galaxy-halo connection an important

point of consideration. Further, multiwavelength cluster cosmology makes use of both the

∆ = 200m and ∆ = 500m definitions within their analysis, which I have shown have signifi-

cantly different response to halo assembly bias. While it has not yet been studied how much

of an impact that neglecting the change in assembly bias as a function of halo definition

may have on such analysis, this work strongly motivates a need to treat such choices less

trivially. In a more subtle manner, the fact that a change in halo definition can change host

(and subhalo) occupations can have an impact in the semianalytic models that are used

to generate galaxy mock catalogs for testing and verification as satellite merger is often an

important component in this modeling (Benson, 2012, e.g.).

For another case, consider the recently completed Dark Energy Survey. With a large

number of galaxies and a measure of how their shapes are distorted due to the gravitational

interactions of intervening matter (referred to as shear in the literature), the collaboration

was able to put excellent constraints on the combination of σ8, the normalization of the power

spectrum in the early universe, and Ωm, the energy density of matter in the universe (DES

Collaboration et al., 2017). However, it has been shown in the literature that extending these

sorts of analysis to smaller scales could yield significantly better constraints. Understanding

halo assembly bias is critical to this future analysis. Note that I have demonstrated that

significant assembly bias exists in our sample for a separation range ranging between 5−10h−1

Mpc; at these separations, the strength of nonlinear effects has led to the breakdown of

perturbation theory approaches (Carlson et al., 2009). Understanding assembly bias in

simulations is thus a key element to future surveys being able to improve their constraints;
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specific work should be done to examine just how much potential bias can be introduced if

assembly bias is present in the data, but unaccounted for in the analysis.

One final case for cosmological analysis worth considering is that of intrinsic align-

ments. When carrying out the measurement of galaxy shapes briefly mentioned above, the

simplest analysis is to assume that all galaxy shapes are randomly distributed initially, but

intervening mass can create alignments as their shapes are distorted. However, with the

hierarchical growth of structure in the universe coupled with features such as the cosmic web

there is the strong possibility of an intrinsic alignment between galaxies; that is to say they

have some preferential alignment with neighbors rather than being randomly distributed

(Blazek et al., 2016). As different galaxy populations are known to have different intrinsic

alignment signals (Blazek et al., 2015), it becomes more important to have a strong sense of

the galaxy spin-halo spin connection - and the halo spin driven assembly bias is significant.

While it is possible that one may approach this problem with the use of new halo definitions

(as suggested in our work), it is also quite likely that simply a better understanding of rele-

vant scales, relation to halo definition and halo size, and accounting for assembly bias may

be the best approach.

Ultimately, it becomes clear very quickly that halo redefinition can give us exciting

new leverage over many interesting and distinct fields today. If somebody needs to make com-

parisons within the literature, an understanding of halo definition’s impact on halo assembly

bias is a necessity to making fair and accurate meta-analysis. As a tool for understanding

galaxy formation and evolution, halo redefinition gives us a new way to explore the relevant

scales of interest and test how well our models connect to the observable universe. Finally,

as new surveys begin to focus their analysis in an effort to get a better understanding of

the universe around us, halo redefinition helps to give both an understanding of the halo

assembly bias that must be accounted for when extending to smaller scales AND potentially

serves as a mitigation technique for subsets of the analysis. The work that remains is vast

and will yield exciting new insights into the world around us.
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