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ABSTRACT  

Background:  

Osteoporosis exerts a burden on the national health services. Hip fractures cause significant pain, 

functional disability, and lengthy inpatient treatment. Therefore, prevention is of utmost 

importance for patients and physicians, as well as insurance payers and insurance providers [1]. 

Significance:  

There are gaps in knowledge about the complex interactions among the multiple factors which 

control the disease process. Computational modeling can aid in understanding the intermingled 

relations between the various factors at different levels and provide further insight into the 

disease development mechanism.  

Methodology:  

In the first aim, we built a computational model using Agent-Based Modeling (ABM) to 

investigate osteoporosis disease’s progression by simulating the interactions among the cellular 

and biochemical factors within the BMU and external factors such as weight, and physical 

activity.  In the second aim, we added a therapeutic agent to predict the changes in patients who 

are receiving that treatment. In the third aim tested the model’s ability to estimate the bone 
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density without the use of an initial DXA Scan reading. In the three aims, we validated the model 

by performing statistical tests to compare the model’s predictions and the DXA scan readings 

from the patients. 

 

Results:  

The Paired Sample T-test results was statistically not significant t (16) = -1.6, p = 0.12 in first 

aim and t (42) = 8.1, p = 0.28 and in the second aim. The sensitivity was between 85.7% and 

100%, and the specificity was 90% to 100%. In the third aim, the model successfully predicted 

the bone density in the first group (40-50 years age group) of patients Wilcoxon-sign (13), 

p=0.196. The model was not able to estimate the bone density for the other age groups. 

 

Conclusion: 

 

We successfully built an ABM that can predict the bone density changes in osteoporosis patients 

and patients who are receiving alendronate drug treatment.  The model, however, requires further 

improvement and testing to be able to estimate the bone density as a diagnostic tool. We 

conclude our ABM model can be used in research for studying the process of osteoporosis and 

has the potential to be developed into a clinical diagnostic tool. 
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1.0 INTRODUCTION 

Osteoporosis and related fractures are a significant and growing cause of morbidity in the United 

States population and have been a significant health concern worldwide for a long time [1]. 

According to National Health and Nutrition Examination Survey (NHANES), adults of age 50 

years and over suffer from osteoporosis of Femur neck & Lumbar spine in 5% and 6% 

respectively [2]. Osteoporosis exerts quite a burden on the national health services. Hip fractures, 

for example, causes significant pain, functional disability, and eventually extended inpatient 

treatment. Therefore, prevention is of utmost importance for patients and physicians as well as 

insurance payers and insurance providers [1]. 

The annual cost of osteoporosis-related fractures in the US elderly was estimated using a 

nationally based study to be $16 billion, using the same methodology to calculate the projected 

cost; the cost was expected to reach $22 billion in 2008 [3]. Predictive modeling also called 

“Computational modeling” is a collection of mathematical techniques performed for building a 

mathematical relationship between two or more factors [4]. Alternatively, predictive agent-based 

techniques use information extracted from basic scientific methods to create mechanistic 

relations among agents that ultimately simulate the mechanism and outcomes within that 

particular system [5]. Predictive modeling has been utilized for commercial purposes, for 

example: as analytical tools to analyze big data, companies can predict customers’ preferences or 
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improve their profitability. Also, Analytical tools are now routinely employed in sales, 

marketing, and supply chain optimization [6]. 

  

In healthcare predictive modeling has been used to predict the incidence, mechanism, and 

progression of genetic and infectious diseases [7-11]. Also, predictive modeling has also been 

utilized for diagnosis, prognosis, and treatment of various diseases and health-related 

conditions [7, 10-16]. 

 

Dual-energy x-ray absorptiometry (DXA) is considered to be the “Gold standard” for 

diagnosing osteoporosis [17, 18].By building an agent-based model and using the DXA scan for 

validating the models performance, this model can aid healthcare professionals in predicting the 

risk of developing osteoporosis and changes in bone density. This model can serve as a tool to 

study the internal mechanisms of osteoporosis. It also can perform various virtual experiments to 

investigate the effects of therapeutic interventions on the internal factors of bone matrix or bone 

density. After validating the model, it can be introduced as a clinical tool to predict changes in 

bone density.  
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1.1   RESEARCH AIMS 

This dissertation has three aims: 

• Aim 1: 

In the first stage, we collect sufficient information about the disease mechanism and the 

factors involved in the disease process from the literature. Then we build a model using 

an agent-based modeling technique to simulate the disease progression. After designing a 

functioning model, we test the model’s validity by comparing the results of the model's 

output with actual individual patients DXA scan bone reports. Also, during this stage, we 

will test the model’s accuracy, sensitivity, specificity, and reliability.  

• Aim 2: 

In the second stage, we aim to introduce a therapeutic agent into the model. Then, we will 

validate the model and test its ability to predict the effect of that therapeutic intervention 

on bone density changes. We will perform accuracy, sensitivity, specificity, and 

reliability tests to ensure that the model is stable and reliable after modification.  

• Aim 3: 

In the last stage, we will test the model’s ability to predict the first reading, in other 

words, to test the model's ability to predict the expected bone density based on the inputs 

that we feed it. There are no valid computational models’ -as far as we know- that 

provide an estimation of the bone density and that can be used an alternative in the 

absence of DXA-scan machines.  We will test validation of the model by statistically 

comparing its outputs to those obtained from DXA-scan reports from real cases. If the 
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model proves to be valid, we will perform other tests to measure accuracy, sensitivity, 

specificity, and reliability of the model.  

1.2 RESEARCH SIGNIFICANCE 

While the disease mechanism has been studied extensively through in vivo and in-vitro 

experiments, there are gaps of knowledge about the complex interactions among the multiple 

factors which control the disease process. Primary osteoporosis is a disease that is related to 

aging mainly, but other factors influence the disease progression in different patients. While 

some researchers concentrate on cellular and biochemical agents in the BMU as the main factors 

that control the bone density, other factors such as Gender, nutrition, weight, and physical 

activity can significantly affect the course of the disease [19-29].  

Dual-energy x-ray absorptiometry (DXA) is considered to be the “Gold standard” for 

diagnosing osteoporosis and is recommended by the WHO for screening and diagnosing 

osteoporosis [30-32]. However, DXA scan only provides a snapshot of the bone health at the 

time of the exam and does not predict the progression of the disease. Also, the DXA scan or 

alternatives such as QCT or MRI machines are not available to all clinicians everywhere. Wet-

labs experiments require a lot of funding, resources, and time. Also, unapproved medications 

cannot be tested on human subjects especially if the benefit is questionable with the risk present. 

There is a need for an alternative; a tool that can be used for testing the effects of experimental 

interventions and exploring the changes that occur in the bone while avoiding any harm to 

human subjects. 
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A computational model can be used to study and test theories about the interactions and 

roles of different factors in the BMU. The use of a computational model does not waste 

resources, and the experiment can be performed and completed within minutes. The model can 

perform any experiment using different interventions without the risk of harming animals or 

human subjects and with minimal financial cost. With the aid of computational modeling, the 

disease macro and micro processes can be analyzed virtually. While computational simulation is 

not a replacement for wet lab experiments, it indeed can provide valid results in much shorter 

time and less cost.  

 

Computational modeling can also aid in understanding the intermingled relations between 

the various factors at different levels and provide further insight into the disease development 

mechanism [5, 33, 34].  

 

This model after being validated clinically can also be used as a clinical tool that aids 

clinicians to predict the disease status and progression in specific patients. Such tool can be easy 

to use, inexpensive and be installed easily in most clinical settings. There were many efforts to 

create computational models to simulate the bone remodeling process, the bone healing process, 

and disease progression in specific conditions applying different technics: mathematical, 

statistical and agent-based modeling [35-42].   

 

This model is unique because results of the simulations and cell numbers can direct 

researchers to target a specific mediator -such as MCSF or OPG -or proper time to start 

preventive measures or maximize the effects of therapeutic interventions’.  
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  Osteoporosis as a disease depends on the outcome of the reaction between the cells 

within the BMU. Although most researchers agree about the importance of the roles of the 

BMU’s different cell types in influencing the bone health, there are different opinions about the 

inflammatory mediators that control the cellular actions. Cytokines such as IL-1, IL-6, IL-17, 

and TNF-α were included in the literature each with supporting evidence that suggests a critical 

role for that cytokine in the disease process [43-47]. 

 

  Our model, when validated, can be modified to test the theories behind each of those 

cytokines separately or in combination to see which one is the most important in the disease 

development. The model also can be used -when the proper values are available- to provide a 

threshold or a serum level in which that cytokine becomes actively involved in the bone 

remodeling process.  
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2.0  LITERATURE REVIEW 

2.1 LITERATURE SEARCH PROCESS 

The literature review done in this dissertation was divided in two stages. The following 

subsections explain how each stage was completed. 

2.1.1 General Information About Osteoporosis Epidemiology & Histopathology 

 

In this stage, our focus was to locate, and review information related to osteoporosis; to 

understand the disease mechanism and behavior. Since we aim to create a model to study the 

behavior of osteoporosis, it is mandatory for us to review detailed medical and scientific reviews 

that describe the disease epidemiology and explain the histopathology of the disease mechanism. 

We conducted a literature search using Google Scholar, and PubMed from 1990 to 2015, to 

identify studies examining bone histology, bone physiology, epidemiology, and histopathology 

of primary osteoporosis. 

 In our literature search, we used the terms “Osteoporosis pathogenesis,” and, “bone 

histology,” “bone physiology,” “Osteoporosis,” “Osteoporosis Epidemiology,” and “osteoporotic 

fractures.” We restricted the search to articles in English language only, to avoid confusion that 
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may happen after translations. Also, we used cross-referencing, by going through articles from 

relevant original research or review articles. 

We also searched the mentioned search engines using the previous terms separately and 

using conjunction operators (OR & AND). Primary sources for those reviews and reports were 

scientific journals and specialized professional associations’ including but not limited to WHO, 

NIH, CMS, and the CDC.  

2.1.2 Information About the Use of Modeling for Medical Purposes in General And 

Osteoporosis Specifically 

We searched google, google scholar, and PubMed using the search terms: “modeling in 

healthcare,” “computerized modeling in healthcare,” “agent-based modeling & healthcare,” 

“Osteoporosis in-Silico” and, “agent-based modeling for osteoporosis”.  

 

We also examined the above search engines using the previous terms separately and 

using the conjunction operators (OR & AND). Some essential references were located and 

chosen through cross-referencing from relevant papers or reports that were selected from search 

results.  

 

Selection criteria: The following table includes the selection criteria that we applied for 

choosing references that were used in the literature review: 
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Table 1: Reference selection criteria for step 2. 

Criteria Purpose 
1. Article or Report is published in a 

scientific journal or a well-known 
professional source. (Mandatory) 

To ensure credibility and authenticity of any 
information used in the project. 

2. Selection of the most recent publications 
(past five years). (Mandatory) Including up to date information.  

3. Cross-referencing (Preferred) To choose papers that are highly cited which 
provide rich and valuable information.  

2.2 BONE HISTOLOGY AND PHYSIOLOGY 

In this section, we will review basic bone histology and physiology information which is 

essential to better understanding the mechanism of the natural bone tissue development in the 

human body.  

 

2.2.1   General Information About the Bone 

The human skeletal system is formed mainly by the bone that provides the framework and serves 

for supporting the weight of the body as well as protecting the vital internal organs. The bone 

houses the red marrow that produces all kind of blood cells through hematopoiesis [48]. 

There are four general categories of bones: long bones such as, femur and tibia; Short 

bones include the carpal and tarsal bones. While Flat bones examples include the skull, and 

mandible; and Irregular bones like vertebrae, sacrum, and coccyx [49]. The bone weight 

approximately constitutes 15% of total body weight for males and 12% of females [50]. 
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The bony skeleton is vital for many functions including: 

1. Physical supporting function for the whole body frame. 

2. Works in tandem with the muscular system to allow for precise and smooth body 

movements. 

3. Shields the internal vital and sensitive organs. 

4. It also works as storage for minerals, growth factors, and inflammatory mediators. 

5. Protects the main tissue that performs hematopoiesis that is the red marrow [49]. 

2.2.2 Bone Histology 

The bone at a histological level is built into two structural organizations: cortical bone, and 

trabecular bone. Bones in the body are formed from both types of bones in varying ratios. 

 

 The “osteon” which is the primary functional and building unit of the bone constitutes 

both the cortical and trabecular bone. Cortical bone and trabecular bone are naturally developed 

in a lamellar formation, where collagen fibrils are arranged in alternating alignments. Perhaps the 

alternating alignments of the collagen contents are the reason behind the significant sturdiness of 

the bone [49]. 

2.1.1.1 Bone various histological structures:  Cortical bone forms 80% of the total bone 

structure. Dense and stable in composition, the cortical bone basic building unit – or osteon – 

is called the Haversian system. Haversian systems are cylindrically shaped structures that 

form a branching framework within the cortical bone [49]. The Haversian systems wall is 
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designed of lamellae aligned and encircling the Haversian canal. It also serves as a tunnel that 

protects nerve fibers and the accompanying blood vessels to the interior of the bone's cavity 

[49, 51]. Amplified cortical remodeling results in porosity and reduction in cortical bone 

mass, naturally occurring in aging healthy individuals’ where the bone cortex suffers thinning 

accompanied by increased porosity [49].  

Trabecular bone composes 20% of the total bony skeleton. Trabecular bone has greater 

elasticity and turnover, but less density than cortical bone. The trabecular bone osteons also 

called (packets) are built in a semilunar organization, with multiple layers of concentric lamellae 

[49, 52].  

2.1.1.2 The Bone Matrix:  Type I collagen is the core organic component of the bone 

matrix by constituting 90% of the organic composition.  Collagen fibers are organized either 

in parallel fashion in trabecular lamellae or concentric manner encircling the Haversian canal 

as a part of the Haversian system [52]. The bone matrix also contains a multitude of none-

collagenous proteins that were found recently to have significant roles –mechanism still under 

research -  in bone mineralization [53]. Calcium hydroxyapatite crystals are deposited 

between the collagen fibers to strengthen and stabilize the bone. About 99% of the calcium in 

the body is stored in the bone [22, 25, 51, 52, 54-56].  

2.1.1.3 Basic Multicellular Unit BMU:  BMU is the structural and functional unit in the 

bone in charge of bone formation and resorption. It is comprised of osteocytes, osteoblasts, 
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and osteoclasts [22, 28, 44, 45, 51, 54, 57, 58]. It was estimated that normally there are about 

1 million active BMUs in an adult human skeleton [59]. 

 

2.1.1.4 Osteocytes:  They are basically osteoblasts that are entrapped within the osteoid. 

Osteocytes compose 90% of the cellular matrix but have a limited role in matrix production. 

Osteocytes have an essential role in bone homeostasis, through adaptation of bone to 

mechanical stress and hormone-mediated mineralization [52, 54, 60-63]. 

 

2.1.1.5 Osteoblasts:   Osteoblasts are the primary building units of the bone, producing 

most of the bone matrix components. Osteoblasts are organized in clusters along the lining of 

the layer of bone matrix which they create [52, 54]. Osteoblasts secrete essential growth 

factors including insulin-like growth factors (IGF), transforming growth factor beta (TGF-β), 

and bone morphogenetic proteins (BMP). Those growth factors regulate the activity of the 

osteoblasts. Osteoblasts surface receptors include receptors for hormones such as the 

Parathyroid, Thyroid, and Progesterone hormones. Significant nuclear steroid receptors are 

also located on the osteoblasts that have a major role in the bone health such as vitamin D3 

and estrogen and androgen surface receptors [52].  

 

Bone formation is an ongoing process that runs through three main phases: production, 

matrix maturation, and matrix mineralization. In the normal physiological state, those three 

phases run at a consistent rate. Osteoblasts build the osteoid by rapid secretion and deposition of 

collagen. Immediately after that, the mineralization starts within the collagen fibers. In the 
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maturation phase, collagen fibers synthesis comes to a halt while the mineralization continues 

until the bone tissue is properly mineralized [52, 54]. 

 

2.1.1.6 Osteoclasts:  Osteoclasts are multinucleated giant cells; their diameter can reach 

up to 100 mm. Osteoclasts are the main cells responsible for bone resorption [52, 54].   

Osteoclasts attach to the bone surface by small active binding structures called (Podosomes) 

through the actions of integrin [64, 65]. After binding of Osteoclasts to the bone matrix, they 

produce lysosomal enzymes such as acid phosphatase and Cathepsin-K, which marks the 

initiation of bone resorption by breaking down the hydroxyapatite crystals which are covering 

the collagen fibrils [52, 54, 64]. Next, collagen fibrils are digested by Cathepsin-K and 

activated collagenases [52, 54]. Osteoclasts activity and bone resorption are regulated locally 

by cytokines and systemically by hormones [52, 54]. 

2.2.3 Bone Physiology 

The bone reacts to physiological or mechanical stress by changing its shape through the 

modeling process. Bones are modified in width and become sturdier due to the activities of 

osteoblasts’ or osteoclasts to tolerate the stress of biomechanical forces [49, 52]. 

The active periosteal surface is vital for the process of bone growth and repair. Bone growth 

typically exceeds bone resorption; consequently, with aging bones naturally increase in 

thickness. The endosteum, however, has greater remodeling activity than the periosteum; which 

is probably due to the greater exposure to cytokines produced in the neighboring Morrow, as 
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well as the mechanical stress. In contrast to the periosteum, the endosteum Bone resorption rate 

exceeds the bone formation causing marrow space to expand with aging [49, 52]. 

 

2.1.1.7 Bone remodeling:  Bone remodeling is an ongoing physiological process. 

Damaged or old bone is continuously replaced by a newly built healthy bone [51, 52]. 

Between 5 and 10% of the human skeleton is replaced per year [66].  

 

Remodeling is a cyclical process that runs through three stages: resorption followed by a 

reversal and finally bone formation.  Osteoblasts and osteoclasts work in balance with the aid of 

cytokines and hormones to continue running the remodeling cycle. Undifferentiated Pre-

osteoclasts migrate to the area targeted for remodeling where they join forming giant 

multinucleated osteoclasts that start resorption of the bone, a stage that may extend up to two 

weeks. After the resorption process is complete, the reversal stage starts by pre-osteoblasts 

migration into the targeted area and differentiation into active osteoblasts; this stage typically 

lasts from four to five weeks. Osteoblasts start building new bone tissue (formation stage) until 

they replaced all of the resorbed bone; bone formation is the longest stage as it extends up to four 

months after which the process is complete, and then bone enters a resting stage that continues 

until the next remodeling cycle [52, 54]. 
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2.3 OSTEOPOROSIS  

2.3.1 Information About The Disease 

Osteoporosis is a systemic condition that affects the whole bone skeleton weakening the bone 

mass and microarchitecture and resulting in bone fragility and many cases, fractures [19, 23, 57, 

67]. Osteoporosis can either be primary osteoporosis that is due to aging-related hormone sex 

hormonal deficiency, or secondary; which occurs secondary to other systemic inflammatory 

diseases such as rheumatoid arthritis or inflammatory bowel disease [19, 45, 55, 68].  

It is estimated that more than 200 million osteoporosis case among women worldwide [58]. In 

the United States and Europe, approximately 40% of Caucasian postmenopausal females suffer 

from osteoporosis, with the life-long elevated risk of spine fractures up to 50% [23, 69]. Males 

aged 50, and above have an increased risk of 20% for suffering an osteoporosis-induced fracture. 

Osteoporosis prevalence in the state Pennsylvania has reached -according to the C.M.S- 7.5% of 

the total state population in 2012 [70]. 

 

2.3.2 Osteoporosis Disease Mechanism 

Bone formation and resorption is a process that runs continuously within the Basic multicellular 

unit (BMU). In the ordinary setting, bone formation and resorption are operating in balance, 

which results in removing the old bone and replacing it with a new healthy bone. When that 

balance is disturbed in osteoporosis, the resorption overwhelms the formation, because of that; 

the bone becomes fragile and brittle or Osteoporotic. Several factors trigger and stimulate 
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osteoporosis by disturbing the mentioned balance in the absence of secondary systemic 

conditions, including the acute phase of estrogen deficiency during early stages of menopause, 

medications that suppress sex hormones in both genders, and smoking [19, 23, 28, 57, 67, 71]. 

Activation of Osteoclasts is usually accomplished through the interactions of hematopoietic 

precursors with osteoblasts or by inflammatory cells, such as leukocytes or T-lymphocytes. 

Macrophage colony-stimulating factor or (M-CSF) which is either membrane-bound or secreted 

by inflammatory cells, stimulates the differentiation of osteoclasts progenitor-monocytes in the 

bone marrow into pre-osteoclasts. Pre-osteoclasts express the Receptor Activator of Nuclear 

Factor κ B known as (RANK). Next, the RANK receptor that can couple with a cytokine 

produced by osteoblasts and inflammatory cells, known as RANK Ligand or RANKL [25, 45, 

52, 54, 56].  

Coupling of RANK with RANKL activates osteoclasts that merge into multinucleated 

giant cells that produce Acid phosphatase and Cathepsin-K that break down the bone’s 

hydroxyapatite crystals and collagen fibrils. The hormonal imbalance that stimulates the 

maturation of osteoclasts also reduces the rate of osteoclasts apoptosis and reduces activation of 

osteoblasts, in other words, extended bone resorption and limited or no bone formation[19, 22, 

23, 44, 45, 52, 55-58, 68, 69, 71] 
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2.4 FACTORS INVOLVED IN OSTEOPOROSIS DEVELOPMENT 

2.4.1 Hormones 

Reduction of estrogen in females in menopause and testosterone in males after the age of 50 

triggers the stimulation of bone resorption. Estradiol (a form of estrogen) has a protective effect 

on the bone in both genders, as it preserves the bone matrix in a healthy state [19, 44, 72-74]. In 

females, the risk of fracture increases with time, as the risk of fracture increases for Caucasian 

females from 15% at the age of 65 to 35% at the age of 85 [19, 21, 67, 75].  

 

Estrogen also inhibits the maturation of osteoclasts and promotes osteoclasts apoptosis, 

on the other hand, it preserves osteoblasts by inhibiting  RANK and stimulating bone formation 

[6, 19, 21, 45, 76, 77]. Estrogen suppresses RANKL production by osteoblasts and T helper 

cells; it also stimulates the production of OPG [19, 22, 54, 67].  

 

    The Parathyroid hormone (PTH) can cause severe bone fragility in hyperparathyroidism. 

However, when used in therapy, it was found to preserve osteoblasts and stimulate their bone 

formation activity [21, 54, 67, 78]. 
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Figure 1: Mechanisms that promote bone formation: Blue cells represent osteocytes, green are 
osteoblasts, and pink cells are osteoclasts. 

2.4.2 Chemical Agents Within The BMU       

2.4.2.1 RANK, RANK-L, and OPG: Receptor activator of nuclear factor-ҡ B ligand (RANK-L) 

is a cytokine produced by the osteoblasts. RANK-L binds to its receptor activator of nuclear 

factor-kB (RANK) present on the surface of osteoclasts causing osteoclasts activation and 

ultimately bone resorption [21, 25, 44, 45, 52, 72, 77-79]. Osteoprotegerin or (OPG) is another 

cytokine produced by osteocytes, OPG binds with the RANK competing with RANK-L, which 

results in inhibitor of osteoclastogenesis [21, 25, 28, 44, 45, 52, 56, 63, 72, 77, 79]. OPG also 

binds to RANKL reducing its half-life and promoting RANKL shedding [80].  

2.4.2.2 M-CSF   :Macrophage colony-stimulating factor or (M-CSF) which is produced by 

Osteoblasts binds to a surface receptor present on the osteoclasts precursors promoting the 

maturation of osteoclasts and increasing their numbers [19, 21, 44, 52, 54, 72, 79, 81].  Serum 
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M-CSF level increases with age slowly as it is measured in individuals in their twenties to be 

about 12 ng/mL up to 20 ng/mL in the eighties of age. The age-related elevation of serum M-

CSF was closely related to age-induced bone resorption rate that reached up to four folds the 

resorption rate of young individuals [82].  

 

2.4.2.3 Acid phosphatase and Cathepsin-K: Activated osteoclasts release Acid phosphatase 

and Cathepsin-K breaking down the bone’s hydroxyapatite crystals and collagen fibrils and 

resulting in bone resorption [23, 25, 26, 28, 44, 52, 56, 57, 68, 72, 77, 79]. 

 

2.4.3 Cellular Factors of the BMU 

2.4.3.1 Osteocytes: Osteocytes are critical in regulating the process of bone resorption and 

formation by producing mediators that control the activity of osteoclasts and osteoblasts [21, 25, 

54-56]. Osteocytes were found to produce interferon-β that inhibits osteoclasts differentiation 

[83]. Osteocytes produce Osteoprotegerin (OPG), an inhibitor of osteoclastogenesis [21, 54, 84-

86]. Osteocytes also produce Sclerostin, which inhibits osteoblasts bone formation activity [21, 

54]. Mechanical loading and PTH effect osteocytes which causes inhibition of Sclerostin 

secretion by osteocytes which ultimately will preserve the bone matrix [21, 54, 78, 87].  

2.4.3.2 Osteoblasts: Osteoblasts are the primary cells responsible for bone formation as they 

build the bone matrix by producing collagen, the main protein that composes most of the organic 

matrix. Reduction of osteoblasts activity is directly linked to bone fragility in primary and 
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secondary osteoporosis [19, 21, 25, 28, 52, 55, 67]. Osteoblasts activity can be stimulated by 

some hormonal factors such as estrogen and parathyroid hormone (PTH) [23, 78]. Osteoblasts 

can be inhibited by hormones such as high levels of PTH in hyperparathyroidism, or chronic 

glucocorticoids treatment [23, 25, 30, 57, 67, 69]. 

2.4.3.3 Osteoclasts : Bone resorption is carried out by osteoclasts, in osteoporosis, the number of 

osteoclasts is increased and are found to be more active [19, 21, 23, 51, 55, 69].Osteoclasts 

secrete H+ ions that acidify the resorption compartment causing the mineral component 

(hydroxyapatite) of the bone matrix to dissolve. They also secrete the cathepsin K enzyme which 

digests the organic matrix, which is mainly built from type I collagen [25, 49, 52].Osteoclasts are 

negatively influenced by estrogen, as it induces apoptosis and reduces their activity [19, 22, 57, 

72, 88-90].  
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2.4.4 Age and Gender 

Bone mass density (BMD) decreases with age, which consequently causes an increased risk of 

osteoporotic fractures. There was an approximately a 50% difference in BMD of females who 

are aged between 20 and 90 years old [19, 30, 67].   The lifetime risk of sustaining an 

osteoporotic fracture in males is estimated to be between 13-20% while in females can reach up 

to 50 % [30, 67]. BMD decreased among patients aged 20 to 90 was greater in females than in 

males, as it was measured to be 39–55% for females and 34–46% for males [91].  

 

            

 

 

Figure 2: interaction between the cellular and chemical factors within the BMU. The Osteocyte (blue cell) 
surrounded by collagen fibers and calcium form the healthy bone matrix. Osteocytes controls the activity of 
the other two cells by reacting to damage or stress and releases factors that may increase or reduce the bone 
density. The active osteoblast (green cell) lay down collagen type one to build the bone matrix, but also 
produces factors (RANK-L,M-CSF) that stimulate the maturation and activity of osteoclasts. Osteoclasts 
produce enzymes that break down the bone matrix causing bone resroption.  
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Osteoblast                                                                                             
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2.4.5 Vitamin D 

Vitamin D is essential for intestinal absorption of calcium that is used for bone mineralization 

and strengthening the bone density [20, 21, 25, 69, 78]. Reduction of 25-hydroxyvitamin D 

serum level below 30 ng/ml indicates a Vitamin D deficiency, which leads to increased PTH in 

secondary hyperparathyroidism, and ultimately osteoporosis [20, 29].  

2.4.6 Body Mass Index 

Studies found that Body mass index (BMI) is inversely related to osteoporosis and bone fracture 

risk [92-96].  High BMI (over 30 Kg/M2) in patients over 70 years of age provided them with 

33% reduction of femoral neck osteoporosis in comparison to their peers who have ideal or low 

BMI [94]. 

2.4.7 Serum Biomarkers 

Biomarkers which are products of bone formation/resorption are measured in plasma, or urine 

can be used to monitor or estimate bone formation/resorption rate in patients with normal renal 

function [97-100]. N-telopeptide of bone type I collagen or (NTX) is raised in association with 

bone resorption and increased osteoclasts activity [97, 98]. Bone formation and osteoblasts 

activity cause elevation of bone-specific alkaline phosphatase in serum [97, 98].  

Osteocalcin elevation in the serum may indicate bone formation or resorption [97, 98]. 

Procollagen type I amino-terminal propeptide (s-PINP) rises in serum as a reaction to bone 

formation [24, 99, 101-103]. Serum carboxy-terminal cross-linking telopeptide of type I collagen 
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(s-bCTX) is increased in relation to bone resorption [24, 99, 101, 102]. s-PINP and s-bCTX are 

recommended for screening by the International Osteoporosis Foundation (IOF) and the 

International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)  [99, 102]. 

There is no biomarker that can be used as a gold standard to diagnose osteoporosis. However, the 

biomarkers recommended by IOF and IFCC can be used in detecting and monitoring the 

response of osteoporosis to treatment [99, 102-104]. 

2.5 DIAGNOSING OSTEOPOROSIS 

2.5.1 Clinical Assessment 

A clinician can identify the patient as a high risk for the disease by obtaining a detailed medical 

history from the patient and asking about the following risk factors: menopausal status for 

females or age over 50 years’ old, and over 60 years old of age for males. The age when 

osteoporosis is diagnosed can also be related to factors such as smoking, vitamin D deficiency, 

poor physical activity, and other factors [27, 30, 71, 105]. The physician may ask questions about 

causes of secondary osteoporosis such as Hyperparathyroidism, or intake of glucocorticoid drugs 

[20, 106, 107]. 
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2.5.2 Laboratory Tests 

Blood tests may show low serum Vitamin-D, low serum calcium, or bone turnover markers that 

result from the bone remodeling process. Such tests can be used to give an idea about the bone’s 

general health condition but cannot be used to diagnose osteoporosis or guide the treatment plan 

of the disease [99, 101, 102, 104, 108, 109].  

 

2.5.3 Bone Density Tests 

Radiological examinations remain the most reliable none-invasive method to determine the bone 

density and estimate the risk of bone fracture. Bone mass density tests that are commonly used in 

clinical practice include dual-energy x-ray absorptiometry (DXA), quantitative computed 

tomography (QCT) [19, 23, 31, 32, 45, 57, 68, 110]. The DXA bone scan, however, is the test 

recommended by the world health organization and the national osteoporosis foundation because 

of the acceptable accuracy and reliability of the DXA test [31, 110, 111].  

2.5.4 The DXA Scan 

The DXA scan operates by sending radiation using a radiation source towards a detector 

positioned directly behind to the anatomical site to be assessed. The patient lies  

on a table that is placed between the radiation source and the detector. The radiation beam 

then passes through the targeted area and into the detector. The reduction of the radiation 
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beam which is due to resistance and uptake by the tissues is measured and then used for 

calculating the bone mineral density.  The DXA scan machine produces two X-ray beams 

 with different energy levels which are directed at the soft tissues and bone within the site for 

the test. Digital subtraction of the soft tissue absorption is performed; after which the BMD 

can be determined from the amount of radiation absorbed by the bone [110, 112]. 

 

The DXA scan report includes Bone mineral density measured by g/cm2, the T-score, 

and the Z-score. The T-score compares the patient’s BMD to the BMD mean of healthy 30-

year-old individuals.  The Z-score compares the patient's BMD to the mean BMD of peers of 

the same age. WHO recommended uses the T-scores as the standard for comparison in the 

osteoporosis classification. The T-score is the number of standard deviations closer or further 

from the reference value, T-score of Zero means that the subjects BMD is Ideal and equals 

the reference value.  The T-score is calculated using the following formula: (patient’s BMD 

– mean BMD of 30 y/o healthy subject) ÷ SD [30, 32, 110, 113, 114]. 

 

 

 Table 2: DXA scan results and its clinical interpretation as in the WHO osteoporosis guidelines [66-68]: 

DXA scan’s T-score Interpretation. 

+1.0 to -1.0 Normal bone mass density 

-1.0 to -1.5 Slightly lower BMD than normal 

-1.5 to -2 Moderate reduction of BMD 

-2 to -2.5 High reduction of BMD with Moderate risk for fracture 

-2.5 and below Severe loss of BMD with High risk for fracture 
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2.5.5 Online and Computer-Based Tools 

Some researchers adopted the use of osteoporosis risk factors such as (age, gender, race) for 

creating different clinical tools that calculate the probability of bone fracture [115]. Among those 

tools is FRAX, which was developed by the University of Sheffield as a screening tool to 

estimate the risk of bone fracture in particular areas of the bony skeleton. FRAX was based on 

population cohorts’ studies from different populations worldwide to calculate the bone fracture 

risk by processing several risk factors. Much simpler -still quite useful - tools were developed by 

researchers for screening and self-assessment purposes’ that use age only or age and BMI for 

estimating the risk for osteoporosis [115-117].  

2.6 OSTEOPOROSIS TREATMENT  

2.6.1 Treatment Options 

There are many treatment options available that include lifestyle adjustments, oral supplements, 

oral or intravenous medications. Each of the treatment options has its advantages and 

disadvantages. In the following subsections, we will explore the treatment options available thus 

far for managing osteoporosis.  
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2.6.2 Lifestyle Adjustment and Supplements 

As previously mentioned in our literature review, smoking has adverse effects on bone health as 

it was found in studies to reduce the bone density. However, the damaging effect of Cigarette 

smoking on bone health is highly variable [27, 105, 118].  

Maintaining a healthy body weight and performing weight-bearing exercise help reduce 

the bone resorption process. Underweight and bed-ridden or inactive individuals are more likely 

to have a weaker bone matrix and suffer pathological fractures [21, 28, 57, 119]. National 

Osteoporosis Foundation (NOF) and IOM advise the intake of 1000 mg/ day of calcium for 

men over 50 years old, and 1200 mg/day for women over 51 years and men over 70 years of 

age. An intake of Calcium over the recommended amount is not associated with documented 

improvements but may cause side effects such as kidney stones [17, 120]. Vitamin D is 

unquestionably essential for preserving the bones health and the body in general [20, 29, 57, 

121-123].

As a preventive measure, a Vitamin D is an intake of 800 IU to 1000 IU per day after 

the age of 50 is suggested by the NOF for maintaining bones healthy [17, 120].  Vitamin D 

deficiency must be treated as soon as discovered to prevent further deterioration in the bones 

density. Vitamin D deficiency is treated according to the severity of the condition; the patient 

may be treated with Vitamin D injections and oral supplements in order to reach a blood 

level of 30 ng/ml [17, 120, 124]. The efficacy of Vitamin D as a treatment for osteoporosis is 

highly variable among different populations. Patients’ who suffer from osteoporosis and have 

vitamin D- deficiency are advised to do weight-bearing physical exercise in addition to 

vitamin D intake to have a better outcome [29, 57, 120, 121, 123]. Vitamin D alone may 
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have no effect on improving the bones health in some individuals, but when Vitamin D is 

combined with physical exercise was found to improve the bone health between 1-2% per 

year [20, 29, 67, 122-125].  

2.6.3 Current Medications Used 

One of the most frequently used drugs groups for treating osteoporosis are Bisphosphonates. 

Bisphosphonates drug group operate by inhibiting the recruitment of osteoclasts and inducing 

osteoclasts apoptosis. This process ultimately reduces the bone matrix resorption and preserves 

the bone density [126]. Of the Bisphosphonates, Alendronate is the most clinically used and 

studied in the literature. Alendronate was proven to reduce the bone loss in post-menopausal 

women and to improve their bone density. However, Alendronate’s efficacy for treating 

osteoporosis depends on the dose, duration of treatment, and the individual’s response to 

treatment. Alendronate when used as a treatment for osteoporosis for a duration of ten years, 

resulted in bone density improvement by 2-3.9% [127-130].  

 In another study alendronate was used in different doses: 5 mg, 10mg, and 20mg daily 

for three years had variable improvements levels of bone density in various parts of the bony 

skeleton that ranged from 2.2 to 8.8 % [128]. For patients with osteoporosis, Alendronate 

reduced the risk of hip fracture when used for three years by 50%, by 36% in the femoral neck, 

and reduced the risk of vertebral fractures by 49% [120, 131, 132]. Other examples of 

Bisphosphonates available in the market and used for treating osteoporosis are Ibandronate, 

Risedronate, and zoledronate [127, 128, 133, 134].  
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Estrogen hormonal therapy is an effective but also a risky alternative for treating osteoporosis 

and preventing pathological fractures.  Although Estrogen therapy was proven to reduce the risk 

of bone fractures by 30-50%, it is also associated with increased risk for severe medical 

conditions such as Myocardial infarction, pulmonary embolism, and breast cancer [120, 135, 

136].  

Parathyroid hormone is used for treating male and female osteoporosis patients with high 

risk for pathological fractures [19, 78, 133, 137]. Recombinant human parathyroid hormone (1–

34) or Teriparatide (Drug name) is effective in reducing the risk of osteoporotic fractures by 53 

to 65% [120, 137]. It functions by reducing the osteoblasts apoptosis, which results in higher rate 

of bone formation [38, 78, 133, 137, 138].  

 

Abaloparatide which is a synthetic peptide analog of human parathyroid hormone-related 

protein or (hPTHrP), is used in an injectable form for treatment of severe osteoporosis with a 

high risk of osteoporotic fractures [139, 140]. 

 

An estrogen-like agent (Tibolone) is tissue-specific, is used for reduction and prevention of 

postmenopausal bone loss. Tibolone currently is not approved for use in the United States [120, 141, 

142].  

 

Another medication used for treating osteoporosis is Denosumab, which is a 

RANKL/RANKL inhibitor. Denosumab is a recombinant human Immunoglobulin-G2 antibody 

with an affinity and specificity for binding to RANK-L. As it prevents the osteoblasts 

RANKL/RANK interaction, it reduces the activation, activity, and lifespan of osteoclasts [52, 79, 
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80, 133, 143-145]. Treatment with Denosumab for three years reduces the risk of osteoporotic 

fractures in different areas of the skeleton by 20% to 68%[120, 133].  

 

2.6.4 New Treatments Under Evaluation 

Romosozumab is a humanized monoclonal antibody that blocks the action of Sclerostin, which 

will result in increased bone mass. Romosozumab still in phase 3 of the drug evaluation [87, 

146-148].  

Genistein which is extracted from soybeans is an isoflavone which is a class of 

phytoestrogens. Genistein improves the bone mass by stimulating osteoblasts activity and 

inhibiting osteoclasts resorptive activity [120, 149, 150].  

2.7 COMPUTATIONAL MODELING APPLICATIONS IN BONE HEALTH RESEARCH 

2.7.1 Predictive Computational Modeling In Different Professions 

Computational modeling has been used in different professional fields for making predictions 

and serving many different purposes for over fifty years. Computational modeling has been in 

use for predicting the weather forecast since the 1950s’. The experts who were using historical 

information collected over decades created equations and fed the data to the computational units 

and computers to predict the expected changes in the weather over time. Later, computational 

models became more advanced, and with their rules defined and better refined, they provided 
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predictions with accuracy that reaches over 80% for 36 hours predictions [151].  For marketing 

and other commercial uses, predictive modeling has been integrated into analytical tools to 

analyze big data. Companies can predict customers’ preferences based on their choices and 

create offers or send ads to users. Healthcare insurers and providers aim to maximize control of 

healthcare costs, so they use computational models to predict the most effective and efficient 

intervention based on the recorded insurance costs [152-154]. Currently, Analytical tools are now 

routinely employed in sales, marketing, and supply chain optimization [6]. 

In healthcare, predictive modeling has been used to predict the incidence, mechanism, and 

progression of genetic and infectious diseases [7-11]. Also, predictive modeling has also been 

utilized for diagnosis, prognosis, and treatment of various diseases and health-related conditions [7, 

10-16].  Those models can aid practitioners and policymakers in their daily work, especially when 

faced with limited data, having a model to help analyze the limited data is better than having 

minimum raw data [153, 155, 156].  

2.7.2 Computational Modeling for Studying Bone Health 

There have been many research efforts in implementing computational modeling for the study of 

cellular bone regeneration, tissue healing, bone-specific diseases, and the mechanism of bone 

fracture in particular areas of the bony skeleton [35, 36, 39, 41].  Many of the research projects 

were directed towards understanding the effect of stress exerted on the BMU and how it 

orchestrates the activity of the cellular and chemical components to regenerate or enforce the 

bone matrix [35-37, 39, 41, 42].  

Different techniques were used to build computational simulation models for studying bone 

health and disease processes. Mathematical, statistical, and agent-based models were applied for 
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predicting and studying the bone regeneration and resorption processes [37-39, 157]. There are 

many models created using the three approaches. We will include examples of each approach to 

demonstrate the uses of each approach.  

2.7.3 Mathematical Models 

Researchers apply the use of mathematical equations to create computational models to simulate 

changes in the bone matrix and the forces or chemical factors that cause those changes. 

Researchers created mathematical models to investigate many topics such as simulating the 

changes in the vertebral bone during health and disease conditions, bone adaptation to physical 

loading at a macroscopic level, and the effect of disruption of the horizontal trabeculae of the 

bone matrix on the bone strength [37, 41, 158].  

2.7.4 Examples of Mathematical Models 

Different hypotheses were tested, one of which was that the strength of the bone structure 

deteriorates due to disruption of the horizontal trabeculae of the bone matrix which results from 

strain-adaptive resorption. To test this hypothesis three simulations were analyzed, in the first set 

of simulations was involved strain-adaptive resorption of the bone, in the second set micro-

damage resorption was added in the simulation, and in the third set, the damage threshold was 

adjusted to increase as the damage to bone matrix progresses. After running the simulations and 

analyzing the outcomes, Mc.Donnel and his group concluded that strain induced adaptive 

resorption causes the horizontal trabeculae of the bone to break down leading to perforations in 
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the bone matrix; these perforations cause the breakdown of the vertical trabeculae and further 

deterioration of the bone matrix [158]. 

Another group of researchers tested three different methods for studying bone 

remodeling: Ordinary differential equation (ODE), stochastic model of the ODE, and Piecewise 

Multi-affine (PMA) modification of ODE.  Creating a computational model based on differential 

equation modeling, Bartocci and his colleagues managed to simulate the process of bone 

remodeling while including estimated and calculated values of the cellular and chemical factors 

in the BMU. They concluded that computational equation modeling could be used to simulate 

the bone remodeling process and when improved by adding patient-specific values, such models 

may be clinically useful [41].  

Concentrating on mechanical strains as a central cause for osteoporotic fracture, López et. 

Al. Developed a computational model using partial differential equations. The model created 

simulated the BMD changes in subjects who are not under any therapeutic interventions and in 

those taking different drugs for osteoporosis. The research was focused on the neck of the femur 

bone. Although the model was not validated, the authors claimed that this model could be used 

after clinical validation and modifications for predicting bone fracture risk in specific patients or 

for predicting the outcome of specific therapies [159]. 

To evaluate the physical resilience of vertebral bone and predict the outcome of vertebral 

cement augmentation, a group of researchers created a computational model that analyzes the 

vertebral bone geometrical properties and isotropic permeability before and after the 

augmentation process. That model served as a guiding tool to predict the outcome of 

vertebroplasty where the augmented material is injected into the damaged or weakened vertebral 

bone to strengthen it and reduce the pain. Widmer and his colleagues successfully created a valid 
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three-dimensional model that simulates the changes in vertebral bone microstructure. They 

concluded that their model could be used to predict the long-term stabilization of the vertebra 

post-cement augmentation treatment and aid in choosing the best site for the therapeutic injection 

[160]. 

Based on a previous algorithm to simulate the process and outcome mechanical loading 

on the bone cells, Christen and colleagues improved their algorithm to test the effect of 

hypoparathyroidism on bone remodeling. They hypothesized that Hypoparathyroidism increases 

osteocytes mechanosensitivity and reduces the bone turnover. After developing the algorithm, it 

was validated by comparing the results with bone biopsy results collected from the iliac bone of 

human cadavers and participating patients who were diagnosed with hypoparathyroidism. The 

results confirmed their hypothesis and were consistent with clinical data. They concluded that 

hypoparathyroidism could increase the cellular mechanosensitivity up to 40% and that 

hypoparathyroidism, when accompanied by mechanical loading, explains the increased bone 

mass and preservation of bone tissue [161].   

2.7.5 Statistical Models 

Statistical techniques used in modeling are Statistical shape models (SSM), and statistical 

appearance models (SAM). SSM simulates the bone shape while SAM is used to simulate the 

density. SSM and SAM which is also called statistical density modeling can be used in 

combinations and be known as Statistical shape and density modeling or SSDM [162, 163]. Both 

SSM and SAM, depend on training using patterns of data extracted from the mapping of 

anatomical landmarks on a specific bone surface such as the proximal femur. Radiological images 
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such as X-ray or DXA, are used for training the 2-D models while CT and MRI images are used 

to build 3-D models. Active Shape Models (ASM) and Active Appearance Models (AAMs) are 

Algorithms that are developed for fitting the statistical model's shape and appearance to the shape 

and appearance of the images [162-165].  

 

2.7.5.1 Statistical models’ examples: group of researchers created a model that compares and 

fits the bone surface landmarks information from the patterns of data to QCT images obtained 

for the subject. The model then generates a 3-D picture of that area. The model compares the 

shape and density of the head of the proximal femur of individuals that suffered a fracture in that 

area and others that did not have a fracture; then it provides a prediction of fracture risk 

according to the differences in surface shape and density distribution [165].  

 

Whitemarsh et al. created a model that simulates the shape of the bone to create a 3D image 

of the proximal femur by training the model to recognize the bone shape landmarks from X-ray 

images. This model 3D image provides a better visual presentation of the bone shape and 

structure to allow for better prediction of hip fracture risk [166]. Waarsing and colleagues built a 

model to estimate the relation between clinical osteoarthritis and the density or shape of the 

proximal femur bone surface. Using the DXA-scan images for the patients, they trained the 

model to recognize the differences in bone shape and density between individuals who have 

symptoms of osteoarthritis and individuals who are asymptomatic but have radiological signs of 

the condition [167].  
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2.7.6 Agent-Based Modeling 

Agent-based modeling or ABM can simulate behavioral mechanisms of biochemical and cellular 

interactions as observed in natural biological processes. As agents interact with each other in the 

simulation, each group of agents interacts with the other factors or groups based on sets of rules 

programmed into the model.  The rules used in the model are supported by values and 

interactions mechanisms that are directly extracted or inferred from scientific literature [5, 34, 

168]. 

The purpose of ABM simulation is to build of groups of agents and mimic their 

interactions in a hypothetical (virtual) environment, in order to perform an in-silico experiment. 

ABMs do not depend on patterns of data like most the mathematical or computational 

biomedical models. ABMs do not apply the inductive logic of scientific inquiry because it starts 

with the rules for interactions and attempts to recreate the recorded or scientifically observed 

outcomes by computing the interaction between the agents according to the behavioral rules [33, 

34, 169].  

 

ABM employs the concept of “parallelism”; a concept that is built on the logic that each 

agent’s class manifests several behavioral routes that connect to other agents’ operating within 

the same virtual environment. Each agent within the agent class expresses a distinct sort of 

behavior and operates concurrently with the other agents’ -in parallel routes- which will affect 

the result of the cumulated interactions between the agents in that trajectory.  The parallelism 

concept is expressed by the different cells in the BMU. An example would be the osteoblasts: 

each cell manifests variable activity levels based on its response to estrogen among other factors. 
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The end result will be the amount of bone formed based on the aggregated outcomes of all the 

osteoblasts operating in that area [5, 19, 21, 22, 168].  

 

ABM simulation which is an in-silico experimental process has an advantage over wet-lab 

approaches because of the ABMs’ ability to create complex and large datasets in the low-cost 

virtual environment. A model can be designed to perform an in silico-experiment in a few 

minutes that simulates a similar in-vitro/in-vivo experiment that requires days or months and a 

much higher cost to complete [5, 33, 34, 169].   

2.7.7 ABM For Bone Research 

ABM was recently introduced in bone research when some researchers used ABM for creating 

models to study the bone fracture and healing processes. Schutte created an ABM simulation of 

Cellular signaling and coupling of the BMU which was used to analyze the bone regeneration 

processes. Two ABM models were designed and built to study osteocytes signal for controlling 

bone resorption, and osteoblasts coupling to osteoblasts. The models were validated by 

comparing Z-scores produced by the models to Z-scores obtained from cases in the literature 

[157]. 

Bayrak and colleagues focused on Mesenchymal stem cells (MSC) as a promising 

solution for tissue engineering applications. They applied ABM to examine the joint impacts of 

growth factors and biomaterials on MSC differentiation and cell survival as well as their 

contribution to bone density. Studying the survival of stem cells implants within the bone tissue 

in-vivo is challenging mainly because of the variable rate and outcomes of which the cellular 
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differentiation of implanted cells and vascularization of the bone tissues scaffolds. Vascular 

endothelial growth factor (VEGF) and bone morphogenic protein-2 (BMP-2) were selected after 

searching the literature as the most important factors that were included in the simulation. 

Building on a previous model designed by the same group to simulate endothelial cells behavior 

during angiogenesis, the new model included the movement of MSCs’ within the polymeric 

scaffold and their differentiation into osteoblasts. The authors managed to create a 3D model that 

simulated the MSCs’ behavior during the osteogenesis process, and the results were that VEGF 

loading improved the vascularization of the structural scaffold and contributed to stem cells 

survival.   

They concluded that the simulations results were consistent with the information 

available in the literature and that ABM can be used to effectively to examine the joint stimuli of 

growth factors and biochemical factors on MSCs’ development and survival. [170].  

Other researchers used ABM to analyze hematopoietic stem cells (HSCs) behavior in order to 

understand bone marrow homeostasis better. HSCs’  differentiate into all kinds of cells that 

constitute the blood and populate the bone marrow. The mechanism of cellular preservation and 

behavior of HSCs’ is still unclear and determining such behavior can be very helpful in tissue 

repair research. Kurhekar and Deshpande utilized ABM to build a model to simulate the 

behavior of HSCs’ and how it differentiates into transitive cells and how it proceeds to apoptosis. 

Their model was an improvement to a previous mathematical model created by Agur et al. 

[171].The result was a 2D model that simulated the HSC division and mobility as it populates 

the bone marrow. Although their model was not validated, it was an interesting step to model 

HSCs’ which provided further insight into the HSC conversion into other blood cells and the 

process of HSC’s apoptosis [172].  
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2.8 GAPS IN KNOWLEDGE 

The general concept of Osteoporosis as far as the diseases mechanism, diagnosis, or prognosis is 

well described in the literature. However, there are many pieces of information missing that need 

to be uncovered for a better understanding of the disease mechanism at micro-processes levels. 

Cellular and chemical factors that interact within the BMU are explained by different theories 

and medical opinions that sometimes contradict each other.  The values of each of the chemical 

mediators within the BMU or the bloodstream are mostly unavailable. Cellular Receptor 

affinities and critical levels which may cause the disease the progress or regress are unknown.  

 

At a clinical and public health level: FRAX can provide an estimation of fracture risk for 

patients based on information gathered from public health studies, and there are self-assessment 

tools that provide patients with simplified estimation of their bone health using a small number 

of factors in their calculation. However, there is a need for a tool that can simulate the complex 

bone tissue environment and disease progression over time while bringing together the scientific 

theories that explain the disease process. Such tool can be used for researching new drugs, 

testing theories about bone remodeling factors and micro-processes. Also, after clinically 

validated this tool can provide an assessment or a prediction in a simplified report that can be 

easily understood by clinicians’ and their patients’.  
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3.0   AIM ONE BUILDING AN AGENT-BASED MODEL TO SIMULATE 

OSTEOPOROSIS 

3.1 INTRODUCTION 

In this section, we will describe the implementation of the first aim of this dissertation, that is to 

create an agent-based model to simulate the osteoporosis disease process and predict the changes 

in the disease condition as the time passes.  This section includes the model's design and 

justification of the design’s method, agents and their behavioral rules, parameters values and 

validation of the model.  

3.2 THE MODEL'S DESIGN 

 
In order to create a model that simulates the progression of osteoporosis, we need to choose the 

proper method of modeling that can process the different variables involved in the disease 

process and capture the possible outcomes of interactions between those variables. 

 

In comparison to tools that rely on patterns of data to predict the risk for bone fracture or 

osteoporosis in a particular area of the body based on patterns or mathematical equations, our 
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model should simulate the bone health using the cellular and biochemical interactions in the 

BMU’s environment. Our model should also include the relations of those interactions to 

external factors that exert an indirect effect on them such as the patient's weight, physical activity 

in addition to others [21, 37, 61, 93]. Our model will include complex interactions between the 

cells and mediators in the BMU and the external factors which ultimately control the bone 

remodeling process and the progression or regression of bone health. 

 

Osteoporosis is a dynamic and highly complicated process; the simulation will include 

several interactions within the BMU function through multiple layers of receptors activation that 

affect cellular activity levels. Within each type of cells, there are different possibilities of activity 

levels, as well as different receptor affinities and variable lifespans. The process of the disease is 

described explicitly in the literature. The literature, however, does not provide precise 

numbers/levels of the mediators within the BMU or the extent by which each mediator affects 

the cells involved.  Therefore, we need to design our model to accommodate the wide variety of 

factors with different behavioral patterns. Such factors are running in a continuous manner and at 

different levels while applying randomness within the interacting factors and the outcomes. We 

chose agent-based modeling design to build our model because it is the best method that can 

reasonably simulate the disease process which is as complex and dynamic as osteoporosis.  

3.3 DESIGN JUSTIFICATION 

Agent-based modeling has been used by the researchers to simulate disease conditions and 

biological processes in the past decade with great success [5, 170, 172, 173]. The reason behind 
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that is that ABM applies many concepts that are valuable to simulate dynamic biological 

processes like wound healing, bone remodeling, and acute or chronic inflammations. Among 

those principles that provide ABM with advantages over other modeling methods are spatial 

incorporation, parallelism, stochasticity, and others which we will discuss in this section [5].  

 

ABM being originally grid-based, can express simulations in a two-dimensional grid or 

easily create the simulation environment within three or six dimensions according to the 

requirements’ and purpose of the model built. Because of such flexibility, clinicians who 

understand the process of the condition to be simulated can build models that have complicated 

logical relations without difficulties. ABM allows for to more instinctive knowledge translation 

into models or clinical tools that can be deployed, attuned to data, and then validated and used 

for patient care [5, 170, 172].  

 

A significant advantage that ABM brings to our model is “parallelism” which will serve 

greatly in adequately simulating the changes in the bone matrix. ABM regards each agent class 

to have several stages as parts working together forming a whole collection of agents that 

interact inside a virtual, parallel processing environment. Similar to cells in the BMU, changes in 

factors interacting with each agent, exert direct control over the behavioral routes of involved 

individual agents.  Also, comparable to the diverse behavior of individual cells in the BMU, 

agents within the Agent-based model move in various behavioral patterns which are expressed 

by multiple levels of agents. Agent-based modeling has the power to provide the results of the 

aggregated system dynamics into a meaningful visual output [5, 157, 168, 170, 172].  
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Stochasticity or random behavior and unpredictability is another concept that agent-based 

modeling is capable of simulating. Biological systems or conditions such as wound healing or 

bone resorption may appear to the observant eye as unpredictable, but there are deterministic 

rules that control that seemingly random behavior.  Moreover, although such dynamic systems 

have rules that -if known- can be used to calculate the outcome in a mathematical equation, it is 

almost impossible to determine such rules from observation alone especially that the initial 

parameter values can be highly diverse which will also diversify the process routes and the 

outcomes.    

Agent-based modeling solves this problem by creating populations of the different agents 

within the model. The probability of a specific behavior is determined for the population as a 

whole, which will determine the probability function for the behavior of a single member (agent) 

of that population, and next identify the behavioral rules for that agent. As the simulation 

progresses, each agent follows a unique trajectory of behavior while the behavioral rules’ 

probability is adjusted for the whole population. This technique allows for the creating a broad 

range of behavioral outputs for every agent-based model, ultimately building a virtual system 

where agents are acting similar to their counterparts in the biological system under observation 

[5, 157, 170, 172, 173].  

 

  A distinct property of agent-based models is that they generate new behavioral trends 

through the interaction between the agents within the simulation, those innovative patterns 

cannot be extrapolated from inspection of the rules of the natural process. This unique property 

of agent-based modeling is called “emergent behavior,” it can be helpful in the model’s design, 

and validation process, but it can also break some of the processes leading the model to crash. 
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An example from our topic is the affinity of cells (Osteoblasts) towards a mediator (OPG), as the 

affinity to bind with OPG changes with the simulation due to the changes in the virtual 

environment and the functionality of the other agents interacting with the osteoblasts creates an 

unexpected behavior which results in higher osteoblasts surface receptor affinity causing the 

depletion of the OPG within the virtual space and resulting in the simulation to malfunction and 

stop [5, 157, 170, 172, 173].  

 

An agent-based model can be designed and function properly even in with some missing 

information of the process under simulation.  This property is highly valuable when constructing 

models for biological processes because there is -in many cases- a lack of complete knowledge 

about the details of those processes. This useful property allows the designers to simplify the 

rules which will make it easier later to verify the model. While mathematical modeling methods 

require details and exact numbers in order to create a sound simulation of a particular process, 

Agent-based modeling can overlook some details or exact numbers by performing qualitative 

verification of the possible outcomes and comparing it to the real outcome in the actual scenario.  

The stochasticity and emergent behavior properties in combination with mapping the 

model to known details of the biological process allow for fairly simulating the biological 

process outcomes and the unpredictability or randomness that occurs within the processes. This 

property is very valuable in our topic, because there are a lot of missing details about the 

numbers of surface receptors, quantities of mediators, rate and range of activities for the cells 

within the BMU, and many other details that cannot be possibly obtained from the literature [5, 

21, 34, 108, 157, 169, 170, 172, 173].  
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An agent-based model operates under control by rules of behavior of the agents within it; 

it has a “Modular design.” Having such design allows for adding a new class of agents or 

removing a group of established agents by modifying the rules that pertain to the group involved 

without going through the process of rebuilding the whole model. Such advantage is quite useful 

in our research because that makes our model flexible and beneficial for testing the effects of 

new treatments under experimentations or emerging biochemical factors that may change the 

scientific perception of the disease process [5, 157, 170, 172].  

 
 

Biomedical researchers’ and healthcare professionals can translate their knowledge into 

agent-based models with minimal difficulty, even without programming skills or complex 

mathematical equations because agent-based modeling is object-oriented [5, 157, 173].  As 

mentioned previously, osteoporosis is a complex and highly dynamic biological process. Such 

process although well described in the literature, still, there are gaps in information about exact 

numbers of cells within each part of the process, the amount of chemical mediators and their cell 

surface receptors for each mediator, and other numbers that are age or gender specific. In 

addition to that, osteoporosis involves -to the observer- a high level of stochasticity, and various 

behavioral routes for all agents within the natural process [21, 25, 55, 71, 72, 113, 174, 175].  

 

Based on the above attributes and advantages of ABM, we carefully chose ABM as the 

most suitable method for designing a computational model to simulate osteoporosis. Our agent-

based model that has a modular topology will be used by researchers’ for testing therapeutic 

interventions in-silico, it can be easily modified later to include new interventions as (agents) or 
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removing involved cells or mediators according to the latest advances in disease research or 

changes in clinical knowledge. 

 

3.4 MODEL’S DESIGN 

In following subsections, we will discuss the software used to build the model, the agents, 

parameters and their values, rules of behavior for each agent, and the components in the user’s 

interface. 

 

3.4.1 Software 

We used NetLogo version 5.2.1 which is an open-sourced freeware, developed and continuously 

improved by professor Uri Wilensky at the Center for Connected Learning and Computer-Based 

Modeling, Northwestern University [176].  

 

NetLogo runs on Java virtual machine and is compatible with most major operating 

systems (Mac, Windows, Linux, and others). It provides a flexible virtual environment for 

modeling complex systems and simulating their progress over time. It is capable of processing 

simulations that involve thousands of agents, running their courses and allow the user to observe 

the behavior of each agent at any specific instance of the simulation. This ability allows it to 

express the emergent behavior which is a unique property of agent-based modeling [176, 177].  
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NetLogo has been used to create agent-based models to simulate biological and disease 

processes successfully [5, 177, 178].  

 

3.4.2 Basic Concepts of The Model’s Design 

Our model simulates the progress of Osteoporosis process in distinct steps or (Ticks), each tick 

executed represents a simulation of the disease process in one-day duration. The simulation 

outcome is a result of the behavioral interaction between the biochemical factors that are 

(enzymes, inflammatory mediators, or hormones) and cellular components that form the BMU of 

the bone. Parameter values and interaction rules that we used in creating our model were based 

on rules and values that were extrapolated from previous osteoporosis models or calculated from 

values provided in the literature  [25, 35, 37, 38, 54, 56, 97, 99, 170, 179]. 

The model simulates the behavior of a BMU in the bone matrix as it progresses with 

time, BMU is constituted from Osteoblasts that are the bone “constructors,” their increase in 

number and or activity reflects means more bone density. Osteoclasts are bone “breakers,” their 

increase in number and or activity reflects a reduction of bone mass, and Osteocytes which are 

the primary cells present in the bone matrix, more osteocytes mean denser matrix. Osteocytes 

form 90% of the cellular matrix leaving about 10% for osteoblasts and osteoclasts. It is estimated 

that for every osteoblast there are ten osteocytes. In the natural condition, the bone formation is 

in equal balance with bone resorption. Which brings the BMU ratio to 400 (osteocytes) :40 

(osteoblasts) :4 (osteoclasts) [23, 25, 37, 49, 51, 54, 56]. 
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We designed the model to simulate primary osteoporosis development in individuals who 

have a healthy immune system and are free of genetic or systemic conditions that affect the bone 

matrix or bone growth such as osteopetrosis or renal osteodystrophy [180, 181]. Each “Tick” 

within the model represents an advance in time of one day, with changes in agents’ values and 

bone health calculated and provided for the user to view at the end of each tick. In our model we 

assume that the BMU in the simulation represents the activity of the BMUs in the body, in other 

words, we assume that all the BMUs’ are acting in the same way.  

 Like In-Vitro methods of studying the progress of the disease, our model simulates the 

development of the disease within a closed environment. Our model, however, may provide a 

better understanding of the disease process. While In-Vitro experiments cannot explain many 

reactions that occur within the living organism because many cellular and biochemical factors 

lose their viability when removed from the natural environment. Our model simulates the disease 

body.  

 

 

 

 

 

 

 

 

 

 

Figure 3 concept of the model: the bone multicellular unit within the bone matrix 
surrounded by collagen fibers and the mineral component (hydroxyapatite). 
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3.4.3 Agents Involved in The Simulation 

We have selected a group of agents to include in the simulation; the selection was based on 

information from the literature about the most important factors involved in the disease process. 

As the mentioned in the literature, there are many mediators that are involved in the bone 

formation and resorption. We avoided the factors that have questionable importance or unproven 

relation to the disease process. The following table includes the agents involved in the 

simulation, their roles, and their rules of interaction with other agents in the model. 

Table 3: A list of the agents included in the model. 

A simplified list of the interacting agents, and external factors 
Agent Manner of interaction 

Osteocytes  • Osteocytes regulate the process of bone formation 
and resorption. 

• Osteocytes produce Sclerostin, which inhibits 
osteoblasts bone formation activity. 

• Under the effect of estrogen, Osteocytes produce 
OPG that inhibits bone resorption.  

Osteoblasts:  

 

• Osteoblasts are the main cells responsible for bone 
formation.  

• Activated osteoblasts produce collagen type 1 
fibers. 

• Collagen fibers are used to build the healthy bone 
matrix. 

• Osteoblasts are buried under the newly formed 
matrix and convert to osteocytes. 

• Osteoblasts produce RANKL that promotes 
Osteoclastogenesis. 

Osteoclasts: 

 

• Bone resorption is carried out by osteoclasts.  
• Osteoclasts secrete acid phosphatase and cathepsin 

K enzyme which digest the organic bone matrix. 
• Estrogen negatively influences osteoclasts.  

RANKL • Receptor activator of nuclear factor-kB ligand 
(RANK-L) is a cytokine produced by the 
osteoblasts. 

• It binds to the receptor activator of nuclear factor-
kB (RANK) present on the surface of osteoclasts 
increasing their activity. 

• Estrogen inhibits RANKL release. 
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Table 3 continued 
OPG • Osteoprotegerin or (OPG) is a cytokine produced 

by osteocytes.  
• binds with the RANK competing with RANK-L, 

which results in inhibition of osteoclastogenesis. 
• Estrogen stimulates OPG release from osteocytes. 
• Binds to RANKL promoting the breakdown of 

RANKL and inducing shedding or inactivation of 
RANKL. 

Sclerostin • Osteocytes produce Sclerostin, which inhibits 
osteoblasts bone formation activity. 

• Sclerostin increases steadily with age. 
• In females over 60-year-old, Sclerostin increases up to 

2.4 times the original level measured in the twenties of 
age. 

• In males over 60-year-old, Sclerostin increases up to 4.6 
times the original level measured in the twenties of age. 

• The standard Sclerostin level is higher in males than 
females. 

M-CSF • Macrophage colony-stimulating factor or (M-CSF) 
which is produced by Osteoblasts  

• binds to a surface receptor on present on the 
osteoclasts precursors promoting the maturation of 
osteoclasts and increasing their numbers.  

• Estrogen reduces the M-CSF level. 
Collagen-I  • Activated osteoblasts produce collagen  

• A key component in the organic matrix.  

Acid phosphatase and Cathepsin-K • Activated osteoclasts release Acid phosphatase and 
Cathepsin-K. 

• Those enzymes break down the bone’s hydroxyapatite 
crystals and collagen fibrils resulting in bone resorption. 

Factors Effect on the simulation 

Sex hormones: Estrogen & testosterone. • As individuals grow in age, their sex hormones 
(testosterone and estrogen) drop gradually. 

• Sex hormones stimulate bone formation and inhibit bone 
resorption by increasing the activity and lifespan of 
osteoblasts  

• Reduces the activity of osteoclasts and lifespan. 
BMI Body mass index is positively correlated with bone density; 

higher BMI means denser bones. 

Smoking • Smoking reduces the active estrogen level in both males 
and females. 

• Smoking negates the therapeutic effect of Hormonal 
replacement therapy. 

• The effect of smoking on osteoblasts and hormonal 
activity is dose-dependent. 

•  It reduces the collagen production from the osteoblasts 
Physical activity  Weight-bearing exercise Improve the bone density and 

stimulate the bone formation.   
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3.4.4 Parameters Values and Agents’ Rules of Interaction. 

In the following subsections, we will discuss details about parameters, agents and their 

behavioral rules for each agent within the model.   

3.4.5 The Bone Mineral Density (BMD) 

BMD is demonstrated in the model by a percent value as compared to that of the BMD of a 

healthy individual that is 100%.  

The DXA-scan provides two types of measurements to demonstrate the bone mass density: 

1. T-score: which compares the patient’s bone density reading with that of a healthy young

adult.

2. Z-scores: compares the patient’s bone density reading with other people that match the

patient in any of the following characteristics: age, gender, and race [111].

We used the T-scores obtained from DXA scan as the reference for validating the model's

output value of BMD. Our model can be modified to simulate the changes in different areas in 

the bony skeleton. The version that we are working on in this dissertation simulates the changes 

of bone density in the proximal femur which includes the neck, Trochanteric, and Inter-

trochanteric areas is also called Total-Hip [18, 182-184]. We have selected the proximal femur 

because 50% of it is formed of cortical bone which is typically have a lower turnover than that of 

the trabecular bone. Also, this area of the body is clinically important because fractures -Hip 

fractures- in that area causes higher morbidity and mortality [49, 185-189].  
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Creating a model to predict the changes in the vertebral bone is in our future plan because 

the vertebral bone is formed mostly from trabecular bone which makes the turnover much higher 

than that of the head of the femur. The high turnover of the vertebral bone, as well as the 

variation of response to treatment between different patients, poses a challenge for building the 

models rules. Such model will require sufficient data from different samples with the proper 

sample size.  

In Our model, the agents interact with each other and with the bone mass density causing 

reduction or increase in the BMD. The output in our model is called “bone health” because the 

model simulates the progression of osteoporosis with age and provide and diagnosis or (health 

status) proper to that level of bone mass density. Any change in T-score by 0.1 corresponds to 

change by 1% in the model. The following table shows the BMD values of T-scores in the DXA-

scan report and how those values are reflected in the model, and clinical condition that 

corresponds to that level of bone health level.  
 

 

 
Table 4: Conversion between the T-scores used in the DXA scan report and the bone health that appears in 
the model's output [190]. 

DXA scan T-score +1.0 to 0 -0.5 -1.0 -1.5 -2.0 -2.5 or less 

Less than -
2.5+history 

of 
osteoporotic 

fracture 

Model 
interpretation 100% 95% 90% 85% 80% 75% 

Less than 
75% + 

history of 
fracture 

Bone condition Normal from (100% to 
86%) 

Osteopenia 
from 85% to 

76%) 

Osteoporosis 
from (75% 

to 70%) 

Severe 
Osteoporosis 

less than 
70%.  
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3.4.6 Agents in The Model 

3.4.6.1 Osteoblasts: Osteoblasts in the model are in the active mature form. A fixed number of 

osteoblasts is set at the beginning of the simulation, however; the number of osteoblasts may 

increase or decrease according to the outcome of the reaction between the other factors. 

Considering the broad range estimation of Osteoblasts age in the literature 2-100 days, we will 

assume that the osteoblasts lifespan in our model is 50 days [46, 62]. One in ten osteoblasts may 

transform to an osteocyte per day within 20 days or continue functioning until it expires [54, 62]. 

Each osteoblast increases bone density by 0.25% per day [37]. It is estimated in the literature 

that there are ten osteocytes for each osteoblast in the bone in normal condition [62].We will 

assume that there are 40 active osteoblasts in each BMU. 

3.4.6.2 Osteoclasts: Osteoclasts average lifespan is 14 days after which it expires [46, 190]. 

Osteoclasts in the model are in the mature active form. Each osteoclast reduces bone density by 

2.5% per day [37]. A fixed number of osteoclasts is set at the beginning of the simulation, 

however; the number of osteoclasts may increase or decrease according to the outcome of the 

reaction between the other factors. Because of the bone production and bone breakdown are in 

balance, we will consider the number of osteoclasts in our model to be four cells for each BMU. 

3.4.6.3 Osteocytes : Osteocytes lifespan reaches 25 years [63].  The number of osteocytes in a 

BMU is 369.9 ±101.0; therefore, we will consider each BMU to have 400 osteocytes [191]. 

More Osteocytes in our model do not signify stronger bone; it is, however, an essential part of 
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the BMU because they influence both osteocytes and osteoclasts. A fixed number of osteocytes 

is set at the beginning of the simulation. The number of osteocytes may increase or decrease 

according to the outcome of the reaction between the other factors. 

3.4.6.4 Sclerostin : Osteocytes produce Sclerostin, which inhibits osteoblasts bone formation 

activity [21, 54]. The baseline value for Sclerostin serum level that we use in our study is 30 

pmol/L [192]. Because Sclerostin serum level increases with age, in our model it is increased by 

one pmol/L every year [147, 192]. An increase of Sclerostin serum level above average by 30% 

is associated with increased risk for pathological fractures by 45% [193]. Sclerostin serum level 

more than 75 pmol/L is associated with increased risk of fracture, and the risk of fracture may 

increase up to 15 times compared to patients with average normal Sclerostin serum level [194].  

3.4.6.5  Estrogen Premenopausal serum level 30 to 400 pg/mL [195]. Postmenopausal women 

with serum level under 5 pg/mL have twice the fracture risk of cases with serum level of 5-25 

pg/mL [196]. Although the age at which menopause occurs is highly variable and depends on 

different factors, we will consider that the average age of menopause is 51 [197]. 

Postmenopausal normal serum level is 0 to 30 pg/mL [195]. Estrogen replacement therapy range 

is between 40 – 60 pg/mL [196].  

3.4.6.6 Smoking: Smoking reduces the level of estrogen in the blood and diminishes the 

protective effect that estrogen provides for the bone. Smoking also nullifies the therapeutic 

effects of hormonal replacement therapy [27, 105]. Non-smokers, when compared to smokers 

who smoked ten cigarettes or more, had higher estrogen levels by 25-35% [105].  
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3.4.6.7 Age and gender : Bone mass density decreased among patients aged 20 to 90 was 

greater in females than in males, as it was measured to be 39–55% for females and 34–46% for 

males [91]. In our model, we assume that the bone density decreases by 0.7% per year for 

females and 0.5% for males. Bone density starts declining in the forties of age [190]. Bone mass 

density is reduced by 1-2% annually in postmenopausal women. This reduction is noted in 

women who were postmenopausal for five years [92].  

3.4.6.8 Physical activity: Mechanical loading and physical activity have various positive effects 

on bone health, depending on the type of activity, gender, and age [54, 72, 119, 198].  

3.4.6.9 Body mass index: Studies showed that underweight individuals have a greater risk of 

lower BMD and osteoporosis [96, 199, 200]. Each increase in BMI by one unit reduced the 

chance of BMD loss by 12% [92]. In Men, a BMI of  > 25 is associated with more than four 

times lower risk of developing osteoporosis [201]. Although there is a high positive correlation 

between BMI and BMD, the exact mechanism by which a higher BMI contributes to higher BMI 

is unclear [96, 199, 200].  

 

3.4.7 Table of parameters of agents and external factors 

 
The following table contains detailed explanations about each agent or external factor, the 

parameter values, and the source references used to select the values for the model.  
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Table 5: Parameters used in designing the model, their range values and their sources from the 
literature. The rules and values in this table are the ones that we used in the latest working version of the 
model. 

Parameter values for agents in the model and external factors that affect the simulation 

Agent 
description 

Parameter Reference value(s) Source 

Osteocytes Number, 
lifespan 

400 cells/BMU. Lifespan = 25 years. Reduction of bone health by 1% is 
associated with a reduction of osteocytes by the same percentage. 

[46, 191] 

Osteoblasts Number, 
lifespan, 
conversion 
rate 

40 cells/BMU. Lifespan = 50 days. Every osteoblast has a chance to convert 
to osteocyte by 10% for the first 20 days only. Every 50 days 40 new cells 
enter the BMU.  

[46, 62] 

Osteoclasts Number, 
lifespan. 
RANK 
receptors. 

Four cells/BMU, lifespan is 14 days. Each osteoclast has 2326 receptors that 
may bind to RANKL or OPG units. Every 14 days four new cells enter the 
BMU. 

[38, 46, 60, 62, 
65] 

RANKL Serum level 
per 
Osteoblast / 
Serum level 
BMU/ 
RANKL 
units per 
cell/RANKL 
receptors per 
Osteoclast. 

• Average level Per BMU: 0.00006 ng/dl per BMU

• Consumption per day = 0.00003900702 ng/dl per BMU. If
receptors do not consume this amount, it will join the amount
accumulated in the BMU.

• At the start of the simulation, An amount of the 0.6*(starting
level) ng/ dl enters the BMU level enters the BMU daily. The
amount enters the BMU reduces with age by 1% per year.

• High resorption level per BMU: (0.000064 - 0.00008 ng/dl per
day).

• Estrogen level is negatively correlated with RANKL: Level
changes with by -/+ 1% in correspondence to every +/- 1% change
of estrogen level.

• Number of RANKL/OPG receptors per osteoclast = 2326.

• Each RANK receptor has 70% chance to bind to either OPG or
RANKL.

• Each Osteoclast  RANK receptor has a 65% chance of binding to
a RANKL particle.

• RANKL units (free or attached to receptors) have a half-life of
300 days, every 300 days 50% of the RANKL produced expires.

• Every change of RANKL by ± 1% for 0.000064 ng/dl for each
BMU results ± 1% receptor affinity by 1%.

• 

[38, 59, 80, 89, 
143, 145] 
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Table 5 continued 

  • Every  50 RANKL surface receptors activated will reduce the 
affinity by 1%.  

• Each RANK surface receptor requires an amount of  RANKL of 
0.0000000064 ng/dl to be activated. 

• Each Osteoclast surface receptor occupied increases the 
production of  Acid phosphatase and Cathepsin-K by 0.004% for 
the cell activated. 

• Every surface receptors of an osteoblast occupied by estrogen 
results in a reduction of RANKL production by that cell by 
0.001%. 

 

OPG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serum level 
per 
osteocyte/ 
Serum level 
BMU 

• Production rate per BMU is (0.0000000765 - 0.000000191 ng/dl), 
High resorption rate range is (0.00000004675 - 0.00000011875 
ng/dl). 

• Normal level Per BMU: 0.0000764 ng/dl. 

• Each osteocyte produces an amount of 0.0000002 ng/dl per day. 

• High resorption rate range per BMU is (0.0000187 - 0.0000475 
ng/dl) 

• An amount of the 0.5*(starting level) enters the BMU daily. The 
amount enters the BMU reduced with age by 1% per year. 

• Estrogen level is positively correlated with OPG: Level changes 
with by +/- 1% in correspondence to every +/- 1% change of 
estrogen level.   

• Every 1% reduction in the RANKL receptor for RANK affinity 
results in an increase of 1% affinity towards the OPG particles.  

• Each Osteoclast  RANK receptor has a 35% chance of binding to 
an OPG particle. 

• OPG units (free or attached to receptors) have a half-life of one 
week, every seven days 50% of the OPG units produced expire. 

• Consumption per day = 0.00002670248 ng/dl per BMU. If this 
amount is not consumed by receptors, it will join the amount 
accumulated in the BMU. 

• Each RANK surface receptor requires an amount of OPG  of 
0.0000000082 ng/dl to be activated. 

• Each OPG unit binds to an osteoclast RANK receptor reduces the 
production of Acid phosphatase by 0.008%. 

• Every surface receptors of an osteocyte occupied by estrogen 
results in an increase of OPG production by that cell by 0.01%. 

 

 

[38, 59, 80, 89, 
143, 145] 

 



58 

 

Table 5 continued 

M-CSF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serum level 
per BMU 

• Normal level range is (69.44 -  90.84 ng/dl), high resorption level 
range is (173.1 -  303.3 ng/dl). 

• High resorption level per BMU is (0.0001731- 0.0003033 ng/dl). 

• Level increases with age by 1% every year in correspondence to 
estrogen reduction. As  M-CSF increases so the number of active 
osteoclasts. 

• The number of M-CSF receptors per osteoclasts is estimated to be 
1000 receptor.  

• Normal MCSF level per BMU is 0.00009084 ng/dl. 

• Production rate per osteoblast daily is 0.00001736 -0.000002271 
ng/dl. 

• Each surface receptor requires an amount of 0.0000000758 ng/dl 
to be activated. The surface receptor required amount be 
dependent on the affinity. 

• Each receptor has a 70% chance to bind to an M-CSF particle 
each day.  

• Every increase of MCSF by 1% over 0.00001736 for each BMU 
results in an increase of receptor affinity by 1%. The reduction of 
MCSF by 1% over 0.00001736 for each BMU results in a 
reduction of receptor affinity by 1%.  Each receptor activated will 
increase the osteoclast lifespan by 0.001%. 

M-CSF particles lifespan is one day. When bound to a receptor, 
that receptor remains active for three days (including the MCSF 
particle attached). 

 

 

[82, 89, 144, 
202-206] 

Sclerostin Serum level 
per BMU 

• Normal range in males: per BMU (0.000037 - 0.000071 ng/dl), 
high resorption level per BMU ranges from (0.000043 -  0.000089 
ng/dl). 

• In females, it increases with age by 5.4% per year. 

• Normal range per BMU in females: 0.0000018 to 0.0000019 
ng/dl. 

• In males, it increases with age by 5.7% per year. 

• An amount of the 0.5* (starting level) enters the BMU daily. The 
amount enters the BMU reduced with age by 1% per year. 

• Every day 0.00005 ng/dl is introduced into each BMU. The Same 
amount is eliminated daily. 

• There are 1000 sclerostin surface receptors on each osteoblast. 

[46, 59, 207, 
208] 
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Table 5 continued 

  • Each surface receptor requires an amount of 0.0000000000048 
ng/dl to be activated. 

• Receptor affinity is related to the level of sclerostin per BMU, 
every 1% increase in the level results in increased receptor affinity 
by 1% and every 1% of sclerostin reduction results in a reduction 
of affinity by 1%. 

• The simulation starts with a 70% affinity. 

• The Sclerostin particle attached to the receptor will be active for 
three days, after which it will expire, and the receptor will be free 
to bind to another particle. 

• Each receptor activated will reduce the osteoblast activity 
(collagen production) by 0.001%. 

• The percentage of Sclerostin that increase with age effects that 
amount introduced only.  

 

Acid 
phosphatase  

Percentage 
reduction, 
amount 
produced 
per 
osteoclast. 

 

• Bone resorption rate per osteoclast = 0.00025%/day/cell.  Normal 
production per osteoclast per day is (Bone breakdown per 
osteoclast) = 78.125 ng/dl per day. 

[37, 59, 89, 
143] 

Sex 
hormones: 
Estrogen & 
testosterone. 

 

 

 

 

 

 

 

 

 

 

Normal 
serum level 
and age-
related 
reduction 

Females, Estrogen: 

• Before 35 years of age serum level: 3 to 40 ng/dL. 

• Before menopause, estrogen level reduces slowly with 
age. From the age of 35 until menopause or 51 years of 
age: estrogen is reduced by 1% per year. 

•  Postmenopausal after  51 y/o age women normal serum 
level is  0 to 30 ng/dL.  

• Level Per BMU Before 35 years of age: 0.00004 + a 
random number from 0 to 0.000008 ng/dL 

• An amount of the 0.44* (starting level) enters the BMU 
daily. The amount enters the BMU reduced with age by 
1% per year. 

• The half-life of estrogen is one day; when bound to a 
receptor that receptor remains active for three days 
(including the estrogen particle attached). 

• Osteoblasts and osteoclasts have 500 receptors per cell. 
Osteocytes have 1000 surface receptors. Every receptor 
requires an amount of 0.0000000015 ng/dl to be 
activated. 

• Every 1% number of receptors activated results in an 
increase of activity of the corresponding enzyme for that 
cell type by the same percentage. 

[73, 74, 88, 
105, 118, 195, 

209-213] 
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Table 5 continued

• For osteoblasts and osteoclasts:

Receptor affinity is related to the level of estrogen per
BMU, every 1% increase in the level results in increased
receptor affinity by 1% and every 1% reduction in
estrogen results in a reduction of affinity by 1%.

• The simulation starts with a 70% affinity.

• For osteocytes:

• Receptor affinity is related to the level of estrogen per
BMU, every 1% increase in the level results in increased
receptor affinity by 1% and every 1% reduction in
estrogen results in a reduction of affinity by 1%.

The simulation starts with a 70% affinity. 

Males, Estradiol,  Testosterone:  

• Average Testosterone level before 30 years of age is 270-1,070
ng/dl.

• After the age of 30 years of age:  testosterone & estrogen sustain
1% reduction per year.

• The average level of estradiol in males is 1 - 4 ng/dl.

• Estrogen in males has the same protective effect on the bone as in
females.

• Both hormones Testosterone and estradiol are important to keep
the bones healthy in males.

• In our model well consider the estradiol to represent the hormonal
protective effect of both ( Testosterone and estradiol) on bones for
males.

• Before the age of 30: Average level of estradiol per BMU in males
is from (0.00067  to  0.00008 ng/dl).

• After the age of 30 years of age:  estradiol sustains a 1% reduction
per year.

• Osteoblasts and osteoclasts have 500 receptors per cell.
Osteocytes have 1000 surface receptors. Every receptor requires
an amount of 0.000000000135 ng/dl to be activated.

• An amount of the 0.44* (starting level) enters the BMU daily. The
amount enters the BMU reduced with age by 1% per year.

• Testosterone is converted to estrogen through the aromatization
process. Reduction of  Testosterone in males causes the reduction
of estrogen.

Smoking reduces the estradiol level by 25% in moderate smokers (less than 
ten cigarettes per day) and 35% in heavy smokers >10 cigarettes per day) 
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Table 5 continued 

Collagen-I 
(bone 
density) 

 

 

 

 

 

Percent of 
BMD, 
amount 
produced 
per 
osteoblast. 

• Bone formation rate per osteoblast 0.000025 %/ cell/day.  Normal 
production of Collagen-I osteoblast (bone mass added per day) = 
7.8125 ng/dl per day. 

• Each estrogen receptor activated will increase the osteoblast 
activity (collagen production) by 0.001%. 

 

 

 

 

 

 

[37, 59, 89, 
143] 

Factors Unit Effect on the simulation References 

BMI Percentage 
increase 

• each increase of BMI by one unit over the ideal BMI for the 
patient will increase the bone density by 0.06% per year. 

In the model:  

• Each increase of BMI by one unit over the ideal BMI for the 
patient will increase the bone density by 0.06% (one time) at 
startup. 

Each decrease of BMI by one unit under the ideal BMI for the patient will 
reduce the bone density by 0.06% (one time) at startup. 

[92] 

Smoking 
status 

Smoking 
Effect on 
estrogen 
(percentage) 

• Smoking affects negatively the estrogen availability and action in 
the BMUs’ as well as the proliferation rate of osteoblasts in a 
dose-dependent manner. 

• Nonsmoker (zero to less than five cigarettes a day) = no effect. 

• Smoking 5-10 cigarettes cause estrogens action reduction by 15 to 
25% and reduces the collagen production by 5%. 

• Smoking 10 to 20 cigarettes per day results in estrogens action 
reduction by 25 to 35 % and reduces the collagen production by 
10%. 

• Smoking one pack of cigarettes per day results diminishes the 
estrogen action by 45 to 55 %, and, reduces the collagen 
production by 15%. 

• Smoking two packs of cigarettes per day result in estrogens action 
reduction by 55 to 65 %. Moreover, reduces the collagen 
production by 20%. 

 

 

[27, 105, 118, 
214-217] 
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Table 5 continued

Physical 
activity 

Direct effect 
on bone 
health 

 No weight bearing exercise = no effect on bone health.

 Weight-bearing exercise effect on bone health:

 over 30 years old for males’ increases the bone health by 1%

 30 to 50 years of age for females’ increases the bone health by
0.75%

• Over 50 years of age, increases the bone health by 1%

[54, 119] 

Bone health Percentage Bone health represents the bone’s general condition of the organic matrix: 
90% of the bone health is composed of collagen, and 10% is composed by 
osteocytes. 

Startup value: 

If bone health is provided from a previous bone scan examination, it will be 
used as the startup point. 

If there was no previous reading the following rules would apply: 

• Male patients:  After 30 years it will be 100 - 0.5% for every year
of age.

 Female patients:  bone health will drop by %0.25 per year from
age 30 to 50 years old. After 50 years of age, it will drop by
0.75% every year if the patient is over 50 years of age.

[25, 30, 45, 51, 
52, 54, 62, 91, 

218]
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3.4.8 Models Calibration and Values Adjustment 

After selecting the parameters’ values from the literature, we adjusted those values during the 

calibration stage to ensure the stability of the model's operation and that the model simulates the 

disease progression according to the expected rate and outcome documented in the literature. 

 

             We had to adjust the values numerous times during hundreds of simulations to reach this 

final version. During the calibration process, the model crashed because of reasons such total 

consumption of a mediator, or hyperactivity of agents resulting in unnatural process progression.   

3.4.9 The User’s Interface 

We used the design functions in NetLogo to create the user’s screen, which includes sliders, drop 

down selections, a line graph, graphic representation of the simulation, and other contents.   

 
We edited the sliders and the drop-down contents to properly reflect the inputs required 

for the simulation. We Programmed the code to show the values of the internal factors such as the 

MCSF and the osteocytes number.   

 

We also had to program the code to show the provisional diagnosis and the bone health 

percentage.  The following subsection shows the detailed explanation of the user’s screen 

sections. 
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3.4.9.1 The User’s screen Figure 4 above shows a screenshot of the model as it appears in 

windows-10. Section one includes a slider that controls the speed of the simulation process.  

Section two shows the sliders and drop down selection counters where the user can set startup 

age, gender, body mass index or BMI (where zero means the BMI is ideal), smoking status, 

physical activity (weight bearing is yes while no or regular activity is no physical activity). 

Previous DXA scan readings (T-score) if available, Estrogen level is entered manually if 

available by Pg/ml unit, and bone health input. The bone health input is an option where the user 

can specify the startup bone health percentage and run the simulation to see how the bone health 

changes with time. 

The third section of the screen includes counters for M-CSF, Sclerostin, RANKL, and 

Estrogen. While those counters show numbers of the related mediators as they change with time, 

those numbers actually reflect the numbers of those factors as they change within the model and 

Figure 4 : A screenshot of the model's user screen 
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Figure 5 Graphic presentation of the 
simulation 

not the levels within the subject’s real body. Acid-P to Collagen ratio counter shows the balance 

between Acid-P which represents the chemical factors that break down the bone matrix and 

Collagen which is the main component that is used in building the new bone. A ratio of 1 

indicates the balance of bone resorption and bone formation; this ratio continues to change in 

favor of bone resorption or bone formation according to the interaction that occurs between the 

various factors involved in the simulation.  

Section four includes two counters: bone health condition which indicates diagnosis 

according to the current bone health level, and a counter that shows the bone health in percentage 

where 100% is perfectly healthy bone.  

Section five includes a line plot that shows the progression or regression of bone health 

through time with the Y-axis as the bone health and X-axis as the time in days. Section six is a 

graphic presentation of how different cells within the bone matrix interact with each other.  

Figure 6 Different phases of each cell type. 
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Figure 6 demonstrates the alteration of the shape of the cells within the simulation 

according to the number of activated receptors. The reason there are no changes in the osteocytes 

-though they have active surface receptors- is that their number is much greater than both

osteocytes and osteoclasts together which -with individual changes of each cell- will require 

greater processing power and time for processing each step. The software will have to sort 

through each osteocyte to measure the cell’s activity and assign a shape to that cell while 

processing all the other calculations running in the simulation. The ability to provide a graphic 

presentation of the simulation is an advantage among many advantages of ABM; the graphic 

presentation can be quite useful as a cheaper and simpler substitute to cell cultures and individual 

cell’s tagging in the laboratories [5, 219, 220]. 

 The graphic presentation in our model can aid researchers that focus on the behavior of 

individual bone cell as these cells are exposed to certain conditions such as changes in PH 

because shifts in the extracellular environment may induce apoptosis [221]. Some research 

efforts concentrate on creating conditions that induce osteoblasts proliferation or increase their 

activity such bone-graft or bioactive materials transplant that operate as a scaffold for osteoblasts 

and supports the growth of new bone tissue [221-223]. Other current research efforts study the 

effect of cytokines such as IL-1β or TNF-α on an osteoblasts cell’s activity, proliferation or 

lifespan [224].  

Our model allows the user to follow any individual cell and view its activity level and 

surface receptors saturation until the cell expires. Instead of going through the process of 

extracting the cells, preparing cultures and marking individual cells, and following up the 

through the culture period which will cost a lot of time and funding, our model allows the user to 

follow the cells to follow an individual cell and view the effect of the intervention within minutes 
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and at a negligible cost.  Our model can be modified by adding the proper rules and the agents -

chemical or cellular- that are the focus of a research experiment and run the simulation to view 

the results the simulation in no time. Although this is not within the scope of this dissertation, 

those changes could be introduced in the future versions of the model.   

3.5 MODEL’S VALIDATION PROCESS 

In this section, we will explain the process for validating the model using data from the literature. 

This step includes the data selection, data description, the statistical test used for comparing the 

data collected from the literature with the outcomes gathered from the model, and the results of 

the statistical test.  

3.5.1 Similar Models And Their Validation Methods. 

To validate our model, we reviewed the previous models created by other researchers for 

modeling bone-related conditions. In the following table, we can see the different models, their 

designs, and their validation method.  

 

Table 6  Different models that simulate bone related processes and their validation methods. 

Number Models purpose BMD 
measurement Validation method Reference 

1.  Simulate the bone 
remodeling process None  Not validated using human data. [41] 

2.  
Simulate the interactions 
between osteoblasts and 
osteoclasts  

None Not validated using human data. [38] 

3.  Graphical simulation of the 
bone remodeling process.  None  Not validated using human data. [42] 
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Table 6 Continued 

4.  
Simulate the osteocytes role 
in the bone formation 
process 

None Not validated using human data. [60] 

5.  
Simulate the cellular 
signaling during the bone 
remodeling process 

None  
Validated using values from the 
literature. No case-to-case 
specific comparison performed.  

[225] 

6.  
simulate the bone structure 
and density in the neck of 
the femoral bone 

None 

They used DXA scan images 
from two patients to compare the 
results the visual output provided 
by the mathematical model. 

[226] 

7.  Simulation of MSCs’ 
cellular differentiation.  None  

The model was validated using 
values from a single paper 
reporting ranged values obtained 
from mice.  

[170] 

8.  
Simulation of bone 
remodeling in 
hypoparathyroidism  

None 20 cases samples from human 
cadavers. [161] 

9.  
Simulate the bone refilling 
in the BMU of the cortical 
bone 

None  from a single article that provided 
animal data. [61] 

10.  
Simulate the changes in 
vertebrae bone density to 
predict fracture risk. 

g/cm3  Not validated using human data. [36] 

11.  Predict the fracture risk in 
the proximal femur.   g/cm2  Not validated using clinical data. [159] 

12.  
Compare bone changes 
between osteomyelitis and 
osteoporosis. 

Percentage Bone density measurement was 
not validated  [227] 

13.  Simulation of osteoporosis Thickness in mm/ 
Percentage  

Validated using ranged values 
from an article, no actual case-t- 
simulation specific comparison 

performed. 

[40] 

14.  Estimate the bone density 
in the head of the tibia bone g/cm3 Used different sites from a single 

case [228] 

15.  Estimate the bone density 
in the iliac bone 

Percentage based 
on WHO 

classification 

Used a single subject’s 3D model 
of the pelvis bone. [229] 

16.  

Simulate the head of the 
femurs bone density and 
shape in osteoarthritis and 
normal cases. 

g/cm3  

220 cases DXA scan images for 
developing creating the model. 
No validation process for clinical 
use was performed. 

[167] 

17.  Predict the fracture risk in 
the proximal femur.   g/cm3  

45 (males) cases were used for 
validating the model.  Not 
validated for clinical use.  

[165] 

18.  

predict the risk of fracture 
in the proximal femur 
based using data from DXA 
scan 

g/cm3  

7 cases of cadaveric femoral 
bones were used for validation. 
Does not provide BMD 
measurements that can be used in 
clinical setting. 

[230] 
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We researched the methods that other researchers used for validating different 

mathematical, statistical and agent-based models. We can see that some models used different 

sample size for the validation process. In our case, the model is an agent-based model and does 

not require cases for training like mathematical or statistical models. Although we prefer as 

many cases as possible to perform the validation process, the difficulty of obtaining the data and 

the multiple simulations that we will perform for each case makes having a sample size of 50 

cases is quite reasonable. Also, in the validation process, we are searching for a difference or an 

effect size, we are just comparing the readings between the model and the DXA-scan 

measurements to ensure that the model is simulating the changes in bone health correctly and 

providing a reasonably accurate prediction.  

It is essential to understand that predictive modeling does not produce -nor expected to- a 

100% accurate predictions and that the longer the duration of simulation the more the prediction 

is expected to be less accurate.  Predicting the weather changes is limited to few days and mostly 

two weeks, even with the relatively stable pattern of weather changes over decades and the use 

of the most sophisticated equipment that provide real-time measurements of the weather 

parameters.  

 Predicting the changes in biological process in the human body and in our case -bone 

density- is a challenging task. That is why our purpose at this stage is to validate the model for 

use in the research setting. Indeed, the model can be modified to simulate the risk of fracture and 

the bone density changes in clinical setting.  However,  that is on of our future goals, and we 

expect that this model we require many modifications, calibrations, and clinical testing of 

thousands of cases over many years before it can be a robust, clinically trusted tool for bone 

density prediction and measurement.  



70 

3.6 DATA ACQUISITION AND ANALYSIS 

In the following sub-sections, we will describe the data acquisition process, the sample 

description, and data handling. 

3.6.1 Data Acquisition Process 

We have obtained an IRB from the University of Pittsburgh. We have also obtained an IRB from 

the King Fahd Medical City (KFMC) Research Center which is located in Riyadh, Kingdom of 

Saudi Arabia. The data was collected from DXA scan reports and medication charts via the 

electronic medical record system.  The data collection was performed in summer 2017. 

3.6.2 Data Description 

We obtained a file that includes all the patients who are registered in the osteoporosis clinic in 

the KFMC. The total number of patients who are enrolled in the clinic is 416 patients. We 

filtered the cases according to the following inclusion and exclusion criteria: 

Table 7: Inclusion and exclusion criteria. 

Inclusion Criteria Exclusion Criteria 

1. Age ≥40.
2. DXA scan results available

(two or more consecutive
readings preferred).

1. Genetic bone tissue diseases.
2. Conditions that may induce secondary

osteoporosis such as hyperparathyroidism
or chronic intake of glucocorticoids’.

3. Patients who have received bone health
treatment over the years.
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The total number of cases that fulfilled the criteria is 17 cases. The reason for this small number 

of cases is because the patients who follow up in the clinic mostly are under treatment for 

osteoporosis, or were screened and did not receive treatment, so they ignored the follow up 

because they considered it unnecessary. For this step, we need cases that are not taking treatment 

to test the model’s validity before inserting the therapeutic agent which will happen in the next 

step. Also, we need at least two consecutive readings to check the model’s ability to predict the 

change in the bone health over time. All the cases were females, with ages between 44 and 70 

years. We could not find any male cases that fulfilled the criteria; the male patients had multiple 

conditions that caused secondary osteoporosis. 

 The follow-up period between the readings ranged from six months to four years, which 

is useful for testing the model’s ability in predicting the changes over a range of different time 

periods. All the cases were de-identified, and each case was assigned a serial number to be used 

during the data analysis process.  

3.7 DATA ANALYSIS AND RESULTS 

We coded the data in the SPSS as follows:  Age (continuous variable), BMI (ordinal), and DXA 

scan’s second reading and the Model’s simulation for the second reading both as continuous 

variables. We did not code the other variables because all the cases were nonsmokers, had no 

record of weight-bearing physical activity, and did not have their serum estrogen level measured 

at the time when the DXA scan was performed.  
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A Kolmogorov-Smirnov test was used to for the DXA scan second readings data set to test for 

normality. The result was statistically not significant P = 0.2, which indicates that the data is 

normally distributed.  

We used the Paired Sample T-test to compare the DXA-scans second reading and the Models 

simulations of the second readings. The test result was statistically not significant t (16) = -1.6, p 

= 0.12. based on the result we conclude that there was no significant difference between the 

DXA-scan readings and the readings obtained through the model’s simulations. 

3.8   DISCUSSION 

The purpose of the patients’ data collection and the above statistical analysis is to validate the 

model’s ability to predict the change in bone density over time. The results indicated that 

model’s simulations were statistically not different from the actual DXA scan readings obtained 

from patients during their clinic visits. Such outcome enables us to declare that the model is valid 

for predicting the bone density changes in human subjects. However, the sample contained only 

female cases, who were non-smokers. Which means that there is a need in the future to collect 

another sample that contains male cases, smoking individuals, and serum estrogen readings to 

validate the other functions in the model. At this point, this is enough proof to demonstrate 

model’s concept and ability to encourage further research and later, the use in clinical practice. 

Computerized tools predict bone fracture using simple parameters such as age, weight, 

history of fracture, and previous DXA scan reading. Our model also uses simple and easy to 

obtain information, but the model's internal mechanisms are complex and are not like using 

historical statistical data or fixed mathematical calculations. ABM allows the computational 
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model to simulate as closely as possible the biological conditions. In our model, all the factors 

have independent behavior and random trajectories while interacting with each other within the 

virtual space to provide the end outcome of that chain reaction; which is the bone density 

percentage.  

3.8 TESTING THE MODEL’S ROBUSTNESS AND STABILITY 

Now that the model has been validated, we shall proceed to test the reliability, sensitivity, 

specificity, and accuracy of the model’s outputs. 

3.8.1 Reliability Tests 

We performed a reliability test to examine the model's reliability as a tool. In following 

subsections, we will describe the test, how data was collected, and how we performed the data 

analysis. 

3.8.1.1 Test-Retest reliability test : In this step, we had the model run simulations for ten virtual 

subjects. For each subject, we had the model run twice (Test/Retest) for a total of 20 simulations 

each for the duration of one month (30 ticks).  After organizing the data, we compared the values 

from the first ten test simulations to the retest simulations regarding changes observed in the 

agents and the outcomes to see if there were remarkable differences or minimal (acceptable) 

differences that fall within the normally expected limits.  



74 

 

Table 8: Test runs for testing the reliability of the model, including different values of the agents. for each 
parameter, two readings are recorded. The shaded columns represent the Re-test values. The diagnosis is 
either Normal (N), Osteopenia (O.P), Osteoporosis (O), and Severe Osteoporosis (S.O).  

 

We coded the data in the SPSS as follows:  Age (continuous variable), Gender (nominal), 

Osteocytes Count 1st and 2nd run (continuous variable), Osteoblasts count 1st and 2nd run 

(continuous variable), Osteoclasts 1st and 2nd run (continuous variable), Bone health Percentage 

1st and 2nd run (continuous variable), and Diagnosis for 1st and 2nd run (Ordinal variable). 

 

For testing the test-retest reliability of the model, we used Inter-class coefficient or ICC 

reliability test because of it a proper approach and the commonly used method for analyzing the 

reliability of medical instruments measuring continuous variables [231-233]. We chose 

Cronbach's alpha test for testing the model's reliability through the Test-Retest approach. We 

performed the test for each variable separately, comparing the first run with the second run for 

the ten subjects.  

 

 

 

Subject Age Gender Osteocytes 
count   

Osteoblasts 
count Osteoclasts count Bone health % Diagnoses 

1.  31 F 399 400 39 38 8 8 99.41 99.40 N N 
2.  45 M 372 371 38 39 8 8 92.4 92.41 N N 
3.  49 F 367 364 35 38 8 8 90.39 90.41 N N 
4.  54 F 352 354 36 34 8 8 86.87 86.85 N N 
5.  55 F 352 348 33 37 8 8 86.09 86.13 N N 
6.  59 F 335 339 38 34 8 8 83.14 83.1 O. P O. P 
7.  63 M 338 337 36 37 8 8 83.38 83.4 O. P O. P 
8.  68 F 309 313 37 33 8 8 76.38 76.36 O. P O. P 
9.  74 F 291 289 37 39 8 8 71.89 71.88 O O 
10.  80 F 274 271 36 39 8 8 67.38 67.4 S. O S. O 
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Table 9: Cronbach’s alpha values between the first run and the second run.  

Variable First run Osteocytes 
Count 

Osteoblasts 
Count 

Osteoclasts 
Count 

Bone 
health 
percentage 

Diagnosis 

Second run 
Osteocytes Count 0.99     
Osteoblasts Count  0.8    
Osteoclasts Count   NA   
Bone health 
percentage    1  

Diagnosis     1 
 
 

The results as shown in Table 9: the interclass coefficient between osteocytes count, bone 

health, and diagnosis is over 0.9 which means excellent consistency. For osteoblasts, the ICC is 

0.8 which is considered as a good consistency. The test cannot be performed for osteoclasts the 

reason for that is that there is no difference between the readings, osteoclasts numbers are 

limited, and they change every two weeks (the lifespan of the cells). Therefore, osteoclasts cell 

number is constant as estimated by the model according to the simulation rules.  

3.8.2 Sensitivity, Specificity, And Accuracy Testing 

We defined the sensitivity of the model to be the percentage that the model will diagnose the 

subject to have less than normal bone density (osteopenia or worse) when the subject, in fact, had 

a bone density below normal level. We defined the Specificity of the model to be the percentage 

that the model diagnosed the subject to have normal bone density while the subject has healthy 

and normal bone density. We coded the cases into the SPSS and performed the analysis. The 

sensitivity or true positive rate was 85.7%, and the specificity or true negative rate was 

calculated to be 100%.  
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To test the accuracy of the model we used the SPSS to plot the Receiver Operating 

Characteristic (ROC) Curve. In the SPSS, we assigned the cases that had normal bone density 0 

indicating the absence of the condition and assigned 1 for any subjects that had lower than 

normal bone density diagnosis for the two datasets. We performed the ROC test, and the results 

are in the following table: 

 

Table 10: Results of ROC analysis 

Area Under the Curve 

Area Std. Error 
Asymptotic 
Significance 

Asymptotic 95% Confidence 
Interval 

Lower Bound Upper Bound 
.929 .081 .003 .77 1 

 

The area under the curve is 0.929 which indicates excellent accuracy. The asymptotic 

Significance is 0.00 which is less than the P value of 0.05. Therefore, we say that the results obtained 

from the model are more accurate than readings obtained by chance.  

3.8.3 Discussion of The Results 

The Test-retest reliability performed, included ten randomly selected (Virtual) subjects. The ICC 

values ranged from 0.8 to 1 indicating a good to very high consistency between the datasets from 

the test and the retest. In comparison to our model, the DXA scan test-retest reliability which 

ranged from 0.98 to 0.99 in the lower limb bone density measurements and scored between 0.89 

to 0.97 for measurement of soft tissues in the lumbar region [234-236]. We compared our model 

reliability to that of the DXA scan because it is considered to gold-standard for measuring the 
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bone density, and because we used it as the standard for validating our model. By comparing the 

reliability of our model to that of the DXA scan, we can say that the model is reliable.  

We calculated the model’s sensitivity (true positive rate) to be 85.7%, and the specificity (true 

negative rate) was calculated to be 100%. The model's sensitivity and specificity were calculated 

by comparing the model's readings to those obtained from the golden standard tool (DXA scan).  

The DXA scan, its self, has a sensitivity of 88.2 to 94.1 % and specificity of 25 to 62.5% 

[183]. It is quite possible to have different -and more representative- values of the model's 

sensitivity and specificity if a bigger sample size was used. Also, the fact that a small difference 

in the measurement can move the case from negative to positive which can be as little as 1% may 

have a significant impact on the sensitivity/specificity analysis, in particular with the small 

sample size. In the ROC test, the area under the curve was 0.929 which indicates an excellent 

level of accuracy of the model’s measurement. Based on the small sample size that we used for 

the ROC analysis, it is fairly possible that testing the model’s accuracy using data from different, 

or bigger -more diverse- populations may provide different levels of the Model’s accuracy. 

3.9 HYPOTHESIS TESTED IN THE FIRST STEP 

Osteoblasts in their active form produce collagen to build up the bone density, while active 

osteoclasts -conversely- break down the bone matrix releasing acid-phosphatase and Cathepsin-

K, and both processes are a part of the bone remodeling process [19, 25, 28, 44, 52, 56, 57, 68, 

133]. In theory, more active osteoblasts and less active osteoclasts mean more bone density, but 

to measure that in a real situation; bone samples must be obtained from live individuals who 
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have variable bone density levels. Such procedure is quite difficult and may not be possible, 

most of the studies are done on mice and samples obtained from cadavers [43, 76, 83, 164, 230]. 

We will use the model to perform the simulations and explore the possible relation between the 

Acid phosphatase to collagen ratio and bone density in the virtual environment. The virtual space 

of the model is unique because it keeps the cells in their active form, unlike what happens when 

they are separated from their natural environment during the sampling and preservation process.   

Having the model validated and tested for reliability, we can perform simulations to test the 

hypothesis as we test our hypothesis in an In-silico experiment.   

3.9.1 Simulations and Virtual Subjects 

The sample consists of 30 virtual cases, all females. Age of the subjects ranged between 26 and 

87 years of age with a mean of 51.4 ± 16 years. The bone density of the subjects was between 

99% to 62%, which corresponds to Hip-T-scores between 0 to -3.8. We chose to use default 

values for physical activity and estrogen serum levels for all the subjects to avoid the 

confounding effect of those variables on the outcome of simulations. For each case, the 

simulation was performed for 60 days, during which, we record the highest value of the Acid 

Phosphatase to collagen. We chose to use this period -sixty days- because during hundreds of 

simulations we noticed that the Acid phosphatase to collagen ratio reaches a peak between 30 to 

50 days and then starts dropping.  
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3.9.2 Data Analysis 

We coded the data in the SPSS as follows:  Age (continuous variable), Bone density percentage 

as (continuous variable), and Acid phosphatase to collagen ratio as (continuous variable). 

Pearsons' correlation test was used to test the correlation between the two factors: Bone density 

percentage and Acid phosphatase/collagen ratio.  

 

3.9.3 Results 

Pearson’s correlation coefficient value was (-0.878) which is considered as a very strong 

negative relation. The  P value was (0.000), indicating that the relation between the two factors is 

highly significant.  

 

3.9.4 Discussion 

Using the model’s simulations to answer a theoretical question is one of the benefits of using 

computational models. In our model, we chose to run simulations to test the hypothesis that there 

Table 11: Pearson’s correlation test as it appears in SPSS. 

Pearson’s Correlation Bone density AcidP/Collagen Ratio 

Bone density - - 0.878 

AcidP/Collagen Ratio - 0.878 - 

Significant. (2-tailed test) 0.000 
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is a relation between the AcidP/Collagen Ratio and the bone density. We opted to test this 

hypothesis because evidence in the literature supports that as individuals age, Osteoblasts 

activity is reduced and - as a consequence - the collagen production is decreased [19, 20, 22, 23, 

44, 45, 52, 54-56, 62, 72, 76, 237].  

The model can simulate changes that happen within the BMU in the virtual space. Even 

though the model needs further validation in the future, using the model to perform virtual 

experiments for testing the hypothesis proves the concept that this model can be employed to 

scientifically test hypotheses or answer possible questions that relate to changes in bone density. 

Especially when experimenting in a lab using live human cases is very difficult if possible at all.  

Our statistical analysis of the simulations revealed a highly significant correlation between the 

AcidP/Collagen Ratio and the bone density with a P value of (0.000). The correlation analysis 

results of our simulations showed that there is a strong negative relationship between the 

AcidP/Collagen Ratio and the bone density with Spearman’s correlation coefficient (-0.878).  

Based on the results and the analysis, we chose to conclude there is a strong negative relation 

between the AcidP/Collagen Ratio within the bone matrix and the bone density.  

3.9.5 Testing the Model’s Usability 

The usability and the user acceptance are essential factors for any tool -computational or 

otherwise- to achieve field success and widespread user adoption [238-240]. Our model is no 

exception to that rule. Therefore, we decided to perform a cross-sectional study in the form of 

user’s survey to evaluate the user's acceptance of the model.  
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3.9.5.1 The Survey Design and Distribution : We used a survey which is called system 

usability scale or SUS [241]. We used this survey because it is a validated tool and does not 

involve many questions which makes it easier for the participants to complete the survey in a 

short time. Also, this survey is suitable for evaluating the model at its current stage.  We built the 

questionnaire on the website surveymonkey.com and prepared it for electronic distribution.  

We also prepared a ten minutes video presentation to distribute it with the questionnaire, 

so that the participants watch the video demonstration before answering the questionnaire.  Then, 

we contacted the research center in the KFMC and asked permission to distribute the E-mail 

containing the survey and accompanying files to the clinicians who may be interested in 

participating in the usability study. The target population is clinicians who are expected to deal 

with primary osteoporosis more often than others, such as endocrinologists, geriatrics, and 

orthopedics. We then contacted other clinicians who work in Saudi Arabia but in other hospitals 

or clinics.  Table 13 shows the questions used in the survey as they appear in the online survey, 

and the expected responses.   

 

Table 12: the survey questions and expected responses 

Question 
number Question Expected response 

1.  I think that I would like to use this model frequently 

Five points Likert scale 
from strongly disagree 
as one point to five 
points as strongly agree. 

2.  I found the mode unnecessarily complex 
3.  I thought the model was easy to use                       

4.  I think that I would need the support of a technical person to be able to 
use this model. 

5.  I found that the various functions of this model were well integrated. 
6.  I thought there was too much inconsistency in this model 

7.  I would imagine that most people would learn to use this model very 
quickly  

8.  I found the model very cumbersome to use 

9.  I felt very confident using the model 

10.  I needed to learn a lot of things before I could get going with this 
model  
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Table 12 continued  
11.  Gender Male or Female 
12.  Years of working experience Number of years. 

 

We recorded a ten minutes video presentation to demonstrate the different functions of the 

model. Then we sent an email that included a link to the video and another link to the survey. In 

the E-mail, we explained the purpose of the survey and how to answer the survey. The System 

software survey has a unique grading method, and each survey must have the score calculated 

manually.    

3.9.5.2 Statistical Analysis and Results: During the 30 days that the survey was available 

online, and after contacting the clinicians several times through email, the number of respondents 

reached eight. We consider this number sufficient because the goal of this survey was to evaluate 

this version of the model and give an idea about the user’s acceptance of the model. Also, this 

survey may be repeated in the future to evaluate future versions of the model and with a bigger 

sample of users. The sample contained two males and six female participants. With years of 

working experience ranged from one to 20 years. The scores for the survey are available in the 

table below.   

Table 13: calculated scores for the participants. 

Participant Experience (years) Scores  
1.  20 45 
2.  10 55 
3.  3 47 
4.  5 70 
5.  10 82.5 
6.  1 50 
7.  12 45 
8.  5 50 

Mean 55.5 
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The average of the SUS scores among the sample was 55.5 which considered an average 

number, meaning the model has an average usability score  [242, 243].  A Kolmogorov-Smirnov 

test was used to for the DXA scan second readings data set to test for normality. The result was 

statistically significant P = 0.024, which indicates that the data is not normally distributed.  

We used the Spearman rank correlation to test the relation between the experience years 

and the survey scores. Spearman rank coefficient value was (-0.28) which is considered as a very 

weak negative relation. For the relation between the age and the survey scores The  P value was 

(0.49), indicating that the relation between the two factors is not significant.  

3.9.5.3 Discussion: The results of the survey scores demonstrate average-level usability of the 

model among the participants of this sample. Also, the correlation test shows that there is no 

relationship between the participant's experience and between the usability of the model.  There 

are many factors to consider while commenting on this result; including the small sample size, 

the method of the demonstration, and surveys design.  

Although a sample size of 5 users is sufficient theoretically for a usability study, this 

sample size is not favorable for our study because the small sample size may not reflect the 

majority of the target population [244-246]. It is better to have a bigger sample to have a better 

picture of the user’s opinions about the model. The method that we chose (video demonstration), 

was not the most ideal for seeking the users’ opinions about a tool’s usability; It was better to 

have a hands-on, one-to-one demonstration of the computational model, then ask the user to fill 

the survey. Unfortunately, that was not possible because our offer to provide the demonstration 

in a live session was ignored or declined by the clinicians that we contacted through the research 

center.   
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The survey’s design its self is unique because the questions format would allow for a reasonably 

accurate assessment of any system’s usability if and only if the participants read the questions 

carefully before answering the questions. If the users were planning to answer the questions with 

a preconception of accepting the model and plan to answer strongly agree with all the answers, 

the results would be average. Because the odd number questions format is different from the 

even numbered questions.  

Therefore, we can say that at this stage, we consider the model to have an average 

usability level. However, this study must be repeated in the future with a larger sample and must 

have a live demonstration which will include a small Q and A session to explain some minor 

details that may be of concern to the users. 

3.9.6 Conclusion Of The First Aim. 

Our aim in this step was to design, implement, and validate an agent-based computational model 

to simulate the changes in bone density. We searched the literature and selected the most 

commonly accepted theories that explain the disease process. After that, we found the parameters 

values for the most influential factors that control the disease process and formulated their rules 

of interaction within the model based on their documented behavior in the literature.  

Next, we calibrated the model and tested the validity of the model’s ability to simulate the 

disease’s progression over different periods of time in a group of patients’ while comparing the 

Model’s output to the documented DXA scan readings for the patients’. 
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We also conducted sensitivity, specificity, and reliability tests to explore the stability and 

reliability of the model's predictions. Although we used a small sample for performing the tests, 

we believe it is sufficient for us to conclude that the model at the current point of our research is 

valid, reliable, and with acceptable sensitivity and specificity.  Therefore, we can proceed to the 

second aim of this dissertation. 
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4.0   AIM TWO INTRODUCING THERAPEUTIC AGENT INTO THE MODEL 

4.1 INTRODUCTION 

In the second step of this dissertation, we introduce a therapeutic agent into the model and test 

the model's ability to predict the changes in bone density in individuals receiving treatment. We 

performed a literature review to choose a drug that is clinically used for treating osteoporosis. 

After that, we will build the rules to integrate this agent in the model’s design. Then, we perform 

sensitivity, specificity, and accuracy tests to measure the precision and reliability of the model's 

predictions. If the model proves valid and reasonably accurate, the model can be used in research 

to predict therapeutic interventions effects on the changes of bone density in In-Silico 

experiments.  

4.2 SELECTING THE THERAPEUTIC AGENT 

Before choosing a drug to use as the therapeutic agent in the model, we need to be confident that 

it is a commonly used drug for treating osteoporosis patients. The literature must have enough 

information about the long-term effects of the drug on bone density. Also, the drug that we use 

should have a clearly explained mechanism of action for changing the bone density. The sample 
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that we were going to collect is from KFMC, as we previously mentioned in aim one. Therefore, 

the drug must be a commonly used drug to treat the patients in the KFMC clinics; because we 

needed data from patients under treatment by the same drug for validating the model’s output. 

We found that the most suitable drug that fulfills the previous conditions is Alendronate also 

known as (Fosamax) because after collecting the sample from KFMC, we noticed that 

Alendronate is the most commonly used drug for treatment of osteoporosis cases. Also, the 

literature is rich with research about alendronate’s mechanism of action, clinical results, and 

changes in bone density over time [127-130, 247].   

4.3 METHODOLOGY 

In following sub-sections, we will explore the following steps: models modifications, data 

acquisition, data description, statistical tests used for comparing the patients’ data with the 

outcomes collected from the model. 

4.3.1 Alendronate’s Mechanism of Action and The Model’s Modifications 

Alendronate is a drug that belongs to the Bisphosphonates group. Alendronate -like other 

Bisphosphonates- target’s areas in the bone of high turnover and active resorption. Alendronate 

attaches to the Calcium hydroxyapatite crystals that are exposed on the bone surface of the bone 

resorption areas. Alendronate then is taken into the bone tissue where it enters the osteoclasts and 

initiate intercellular biochemical changes leading to a reduction of osteoclasts activity and 
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increased apoptosis [132, 248, 249]. Alendronate is a well-known drug that has been commonly 

used for treating osteoporosis for over 20 years [127, 128, 132, 248, 250, 251].   

Based on alendronates effect on the osteoclasts activity and lifespan, we created the rules 

for alendronate as an agent and introduced it into the model. Like the all the other rules that we 

built before, the values that we used were inferred from values and information from research 

papers about Alendronate. The rules in table 15 include finalized values after the model's 

calibration.  

 

Table 14: rules and values that are used for alendronate in the model. 

Agent Mechanism Input modes 
and units Rules of interaction and references 

Alendronate Reduces 
osteoclasts 
activity (Anti-
resorptive 
action). 

5 mg, 10 
mg, 20 mg/ 
Duration in 
months. 

Reduction of osteoclasts activity: 
5 mg per day  0.15% to 0.4% 
10 mg per day  0.3% - 0.8% 
20 mg per day  0.45% - 1% 

[127, 128, 
132, 247, 
250] 

 

4.3.2 Data Acquisition Process & Data Description 

We selected the patients who are registered in the osteoporosis clinic in the KFMC who fulfill 

the inclusion/exclusion criteria. The total number of patients who are enrolled in the clinic is 416 

patients. We filtered the cases according to the following inclusion and exclusion criteria in table 

16: 
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The total number of cases that fulfilled the criteria is 43 cases. We consider this number 

to be reasonable considering that many patients have multiple health conditions in addition to 

osteoporosis such as hypothyroidism, hyperthyroidism, or rheumatoid arthritis. There are many 

patients how are receiving hormonal therapy post-breast surgery as a part of breast cancer 

treatment. Also, we need clear documentation about the duration of treatment and that the patient 

was compliant with the drug treatment.   

All the cases were females, with ages between 42 and 77 years. The subjects received 

Alendronate (Fosamax) as a unified dose which is 70 mg once per week orally. However, we 

could not find any male cases that fulfilled the criteria; the male patients had multiple conditions 

that caused secondary osteoporosis. The follow-up period between the readings ranged from six 

months to four years, which is useful for testing the model’s ability in predicting the changes 

over a range of different time periods. Of the 43 cases, 29 cases subjects had two documented 

readings (initial and one follow up), and 14 cases had three documented readings (initial and two 

follow up visits). Table 17 below provides the descriptive statistics for the sample.  

Inclusion Criteria Exclusion Criteria 

1. Age ≥40. 
2. DXA scan results available (2 or 

more consecutive readings 
preferred). 

3. The patient must be receiving 
alendronate for the treatment of 
the condition at the time the DXA 
scan readings were performed 

1. Genetic bone tissue diseases. 
2. Conditions that may induce secondary 

osteoporosis such as 
hyperparathyroidism  

3. Patients taking medications or 
substances that affect the bone density 
such as chronic intake of 
glucocorticoids’. 

Table 15: Inclusion and exclusion criteria. 
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Table 16: Descriptive statistics of the sample 

Parameter Minimum Maximum Mean SD 

Age  42 77 58.72 7.6 ± 

Difference from ideal BMI   -2 14 4.19 3.6 ± 

Bone Density %  70 100 85.14 7.3 ± 

 

 

All the cases were de-identified, and each case was assigned a serial number that we used 

during the data analysis process. After organizing the data, and running the simulations, we will 

proceed to statistical analysis.  

 

4.3.3 Statistical Analysis and Results 

We coded the data in the SPSS as follows:  Age (continuous variable), BMI (ordinal), and DXA 

scan and the Model’s simulation readings both as continuous variables. We did not code the 

other variables because all the cases were nonsmokers, had no record of weight-bearing physical 

activity, and did not have their serum estrogen level measured at the time when the DXA scan 

was performed.  

A Kolmogorov-Smirnov test was used to for the DXA scan second readings data set to 

test for normality. The result was statistically not significant P = 0.2, which indicates that the 
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data is normally distributed.  Based on that result, we can use a parametric test to analyze the 

data.  

We used the Paired Sample T-test to compare the DXA-scans second reading and the 

Models simulations of the second readings. The test result was statistically not significant t (42) 

= 8.1, p = 0.28. based on the result we conclude that there was no significant difference between 

the DXA-scan readings and the readings obtained through the model’s simulations. 

We checked the normality of the DXA scan third readings obtained from the sample. We 

performed the Kolmogorov-Smirnov test to test for normality. The result was statistically not 

significant P = 0.2, which indicated that the data is normally distributed.  Next, we performed the 

Paired Sample T-test to compare the DXA-scans third readings and the Models simulations of 

the third readings. The test result was statistically not significant t (14) = 1.413, p = 0.181. based 

on the result we conclude that there was no significant difference between the DXA-scan 

readings and the readings obtained through the model’s simulations. 

4.3.4 Results Discussion 

The purpose of the patients’ data collection and the above statistical analysis is to validate the 

model’s ability to predict the change in bone density over time in patients who are under 

treatment by Alendronate. The results indicated that model’s simulations were statistically not 

different from the actual DXA scan readings obtained from patients during their clinic visits. The 

results allow us to claim that the model is valid for predicting the bone density changes in 

patients receiving alendronate for the treatment of osteoporosis. The model managed to simulate 

the changes in subjects receiving the intervention over different time periods that ranged from six 
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months to four years. As with the sample used in the first aim, this sample used here contains 

only female cases, who were non-smokers. Which means that there is a need in the future to 

collect another sample that contains male cases, smoking individuals, and serum estrogen 

readings to validate the other functions in the model. At this point, this is enough proof to 

demonstrate model’s concept and ability to encourage further research and later, the use in 

clinical practice.  

Currently, there are no computational tools that predict the changes in bone density in 

patients who are receiving alendronate. This model introduced a new method to study effects of 

different medications on bone density. Instead of the traditional research methods that consume 

time and resources, this model can be modified to test experimental interventions or scientific 

theories via In-silico experiments.  This model needs further validation using many different 

samples from various populations before it can be used in clinical practice. 

4.4 SENSITIVITY, SPECIFICITY, AND ACCURACY TESTING 

In the previous step, we tested the model’s reliability. Our model is built using ABM, and one of 

the advantages of ABM is having a modular design. In this step, we merely added alendronate as 

an agent with its pertaining rules without performing any changes to the other agents in the 

model, which keeps the model’s performance and internal mechanics unchanged and therefore 

do not require repeating the reliability tests. However, in this step, we have validated the model's 

simulations of the second and third readings obtained from the DXA scan. Therefore, we need to 

test the sensitivity, specificity, and accuracy for simulations of the second and third readings. 
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4.4.1 Sensitivity, Specificity Tests and Results 

We defined the sensitivity of the model to be the percentage that the model diagnosed the subject 

to have less than normal bone density (osteopenia or worse) when the subject, in fact, had a bone 

density below the normal level. We defined the Specificity of the model to be the percentage that 

the model diagnosed the subject to have normal bone density while the subject has healthy and 

normal bone density. We coded the cases into the SPSS and performed the analysis. For 

simulating DXA Scans second readings, the sensitivity or true positive rate was 90%, and the 

specificity or true negative rate was calculated to be 91.3%. For simulating DXA Scans third 

readings, the sensitivity or true positive rate was 100%, and the specificity or true negative rate 

was calculated to be 100%.  

 

4.4.2 Accuracy Tests and Results 

To test the accuracy of the model we used the SPSS to plot the Receiver Operating Characteristic 

(ROC) Curve. In the SPSS, we assigned the cases that had normal bone density 0 indicating the 

absence of the condition and assigned 1 for any subjects that had lower than normal bone density 

diagnosis for the two datasets.  

 

We performed the ROC test for measuring the accuracy of simulating DXA Scan’s 

second readings, and the results are in the following table: 
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      Table 17: Results of ROC analysis for the second readings simulations. 

Area Under the Curve 

Area Std. Error 
Asymptotic 
Significance 

Asymptotic 95% Confidence 
Interval 

Lower Bound Upper Bound 
.907 .052 .000005 .804 1 

                                   

 

The area under the curve is 0.907 which indicates excellent accuracy. The asymptotic 

Significance is 0.000005 which is less than the P value of 0.05. Therefore, we say that the results 

obtained from the model are more accurate than readings obtained by chance.  

For measuring the accuracy of simulating DXA Scan’s third readings, and the results are in the 

following table: 

 

       Table 18: Results of ROC analysis for the third readings simulations. 

Area Under the Curve 

Area Std. Error 
Asymptotic 
Significance 

Asymptotic 95% Confidence 
Interval 

Lower Bound Upper Bound 
1 0 .01 1 1 

                                    

 

The area under the curve is which indicates perfect accuracy. The asymptotic 

Significance is 0.01 which is less than the P value of 0.05. Therefore, we say that the results 

obtained from the model are more accurate than readings obtained by chance.  
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4.4.3 Discussion Of Results 

In the second aim, we performed the sensitivity/specificity, and accuracy analysis for model’s 

simulations of DXA Scans second and third readings of the patients. The model’s sensitivity 

(true positive rate) ranged from 90% to 100%, and the sensitivity ranged from 91.3% to 100%. 

To be 85.7%, and the specificity (true negative rate) was calculated to be 100%. The area under 

the curve value for the model ranged between 0.9 to 1.  The DXA scan, its self, has a sensitivity 

of 88.2 to 94.1 % and specificity of 25 to 62.5% [183]. The area under the curve ranged for the 

DXA scan ranges from 0.82 to 0.91 [252].  

 

The results seem impressive (100% sensitivity and specificity) and unusually high for a 

computational predictive tool, but that is because of the small sample used in the analysis. Still, 

the results are very appealing and encourage us to use other samples to see how the model will 

fair when different sample sizes obtained from different populations are used for validation and 

accuracy testing. In the ROC test, the model’s area under the receiver operating curve (AUROC) 

was 0.9 to 1 which is a higher score than that of the DXA scan. Again, the small sample size here 

is the reason for this high AUROC score, because the ROC plot is the relation between the 

sensitivity and 1- specificity.  

4.5 CONCLUSION 

In the second aim, we tested the model’s ability to predict changes in bone density in patients 

who are under treatment by a therapeutic agent for osteoporosis. We introduced Alendronate as 
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the therapeutic agent into the model and performed the simulations to by using data from patients 

from the KFMC sample which we used in the first aim. The statistical analysis that we used to 

compare the model’s output to the DXA Scan readings demonstrated that the model is valid, and 

with high specificity, and sensitivity in predicting bone density changes over time in patients 

who are receiving treatment for osteoporosis. 

 

 The sample size was small, which have affected the results. The results of the analysis, 

however, are very inspiring, which motivate us to perform further analysis of the model using 

larger samples obtained from different populations.  
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5.0   AIM THREE: TESTING  THE MODEL'S ABILITY TO PREDICT THE BONE 

DENSITY AS A DIAGNOSTIC TOOL 

5.1 INTRODUCTION 

In the third aim, we will test the model’s ability to estimate the bone density as a first reading. 

This aim introduces a new approach to diagnose osteoporosis using an agent-based 

computational model. We will select the cases from the KFMC sample, perform the statistical 

comparison, and explore the possible uses of the model as a clinical diagnostic tool for 

osteoporosis.  

5.2 METHODOLOGY 

In following sub-sections, we will explore the following steps: case selection, data description, 

statistical tests used for comparing the patients’ data with the outcomes collected from the 

model, and the results of the statistical test.   

 



98 

 

5.2.1 Selection of Cases 

We selected the patients who are registered in the osteoporosis clinic in the KFMC and fulfilled 

the inclusion/exclusion criteria. We filtered the cases according to the following inclusion and 

exclusion criteria: 

 

 

 

5.2.2 Sample Description  

The total number of cases that fulfilled the criteria is 55 cases. All the cases were female cases 

with their ages ranged from 44 to 90 years old. All the subjects are nonsmokers, and there are no 

serum estrogen readings that were measured at the time of the DXA scan examination. No male 

cases were among the subjects selected because all the male cases had medical conditions that 

affected the bone density and thus were excluded.  

 

 

Table 19: Inclusion and exclusion criteria. 

Inclusion Criteria Exclusion Criteria 

1. Age ≥40. 
2. DXA scan of the total Hip 

available.  
 

 

1. Genetic bone tissue diseases. 
2. Conditions that may induce secondary 

osteoporosis such as 
hyperparathyroidism  

3. Patients taking medications or 
substances that affect the bone density 
such as chronic intake of 
glucocorticoids’. 
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Table 20: Descriptive statistics of the sample. 

 

5.2.3 Simulations and Data Analysis 

We performed the simulations using the model for each subject by entering specific parameters 

values that pertain to that subject such as age, BMI, or smoking status. We entered inputs to the 

model and run the model to see how the model’s outputs compare to the initial DXA Scan 

readings of the cases.  Also, for each case, we ran the simulation for six months to allow for 

proper interaction between the agents. After collection the results of the simulations, we 

performed the statistical tests for the sample as a whole and then for each age group separately.  

5.2.4   Statistical Analysis and Results 

We performed the Kolmgrove-Smirnov test to check the normality for each group and then for 

the whole sample. According to the results of the tests, we selected the Paired sample T-test for 

the groups that show normal distribution, and the Wilcoxon-sign test for the groups that are not 

normally distributed. The table below shows the types of tests used for each group and the test 

results.  

Age group Weight (Kg) Height (Cm) BMI 
BMI 

difference 
from normal 

DXA Scan 

40-50 83.41 ± 10.6 146 ± 5.6 34.5 ± 4.26 8.18 ± 4.7 0.2 ± 1.7 
51-60 70 ± 13.3 154.3 ± 6.47 29.4 ± 5.27 5.3 ± 4.7 0.8 ± 0.98 
61-70 68.7 ± 12.2 153.46 ± 7.2 29.5 ± 5.2 6.2 ± 6.5 -1.79 ± 0.74 

71 and over 69.9 ± 17 151 ± 8.85 31 ± 6.46 6.7 ± 6.3  -2.3 ± 0.66 
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Table 21: Statistical tests used the results for each group. 

Group 
Age group N Test 

 
2-tailed P value 

 
P value 

1 40-50 13 Wilcoxon-sign test 0.196 P > 0.05 
2 51-60 13 Wilcoxon-sign test 0.02 P < 0.05 
3 61-70 15 Paired T-test 0.039 P < 0.05 
4 71 and over 14 Paired T-test 0.005  P < 0.05 

All Total sample 55 Wilcoxon-sign test 0.000 P < 0.05 
 

5.2.5    Discussion of The Results 

In the third aim, we tested the limits of the model's capability by testing the model's ability to 

predict the proper bone density level of the subjects by feeding the model limited inputs. To our 

knowledge, there are no similar models that predict the bone density of an individual using such 

inputs.    

The test for the first group did not show a significant difference between the patients 

DXA scan readings and the model's simulation results. However, for all the other groups the test 

results demonstrated a significant difference between the actual readings of bone density and 

model’s predictions.   We noticed that difference significance is increased between the groups, 

the older the age group, the higher the difference in the test results, however, this may be a 

random occurrence. We believe that a possible reason for the results is sample size.  

We believe using larger samples and obtaining samples from different populations may 

provide very different and exciting results. Another possible reason is that the older groups 

generally have many other factors that may affect the bone density but is not accounted for, such 

malnutrition, undiagnosed conditions that may cause secondary osteoporosis or genetic factors 
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that may allow the patient to have higher -or lower – than average bone density levels. All the 

previous factors increase the level of uncertainty and unpredictability which makes it difficult for 

a computational model to simulate the conditions and estimate the proper bone density level of 

the individual.  

5.3 CONCLUSION OF THE THIRD AIM 

In the third step of this dissertation, we tested the model’s ability to estimate the bone density of 

the individuals without an initial DXA scan value. The model successfully estimated the subjects 

bone density under fifty years of age. It was not able to predict correctly the bone density of 

older patients. That is possible because the factors that are not present in the simulation or not 

accounted for such as genetic or coexisting medical conditions during the sample collection. In 

future versions, We hope that we can obtain larger samples with complete details about the 

subjects involved in the study, and that we will be able to add other factors to the model so that 

the model develops into a useful tool that can be used not only to estimate the progression of the 

bone density but as a screening tool for osteoporosis.  

5.4 POSSIBLE APPLICATIONS FOR PUBLIC HEALTH 

 
Different computational models are currently in use for public health studies or public health 

projects. One notable project is MIDAS which is funded by the NIH.  MIDAS – as defined by 
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the project developers- is a collective group of researchers and scientists who build and use 

computational, statistical and mathematical models to study infectious disease dynamics that aid 

the authorities to act proactively in detecting, eradicating and preventing various infectious 

disease threats [253, 254]. The models are developed to study the disease spread rate and 

possible communication routes and are designed to predict the possible outbreaks of 

communicable diseases such as measles and influenza.  

 

Many innovative and valuable models were developed and supported by MIDAS such as 

Framework for Reconstructing Epidemiological Dynamics or FRED, Legal network analyzer 

LENA, and project Tycho [253].  Our computational model is designed to study the disease 

process in individual cases, but it can be used to study the possibility of osteoporosis 

development in individuals from samples collected from specific age groups and use the results 

to predict the prevalence of osteoporosis in that specific group.  

5.5 IMPACT ON THE E.H.R AND CLINICAL DOCUMENTATION 

Our model in the current state operates separately from any other software. However, it can be 

connected to E.M.R to allow for the transfer of information directly to the patient's electronic 

record. It can also be improved to run the predictions periodically while being updated by data 

collected from the patient most visits and DXA scan reports.  The nature of data that is fed to the 

model and the collected output data is in the form of numbers (structured data) which does not 

require high-speed connections. Not only our model does not require high-speed connections, but 

it can also operate on any computer because the NetLogo requires small processing power and 
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memory space; it can work on Windows XP with a 64 MB RAM. This will also make it easier 

for mobile devices and smartphones to run this model in the future when we develop a version 

for mobile devices.  

5.6 RESEARCH LIMITATIONS 

In the literature review step, we used scientific articles and research papers that were in the 

English language. This can be a limitation because there are hundreds of papers that are available 

in different languages that may contain useful information for our research project.   

 

During the design phase, there were many missing values for the agents that we use in the 

model those values are not available in the literature. To solve this problem, we used parameter 

values that were calculated by other researchers for use in their models.  We consider this a 

limitation; however, it is an acceptable limitation in modeling and specifically agent-based 

modeling.  

 

The small sample size that we used in validating the model is another limitation. It was 

very difficult to acquire the data for validation because it was obtained from a clinical source, but 

we believe this small sample is sufficient at this step to validate the model at this preliminary 

phase and to prove the concept of the model.  

 

In the third step of this dissertation, we tested the model’s ability to predict the bone 

density without a starting value obtained from the DXA scan. There many factors that limit the 
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ability of the model to perform such prediction. Many factors that may affect the bone density 

cannot be accounted for in the simulation. Factors such as genetic, environmental, coexisting 

medical conditions, drugs or herbal medications can affect the bone health, but it is very difficult 

to obtain all the details from the clinical notes because of the poor handwriting, missing and 

unorganized data of the scanned charts.   

5.7 FUTURE DIRECTIONS 

Our model, Similar to FRAX®, can be more accurate in simulating the disease process for 

specific populations if the rules were modified to simulate disease behavior in those particular 

populations.  FRAX® which was endorsed by the WHO and NOF as the best tool to predict the 

ten years’ risk of osteoporotic fracture has 63 models that are used to predict the fracture risk for 

populations in 58 countries around the world [255].  

 

The reason for that is that every population have different factors that may contribute or 

delay the progression of Osteoporosis and osteoporotic fractures; Such factors can be genetic, 

environmental, nutritional habits or others [21-23, 25, 30, 52, 55, 68, 69, 73, 120, 121, 256-258]. 

The model can be improved to predict the fracture risk by integrating the relevant agents into the 

model. The model can then predict the fracture risk at specific parts of the bony skeleton such as 

the wrist or the femoral neck bones.  
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Other future improvements to the model include adding different therapeutic agents 

including other medications in use for treatment of osteoporosis including various types of 

bisphosphonates, and Parathyroid hormone (teriparatide) [19, 69, 78, 120].  

 

The model may have different versions to study conditions that cause secondary 

osteoporosis such as chronic intake of glucocorticoids, hyperparathyroidism, or Renal 

osteodystrophy [21, 30, 59, 96, 120, 133]. To create the previously mentioned changes, sufficient 

information about the internal mechanisms of the new agents and all the relevant parameters 

values must be available to develop the interactions rules and integrate the new agents into the 

model. Also, each version must be validated and tested for sensitivity and specificity.  New 

medications that are under investigations can be added as agents to the model where virtual 

experiments can be performed numerous times to test the efficacy of the new drug and its effects 

on the bone cells functions and longevity.  

  

This model will need more testing against data from different populations in clinical 

settings before considered as a valid diagnostic clinical tool.  It will also undergo many changes 

and updates according to the changes in the research field regarding the disease process. New 

biochemical factors or inflammatory mediators may emerge as important players that can change 

the disease’s course. Older and well-known factors may prove insignificant or of low importance 

in the affecting the disease mechanism.  The model will be changed to accommodate the 

expected changes.  
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Osteoporosis and the complications that result from it exert a great financial burden on 

the healthcare providers and is a major concern of policymakers and top healthcare leaders. 

Medical costs in the united states in 2015 of a patient’s admission who suffered from an 

osteoporosis fracture or related injury was estimated to be $30,550. Also, Osteoporosis fall 

injuries including fatal and non-fatal were calculated to be around $32 billion [259].  

 

Such great costs could be reduced by anticipating and preventing the complications with 

early detection and treatment of osteoporosis. Our model could be modified and improved to 

perform simulations of a population then these simulations -using analytical software- can 

provide benchmarks for expected incidence and costs of complications. It may also perform 

simulations for the patients, and these simulations can be transformed to informative charts using 

analytical software that provide a better understanding for decision-makers to make the best 

decision according to the updated disease status in the served population. 
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