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EFFICIENT SECURITY IN EMERGING MEMORIES

Joydeep Rakshit, PhD

University of Pittsburgh, 2018

The wide adoption of cloud computing has established integrity and confidentiality of data in

memory as a first order design concern in modern computing systems. Data integrity is ensured

by Merkle Tree (MT) memory authentication. However, in the context of emerging non-volatile

memories (NVMs), the MT memory authentication related increase in cell writes and memory ac-

cesses impose significant energy, lifetime, and performance overheads. This dissertation presents

ASSURE, an Authentication Scheme for SecURE (ASSURE) energy efficient NVMs. ASSURE

integrates (i) smart message authentication codes with (ii) multi-root MTs to decrease MT reads

and writes, while also reducing the number of cell writes on each MT write.

Whereas data confidentiality is effectively ensured by encryption, the memory access patterns

can be exploited as a side-channel to obtain confidential data. Oblivious RAM (ORAM) is a se-

cure cryptographic construct that effectively thwarts access-pattern-based attacks. However, in

Path ORAM (state-of-the-art efficient ORAM for main memories) and its variants, each last-level

cache miss (read or write) is transformed to a sequence of memory reads and writes (collectively

termed read phase and write phase, respectively), increasing the number of memory writes due

to data re-encryption, increasing effective latency of the memory accesses, and degrading system

performance. This dissertation efficiently addresses the challenges of both read and write phase

operations during an ORAM access. First, it presents ReadPRO (Read Promotion), which is an

efficient ORAM scheduler that leverages runtime identification of read accesses to effectively pri-

oritize the service of critical-path-bound read access read phase operations, while preserving all

data dependencies. Second, it presents LEO (Low overhead Encryption ORAM) that reduces cell

writes by opportunistically decreasing the number of block encryptions, while preserving the se-
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curity guarantees of the baseline Path ORAM. This dissertation therefore addresses the core chal-

lenges of read/write energy and latency, endurance, and system performance for integration of

essential security primitives in emerging memory architectures.

Future research directions will focus on (i) exploring efficient solutions for ORAM read phase

optimization and secure ORAM resizing, (ii) investigating the security challenges of emerging

processing-in-memory architectures, and (iii) investigating the interplay of security primitives with

reliability enhancing architectures.
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1.0 INTRODUCTION

The wide adoption of cloud computing and storage is accompanied by a significant increase in data

security challenges, exposing confidential data to multiple points of attack. Due to severe secu-

rity implications, these emerging computing models have established data security as a first order

design concern [1–4]. Similar to most computing security platforms, data security encompasses

the three major pillars of integrity, confidentiality, and availability [5]. This dissertation focuses

on architecting low overhead solutions to preserve integrity and confidentiality of data in emerg-

ing memory systems; data availability is ensured by orthogonal techniques [6–9]. The following

sections briefly discuss the overheads of ensuring integrity and confidentiality of data in memory,

and the contributions of this dissertation in addressing those overheads.

1.1 DATA INTEGRITY

Data integrity—a core component of the secure computation model—is the ability to detect ad-

versarial tampering of (i) stored data in memory, or (ii) data transactions to/from memory. State-

of-the-art memory authentication solutions maintain a logical data structure, Merkle Tree (MT),

whose nodes are obtained by recursive computation of message authentication codes (MACs) over

memory blocks, where MAC constitutes a cryptographic signature of the input data. In an MT, a

parent node MAC ensures integrity of its child node MACs. MT memory authentication ensures

the integrity of fetched (written) memory blocks by verifying (updating) its MAC lineage upto the

MT root on the secure processor [1, 10–12].

MT memory authentication reduces system performance by introducing additional memory

reads and writes, specifically to read/update the MT. Previous work have investigated and provided

efficient architectural solutions to significantly reduce integrity-related memory traffic and thereby

1



the performance overhead [10–13]. However, most of the prior research was based on single or

dual core systems with small DRAM-based main memory of ≤ 4GB. Current multicore systems

enable execution of multiple concurrent applications, increasing the combined working set of the

system and imposing an increasing demand on primary memory. Although DRAM-based memory

has been the state-of-the-art primary memory for decades, the high energy consumption and poor

scaling potential of DRAM has spurred research in emerging resistance-class non-volatile memo-

ries (NVMs) such as phase change memory (PCM) [14, 15], resistive RAM [16, 17], spin-transfer

torque RAM (STT-RAM) [18], and 3D X-Point [19] because of their superior scalability, lower

energy consumption due to non-existent refresh operations, and higher data density.

Although NVMs offer multiple benefits, the NVM write energy (latency) is higher in com-

parison to the read energy (latency), and also higher in comparison to DRAM write/read en-

ergy (latency) [20, 21]; these differences are exacerbated in multi-/triple-level cell (MLC/TLC)

NVMs [22]. MT memory authentication ensures data integrity, it invariably incurs high NVM en-

ergy and performance penalty due to increased cell writes and memory accesses. The simulations

of SPEC CPU2006 [23] workloads show that state-of-the-art MT memory authentication increases

cell writes (NVM energy) to 5.8× (5.3×) and degrades system IPC to 0.65× in comparison to a

nominal encrypted triple-level cell (TLC) RRAM architecture. This motivates the re-evaluation

of prior schemes in the context of NVM memory systems, and the development of low penalty

solutions for NVM authentication.

1.1.1 Contributions

ASSURE: This dissertation presents an energy efficient Authentication Scheme for SecURE (A-

SSURE) NVMs, preserving the authentication properties of the underlying MT. ASSURE syner-

gistically integrates smart message authentication codes (SMACs) and logically resizable multi-

root MTs (MMTs) for low penalty memory authentication. SMAC leverages the observation that

only the modified words are re-encrypted on consecutive write-backs to a memory location [24,25].

SMAC partitions the MAC at word-level granularity and recomputes only those MAC words cor-

responding to the re-encrypted words during a memory write.

ASSURE complements SMACs with multi-root MTs (MMTs) to reduce the memory accesses

associated to MT authentication. MMTs maintain multiple smaller static/dynamic MTs, collec-

2



tively spanning the memory, with their roots on the secure processor. Static MMTs (SMMTs)

partition the memory into memory block groups (MBGs) and statically maintain individual MTs

for each MBG. Since each individual MT spans a smaller number of blocks, they have fewer lev-

els, substantially reducing the number of MT levels read/updated for authentication. However,

SMMTs incur significant processor-side on-chip storage for maintaining multiple MT roots. AS-

SURE proposes dynamic MMTs (DMMTs) for low storage overhead MMT, which leverage the

spatial and temporal locality of memory accesses in practical workloads to dynamically predict

the frequently (infrequently) accessed hot (cold) MBG(s). Hot (cold) MBG(s) are assigned to the

smaller hot (larger cold) MT. Each parent SMAC in an MMT is partitioned into k words, where

k is the order of the MMT, and only those words corresponding to modified children SMACs are

recomputed; this extends the cell write reduction advantages of SMACs to MMT nodes by elimi-

nating unnecessary parent MAC computation for unmodified children MACs.

ASSURE is evaluated on a TLC RRAM architecture for NVM energy, lifetime, and system

IPC, and compared to state-of-the-art bonsai MT (BMT) [11] in the presence of two encryption

frameworks: (i) dual counter encryption (DEUCE) [24] and (ii) Smartly EnCRypted energy Ef-

ficienT NVMs (SECRET) [25]. NVMain [26] is used to estimate NVM energy on memory ac-

cess traces of SPEC CPU2006 benchmarks [23] generated using Intel Pin toolset [27]. The sim-

ulations show that on average, SMMT ASSURE (DMMT ASSURE) reduces NVM energy by

59% (55%) over BMT, because SMACs prevent redundant MAC recomputation of unmodified

words and MMTs reduce MT accesses. The lifetime evaluations using an in-house lifetime sim-

ulator show that on average, SMMT ASSURE (DMMT ASSURE) improves memory lifetime by

2.36× (2.11×) over BMT due to significant cell write reduction. The full-system evaluations

on MARSS [28] of composite SPEC CPU2006 workloads show that on average, SMMT AS-

SURE (DMMT ASSURE) improves system IPC by 11% (10%) over BMT.

1.2 DATA CONFIDENTIALITY

Data confidentiality is the capability to prevent unauthorized disclosure of plaintext data (i) stored

in memory, or (ii) during data transactions to/from memory. Whereas data confidentiality is ef-

fectively ensured by encryption, the plaintext memory addresses and associated memory access

3



patterns can be exploited as a side-channel to obtain confidential data. Existing attacks reveal that

memory access patterns can be leveraged to identify the control flow graph (i.e., behavior) of a

program [29] or the associated encrypted data/encryption key [30–32]. Oblivious RAM (ORAM)

is a cryptographic primitive that effectively obfuscates the memory access pattern, preventing in-

formation leakage about (i) the address accessed, (ii) the access type (read or write), and (iii) the

data being read/written [33–35]. ORAM primarily functions by encrypting the data and continu-

ously shuffling their memory locations. Recent research widely adopts the Path ORAM construct

for its efficiency and algorithmic simplicity [3, 4, 31, 34–40].

Path ORAM: In Path ORAM, the memory is organized as a binary tree, wherein each node,

termed a bucket, contains a fixed number of slots to store encrypted data blocks. The logical ad-

dress (program/virtual address after page table translation) of the data blocks is randomly mapped

to one of the leaves (i.e., assigned a LeafID) and the data block can be stored in any bucket on the

path from the root to the mapped leaf. The LeafIDs of data blocks are contained in a data struc-

ture called the PosMap. A logical address (LA) access (read or write) to the Path ORAM after a

last-level cache (LLC) miss is composed of two phases. In the read phase, encrypted blocks from

every bucket on the mapped path are fetched, decrypted, and the target data block remapped to a

new LeafID and sent to (updated by) the processor if it was an LA read (write) access. In the write

phase, all possible fetched blocks are re-encrypted and evicted back to the path, placing them in

buckets as close to the leaves as possible. Path ORAM derives its obfuscation guarantees primarily

from the random leaf remapping of the accessed address during the read phase; therefore, a new

path is accessed each time a particular LA is requested from ORAM.

The primary overhead of ORAM integration with main memories is the expansion of a sin-

gle memory access (LA read or LA write) to multiple memory reads and writes, which amplifies

memory traffic, thereby increasing effective memory access latency, increasing memory energy

footprint, and degrading overall system performance; additionally, ORAM significantly deterio-

rates memory lifetime for NVM-based memory systems due to the increased write frequency for

each logical memory access. This dissertation follows a holistic approach of reducing the ORAM

overheads by providing architectural solutions for improving both read phase and write phase per-

formance of state-of-the-art ORAM.
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1.2.1 Contributions

ReadPRO: First, this dissertation focuses on optimizing the read phase of an ORAM access,

specifically reducing the latency of LA read accesses, which stalls the application thread execution

until the requested data is received from memory. The read phase of an LA read access is on the

critical path of program execution, since the processor is waiting for the target data to be fetched

from the memory.The key observation is that due to in-order scheduling of the LA accesses in

baseline ORAM controller, the critical-path-bound read phase operations of LA read accesses are

delayed by pending read and write phase operations of older LA write accesses, which are not on

the critical path of program execution. Previous work like Fork Path [38] and Tiny ORAM [41]

reduce the number of block writes to decrease overall ORAM access latency; however, this contri-

bution, ReadPRO (Read Promotion) is the first work to explicitly address the critical-path-bound

feature of read access read phase operations to reduce ORAM read latency and improve system

performance.

ReadPRO is an ORAM scheduler for dynamic threshold-bound prioritization of LA read ac-

cesses at the last-level cache (LLC) and ORAM controller interface, ensuring faster performance-

critical data fetches while preserving all data dependencies and incurring low logic and memory

overhead. ReadPRO is applicable to both ORAM in DRAM-based and NVM-based main mem-

ories. For a conservative evaluation of the advantages of ReadPRO over state-of-the-art ORAM

architectures, full-system evaluations are performed by integrating a DRAM-based memory sys-

tem across SPEC CPU2006 benchmarks; ReadPRO decreases the average ORAM read latency by

4×, improving system performance by 38%.

LEO: Second, this dissertation focuses on architectural solutions to optimize the write phase of an

ORAM access, specifically targeting the NVM systems due to their high write cost (latency, energy,

performance). The re-encryption of all the blocks on a path during the write phase of an ORAM

access increases the cell-write rate, since the diffusion property of encryption algorithms results in

a 50% bit-flip rate on average during a memory write [24, 25]. Although this increased cell-write

rate is not a dominant concern for DRAM, it adversely impacts NVM energy and lifetime because

of the high overhead of NVM writes over NVM reads and DRAM read/writes [42,43], motivating

the development of low energy, high lifetime NVM Path ORAM. To address this challenge, this
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dissertation proposes LEO (Low overhead Encryption ORAM), which is a secure and optimal

encryption framework for NVM Path ORAM. LEO minimizes the redundant re-encryption of un-

modified blocks during the write phase of a Path ORAM access, decreasing NVM cell writes, and

its corresponding overheads during the write phase of an ORAM access.

LEO reduces redundant re-encryptions securely by mandating that all buckets along an ac-

cessed path should experience block re-encryptions equal to the highest count of new/modified

blocks written to an individual bucket on that path during an ORAM access. In the buckets, the

new/modified blocks, and if required, some randomly selected unmodified blocks are re-encrypted

to achieve uniform re-encryption count across all buckets; the remaining unmodified blocks are

not re-encrypted. For this optimized encryption, LEO utilizes a two-level counter architecture

for counter-mode encryption (CME) of the blocks. LEO preserves the security of the encryption

architecture in the baseline Path ORAM [34] and does not leak any additional information ben-

eficial to the adversary. Since LEO is geared towards reducing bit flips on each ORAM access

in NVMs, LEO is evaluated on a single-level cell (SLC) PCM architecture using workloads from

SPEC CPU2006 [23] benchmark suites. The simulations on single-level cell (SLC) PCM architec-

ture using SPEC CPU2006 [23] benchmarks show that LEO decreases average NVM energy by

60%, enhances lifetime by 1.51×, and improves system performance by 9% over the state-of-the-

art ORAM architectures.

1.3 FUTURE WORK

Future research directions will focus on (i) exploring efficient solutions for ORAM read phase

optimization and secure ORAM resizing, (ii) investigating the security challenges of emerging

processing-in-memory architectures that require plaintext data on the memory modules for pro-

cessing purposes, and (iii) investigating the interplay of security primitives with reliability en-

hancing architectures, focusing on leveraging the reliability improvement techniques to efficiently

reduce security-related overheads.

First, although ReadPRO decreases the ORAM read latency, it is still considerably (≥ 2×)

higher than a system that does not employ ORAM for access pattern obfuscation. In an ORAM

primitive with ReadPRO scheduling, each logical memory access is still amplified to multiple

memory read and write operations (i.e., the read and the write phase, respectively). Therefore,
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there is a large scope of improvement in ORAM performance by further optimization of the critical-

path-bound read phase of an ORAM access. Additionally, the memory traffic, i.e., the number of

blocks read/written back in an ORAM access depends on the number of levels in the tree; therefore,

it can be reduced by dynamically decreasing the size of the ORAM tree. Although the dynamic tree

sizing solutions developed in ASSURE solves a similar problem for MT memory authentication,

it assumes memory access locality in the external memory; an ORAM is specifically designed to

obfuscate memory access pattern, and thereby eliminate any memory access locality to the external

unsecure memory. This motivates the development of a secure ORAM tree resizing algorithm and

architecture to dynamically scale memory traffic.

Second, modern applications in domains like machine learning, graph processing, and other

similar fields that are inherently parallel, utilize large datasets, and require high bandwidth mem-

ories are strong candidates for processing-in-memory (PIM) architectures [44–57]. PIM archi-

tectures generally constitute logic capabilities on the memory itself, thereby utilizing the high

on-DIMM bandwidth of the memory. However, since PIM performs processing on the memory

DIMM, it requires the data to be in plaintext in the external memory. Hence, enabling PIM will

lead to prevention of storing encrypted data on memory, leading to data confidentiality challenges;

alternatively, homomorphic encryption [58] can be implemented, which enables processing on

encrypted data, albeit with orders of magnitude higher latency. This motivates a detailed investi-

gation of security in PIM architectures, and development of efficient security solutions to prevent

a reduction in the benefits of PIM.

Third, recent work has shown that the co-design of security and reliability constructs improves

the system performance by utilizing authentication constructs to perform efficient error detection

in DRAM-based systems [59]. However, [59] is developed around ECC-based reliability systems

in DRAM memories. The error characteristics in NVM-based systems is significantly different

than DRAM-based systems, which motivated the development of a vast array of NVM reliability

improvement techniques over the past few years [21, 60–69]. This necessitates a detailed study

on the interplay of reliability improvement solutions for NVM systems and associated security,

thereby developing insights for architecting efficient reliable and secure NVM systems.
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2.0 BACKGROUND AND MOTIVATION

This chapter discusses the threat model considered in this work, the state-of-the art solutions for

data integrity and data confidentiality, and the impact of these solutions on the memory system

performance, energy, and lifetime parameters. Note that in this dissertation, data integrity and

data confidentiality have progressively stringent threat models, and therefore different primary

security primitives and challenges for integration with memory systems. The relevant details for

data integrity and data confidentiality are presented separately in the following sections.

2.1 DATA INTEGRITY

This section provides a detailed discussion on the threat model, state-of-the-art memory authenti-

cation primitive, and the overheads of ensuring data integrity through memory authentication when

integrated with emerging NVM memories.

2.1.1 Threat model

An ideal secure computing platform requires three cornerstone properties: (i) confidentiality, (ii)

integrity, and (iii) availability [5]. However, system design simplification and feasibility requires a

specific threat model that differentiates the threats that the system protects against, and those not

considered as part of the model [5]. For data integrity, this dissertation considers a threat model

encompassing attacks on data confidentiality and data integrity; the trusted computing base (TCB)

consists of the processor and core parts of the operating system (e.g., security kernels), whereas the

off-chip memory and the processor-memory bus are untrusted [10–12]. Data confidentiality attacks

aim to obtain secret data stored in memory or data being transfered to/from memory, motivating

memory encryption. However, encryption does not protect against integrity attacks, where the
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adversary alters the data stored in or being transfered to/from memory. Data integrity attacks

can be categorized into spoofing, splicing, and replay attacks [10, 11]. In spoofing attacks, the

adversary replaces an existing valid memory block with fake data. In splicing attacks, the attacker

swaps the memory content between two locations. Finally, in replay attacks, the content of a

memory location is reverted back to an older value.

It is widely accepted that data integrity attacks can be thwarted by memory authentication,

which verifies the integrity of all off-chip communications to/from the secure processor [10–12].

To prevent both integrity and confidentiality attacks, memory authentication must be deployed

concurrent with memory encryption.

2.1.2 Encryption and authentication in NVMs

Memory encryption is achieved by applying a block cipher over plaintext data [10, 24, 25, 70].

Prior works advocate the use of counter-mode encryption (CME) to offset the latency of encryp-

tion/decryption during memory write/read [10, 24, 25, 70]. In CME, the data is XORed with a

one-time pad (OTP) generated using a block cipher, which includes a secret key and a seed as in-

puts for encryption. The seed is composed of the memory block address and an associated counter

that increments on each memory write. However, the diffusion property [71] of encryption dras-

tically increases cell writes, which is especially undesirable in NVMs due to their high write en-

ergy/latency [24]. DEUCE [24] reduces the cell writes by re-encrypting only the modified words

on memory writes; SECRET [25] further improves encryption in MLC/TLC NVMs by preventing

zero-word re-encryption and XOR-based energy masking.

Memory authentication of an encrypted NVM system guarantees the integrity of both en-

crypted data and the counters of CME, since tampering of either results in the generation of

invalid plaintext during decryption. Prior works have advocated the use of Merkle Tree (MT)

memory authentication, which is proven to be secure against spoofing, splicing, and replay at-

tacks [10–12]. State-of-the-art memory authentication schemes use keyed hash message authen-

tication codes (HMACs), which utilize a cryptographic hash function (e.g., SHA-1) and a secret

key to generate a hash signature that includes the data block along with its corresponding counter

and line address as inputs [11, 12]. MT memory authentication maintains a hierarchical tree struc-
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Figure 1: State-of-the-art bonsai MT (BMT): BMT maintains an MT over the counters, and
a single layer of HMACs over encrypted data. The data HMACs include the encrypted data
with its line address and counter as input, protecting encrypted data from spoofing (data),
splicing (address), and replay (counter) attacks.

ture of these HMACs, with the data and counter as its leaf nodes. In an MT, each parent node is

an HMAC signature of its children node HMACs (data/counter in case of leaf nodes). The secret

HMAC key and the MT root is stored on the secure, tamper-proof processor, preventing spoofing,

splicing, or replay attacks. During reads, the memory block integrity is ascertained by verifying its

HMAC lineage upto the MT root; in contrast, writes result in recomputation of the HMAC lineage

upto the MT root to reflect the new data.

The state-of-the-art MT memory authentication architecture is the bonsai MT (BMT) [11],

illustrated in Fig. 1. BMT leverages the CME architecture and maintains an MT over only the

counters of a memory line rather than over both counters and data. BMT keeps a single level of

HMAC over the data memory, where the data HMACs use the encrypted data block, address, and

the counter as input. Although the encrypted data is not protected by an MT, it is immune to replay

attacks because the data HMACs include BMT-protected counters as input. Since the counter

memory is considerably smaller than the data memory, the BMT has significantly fewer levels

than an MT over both data and counters, reducing the MT reads/writes and improving system IPC.

Without loss of generality, BMT is referred to as MT for the rest of the dissertation.

2.1.3 Motivation: Memory authentication overhead in NVMs

The NVM write energy (latency) is higher in comparison to the read energy (latency), and also

higher in comparison to DRAM write/read energy (latency) [20, 21]; these differences are exac-
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Figure 2: Comparison of average cell writes, NVM energy, and system IPC (norm. to base-
line) of encrypted RRAM baseline with an encrypted RRAM deploying memory authen-
tication, Memory authentication increases the cell writes (NVM energy) to 5.8× (5.3×),
and degrades system IPC to 0.65× in comparison to the baseline.

erbated in multi-/triple-level cell (MLC/TLC) NVMs [22]. HMACs demonstrate strong diffusion

property, similar to data encryption [71], resulting in a high cell write rate, and render NVM write-

reduction techniques like [72, 73] ineffective in practice. Hence, the data and counter HMACs

in the BMT incur significant NVM energy/latency overhead and lifetime reduction. Further, ad-

ditional memory accesses are introduced when the counter MT is read/updated on each counter

read/write. These reads/writes integral to memory authentication stall critical data/counter reads or

writes to the same memory bank, degrading system IPC. In Fig. 2, simulations of SPEC CPU2006

workloads to illustrate that BMT authentication over a DEUCE-encrypted TLC RRAM increases

the cell writes (NVM energy) to 5.8× (5.3×) and degrades system IPC to 0.65× in comparison to

an unauthenticated DEUCE-encrypted TLC RRAM.

In summary, whereas memory authentication is indispensable to a secure computing platform,

it degrades NVM energy, latency, lifetime, and system IPC. ASSURE reduces authentication cell

writes and memory accesses for a low penalty NVM authentication solution.

2.2 DATA CONFIDENTIALITY

This section provides a detailed discussion on the threat model for access-pattern-based attacks

on data confidentiality, state-of-the-art access-pattern-obfuscation solution (i.e., ORAM), and the

overheads of ensuring data confidentiality through ORAM integration.
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2.2.1 Threat model

Following previous work on ORAM [31, 35–39, 74], this dissertation adopts the secure proces-

sor paradigm in threat modeling, wherein the trusted computing base (TCB) is comprised of the

processor and all on-chip data, while the off-chip memory and the processor-memory bus are un-

trusted. The adversary is capable of monitoring information (data, address, and command) on the

memory bus and from the external memory (i.e., the DIMM). Although the data is encrypted,

the attacker can analyze the plaintext addresses and commands, i.e., the attacker can analyze

the memory access patterns to expose confidential information about the encrypted data [29–32].

ORAM effectively conceals the access-pattern-based side-channel by cryptographically obfuscat-

ing the memory access patterns [31,35–39]. Note that information leakage through ORAM timing-

channels such as ORAM access frequency or the program termination time is not consider. This

information leakage can be eliminated/reduced by solutions proposed in [75], which are orthogonal

to and integrable with the solutions proposed in this work (i.e., ReadPRO and LEO).

2.2.2 Security definitions

This section discusses the ORAM security definition from the secure processor perspective. The

primary objective of ORAM is to completely hide or obfuscate the memory access pattern of the

active applications from the adversary beyond the secure processor boundary. From the perspec-

tive of the attacker, two memory access patterns of the same length, but originating from different

processes/threads on the processor core must be indistinguishable. To elaborate on the security

guarantees of an ORAM construct, it should prevent the following information leakage about the

memory access pattern [34]: (i) the plaintext data for being read/written, (ii) the memory oper-

ation (i.e., whether the memory access is a read/write), (iii) the actual address being accessed,

(iv) the frequency at which a memory address is accessed, and (v) whether similar memory ad-

dresses are being accessed within a memory access sequence (i.e., linkability between two indi-

vidual memory accesses).

For a more formal definition: Let
#»
s := {(addrN ,opN ,dataN), ...,(addr1,op1,data1)}

represent a memory request sequence from the processor chip, where addri, opi, and datai

refer to the address accessed, the type (i.e., read/write), and the data read/written in the ith memory
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access. Let M̂ ( #»
s ) denote the memory access pattern observed by the external unsecure memory

for the sequence of memory requests #»
s . For a memory system implementing ORAM, M̂ ( #»

sa) and

M̂ ( #»
sb) for a 6= b should be computationally indistinguishable and statistically independent, given

#»
sa and #»

sb are of the same length.

2.2.3 Path ORAM

Secure processor design extensively utilize Path ORAM or its variants for memory access pattern

obfuscation, primarily due to its efficiency and algorithmic simplicity [3, 4, 31, 34–39, 41, 75].

Path ORAM (ORAM henceforth) has two components: (i) the untrusted external main memory

and (ii) the trusted on-chip ORAM controller.

The untrusted main memory is logically organized as a binary tree, as shown in Fig. 3. The

ORAM tree levels range from 0 (root) to L (leaves), resulting in a tree with L+1 levels. The path

from the root to a leaf l is denoted as path-l. Each node in the ORAM, termed a bucket, has a fixed

number of slots, Z, to store data blocks, i.e., cache lines [36]; a slot can hold a data or a dummy

block. Additionally, each node maintains a meta-data block consisting of the LAs of the Z blocks,

mapped leaf IDs, and an encryption counter. Every block, except the counter, is kept encrypted

in memory. The maximum percentage of ORAM blocks that can hold real data is termed ORAM

utilization [36–38, 74, 76, 77].

The trusted ORAM controller has two parts: a Frontend and a Backend. The Frontend com-

prises of the LA queue, position map (PosMap), and address logic, whereas the Backend comprises

of the stash, and encryption/decryption units. The LA queue at the interface of the LLC and the

ORAM controller buffers the LA accesses from the LLC for dispatch to the ORAM [4, 38, 75].

The PosMap associates the LAs of data blocks to their corresponding leaf labels, i.e., LeafIDs.

The address logic generates the addresses of the nodes on a path that are subsequently received by

the memory controller on the processor to perform the read and write phase operations [37, 38].

The stash is a small on-chip storage for data blocks read from the ORAM tree, post decryption.

The encryption/decryption units encrypt/decrypt data and meta-data blocks using a standard algo-

rithm (e.g., AES) [78].

ORAM guarantees the following invariant by construction: A data block, mapped to a leaf l, is

either in a bucket on the path-l or in the stash [34]. For cache misses, the LLC queries the ORAM
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Figure 3: An ORAM illustration with L=3 and Z=4. The LLC accesses data at LA 1,
mapped to leaf 6. All the blocks on path-6 are fetched, decrypted, and the data blocks
stored in the stash. Block 1, which was at the level 2 bucket, is sent to the LLC. Finally,
path-6 is written back with as many blocks evicted from the stash as possible.

controller through an accessORAM (addr, op, data) interface, where addr is the LA of the target

data block, op refers to read/write (i.e., whether the LLC miss was a read or write), and data is

the new data if op is a write (data is null when op is a read). The query is then transformed to an

ORAM access by the ORAM controller as follows (illustrated in Fig. 3 for LLC read miss on LA

1): 1 The stash is searched for a block with LA 1. If found, it is forwarded to the LLC; else the LA

is pushed into the LA queue. 2 The entry for LA 1 is queried in the PosMap, where it is mapped to

leaf 6. Then, LA 1 is remapped to a random leaf lNEW (not shown in the figure). 3 The memory

controller initiates the read phase, wherein it fetches all blocks from path-6 to the processor and

forwards them to the encryption/decryption units. The data blocks are decrypted and stored in the

stash. 4 If op is a read, the data from the block with LA 1 is returned to the LLC; if op is a write,

the accessed block is overwritten in the stash with the new data. 5 The write phase is completed,

wherein all possible blocks are evicted from stash to path-6, pushing the blocks as close to the

leaves as possible; additionally, all evicted and dummy blocks on the path are re-encrypted [36].
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The data to be forwarded to the LLC for an LA read access is fetched from the memory during

the read phase of the corresponding ORAM access. ORAM read latency is the time required for

the ORAM controller to return the target data block after an LLC read miss.

Path ORAM: Security

The security of ORAM and its obfuscation property stems from the random leaf re-mapping of

the logical addresses (i.e., the actual memory addresses). The PosMap lookup of an address addri

provides the leaf label li, where li=PosMap[addri] . Now, for an access pattern #»
s , where

#»
s := {(addrN ,opN ,dataN), ...,(addr1,op1,data1)}

the adversary observes a path access sequence P̂, where

P̂ := {lN , ..., l1}

Note that in this sequence, li is statistically independent l j, where i 6= j; this is because each

address is randomly mapped to a leaf label, and remapped when accessed. Therefore, even if

addri=addr j (where i 6= j), li 6=l j, i.e., even if the same address is accessed more than once in an

memory request sequence, statistically independent paths are accessed on each iteration. Hence,

the sequence of path accesses, P̂, is indistinguishable from a randomly generated string of numbers.

The attacker cannot infer any useful information about the true memory access pattern from P̂,

thereby obfuscating the access pattern efficiently.

Additionally, all the blocks in an ORAM is encrypted with a secret key stored on the processor,

so the adversary cannot decipher the plaintext. The data integrity is ensured in ORAM by MT

authentication, utilizing the inherent binary tree structure of an ORAM [37, 76].

2.2.4 Motivation: ORAM integration overhead

The translation of a single LA access to an ORAM access, which is a sequence of memory

reads (read phase) and writes (write phase), increases the effective cache miss penalty, thereby

degrading system performance (i.e., system IPC). The simulation results with a DDR3 DRAM

system demonstrate that on average, ORAM integration increases LA read latency by 10×, de-

creasing system IPC by 4×. These considerations motivate a solution to improve the latency of

critical-path-bound read access read phase operations in ORAM, enhancing system IPC.
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Additionally, the mandatory re-encryption of all the blocks on a path during the write phase

of an ORAM access increases the number of write operations. As discussed in Section 2.1.3,

increased writes is not a dominant concern in DRAM; however, it amplifies NVM energy and re-

duces lifetime and performance because (i) NVM write energy and latency is higher than DRAM

write/read energy and latency and (ii) NVM lifetime is orders of magnitude lower in comparison to

DRAM [43]; these differences are exacerbated in multi-/triple-level cell (MLC/TLC) NVMs [43].

The simulation results on an SLC PCM system demonstrate that on average, ORAM integration

increases NVM energy by 45×, while reducing lifetime and system IPC by 40× and 10×, re-

spectively. These considerations motivate the development of a secure low-overhead encryption

architecture for NVM ORAM efficiency.

Note that the architectural ORAM solutions (ReadPRO and LEO) developed in this work are

agnostic to the underlying memory technology. However, these schemes, specifically the write re-

duction solution (LEO) are more suitable for NVM memory systems. LEO can also be integrated

with DRAM-based memory system to reduce the memory write traffic, freeing up memory band-

width for read phase of the subsequent path access, thereby improving read latency. However, the

NVM memory-based evaluation of ReadPRO and DRAM memory-based evaluation of LEO will

be done in future work.

To summarize, ORAM integration is essential to thwart access-pattern-based data confiden-

tiality attacks; however, ORAM incurs significant overheads in data read latency, memory energy,

memory lifetime (for NVMs), and system performance. The architectural solutions proposed in

this dissertation, ReadPRO and LEO, reduce the data read latency and memory write traffic to

improve system performance and memory lifetime, while reducing memory energy.
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3.0 ASSURE: AUTHENTICATION SCHEME FOR

SECURE ENERGY EFFICIENT NON-VOLATILE MEMORIES

This chapter describes ASSURE, a low overhead NVM authentication solution that deploys (i)

smart MACs to reduce cell updates on authentication-related memory writes and (ii) multi-root

MTs to reduce memory accesses for MT authentication. ASSURE preserves the security proper-

ties of classical MT authentication and is compatible with all NVM encryption solutions. Without

loss of generality, DEUCE [24] is considered over SECRET [25] for NVM encryption in the dis-

cussions, because of its simpler architecture.

3.1 SMART MESSAGE AUTHENTICATION CODES (SMAC)

Without exception, hashed message authentication codes (HMACs) are the primary units of mem-

ory authentication [10–12]. However, HMACs incur increased (decreased) write energy (lifetime)

owing to a high cell write rate (refer Sec. 2.1.3). This chapter proposes smart message authentica-

tion codes (SMACs) as a solution to realize security equivalent to HMACs with reduced (improved)

write energy (lifetime) through decreased cell writes.

3.1.1 SMAC: Observation

Memory authentication must be integrated with memory encryption for secure, tamper-resistant

memory content, as discussed in Sec. 2.1.2. State-of-the-art NVM encryption [24, 25] performs

selective re-encryption of only the modified words to generate new ciphertext on each memory

write. However, classical HMAC computation does not exploit this partial re-encryption, integral

to efficient NVM encryption, and requires HMAC recomputation of the entire encrypted cache

line; this results in redundant HMAC recomputation of the unmodified words.
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3.1.2 SMAC: Design

The core advantage of SMACs over classical HMACs is that SMACs perform selective HMAC

recomputation of the encrypted data by leveraging the partial re-encryption property of the under-

lying NVM encryption architecture. DEUCE partitions the cache line into words of equal width,

and re-encrypts only the modified words during a memory write. SMAC partitions the HMAC at

word-level granularity and recomputes only those words corresponding to the re-encrypted words

during a memory write; this eliminates cell writes due to the redundant HMAC computation of

unmodified words.

To achieve selective HMAC computation of only the modified words, SMAC splits the orig-

inal encrypted cache line into two decoupled intermediate messages (IMs) corresponding to the

modified and unmodified words. The IMs have the same length and partition boundaries as the

encrypted cache line. The first (second) IM, IM1 (IM2) is constructed from the modified (unmodi-

fied) words with the unmodified (modified) words zeroed out. IM1 (IM2) is then provided as input

to a keyed cryptographic hash function, generating the intermediate HMACs, IH1 (IH2). Similar

to IMs, the IHs are also partitioned at word-level granularity. The final HMAC (FH) is constructed

with IH1 (IH2) words for the corresponding modified (unmodified) word positions. For example,

if word k of an encrypted cache line is modified (unmodified), word k of FH is constituted by word

k of IH1 (IH2).

During a read, the SMAC requires meta-data to identify the modified/unmodified word posi-

tions of the previous write to an address for valid FH reconstruction of the fetched encrypted data.

Note that the underlying DEUCE architecture records modified bits (modbits) to track the modi-

fied/unmodified words. SMAC leverages the DEUCE modbits for tracking modified/unmodified

words, incurring zero memory overhead (Note that ASSURE provisions independent modbits if

implemented over SECRET [25], since SECRET does not provision modbits). Since valid decryp-

tion in DEUCE and FH reconstruction in SMAC depends on the critical modbits, modbit integrity

protection is proposed through modbit inclusion in the original input assignment to IM1. The mod-

bits assigned to IM2 are always zeroed out, since IM2 represents the unmodified words of the cache

line. Due to the strong diffusion property of HMAC algorithms, any change in modbits is reflected

in subsequent alteration of the FH words corresponding to the modified word positions, enabling

modbit integrity protection.
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Figure 4: SMACs eliminate cell writes for unmodified words (2, 3, and 4) during HMAC
computation. Between writes 1 (W1) and 2 (W2), word 1 gets modified in the original
encrypted cache line, altering the intermediate HMAC 1 (IH1), resulting in modification
of word 1 in the final HMAC (FH); however, IH2 is unaltered due to unmodified words 2,
3, and 4, eliminating redundant cell writes for unmodified words 2, 3, and 4 of the FH.

Figure 4 illustrates SMACs over a sequence of 2 consecutive writes. Without loss of generality,

consider a 64-bit encrypted cache line with a word size of 16 bits (represented in hexadecimal),

and one modbit per word. For write 1 (W1), only word 1 is modified, setting the modbit for word

1. IM1 is given by the modified word 1 and the modbits, with the unmodified words 2, 3, and 4

zeroed. IM2 is given by the unmodified words 2, 3, and 4, with the modified word 1 and the modbits

zeroed. The IHs are generated by treating the IMs as inputs for the cryptographic hash function,

with the FH obtained by selecting word 1 from IH1 and the rest from IH2. On write 2 (W2), word

1 is modified again, subsequently altering IM1 and IH1, resulting in a modification to word 1 of

FH. However, words 2, 3, and 4 of the FH are unmodified at W2 due to the unmodified words 2, 3,

and 4 in the original encrypted cache line, decreasing (increasing) NVM write energy (lifetime).

3.2 MULTI-ROOT MERKLE TREES (MMTS)

In MT authentication, a single MT spans the counter memory with a single root on the secure

processor. However, MT authentication incurs a high penalty of additional memory reads (writes)
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to fetch and verify (update) the corresponding MT branch of a read (written) counter memory

block, degrading NVM energy and system IPC. This chapter proposes multi-root MTs (MMTs)

that maintain multiple smaller MTs having fewer levels (with multiple corresponding roots on the

secure processor) as a novel alternative to the classical single-root MT. The multiple roots of the

MMT collectively span the entire counter memory, with each MT assigned to one memory block.

Although static MMTs achieve substantial MT read/write reduction, they incur high secure

processor-side storage overhead of multiple roots. ASSURE leverages the spatial and temporal

locality of memory accesses in practical workloads to realize a prediction architecture that dynam-

ically identifies and maintains a smaller MT over the frequently accessed memory block, while

spanning all other memory blocks with a larger MT. This reduces storage overhead to only 2 roots

on the processor.

3.2.1 Static multi-root Merkle Trees (SMMT)

This section begins with a discussion of the static MMT (SMMT) architecture. In this approach,

MTs are statically assigned to groups of memory blocks and maintain their roots on the secure

processor, reducing MT traversal levels, thereby improving NVM energy and system IPC.

3.2.1.1 SMMT: Observation In MTs, the leaf nodes represent the integrity-preserved memory

blocks. SMMTs leverage the observation that a smaller MT that spans fewer leaf nodes (memory

blocks) is composed of fewer MT levels, reducing the reads (writes) to verify (update) a corre-

sponding MT branch during a leaf node read (write). This observation is illustrated using Fig. 5.

Figure 5(a) represents a classical single-root MT spanning 8 leaf nodes (L0−L7), with the authen-

tication path for leaf L1 highlighted. The following steps are executed for authenticating L1 during

a read: First, L0 and L1 are read and hashed together with the resultant hash (HMAC) compared to

MT node M10. Second, M10 and M11 are hashed together, with the resultant hash compared to M20.

The recursive read, hash, and compare operations continue until the root R. In Fig. 5(b), the leaf

nodes are alloted to 2 equal groups (G0 and G1), with an independent MT spanning each group and

their roots (R0 and R1) maintained on the secure processor. As evident from the highlighted path,

a smaller MT results in 1 less MT level read/write for authentication of L1. Generally, a k-ary MT

with n leaf node groups achieves logk n MT level reduction.
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Figure 5: (a) Classical single-root MT, with the traversal path for verification of leaf L1

highlighted. (b) An SMMT with 2 memory block groups covered by 2 smaller MTs with
2 independent MT roots on the secure processor. In SMMT, the traversal path for L1

verification has 1 less MT level, due to the smaller individual MTs.

3.2.1.2 SMMT: Design SMMT partitions the memory into memory block groups (MBGs),

assigning an MT to each MBG, and maintaining the corresponding MT roots in an MT-root RAM

on the secure processor. Since each memory block group (MBG) comprises a fraction of the

entire memory space, The individual MTs spanning each MBG, which is a fraction of the entire

memory, are smaller than a single-root MT spanning the entire memory, substantially reducing

the MT reads/updates, thereby decreasing (enhancing) NVM energy (system IPC). SMMT does

not require any modification to the memory addressing architecture (page tables, TLBs). SMMT

implements a simple mechanism to obtain the group index of a memory address (MA), utilized to

select the appropriate MT root from the MT-root RAM on secure processor during authentication.

For n MBGs, the log2 n most significant bits (MSBs) of the physical address provide the group

index (Gi), utilized to select the appropriate MT root from the MT-root RAM.

3.2.1.3 SMMT: Overhead Although SMMTs offer significant improvement in system IPC and

NVM energy over single-root MT authentication through fewer MT reads and updates, it incurs

a high on-chip storage overhead of the MT-root RAM. Whereas the advantages of SMMTs over

classical single-root MTs scale logarithmically with the number of MBGs, it comes at the expense

of linearly scaling on-chip MT-root RAM.
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3.2.2 Dynamic multi-root Merkle Trees (DMMT)

Decentralized dynamic MMTs (DMMTs), as an alternative to SMMTs, provide the NVM energy

and system IPC improvements of SMMTs without the significant overhead of processor MT-root

RAM. Instead of maintaining individual MTs over all the MBGs like SMMTs, DMMTs maintain

a small MT over one frequently accessed MBG, and a larger MT spanning all other MBGs. As

discussed below, DMMT uses a low overhead memory access tracking architecture to translate the

small MT across MBGs.

3.2.2.1 DMMT: Observation Practical workloads exhibit spatial and temporal locality for

memory accesses, i.e., memory accesses are concentrated over a particular MBG (hot MBG hence-

forth). Therefore, maintaining a smaller hot MT over the hot MBG achieves SMMT-level reduction

in the MT read/writes for authentication of a majority of the memory accesses. Since the remain-

ing MBGs (cold MBGs) experience fewer memory accesses, maintaining a larger MT (cold MT

henceforth) spanning the cold MBGs requires only one root at the expense of higher MT level

traversals for a small fraction of the memory accesses. The DMMT thus stores only two secure

roots (hot and cold roots), independent of the number of MBGs.

3.2.2.2 DMMT: Design DMMTs maintain two MTs collectively spanning the memory, a hot

MT spanning the hot MBG receiving majority of memory accesses and a cold MT covering the

remaining MBGs, with both roots stored on the secure processor. Whereas a memory access to the

hot MBG is authenticated with the smaller hot MT terminating at the hot root, an access to any

cold MBG is authenticated with the larger cold MT concluding at the cold root.

Figure 6 illustrates DMMT organization. The memory space, TMEM=16, is divided into 4

MBGs, with MBG G0 designated as the hot MBG and G1, G2, and G3 as the cold MBGs. Please

note that the hot and cold MBGs are complementary subsets of the same single-root MT spanning

the entire memory space. Figure 6 also highlights the traversed nodes for authenticating (updating)

L1 (black) in the hot MBG, and L9 (yellow) in the cold MBG. On an L1 read, the recursive hash and

compare procedure of authentication terminates at M20, the hot MT root, which is maintained on

the secure processor (RHOT); however, on an L9 read, the larger cold MT has greater MT traversal

levels, concluding at the cold MT root (RCOLD). Similarly, on an L1 write, only M10 in the memory
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Figure 6: DMMT organization with the hot MBG spanned by the hot MT, and a cold
MT covering all remaining MBGs collectively, with their corresponding roots on the secure
processor (RHOT and RCOLD). Leaf L1 (black) in the hot MBG requires lower MT level
traversals than L9 (yellow) in the cold MBG.

and RHOT are updated. Note that M20 and hence M30 are not updated during a write to the hot

MBG without compromising security. Even though M20 is required during authentication of leaf

nodes from the cold MBG G1, the cold MT considers it as an unaltered node. M20 tampering can

be detected by hashing M20 and M21, and comparing it with M30.

3.2.2.3 DMMT: Hot MBG prediction and update Since imprecise hot MBG selection may

fail to capture the majority of memory accesses and decrease DMMT efficacy, DMMT requires ef-

fective hot MBG prediction for better performance. Also, the hot MBG selection must be dynamic

to track the changing patterns of memory accesses, necessitating a simple, dynamic and robust

hot MBG prediction architecture for efficient DMMTs. DMMT leverages the spatial and tempo-

ral locality of memory accesses in practical workloads for a simple, effective hot MBG prediction

architecture. DMMT tracks the memory access count of each MBG over a period of PPRED ac-

cesses, and designates the MBG that accounts for the maximum accesses as the hot MBG for the

next PPRED accesses. The access count for each MBG is reset after every PPRED accesses for the

next prediction cycle. For example, in Fig. 6, G0 is initially considered the hot MBG, with 0 mem-

ory accesses to all the MBGs. Considering PPRED=16, if MBG G3 receives 10 accesses and G0,

G1, and G2 each receives 2 accesses, then DMMT designates G3 to be the next hot MBG.
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Figure 7: Hot MBG prediction architecture for DMMT. For the evaluations, n=1024 and
PPRED=1024.

Figure 7 illustrates the hot MBG prediction architecture of DMMT. The AccessCount RAM

records the access count for each of n MBGs. During a leaf node read/write, the group index (Gi)

of its corresponding MBG is obtained (refer Sec. 3.2.1), and the RAM content for that Gi is incre-

mented by 1. The resultant sum (ACOUNT) is compared with the value of MaxCount register, which

records the maximum access count within PPRED accesses. If ACOUNT is greater than MaxCount,

MaxCount is updated with ACOUNT, and the corresponding Gi is stored in the NextHot register that

records which MBG has received the maximum accesses within a period. The AccessCounter is

incremented on every memory access, and reset after PPRED accesses, initiating a new cycle of pre-

diction. When the counter output is 0, the CurrentHot register, which records the Gi of the current

hot MBG, is updated with NextHot, and the new hot root is fetched from the memory.

When the predicted hot MBG changes, DMMT updates the old hot root and its corresponding

branch in the main memory. Subsequently, the sub-tree root spanning the new hot MBG is fetched,

authenticated, and stored as the new hot root (RHOT) on the secure processor. In the example,

when the hot MBG changes from G0 to G3, the DMMT updates M20 with the latest value of RHOT,

followed by update of nodes M30 and RCOLD; M23, the root of the sub-tree covering G3, is fetched,

authenticated, and assigned to RHOT.
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3.2.3 ASSURE: Authentication architecture

ASSURE synergistically integrates MMTs with SMACs to extend the NVM energy/lifetime/IPC

improvements of SMACs to MMTs. Since SMACs are drop-in replacements of HMACs, ASSURE

architects the MMTs with SMAC nodes. ASSURE partitions each SMAC MMT node into k words

for k-ary MMTs, and updates only that SMAC word corresponding to the modified child SMAC

node. Although data SMACs utilize DEUCE modbits, modbits for counter SMACs in the MMTs

are non-existent. ASSURE assigns a modbit to each SMAC node of the counter MMTs to identify

its modified/unmodified child nodes, incurring an insignificant memory overhead.

3.2.3.1 Security In ASSURE, SMACs do not alter the cryptographic algorithm of HMACs,

maintaining full HMAC entropy; MMTs preserve the hash-and-compare flow with secure root

architecture of single-root MTs. Hence, ASSURE preserves the security of the underlying MT

memory authentication.

The logic, memory, and latency overhead of ASSURE are evaluated for a typical DEUCE-

based encryption architecture with 32-bit line counters. The evaluations consider a 16GB data

memory with 1GB counter memory, a 4-ary MMT over the counter memory, and HMAC based on

SHA-1 that uses 128-bit codewords [11, 12].

3.2.3.2 Logic overhead The prediction architecture of DMMTs, which dynamically designates

the hot MBG, incurs the major logic overhead in ASSURE. To estimate the logic hardware over-

head, the prediction architecture designed and synthesized (refer Sec.3.2.2.3) in Verilog, obtaining

an estimated overhead of ≈2k 2-input NAND gate count.

3.2.3.3 Memory overhead SMMT requires a n×128-bit MT-root RAM, whereas DMMT re-

quires a n×log2 PPRED AccessCount RAM and a 2-root (hot/cold) RAM, where n is the total num-

ber of MBGs and PPRED is the prediction cycle period. DMMT achieves SMMT-level performance

with PPRED=1024, for ≈ n×10-bit RAM overhead, i.e., 12.8× less overhead than SMMT.

ASSURE also requires modbit storage in main memory for integration of the SMACs with

MMTs. ASSURE assigns 1 modbit per 128-bit SMAC MMT node, resulting in (1/128), ≈ 0.78%

overhead on the memory allocated to SMAC MMT nodes (ASSURE with SECRET [25] requires

additional 1 modbit per 64-bit data word, i.e., ≈ 1.6% memory overhead).
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3.2.3.4 Latency overhead The main impact to authentication latency is the reset operation

of the AccessCount RAM after PPRED memory accesses. Since RAM does not provide RESET

ports, it has to be explicitly cleared. For n=1024 and PPRED=1024, DMMT requires 1.25kB RAM,

which has an access latency of ≈ 1ns, obtained using CACTI 5.3 [79] with low standby power

transistors. Therefore, the AccessCount RAM reset incurs a latency of n×1ns, i.e., 1024ns, every

1024 memory accesses; this translates to an amortized overhead of 1ns per memory access, which

is insignificant compared to high access latencies of NVMs.

3.3 EVALUATION AND RESULTS

ASSURE is evaluated on a TLC RRAM architecture with integer and floating-point workloads

from the SPEC CPU2006 [23] benchmarks. A 4-ary MT is considered for the evaluated authen-

tication architectures: BMT [11] authentication (baseline), SMMT ASSURE, and DMMT AS-

SURE. Without exception, DEUCE is the underlying encryption framework; the use of SECRET,

while beneficial to encryption, only marginally improves the results over DEUCE for memory

authentication. An MBG count n of 1024, and a prediction period PPRED of 1024 accesses.

3.3.1 Simulation framework

ASSURE is evaluated for NVM energy, lifetime, and system IPC. For NVM energy evaluations,

trace-based simulations are performed using NVMain [26]. NVMain is a cycle accurate main

memory simulator designed to simulate emerging non-volatile memories at the architectural level.

NVMain is configured to reflect a 16GB single channel main memory with 2 ranks and eight x8

devices/rank. The memory controller performs first-ready-first-come-first-serve scheduling, with

open page policy. The cell-level energy/latency parameters are provided in [22]. For lifetime

evaluation, this dissertation uses an in-house simulator that operates at the page level with a page

size of 4kB. Along [22], perfect wear leveling is assumed with a mean cell lifetime of 108 writes.

For system IPC evaluations, MARSS [28] is utilized. MARSS is configured to simulate a

standard 4-core out-of-order system running at 3GHz. Each core has a private L1 I/D cache of

32kB (latency=2ns) and a private L2 cache of 128kB (latency=5ns). L3 is a shared write-back

cache of 8MB (latency=20ns). The 16GB single-channel TLC RRAM main memory has 8 banks;
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Table 1: Workloads comprising of benchmarks from SPEC CPU2006 benchmark suite.

Workload Benchmarks MPKI

WD1 h264ref, astar, milc, lbm 22.60

WD2 bzip2, gcc, sphinx3, xalancbmk 21.19

WD3 perlbench, soplex, bwaves, lbm 20.78

WD4 bzip2, gcc, mcf, omnetpp 19.09

WD5 perlbench, leslie3d, GemsFDTD, lbm 16.92

WD6 h264ref, sjeng, bwaves, povray 16.24

WD7 bzip2, mcf, namd, omnetpp 15.50

WD8 perlbench, soplex, milc, povray 13.44

the macro latency parameters are provided in [43]. A 128kB 32-way set-associative counter/MT

metadata cache (32kB/core) [12] is integrated inside the memory controller for all the evaluated

techniques. The HMAC computation is based on SHA-1 with 80-cycle latency [11, 80].

3.3.2 Workloads

To evaluate system performance, composite memory-intensive SPEC CPU2006 workloads are uti-

lized, with each workload containing 4 benchmarks. Table 1 lists each workload with its con-

stituent benchmarks and memory accesses (measured in L3 misses per kilo-instructions (MPKI)).

The simulations run for a representative slice of 1 billion instructions for each workload.

3.3.3 Summary of results

Table 2 summarizes the NVM energy, memory lifetime, and IPC results of baseline (BMT), SMMT

ASSURE, and DMMT ASSURE (normalized to baseline BMT). SMMT ASSURE (DMMT AS-

SURE) reduces NVM energy, and improves memory lifetime/system IPC by 58% (53%), 2.36×

(2.11×)/11% (10%), respectively, over baseline BMT authentication.
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Table 2: Summary of the NVM energy, memory lifetime, and IPC results of baseline (BMT),
SMMT ASSURE, and DMMT ASSURE (normalized to baseline BMT).
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Figure 8: NVM energy of BMT, SMMT ASSURE, and DMMT ASSURE (normalized to
baseline BMT) evaluated on SPEC CPU2006 benchmarks [23] using NVMain [26]. For
TLC RRAM, SMMT ASSURE (DMMT ASSURE) reduces NVM energy, on average, by
59% (55%) over baseline BMT authentication.

3.3.4 NVM energy

Figure 8 illustrates the impact of ASSURE on NVM energy for authentication, with SMMT AS-

SURE (DMMT ASSURE) reducing NVM energy, on average, by 59% (55%) over BMT authen-

tication. ASSURE leverages the dual advantages of SMACs and MMTs. Whereas SMACs sig-

nificantly reduce cell writes for data HMACs and each counter MMT node, MMTs decrease the

number of MT node reads/writes on each authentication cycle. SMMTs achieve higher energy re-

duction than DMMTs, because all memory accesses encounter smaller MTs in SMMTs, whereas

for DMMTs, memory accesses to the cold MBGs traverse a larger MT with more levels. DMMTs
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Figure 9: Memory lifetime of BMT, SMMT ASSURE, and DMMT ASSURE (normalized to
baseline BMT) evaluated on SPEC CPU2006 benchmarks [23], utilizing an in-house sim-
ulator, using average cell lifetime of 108 writes until failure [22]. For TLC RRAM, SMMT
ASSURE (DMMT ASSURE) improves memory lifetime, on average, by 2.36× (2.11×)
over baseline BMT authentication.

achieve ≈ 93% of NVM energy reduction capabilities of SMMTs, with ≈ 12.8× smaller RAM

overhead (AccessCount RAM and a 2-root (hot/cold root) RAM) than the SMMT MT-root RAM.

3.3.5 Memory lifetime

Figure 9 illustrates the memory lifetime improvement offered by SMMT ASSURE (DMMT AS-

SURE) over baseline BMT. SMMT ASSURE (DMMT ASSURE) extends the memory lifetime, on

average, by 2.36× (2.11×) over baseline BMT, through significant cell write reduction. Cell write

reduction results in fewer programmed cells, thereby reducing the wear rate of memory. DMMT

ASSURE offers ≈ 89% of the lifetime improvement achieved by SMMT ASSURE, with DMMT

ASSURE performing marginally worse than SMMT ASSURE due to a small fraction of memory

accesses reaching the DMMT cold MBGs.

3.3.6 System performance (IPC)

Figure 10 illustrates the impact of ASSURE on system performance. SMMT ASSURE (DMMT

ASSURE) improves the system IPC, on average, by 11% (10%) over baseline BMT. ASSURE

implements MMTs that diminish the number of MT node reads/writes by maintaining a smaller
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Figure 10: System IPC of BMT, SMMT ASSURE, and DMMT ASSURE (normalized to
baseline BMT) evaluated using workloads comprised of SPEC CPU2006 benchmarks [23]
over MARSS [28]. For TLC RRAM, SMMT ASSURE (DMMT ASSURE) improves IPC,
on average, by 11% (10%) over baseline BMT authentication.

MT over the MBGs (hot MBG for DMMTs), thereby reducing bank contention between critical

data/counter reads (writes) and MT node reads (writes). NVM systems are power constrained

and update only a fixed number of cells per write slot [24]. SMACs in ASSURE enable multiple

power-constrained concurrent writes in one write slot by reducing the effective number of cell

updates per write, thereby diminishing the effective latency of authentication. The effectiveness of

ASSURE becomes more evident for the high MPKI workloads (e.g., WD1 and WD2) that require

more frequent authentication due to higher memory accesses.

3.3.7 Sensitivity: n and PPRED

Figure 11 illustrates the impact of n and PPRED over the effectiveness of DMMT in terms of average

NVM energy, memory lifetime, and IPC, normalized to optimum n and PPRED values of 1024 and

1024, respectively. Higher n values result in MBGs smaller than the spatial locality footprint of the

program, suffering higher cold MT reads/writes, which is undesirable. Lower values of n result in

larger hot MTs, resulting in increased MT read/writes.

Higher PPRED leads to slower tracking of the memory access pattern change, resulting in higher

cold MT reads/writes. Also, lower PPRED values marginally affect DMMT performance for work-

loads with poor spatial locality, because lower PPREDs lead to frequent updates of the changing hot

MT roots and their corresponding branches.
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Figure 11: Sensitivity of NVM energy, lifetime, and system IPC for DMMT to n and PPRED,
normalized to n=1024 and PPRED=1024.

3.4 RELATED WORK

Initial work on efficient MT authentication focused on reducing the significant execution overhead

for integrity checks over a complete branch of an MT for a single data cache line. In one of the

early works on MT memory authentication, it was shown that the performance overhead can be

upto 10× over an unauthenticated memory; to overcome this, MT node caching was proposed as

a solution [81]. The primary insight from this work was that cached MT nodes are considered to

be trusted, hence, the integrity checking need not proceed till the root, it needs to be executed till

the first root on that branch that is found in the cache; caching MT nodes reduced the performance

overhead to 25%. In this dissertation, all authentication schemes are evaluated with a per-core

MT node cache of 128kB. Further, changing the hash function for MAC generation from SHA-

1 to GCM (Galois Counter Mode) allows reduction in hash generation latency [82]; this work

also pointed out that the counters need to be protected from replay attacks using MT, ensuring

correct encryption and decryption of data. Bonsai Merkle Tree (BMT) presented the most efficient

MT architecture, by protecting the counters with an MT, while hashing the data along with MT-

protected counters; this prevented replay attacks with a significantly lower overhead because of

the smaller MT for counters; this work also demonstrated an efficient architecture to extend the

authentication framework to the disk storage [11]. In this dissertation, all evaluated authentication

techniques build on the baseline BMT architecture.

In all previous memory authentication scenarios, the operating system (OS) is considered to

be a part of the TCB, securing the critical memory management operations like memory alloca-
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tion and page table translation. However, this assumption might not hold true in many scenarios,

specially considering open-source OS. Malicious OS can subvert the MT built on physical address

space using branch splicing attacks, in which the physical address corresponding to a program’s

virtual address is corrupted, fetching the wrong memory block and also its corresponding wrong

MT nodes. However, since the MT nodes fetched correspond to the incorrect data, memory au-

thentication fails to detect this attack. MT authentication over the virtual address space can prevent

branch splicing, however, it spans a huge address space of 64 bits, and requires one full tree for

each application. Reduced Address Space (RAS) tree resolves this problem by using a dynamic

tree that adds pages under the tree as the application footprint increases [83]. However, once an

application reaches its maximum footprint, the RAS is not pruned, and is maintained over the com-

plete footprint. Note that a RAS is kept for each running application, so there are multiple root

nodes managed on-chip; ASSURE can be integrated seamlessly with RAS to reduce its overheads

significantly, especially when the maximum memory footprint is achieved.

3.5 CONCLUSIONS

Memory authentication is key to ensuring data integrity in NVMs. However, in practice, it comes

at the expense of increased NVM energy, degraded lifetime, and poor system IPC. ASSURE is the

first work to address low cost NVM authentication. ASSURE integrates smart MACs (SMACs)

and multi-root MTs (MMTs) to realize tamper-evident NVMs with low energy and improved life-

time as well as IPC. SMACs eliminate redundant HMAC computations of unmodified words on

write-backs, reducing cell writes/NVM energy and improving lifetime. MMTs maintain multiple

smaller MTs that collectively span the counter memory, reducing MT reads/ writes for authenti-

cation, thereby reducing NVM energy, increasing lifetime, and improving system IPC. ASSURE

outperforms state-of-the-art NVM authentication with 55% lower NVM energy, 2.11× improved

lifetime, and 10% better system IPC.
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4.0 READPRO: READ PROMOTION SCHEDULING IN ORAM

ReadPRO (Read Promotion) is a dynamic, read-prioritized ORAM controller scheduling solution

to decrease ORAM read latency for efficient ORAM integration in main memories. This chapter

provides detailed discussions on the observations, scheduling policy, and architecture of ReadPRO,

while also evaluating the advantages of ReadPRO over state-of-the-art ORAM.

4.1 DECOMPOSING ORAM READ LATENCY

On an LLC miss (i.e., when the processor wants to read/write to an LA not present in the LLC),

the LLC forwards the LA access to the ORAM controller to fetch the target LA block from main

memory. The ORAM controller initially buffers the LA access in the LA queue (refer Fig. 3),

and serves them using first-in-first-out (FIFO) scheduling [38, 75]. For example, in Fig. 12, the

LA queue receives an LA read, write, and read access from the LLC to LAs 100, 300, and 600,

respectively (LA100/LA300/LA600 henceforth), in that order. A read/write to LAi is denoted as

Ri/Wi; each Ri or Wi has a corresponding ORAMi, composed of a ReadPhasei and a WritePhasei.

The baseline ORAM first completes ORAM100; thereafter, it sequentially completes ORAM300 and

finally ORAM600. The performance-critical LA reads, i.e., R100 and R600, receive the data from

memory during the read phase operations, i.e., ReadPhase100 and ReadPhase600, respectively, of

their corresponding ORAM accesses.

4.2 INEFFICIENT WRITE BUFFERING IN MEMORY CONTROLLER

Since the LA queue is served in FIFO order, if an LA read access is preceded by LA read or LA

write access(es) in the LA queue, the read phase of that LA read access is delayed by the write
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Figure 12: ReadPRO illustration with a read, write, and read to LA 100, 300, and 600,
respectively, in the LA queue. The baseline ORAM serves the accesses in FIFO order, i.e.,
ORAM100, ORAM300, and ORAM600. In contrast, ReadPRO promotes the ORAM600 over
ORAM300, reducing the latency of critical-path-bound R600 significantly.

phase operations of preceding LA read accesses, and both read and write phase operations of the

preceding LA write accesses, all of which are not on the critical path of program execution. For

example, in Fig. 12, R100 and W300 precedes R600 in the LA queue; therefore, ReadPhase600 incurs

the additional latency of WritePhase100, ReadPhase300 and WritePhase300.

Traditionally, the modern memory controller on the processor prioritizes memory reads by

maintaining a write buffer [84,85]; the write phase operations of older LA read and write accesses

that delay the read phase of a new LA read can be cached by the write buffer, allowing progress

of the succeeding read phase for the new LA read. However, when the write buffer is full (or

reaches a high watermark), the writes in the buffer are drained till the buffer is empty (or attains

a low watermark). The following observations are on the effectiveness of write-buffer-based read-

prioritization in the memory controller after LA access translation into its read and write phase

by the address logic in the ORAM controller. (i) Although an infinite capacity write buffer will

cache the write phase operations of all ORAM accesses, the read phase operations of the older LA

writes (e.g., ReadPhase300), which is not on the critical path, will still be present and delay the

critical-path-bound read phase of a newer LA read access (e.g., ReadPhase600). (ii) Since each

LA read/write access spawns multiple memory writes in the write phase, a practically-sized write

buffer will overflow within a few LA accesses, offsetting the read-prioritization advantages of write

buffers in memory controllers. For example, consider a 4GB ORAM, similar to [39], with Z=4 and
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block size of 64 bytes, realizing an ORAM tree of 24 levels. With tree-top caching of the top 10

levels in a 256kB ORAM cache [39], the main memory stores the remaining 14 levels. During an

ORAM access, the memory controller fetches and writes back 4 data blocks and 1 meta-data block

per bucket, i.e., a total of 14*5=70 blocks. A reasonably sized 64-entry write buffer [84, 86] will

overflow on every write phase and drain the block writes to the current path.

Previous work on write traffic reduction in ORAM can effectively achieve improvements over

the baseline ORAM by reducing the average number of block writes on an ORAM access, de-

laying write buffer overflow. Fork Path [38] identifies the overlapping sections of path between

two consecutive memory accesses and prevents the write back of blocks in the overlapping parts

of paths during the consecutive ORAM accesses. However, [39] demonstrates that with a reason-

able tree-top caching, very few consecutive ORAM accesses overlap in memory; although tree-top

caching is considered in this example, it does not prevent frequent overflow of a reasonably sized

write buffer. RAW ORAM (a.k.a Tiny ORAM) [41] executes two different and periodically inter-

leaved ORAM accesses; access-only (AO) and eviction-only (EO) accesses. AO accesses serve LA

accesses, and entails reading of all blocks on a path, and write-back of only the metadata blocks.

In contrast, EO accesses evict data blocks from stash, wherein all blocks are read and written back

from a randomly selected path; an EO is performed periodically after a fixed number (A) of AO ac-

cesses (generally, A=5). So, following the example, on an AO access, 14 blocks are written back,

and after 5 AO accesses (i.e., 14*5=70 block writes), the write buffer overflows.

ReadPRO effectively addresses (i) the issue of read access read phase operations incurring

additional latency of the read and write phase operations of older LA writes, and (ii) inefficient

read-prioritization by the memory controller write buffer. ReadPRO is motivated by the key obser-

vation that promoting newer LA reads over older LA writes at the LLC-ORAM interface advances

the read phase of the LA reads, ensuring faster critical data fetch without being delayed by the

non-critical read and write phase operations of older LA writes. Figure 12 illustrates this observa-

tion motivating ReadPRO: Prioritizing the newer R600 over older W300 promotes ORAM600 over

ORAM300, advancing ReadPhase600 ahead of the ReadPhase300 and WritePhase300 thereby reduc-

ing the effective latency of the performance-critical R600. Note that ReadPhase600 is still delayed

by WritePhase100 which must follow ReadPhase100 before initiating successive ORAM accesses

to preserve security [38, 39, 87].
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4.3 READPRO ARCHITECTURE

Figure 13 illustrates the primary components of the ReadPRO scheduler architecture: (i) indepen-

dent queues for LA reads (LArd) and writes (LAwr), (ii) LA access checker, (iii) ReadPRO arbiter,

and (iv) logic for dynamic ReadPRO threshold (ThPRO) enforcement. ReadPRO replaces the sin-

gle LA queue with an LArd queue to buffer LA reads, and an LAwr queue to buffer LA writes. On

an LA access due to an LLC miss, the LA access checker determines whether the access is an LA

read or LA write, and then forwards it to the LArd queue or LAwr queue, respectively. The LA

access checker also provides a unique time-stamp to each queued access by maintaining a 64-bit

counter (reset on reboot) that is incremented with every LA access arrival; the counter values are

stored with the LA accesses in their respective queues to facilitate scheduling. Individually, the

LArd queue and the LAwr queue are served in FIFO order.

The ReadPRO arbiter schedules an LA access for ORAM access from the LArd or the LAwr

queue, based on their head (oldest) entries; if either queue is empty, entries from the non-empty

queue are scheduled for ORAM access. Otherwise, if the counter value of the LArd head is less

than the counter value of the LAwr head, i.e., if the LArd head is older than the LAwr head, the LArd

head is scheduled for ORAM access. Additionally, even if the LAwr head entry is older than the

LArd head, ReadPRO schedules the newer LArd head for ORAM access, promoting it over the older

LA write. Ideally, ReadPRO will always maintain the priority, LA read ≺ LA write. Therefore,

ReadPRO continues promoting newer LA reads over older LA writes; however, considering a finite

capacity LAwr queue, if more than ThPRO LA reads have been promoted over the oldest LA write,

ReadPRO is suspended, and the LAwr head entry is scheduled for ORAM access. ThPRO is thus

a threshold that ensures that the promotion of LA reads does not result in the starvation of LA

writes. Without such a throttling provision, the LAwr queue will overflow frequently to drain the

LA writes, stalling LA reads in the LArd queue for long intervals.

Dynamic threshold of buffering: The threshold value ThPRO is adjusted dynamically based on

the ratio of the arrival rate of the LA reads and writes. ReadPRO starts with a base ThPRO value

of Thbase
PRO, and updates the value periodically after every TEPOCH LA accesses issued by the LLC.

ReadPRO determines the number of LA reads (Nrd) and LA writes (Nwr) within a TEPOCH. The

new ThPRO for the next TEPOCH LA accesses is Thnew
PRO=Thbase

PRO*(Nrd/Nwr). When LA reads are
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Figure 13: ReadPRO architecture: (i) The LA access checker receives accesses from LLC,
determines if it is a read or write, and forwards them to LArd or LAwr queue, respectively,
with the time-stamp. (ii) The dynamic ThPRO evaluator updates ThPRO at runtime after
TEPOCH LA accesses. (iii) The ReadPRO arbiter logic schedules an LA access from the LA
queues following read promotion, while bound by ThPRO.

more frequent than LA writes, i.e., Nrd>Nwr, Thnew
PRO increases, favoring an increase in LA read

promotions; a higher frequency of LA reads facilitates longer buffering of LA writes in the LAwr

queue, without increasing the probability of queue overflow. In contrast, for more frequent LA

writes, Nrd/Nwr and subsequently Thnew
PRO decreases, reducing the number of LA read promotions,

thereby decreasing the LAwr queue overflow probability.

Data dependency while scheduling: Although ReadPRO alters the ordering of memory accesses,

it does not introduce data dependency hazards. ReadPRO only promotes LA reads over LA writes;

therefore, ReadPRO does not introduce read-after-read, write-after-read, and write-after-write data

hazards by construction. The only concern is the read-after-write (RAW) dependency, wherein a

newer LA read is promoted over an older LA write to the same address. In ReadPRO, before an

LA read is pushed into the LArd queue, the LAwr queue is scanned in hardware from the tail (most

recent entry) to the head for an older write to the same LA. If present, the LA read is returned

with the most recent write data, and is not pushed into the LArd queue; therefore, the LA queues

in ReadPRO do not contain a read and an older write to the same LA, eliminating RAW hazards.

The LAwr queue scan can be a concurrent search supported by a CAM, or a sequential search

supported by the nominal queue read/write circuit. Although CAM search has low latency, the

CAM circuit has high area and power overheads; therefore, ReadPRO employs a sequential search

for low area and power overhead, but higher latency. However, the sequential queue scan is faster

than an ORAM access; hence, the scan latency is hidden by overlapping it with the ORAM access.
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Hardware overhead: ReadPRO incurs (i) logic overhead for the LA access checker, the ReadPRO

arbiter, and dynamic ThPRO evaluator, along with (ii) memory overhead for time-stamp counters

in the LArd and LAwr queues. The LA access checker, ReadPRO arbiter, and dynamic ThPRO

evaluator modules are designed and synthesized in Verilog for an estimated logic overhead of ≈

5k 2-input nand gates. Although ReadPRO replaces the single LA queue in baseline ORAM with

two independent LA queues, the cumulative queue capacity is kept similar to the single LA queue

in baseline ORAM; for an N-entry LA queue in baseline ORAM, ReadPRO maintains N/2-entry

LArd and LAwr queues. The on-chip memory overhead for the time-stamp counters in the LArd and

LAwr queues is N*64 bits; for e.g., given 64-entry LArd and LAwr queues, the memory overhead

is 64*2*8 bytes, i.e., 1kB.

4.4 SECURITY OF READPRO

The baseline ORAM prevents information leakage about the LA accessed, memory access type,

and associated data, while ensuring negligible stash overflow probability to preserve security [34].

ReadPRO provides security guarantees equivalent to baseline ORAM, i.e., prevents information

leakage about the data, type, or address of memory access. ReadPRO adopts measures identical

to the baseline ORAM to obfuscate the plaintext data, the memory access type, and the accessed

LA. ReadPRO keeps data encrypted, performs a read and a write phase on every ORAM access,

and utilizes a secure random leaf label remapping for LAs, identical to the baseline ORAM. Read-

PRO implements the same stash eviction algorithm with identical stash size and number of ORAM

levels as the baseline ORAM; hence, it is guaranteed to keep the probability of stash overflow unaf-

fected. Although ReadPRO reorders LA accesses based on the type (read/write) of the accesses, it

preserves security since the adversary still observes independent path accesses in the memory due

to random leaf remapping equivalent to the baseline ORAM. The path access sequence is different

even for 2 consecutive runs of the same application due to the random leaf re-mapping; therefore,

the attacker cannot infer the re-ordered access by comparing access patterns from 2 different runs

of the same application. Additionally, previous work in Fork Path [38] has shown that LA access

re-ordering is secure.
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Table 3: Configuration for evaluation setup
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4.5 EVALUATION AND RESULTS

4.5.1 Methodology

ReadPRO is compared to a baseline RAW ORAM [41] implementation; RAW ORAM has lower

write traffic and better performance in comparison to nominal Path ORAM. ReadPRO is evaluated

on a DDR3 DRAM architecture with the SPEC CPU2006 benchmark suite [23]. Full-system sim-

ulations are utilized to evaluate average read latency and system IPC, using MARSS [28] coupled

with DRAMSim2 [88] for monolithic, cycle-accurate system simulation with a detailed memory

model. For multi-core simulations, identical benchmarks are executed on each simulated core. The

simulation configuration is summarized in Table 4 and the DDR3 timing parameters are obtained

from [89]; Thbase
PRO=5 and TEPOCH=128.

The parameters of the evaluated ORAM architectures are representative of the optimal config-

urations obtained through design exploration in [41] and used widely in [35, 38, 39, 87]. An 8GB

ORAM with Z=4 and stash size of 200 is considered for evaluations. Both the baseline and Read-

PRO assume 50% utilization, i.e., upto 50% of the main memory is assumed to hold data blocks.

Therefore, an 8GB ORAM requires 16GB DRAM resulting in an ORAM tree of 26 levels. Both the

baseline and ReadPRO implement tree-top caching [39] of 1MB, effectively storing 12 levels from

the root on-chip in the TCB. The address mapping scheme of “row:bank:column:rank:channel”

with a sub-tree layout approach is also adopted from [87], while both baseline and ReadPRO inte-

grate PrORAM prefetching [35] and LEO write optimization [40].
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Figure 14: ORAM read latency reduction of ReadPRO (normalized to the baseline) eval-
uated on SPEC CPU2006 benchmarks [23] using MARSSx86 [28] coupled with DRAM-
Sim2 [88]. For a DDR3-1333 memory system, ReadPRO reduces average ORAM read
latency by 4× over the baseline.

4.5.2 ORAM read latency

As shown in Fig. 14 ReadPRO reduces the average effective ORAM read latency by 4× over the

baseline. ReadPRO conditionally promotes LA reads over LA writes, prioritizing the critical-path

bound read access read phase operations to return data faster to the processor. The benchmarks

with a high LA access rate (measured in reads-per-kilo-instruction (RPKI)) coupled with a high

cumulative memory access rate (misses-per-kilo-instruction (MPKI)), like lbm, mcf, milc, and

soplex, demonstrate higher improvements in ORAM read latency. A higher RPKI along with high

MPKI leads to faster accumulation of LA accesses in the LA queue; however, the ORAM access

latency is almost constant across different applications. Hence, LA reads from benchmarks with

high MPKI wait for a longer time in the LA queue of the baseline ORAM, obstructed by LA writes.

ReadPRO splits the LA queue and prioritizes LA reads, resulting in faster LArd queue service.

4.5.3 Speedup

As shown in Fig. 15, ReadPRO improves the average system IPC by 38% over the baseline. Since

LA reads are on the critical path of program execution, reducing ORAM read latency accelerates

program execution, thereby improving system performance. System IPC of benchmarks with high

RPKI is more dependent on ORAM read latency in comparison to low RPKI benchmarks; due to

high RPKI, more instructions are stalled, waiting for data from memory. As a result, ReadPRO

shows improved speedup on high RPKI benchmarks like lbm, mcf, milc, and soplex.
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Figure 15: System performance improvement of ReadPRO (normalized to the baseline)
evaluated on SPEC CPU2006 benchmarks [23] using MARSSx86 [28] coupled with DRAM-
Sim2 [88]. For a DDR3-1333 memory system, ReadPRO improves system performance by
38% over the baseline.

4.5.4 Effect of memory controller write buffer size

Figure 16 illustrates the effect of increasing write buffer size of the on-chip memory controller in

the baseline, while keeping write buffer size in ReadPRO constant (64 entries/channel). With a

write buffer size of 64/256/1024 entries per channel, ReadPRO reduces the average ORAM read

latency by 4×/3.8×/3.3×, while increasing system IPC by 38%/36%/32%. Therefore, even with

a 16× increase in write buffer size in the baseline, ReadPRO provides substantial improvements

in ORAM read latency and system IPC. A higher capacity write buffer integrated with the on-chip

memory controller (MC) can cache more writes of the write phase operations; therefore, increasing

the MC write buffer in baseline ORAM reduces baseline ORAM read latency and improves system

IPC. In comparison, it can be observed that ReadPRO is more efficient than scaling the MC write

buffer. ReadPRO operates at the LLC-ORAM interface and caches untranslated LA write accesses,

whereas the MC write buffer caches the write phase after ORAM address translation; since a single

ORAM access results in multiple memory write operations, it increases the overflow probability

of the MC write buffer, reducing its efficiency in read prioritization.

4.6 RELATED WORK

Among architecture-based solutions to improve ORAM efficiency, read latency improvement tech-

niques are most relevant to this work. Co-operative Path ORAM (CP-ORAM) [39] prevents band-

width wastage in secure application (S-app) and non-secure application (NS-app) co-run scenarios,
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Figure 16: Effects of increasing write buffer size in memory controller of baseline ORAM
on ReadPRO results; for a write buffer size of 64/256/1024, the ORAM read latency
reduction is 4×/3.8×/3.3× and speedup is 38%/36%/32%.

resulting in memory traffic interference of S- and NS-app, leading to channel bandwidth wastage;

CP-ORAM utilizes this wasted bandwidth to prefetch blocks for read phase of the succeeding

ORAM access. This chapter considers the scenario where only S-apps run, without bandwidth

wastage and interference from NS-apps. Additionally, ReadPRO is orthogonal to and easily in-

tegrable with CP-ORAM. PrORAM [35] is another ORAM prefetching scheme that maps blocks

with high spatial locality to the same path and prefetches them on a single path read; PrORAM is

integrated in both baseline and ReadPRO. Recent work on efficient ORAM has leveraged secure-

chip on DIMM architectures to offload the ORAM controller to the DIMM, reducing bandwidth

burden on processor-memory channels and increasing parallelism in ORAM accesses [3,4]. How-

ever, [3,4] assume a more relaxed TCB than ReadPRO, wherein part of the DIMM, i.e., the ORAM

controller is secure. Additionally, since these architectures follow the Path ORAM protocol at their

core, ReadPRO is easily integrable with the on-DIMM ORAM controller in [3, 4] to reduce effec-

tive LA read latency and improve their performance.

4.7 CONCLUSIONS

ReadPRO is an architecture for cost-effective integration of ORAM in main memories to thwart

access-pattern-based confidentiality attacks. ReadPRO improves the ORAM read latency by con-

ditionally prioritizing critical-path bound LA reads over LA writes in ORAM access scheduling,

enhancing overall system performance. ReadPRO splits the single LA queue in the LLC-ORAM
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interface into two separate queues for LA reads and LA writes. ReadPRO temporally promotes

newer LA reads over older LA writes, eliminating the addition of read and write phase latencies of

older LA writes to LA read latency, enabling faster performance-critical data fetches.
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5.0 LEO: LOW OVERHEAD ENCRYPTION ORAM

This chapter provides a detailed discussion on LEO, a low penalty design for encryption in ORAM

for NVMs. LEO is a secure, optimized two-level counter mode encryption (CME) architecture that

reduces the redundant re-encryption of unmodified data or dummy blocks during the write phase

of an ORAM access, decreasing the associated cell write overhead.

5.1 WRITE PHASE AND ENCRYPTION

To understand the core architecture of LEO, it is first essential to understand the mechanism of the

write phase of an ORAM access, the associated encryption framework in the baseline ORAM, and

its security guarantees. In the baseline ORAM, all possible blocks are evicted from the stash during

the write phase of an ORAM access to ensure low stash occupancy and negligible stash overflow

probability. For a block to be evicted to path-l, it can either be mapped to leaf l, or a leaf whose

corresponding path intersects and shares bucket(s) with path-l; it is evicted to a dummy block in

the common bucket closest to the leaf level [34, 35, 37, 39, 87]. During eviction, ORAM employs

CME to encrypt the blocks of a bucket before they are written back to the NVM [87]. To support

CME, each ORAM bucket stores a 64-bit bucket counter (BuCtr) that is incremented whenever

one of its constituent blocks is written on a path access. The plaintext in the bucket is partitioned

into chunks of AES block size (usually 128 bits [5]), and are encrypted by XORing with a CME

one-time pad (OTP) given by AESK(BuCtr||BuID||ChkID), where K is the secret AES key, || is the

concatenation operator, BuID, i.e., bucket ID is the unique identifier for each bucket, and ChkID,

i.e., chunk ID is the unique identifier of the chunk in the bucket [87]. Bucket IDs start with 1 for

the root bucket, then 2 and 3 for its left and right child, and so on.

The write phase in an ORAM access triggers the re-encryption of all blocks in each bucket on

the accessed path. The rationale behind re-encrypting all blocks in each bucket is two-fold: (i) re-
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encrypting all Z blocks within a bucket prevents the attacker from differentiating between data and

dummy blocks [34], and (ii) blocks in every bucket are re-encrypted to prevent identification of

the bucket containing the desired LA block or newly evicted blocks [87]. Moreover, the BuCtr

is incremented on modification of any block inside the bucket, avoiding counter and OTP reuse

for different data [87]. Since the BuCtr is shared by the constituent blocks, incrementing BuCtr

changes the OTP, requiring a mandatory re-encryption of every block inside the bucket, regardless

of its status (modified/unmodified).

Although all blocks are re-encrypted upon eviction from the stash, in practice, there are three

different categories of blocks written back to the path: (i) blocks with unmodified data returned

to the same buckets from which they were fetched in the preceding read phase (termed as BSAME

blocks), (ii) blocks previously present on the path but returned back to a different bucket, or to

the same bucket with modified data (BDIFF blocks) and (iii) blocks not present previously that are

newly evicted to replace a dummy block on the path (BNEW EV blocks).

5.2 LEO DESIGN

5.2.1 Observation

In the write phase, the majority of blocks written back to a path from the stash are BSAME blocks;

only a few are BNEW EV or BDIFF blocks. Note that in a path access, only one modified data

block (requested for an LA write) can return to its previous bucket. During the write phase, the

BNEW EV and BDIFF blocks represent modified data in the buckets that are mandatorily re-encrypted

with new OTPs to prevent OTP reuse in CME [24,87]. Although the BSAME and dummy blocks are

also re-encrypted, it is not required by CME since the data is unmodified [24,25]; this re-encryption

is mandated by the ORAM algorithm for access pattern obfuscation.

5.2.2 Design

LEO primarily reduces NVM writes by decreasing the re-encryption of unmodified BSAME and

dummy blocks during the ORAM write phase, without affecting the security guarantees of the

baseline ORAM. LEO defines the concept of mandatory re-encryptions (MR) to refer to the
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Figure 17: LEO illustration with L and Z values of 3 and 4, respectively, and path-6 being
written back. The MRCOUNT of buckets B1, B3, B7, and B14 are 1, 2, 0, and 1, respectively,
resulting in MRMAX of 2. LEO randomly selects 1, 0, 2, and 1 BSAME/dummy blocks from
buckets B1, B3, B7, and B14, respectively, for MRMAX total re-encryptions in each bucket.
Here, LEO reduces [(L+1)×(Z-MRMAX)], or [4*(4-2)]=8 cache line writes.

security-critical re-encryptions of BNEW EV and BDIFF blocks required by CME. This is because

BNEW EV and BDIFF blocks hold modified data, requiring re-encryption with a new OTP to prevent

OTP reuse. The MRCOUNT of a bucket refers to the total number of BNEW EV and BDIFF blocks

evicted to that bucket, resulting in as many MRs. For example, in Fig. 17, the MRCOUNT of buck-

ets B1, B3, B7, and B14 on path-6 are 1, 2, 0, and 1, respectively. The MRMAX of a path denotes the

highest MRCOUNT over all buckets on that path during a write phase. In Fig. 17, MRMAX for path-6

is 2. Note that the MRCOUNT of buckets on a path and the path MRMAX are evaluated dynamically

on every path write and are not stored in the NVM.

LEO is designed such that all the buckets on a path enforce MRMAX (and not Z) block re-

encryptions during the write phase of an ORAM access, with mandatory re-encryptions of the

BNEW EV and BDIFF blocks of a bucket. Note that if the MRCOUNT of a bucket is less than MRMAX,

then (MRMAX-MRCOUNT) random BSAME or dummy blocks in that bucket are also re-encrypted,

for a total of MRMAX re-encryptions; the remaining blocks are not re-encrypted. Intuitively, if

MRMAX for a path is Z, LEO is equivalent to the baseline ORAM. For example, in Fig. 17, MRMAX

of path-6 is 2 and MRCOUNT of bucket B1 is 1, hence, one block is chosen randomly from B1’s

BSAME/dummy blocks for a total of MRMAX block re-encryptions in B1. Similarly, for bucket B7,

two BSAME/dummy blocks are selected randomly for re-encryption. Therefore, LEO decreases
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Figure 18: The internal states of the Path ORAM tree and the ORAM controller prior to the
path-6 write. Figure 19 and Figure 20 contrasts the path write scenario for DEUCE-based
ORAM against LEO.

(Z-MRMAX) block re-encryptions and associated NVM writes for each bucket on a path. For an

ORAM with L+1 levels, LEO reduces [(L+1)×(Z-MRMAX)] block writes in the write phase of a

single ORAM access.

If the ORAM is accessed when the stash is empty (i.e., no BNEW EV blocks), and if no pre-

existing blocks are pushed down deeper towards the leaves (i.e., if there are no BDIFF blocks), then

the mandatory re-encryption count (MRCOUNT) of all the buckets is 0, resulting in an MRMAX of

0. This will reveal to the attacker that no real block was evicted on the path write. To address this

corner-case security vulnerability and prevent information leakage when MRMAX is 0, LEO adds a

security-preserving feature: If the MRMAX on a path write is 0, LEO assigns a random MRMAX to

the path in the range 1 ≤ MRMAX ≤ Z determined on the secure processor in the TCB. Therefore,

a path write with MRMAX value of 0 is rendered indistinguishable from an ORAM access when

MRMAX is not 0. This ensures that MRMAX of a path write is never 0, preventing information

leakage in the absence of BNEW EV and BDIFF blocks.

5.2.3 Discussion: Partial line encryption vs LEO

Partial line encryption (PLE) or encrypting only the modified blocks have already been proposed

in [24, 25, 70, 90] for efficient NVM encryption. The primary objective of PLE is to prevent re-

encryption of the unmodified words in a NVM cache line during a cache line write, reducing
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Figure 19: This figure illustrates the security vulnerability of DEUCE-based ORAM, wherein
DEUCE prevents re-encryption of all the blocks on path-6 except the evicted real blocks.
This allows the adversary to identify the evicted real blocks on the path.

NVM energy and improving NVM lifetime. Although all these works utilized the concept of PLE,

their novelty was to leverage it in unique contexts and/or to improve over prior work that used the

principles of PLE. However, an adoption of prior PLE-based techniques to ORAM exposes the

real (i.e., data) blocks (as demonstrated with an example below), compromising the security of

baseline Path ORAM. The novelty of LEO is not just in recognizing this security vulnerability, but

also in crafting a secure, efficient ORAM encryption framework to address this security flaw.

Consider the following example that illustrates the security vulnerabilities of adopting PLE-

based schemes (DEUCE in this example) in ORAM and how LEO addresses these vulnerabilities.

Figure 18 illustrates the internal state of the Path ORAM tree and ORAM controller after the read

phase of an ORAM access, prior to the path write. In this illustration, path-6 is being accessed.

The stash has real blocks with logical addresses (LAs) 1, 2, and 3. The position map (PosMap)

shows that the real blocks with LAs 1, 2, and 3 are mapped to leaves 6, 7, and 7, respectively. The

buckets B1, B2, and B3 on path-6 at have 2, 2, and 1 empty or dummy slots, respectively.

DEUCE-based ORAM: Figure 19 illustrates the security vulnerability of integrating DEUCE in

Path ORAM by tracking the internal state of the Path ORAM tree and the ORAM controller after

the path write. During the path-6 write, the blocks with LA 1, LA 2, and LA 3 are evicted from

the stash to the empty slots in B3, B2, and B2 respectively. For this illustration, let us assume

that all the pre-existing real blocks on the path return to their previous bucket slots. Therefore,
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Figure 20: LEO ensures MRMAX re-encryptions in all buckets on a path write; if a bucket
has less than MRMAX evicted blocks, it randomly selects pre-existing real or dummy blocks
for re-encryption. For path-6, MRMAX=2, and LEO ensures 2 re-encryption in all buckets.
Since LEO re-encrypts both real and dummy blocks, the attacker cannot identify the
evicted real blocks on the path without prior knowledge of the secure internal state of the
ORAM tree.

only the evicted real blocks (solid black blocks) are the modified blocks on the path write. By

design, DEUCE avoids re-encryption of the unmodified blocks; hence, only the evicted real blocks

are re-encrypted. As a result, an adversary monitoring the changes on the path can identify the

re-encrypted blocks as real blocks, thereby compromising the Path ORAM security guarantees.

LEO: Figure 20 illustrates how LEO overcomes the security vulnerabilities of DEUCE-based

ORAM (PLE-based scheme in general) by mandating the same block re-encryption count in each

bucket on a path write; this count equals the highest number of evicted blocks (i.e., MRMAX) at

any bucket on that path write. However, if MRMAX blocks were not evicted to a bucket, random

pre-existing blocks (irrespective of their real or dummy status) are selected to achieve MRMAX

re-encryptions in that bucket; therefore, to the adversary, the re-encrypted blocks can be real or

dummy blocks with equal probability. In the example, during the path-6 write, the blocks with

LA 1, LA 2, and LA 3 are evicted to B3, B2, and B2 respectively. Similar to the discussion

above for DEUCE-based ORAM, assume that all the pre-existing real blocks on the path return

to their previous bucket slots. The MRMAX of path-6 is 2, since the highest number of evicted

blocks at any bucket of path-6 is 2 (i.e., in B2). Since LEO mandates MRMAX re-encryptions in

all buckets (MRMAX is 2 in this example), 2, 2, and 1 random blocks are re-encrypted at B0, B1,
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Figure 21: Two-level counter design illustration. A bucket with Z=4 is shown, with its
metadata block and block 2 expanded (not to scale). The metadata contains the LAs,
the leaf IDs, a shared bucket counter (BuCtr), and 4 block counters (BlkCtrs) for 4 data
blocks. To evaluate OTP for chunk 3 within block 2, BlkCtr2 is used along with the BuCtr;
block ID and chunk ID values are 2 and 3, respectively.

and B3, respectively. Without prior knowledge of the secure internal state of the ORAM tree, the

adversary cannot identify the re-encrypted blocks as real or dummy blocks.

5.2.4 Two-level counter design

Whereas the baseline ORAM provisions only one shared 64-bit counter per bucket [87], which

increases on every bucket write and alters the OTP even for the BSAME/dummy blocks, LEO pro-

visions Z counters for Z blocks in the bucket translating into Z different OTPs. However, instead

of allocating Z 64-bit counters to Z 512-bit blocks for a counter memory overhead of 12.5% per

block, LEO utilizes a two-level counter design (TCD) with lower memory overhead. In the two-

level counter design (TCD), (i) each block in the bucket is associated with a small 8-bit block

counter (BlkCtr) while (ii) a large 64-bit bucket counter (BuCtr) is shared by all the blocks, simi-

lar to the baseline ORAM, for an aggregate counter memory overhead of ≈ 4.7% per block. The

BlkCtrs are stored in the metadata block of a bucket alongside the LAs, leaf IDs, and the BuCtr, as

shown in Fig. 21. The BuCtr concatenated with BuCtri generates the effective counter for a blocki.

For TCD-based CME, the plaintext in the bucket is partitioned into chunks of AES block size

and XORed with an OTP, similar to the baseline ORAM. LEO modifies the OTP generation to in-

corporate the TCD as AESK(BuCtr||BlkCtri||BuID||BlkIDi||ChkID), where BlkCtri and BlkIDi (1

≤ i ≤ Z) are the counter and unique ID of the block where the chunk resides. Using BlkID pre-

vents OTP reuse between two blocks in the same bucket with similar BlkCtr values. Figure 21
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illustrates OTP generation for chunk 3 in block 2 of a bucket using TCD. For block 2, LEO uses

BlkCtr2 along with the BuCtr; the BlkID and ChkID are 2 and 3, respectively.

The BlkCtr is incremented by 1 in the write phase if it is a BNEW EV or BDIFF block, or a

BSAME/dummy block randomly selected to ensure MRMAX re-encryptions for the bucket. If any

BlkCtr overflows, the bucket MRCOUNT is set to Z, all Z BlkCtrs are reset, and the BuCtr is in-

cremented by 1 to avoid counter reuse. Without BlkCtr overflow, the BuCtr and BlkCtr for (Z-

MRMAX) BSAME/dummy blocks are unchanged, translating to unmodified OTPs. The unmodified

OTPs prevent re-encryptions for (Z-MRMAX) BSAME/dummy blocks in each bucket, eliminating

associated NVM writes. Following state-of-the-art [87], the bucket and block counters are stored

in plaintext in NVM.

LEO’s novelty is not in proposing TCD, but using the general split counter design (SCD) [82]

approach to enable the novel secure selective-encryption of blocks in a bucket on a path write. The

primary differences between TCD and SCD proposed in [82] are as follows:

• Although TCD appears to be structurally similar to SCD, they serve entirely different objec-

tives. Whereas SCD was proposed to reduce counter overflow overheads and improve the

efficiency of counter caching in counter mode encryption (CME) of data in memory, TCD is

used in LEO to reduce redundant re-encryption of unmodified blocks.

• Naive adoption of the SCD in baseline Path ORAM results in security vulnerabilities equiva-

lent to the adoption of PLE schemes, as explained in Section 5.2.3. The integration of SCD

culminates in selective re-encryption of only real evicted blocks on a path write, enabling the

adversary to distinguish between real and dummy blocks, and also the accessed/evicted buck-

ets. In contrast, apart from the real evicted blocks, TCD enables LEO to randomly re-encrypt

both pre-existing real and dummy blocks on a path write. The attacker cannot identify the real

blocks on a path without prior knowledge of the secure internal state of the ORAM tree.

LEO ensures secure reduction of redundant block re-encryptions; however, as demonstrated,

the CME framework of the baseline Path ORAM cannot support LEO. Therefore, the TCD archi-

tecture is explicitly developed to integrate LEO in Path ORAM.
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5.2.5 Security: Overview

The baseline ORAM prevents information leakage about the (i) LA accessed, memory access type,

and associated data, (ii) bucket holding accessed LA block or BNEW EV blocks, and (iii) distinction

between data and dummy blocks; the baseline ORAM ensures negligible stash overflow probability

for security [34].

LEO preserves the security guarantees of the baseline ORAM. First, LEO adopts measures

identical to the baseline ORAM to obfuscate the plaintext data, the memory access type, and the

accessed LA. LEO keeps data encrypted, performs a read and write on every ORAM access, and

utilizes a secure random leaf label remapping for LAs, identical to the baseline ORAM. Therefore,

LEO prevents information leakage about the data, type, or address of memory access. Second,

since LEO ensures MRMAX re-encryptions for all buckets on an accessed path, it prevents identi-

fication of the bucket holding the desired LA or the BNEW EV blocks. Third, LEO does not allow

the attacker to distinguish between data and dummy blocks. The re-encrypted blocks may be

BNEW EV/BDIFF data blocks, or randomly selected BSAME data blocks or dummy blocks with equal

probability; the blocks not re-encrypted can be BSAME data blocks or dummy blocks with equal

probability, thwarting the efforts to differentiate between data and dummy blocks. Finally, stash

overflow depends on the stash size, eviction algorithm, and the number of ORAM levels [34].

Since LEO utilizes the same public stash eviction algorithm, identical stash size, and same number

of ORAM levels as the baseline ORAM, it is guaranteed to not affect the probability of stash over-

flow. Furthermore, although LEO reveals path MRMAX, it does not compromise baseline ORAM

security. MRMAX is the maximum MRCOUNT of buckets on a path; MRCOUNT of each bucket is

a feature of the public stash eviction algorithm and the secure random mapping of data blocks to

leaves. Since MRMAX is derived from secure/public mechanisms of the baseline ORAM, it does

not leak additional information.

5.2.6 Security: Detailed discussion

Real block deduction: The baseline Path ORAM eviction scheme proactively pushes real (i.e.,

data) blocks towards the leaves of the ORAM tree, and these evicted blocks are re-encrypted before

being written back to the NVM. Therefore, it might appear that by selective encryption, LEO
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can reveal the evicted real blocks. Although LEO reduces the number of re-encryptions on a

path write (i.e., write phase of an ORAM access), it re-encrypts both real and dummy blocks,

ensuring that the real blocks cannot be deduced in any manner as follows. LEO ensures that all

the buckets on a path enforce MRMAX (and not MRCOUNT) block re-encryptions, with mandatory

re-encryptions of the evicted real blocks in a bucket. Note that if the MRCOUNT of a bucket is less

than MRMAX, LEO re-encrypts (MRMAX-MRCOUNT) random real or dummy blocks in that bucket,

for a total of MRMAX re-encryptions for that bucket (please refer Sec. 5.2).

For an adversary without prior knowledge of the secure internal state of the ORAM tree, a re-

encrypted (updated) block in a bucket can be a real block or a randomly selected dummy block to

attain MRMAX re-encryptions for that bucket; therefore, the probability of the updated block being

real or dummy is equal. Similarly, the non-updated blocks can also be dummy blocks or pre-

existing real blocks that were unmodified and returned to the same buckets from which they were

fetched in the read phase. This is equivalent to the baseline Path ORAM wherein the encrypted

blocks can be real or dummy with equal probability. Therefore, LEO preserves the security guar-

antees of the baseline, thwarting identification of real blocks.

MRMAX and real block density on a path: This paragraph explicitly demonstrates that revealing

MRMAX of a path is secure and does not leak information about the number of real blocks on

that path. In this context, it is important to note that LEO does not reveal the total number of

blocks evicted from the stash on a path write. LEO only reveals MRMAX, which is the maximum

MRCOUNT over all buckets on that path during a path write. An overloaded path with only a few

empty slots can experience a high MRMAX; if one of the buckets (e.g., at the top of the ORAM

tree) had most of the empty slots and received most of the evicted blocks, that bucket would have a

high MRCOUNT, mandating a high MRMAX for the overloaded path write. In contrast, a path with

high number of empty slots can experience a small MRMAX; if the stash had only few blocks to

be evicted and if the leaf map of those blocks were such that each bucket on the path received at

most one evicted block, then the MRMAX of the path is equal to 1. Hence, a path with many empty

slots can have a low number of updates. The adversary cannot infer if the path was overloaded

without prior knowledge of the secure internal state of the ORAM. Hence, MRMAX of a path is

independent of the number of real blocks on that path and does not leak information about the real

block load of that path.
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MRMAX and current stash state: By design, there is no direct dependence between MRMAX and

the stash load for the following two reasons. First, both the baseline Path ORAM and LEO adopt

a proactive eviction algorithm that evicts as many blocks from the stash as possible, irrespective

of the stash load. Second, LEO does not reveal the total number of blocks evicted from the stash,

decoupling the number of bucket updates, i.e. MRMAX of a path write, from the stash load during

that ORAM access. Therefore, the number of block updates/re-encryptions on a path write does

not leak information about the stash load.

In the event of high stash load resulting in high stash overflow probability on consecutive

ORAM accesses, both baseline Path ORAM and LEO activate background eviction [87]. Back-

ground eviction, proposed by Ren et al. in [87], prevents stash overflow by utilizing dummy

ORAM accesses. In a dummy ORAM access, a random path is accessed, but no real block is

remapped. Hence, all the real blocks fetched in the read phase return to their respective buckets

at the end of the write phase; additionally, if possible, blocks from the stash are evicted, reducing

the stash load. The ORAM continues issuing dummy accesses till the stash load is reduced be-

low a threshold. Note that these dummy ORAM accesses are indistinguishable from real ORAM

accesses to ensure security [87].

5.2.7 Hardware overhead

LEO requires (i) a buffer to hold the LAs of blocks in each bucket fetched during the read phase,

(ii) memory overhead to store the additional BlkCtrs, and (iii) control logic to determine the nature

of the blocks (i.e., BSAME/BNEW EV/BDIFF), MRCOUNT of each bucket, and path MRMAX. First,

during ORAM write phase, the buffer is checked to ensure whether the evicted blocks are BSAME,

BNEW EV, or BDIFF. If an LA (except the accessed LA on a logical write) is returned to the same

bucket, it is a BSAME block; else, it is a BNEW EV/BDIFF block. With L+1 buckets on a path, each

holding Z 8-byte LAs, LEO requires (L+1)×Z×8 bytes of buffer. In practice, for a 16GB ORAM

with 26 levels and Z value of 4, the buffer size is 832 bytes. Second, LEO requires memory to

support TCD. For a block/cache line size of 512 bits, an 8-bit counter results in ≈ 1.6% additional

memory per block over the baseline ORAM. LEO utilizes the same random number generator used

for random leaf remapping to randomly select BSAME/dummy blocks for re-encryptions, utilizing

some logic to constrain the limit from 1 to Z. Finally, the control logic compares the LAs in
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Table 4: Configuration for evaluation setup
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the buffer from (i) to the LAs being written to buckets, determining the BSAME/BNEW EV/BDIFF

blocks, the MRCOUNT of each bucket, and the path MRMAX. A 5-stage tournament setup is used

to calculate the maximum MRCOUNT, i.e., MRMAX, from 26 MRCOUNT values. The control logic

is designed and synthesized at an estimated logic overhead of ≈ 4k 2-input nand gates.

5.3 EVALUATION AND RESULTS

LEO is compared to the baseline Path ORAM [34] and evaluated on an SLC PCM architecture

with the SPEC CPU2006 benchmark suite [23]. The evaluations utilize (i) trace-based simulations

for NVM energy and lifetime evaluations with NVMain [26] and an in-house simulator, respec-

tively, and (ii) full-system simulations to evaluate overall system IPC. Multi-billion instruction

memory traces were generated using Intel Pin [27] binary instrumentation tool, and used for eval-

uating NVM energy and lifetime. For full-system simulations,MARSS [28] coupled with DRAM-

Sim2 [88] (parameters configured to represent an NVM) is utilized for monolithic, cycle-accurate

system simulation. For evaluations, identical benchmarks are executed on each core of the sim-

ulated system. The configuration parameters are summarized in Table 4. Both trace-based and

full-system simulations use SLC PCM energy and latency values from [91].

The parameters of the evaluated ORAM architectures are representative of the optimal con-

figurations obtained through design exploration in [87] and used widely in [35, 37–39, 87]. An

8GB ORAM with Z=4 and stash size of 200 is used for evaluations. Both the baseline and LEO

assume 50% utilization, i.e., upto 50% of the NVM is assumed to hold data blocks. Therefore,
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Figure 22: NVM energy reduction of LEO (normalized to the baseline) evaluated on SPEC
CPU2006 benchmarks [23] using NVMain [26]. For SLC PCM, LEO reduces NVM energy,
on average, by 60% over the baseline.

an 8GB ORAM requires 16GB NVM resulting in a ORAM tree of 26 levels. Both the base-

line and LEO integrate Fork Path [38], and also implement tree-top caching [39] of 1MB, ef-

fectively storing 12 levels from the root on-chip in the TCB. The address mapping scheme of

“row:bank:column:rank:channel” with a sub-tree layout approach is also adopted from [87].

5.3.1 NVM energy and lifetime

As shown in Fig. 22, LEO reduces NVM energy on average by 60% over the baseline ORAM. With

Z=4, the results show that LEO reduces the average block re-encryptions per bucket from 4 to 1.5;

this includes the block counter rollover requiring re-encryption of the entire path. With lower

block re-encryptions, LEO achieves a lower cell-write rate because (Z-MRMAX) BSAME and/or

dummy blocks are not re-encrypted in each bucket, reducing the number of cache lines written

with re-encrypted data, decreasing NVM write energy in practice. In Fig. 22, every workload

experiences almost similar reduction in block re-encryption, with marginal variations due to their

varying working set sizes (WSS). Lower WSS of benchmarks like gobmk and povray leaves more

dummy blocks in the ORAM, translating to higher reduction in block re-encryption.

Similarly, Fig. 23 shows that LEO improves the average memory lifetime by 1.51× over the

baseline. Since lower block re-encryptions lead to reduced NVM writes, fewer cells need to be

programmed during the write phase, reducing the wear rate of memory. Similar to NVM energy,

workloads with lower WSS experience marginally better reduction in NVM writes, yielding better

improvement in lifetime.
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Figure 23: NVM lifetime improvement of LEO (normalized to the baseline) evaluated on
SPEC CPU2006 benchmarks [23] using NVMain [26]. For SLC PCM, LEO increases NVM
lifetime, on average, by 1.51× over the baseline.

5.3.2 System IPC

As shown in Fig. 24, LEO improves average system performance (reported as speedup) by 9%

over the baseline. LEO reduces the write traffic to NVMs, enabling faster write phase completion

on ORAM accesses, reducing overall ORAM access latency. Since the write phase is accelerated,

it leads to lower service timing of the succeeding ORAM accesses. In practice, the blocks of a

bucket are striped across the memory ranks due to the address mapping, enabling parallel writes of

re-encrypted blocks. Since LEO reduces writes to unmodified blocks, the free parallel slots over

memory channels are utilized to write modified blocks of the next bucket in the absence of bank

conflicts. Since the write phase is not on the critical path of program execution, accelerating it

does not improve system IPC significantly. LEO shows better speedup in system performance of

benchmarks with high memory access rate (measured as misses-per-kilo-instruction (MPKI)) like

mcf and milc is more dependent on ORAM access latency than low MPKI benchmarks.

5.4 RELATED WORK

Among architecture-based solutions to improve ORAM efficiency [35, 37–39, 87], memory write

reduction approaches are most relevant to this work. Fork Path [38] utilizes path merging to pre-

vent write-back of overlapping buckets between successive ORAM accesses; the evaluations inte-
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Figure 24: Speedup (i.e., increase in IPC) of LEO (normalized to the baseline) evaluated
on SPEC CPU2006 benchmarks [23] using MARSSx86 [28] coupled with DRAMSim2 [88].
For SLC PCM, LEO improves performance, on average, by 9% over the baseline.

grate Fork Path in both the baseline and LEO. Flat ORAM reduces a path write to a single block

write [77]; however, the threat model for Flat ORAM is weaker than LEO, considering adversaries

capable of monitoring only write accesses. Recent work on access obfuscation in 2.5D/3D memo-

ries [2, 92] extend the TCB to include the logic on memory module, leaving only the memory bus

susceptible to attacks. This allows low overhead access obfuscation without ORAM integration

by simple encryption of command/address/data on the bus; however, these are applicable only to

2.5D/3D memories with trusted encryption/decryption and attestation logic on the DIMMs. LEO

considers a more conservative threat model and can be seamlessly integrated with conventional

DIMMs without trusted encryption/decryption logic overhead on the DIMMs.

5.5 CONCLUSIONS

LEO is a secure, optimal encryption architecture for cost-effective integration of ORAM with

NVMs to thwart access-pattern-based data confidentiality attacks. LEO reduces redundant re-

encryptions of unchanged blocks during the write phase of an ORAM access, which reduces ex-

pensive NVM writes in practice. LEO ensures security equivalent to the baseline ORAM by man-

dating similar block re-encryption count in all buckets on an accessed path, equal to the highest

number of modified blocks in an individual bucket during that ORAM access. LEO uses a two-

level counter design to realize this efficient re-encryption framework that decreases NVM energy,

improves lifetime, and enhances overall system performance.
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6.0 ORAM: DISCUSSION AND LOOKING FORWARD

This chapter focuses on directed discussions regarding the domain of memory authentication and

access-pattern obfuscation, highlighting the impact and relevance of the solutions presented in this

dissertation. The first section discusses the practical aspects and commercial potential of ORAM.

The second section discusses the implications of eliminating a key assumption of a secure OS from

the threat model on classic authentication and obfuscation solutions. The third section discusses

the potential modifications to traditional security solutions for adapting to hybrid main memories.

Finally, the fourth section discusses the necessity of authentication and obfuscation solutions in

the broader computing community.

6.1 PRACTICALITY AND COMMERCIALIZATION OF ORAM

Oblivious RAM (ORAM) primitives are effective solutions for access-pattern-based attacks on

data confidentiality. However, due to the amplification of a single memory request into multi-

ple memory reads and writes, ORAM incurs significant performance overhead of approximately

4×. This dissertation proposes ReadPRO that improves the system IPC by 38% over baseline Path

ORAM by efficient read prioritization; however, ReadPRO still incurs ≈ 2.5× system performance

overhead in comparison to a system that does not integrate ORAM primitive for eliminating the

access-pattern side channel. This considerable performance overhead to ensure data confidential-

ity against side-channel attacks might pose questions about the viability of adoption in practical

memory systems and their eventual commercialization.

Whereas ORAM decreases system performance, it is currently the state-of-the-art solution (sp-

ecifically Path ORAM) for ensuring security against access-pattern-based side channel attacks in
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the secure processor paradigm. The wide adoption of cloud computing and storage has dras-

tically increased the attack surface in the computing landscape, exposing multiple points of at-

tacks in the datacenters that cannot be secured by a client. Additionally, recent attacks reveal

that memory access patterns can be conveniently leveraged; for e.g., [93] identify the associated

encrypted data/encryption key through monitoring just write access patterns. Therefore, any ap-

plication or user that requires protection against access-pattern-based attacks should mandatorily

integrate ORAM.

Although there is a burgeoning interest in architecting efficient ORAM solutions for main

memory systems following the introduction of Path ORAM [34], the research is still in its nascent

stage and is expected to provide rapid improvements to the performance challenges of ORAM.

The stage is similar to the initial state of research in memory encryption and memory authentica-

tion, wherein the system performance overhead in terms of execution time increased upto 150%

for SPEC CPU2006 benchmarks [11]. However, successive work on efficient memory authentica-

tion, specifically Bonsai Merkle Tree (BMT) decreased the performance overhead significantly to

13%. A similar trend of improvement is expected for ORAM considering the close resemblance

of the objective and similarity in the basic building-blocks, coupled with the active interest of the

architecture research community in this field.

Whereas current ORAM solutions consider the entire memory to be protected by ORAM,

future designs might consider a modular design to reduce ORAM overheads; only the memory

regions which require access pattern obfuscation should be protected by ORAM, similar to the

idea of protected memory region (PRM), i.e., enclaves in commercially available Intel SGX so-

lution for memory integrity and authentication [94]. Orthogonally, address obfuscation solutions

for 3D stacked memories like Micron HMC or Samsung HBM propose and utilize an extended

TCB for reducing the security overheads [2, 92]. The solutions in [2, 92] primarily utilize the

integrated computation logic in 3D stacked memories to implement trusted logic on the DIMM,

and perform address/command encryption/decryption to prevent exposure of address/commands in

plaintext, effectively eliminating the plaintext access pattern side channels. However, as discussed

in [3, 4] due to low yield, limited capacity per package, and high cost, these active memory solu-

tions are more suitable as an off-chip cache to support a passive main memory, which will require

ORAM to realize access pattern obfuscation. The ORAM solutions for passive memory in [3, 4]
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leverage secure chip-on-DIMM architectures to offload the ORAM controller to the DIMM, reduc-

ing the bandwidth burden on the processor-memory channel and increasing parallelism in ORAM

accesses. Whereas these novel architectures effectively reduce ORAM overheads, the system de-

signers now need to trust both the CPU and DIMM vendors. Although the CPU vendors can design

custom DIMMs with a secure-chip to reduce the number of trusted parties, this approach reduces

the flexibility to choose CPU and DIMM from different vendors and affects market competition.

The true viability of a security solution is established by its widespread adoption in industry.

Memory encryption and authentication solutions have been accepted in industry as an essential

memory design feature, as evident in Intel SGX and ARM TrustZone [95]. However, the indus-

try adoption of these elementary cryptographic primitives lagged behind the academic research

timeline of this domain; whereas BMT was proposed in 2007 [11], Intel SGX was introduced

approximately around 2013. Following a similar trend, the industry adoption of ORAM can be

expected to lag behind the academic research; however, due to the present computing landscape

with an increased attack surface, ORAM or some variant for access pattern obfuscation will be es-

sential in industry to ensure confidentiality. Recent work have architected ORAM primitives that

integrates seamlessly with commercially available Intel SGX solutions [96], paving a way forward

for industry adoption.

6.2 TIGHTER TCB WITH UNSECURE OPERATING SYSTEM (OS)

The majority of memory security solutions for encryption and authentication consider a primary as-

sumption of the operating system (OS) being secure. Specifically, the critical OS components like

building and managing page table are assumed to be secure. A corrupt OS can easily change the

page table information; this results in wrong data being fetched for a virtual address generated by

the application, effectively resulting in a splicing attack. OSes are large complicated software sys-

tems with numerous demonstrable security vulnerabilities that have been exploited over decades.

Therefore, it is important to develop memory security solutions that does not assume a secure OS.

Currently, there are academic and commercial solutions that provide hardware-driven memory

integrity guarantees in the presence of compromised OS. In academia, the memory security so-

lution in AEGIS [97] builds a Merkle Tree over the virtual address space (VAS), defined as VAS
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tree. Although VAS tree protects against corrupt OS, it imposes a large overhead since the VAS

is much bigger (64-bit space) than the actual physical address space (PAS). In reduced address

space (RAS) tree solution [83], each page allocated in memory is provided a unique number that

represents the RAS, and the mapping is stored securely on-chip, which is inaccessible by the OS.

An MT is dynamically built on top of the RAS, which results is significantly smaller overheads. In

Intel SGX, a commercially available and widely used memory security solution, a protected mem-

ory region (PRM) is reserved, which is managed by trusted hardware, without any OS involvement.

Since the PRM is small, the integrity tree built on top is small; currently, the limit of the PRM is

128MB. Therefore, all the solutions which maintain memory integrity in presence of corrupt OS

derive their security guarantees bootstrapped from a trusted hardware, which is not managed by the

OS. This dissertation presents a low overhead memory authentication solution, ASSURE, which is

easily integrable with VAS tree or Intel SGX, since ASSURE intrinsically does not rely on the OS

or any address translation mechanism.

Although state-of-the-art ORAM primitives assume a secure OS, future secure memories must

realize secure ORAM implementations without secure OS provisioning. The PosMap in the Path

ORAM maps the logical address to leaf labels; hence, the security guarantees depend on the OS-

controlled translation from virtual to logical address. Since the problem domain is similar to

memory authentication, techniques similar to RAS is a potential solution towards a secure ORAM

with unsecure OS. Similar to RAS, all the allocated active pages in memory can be allotted a

unique page number, maintained by a trusted hardware on the processor chip; the PosMap should

utilize this unique number, eliminating the dependency of the ORAM algorithm on OS.

6.3 AUTHENTICATION/OBLIVIOUS ACCESS IN EMERGING HYBRID MEMORIES

To meet the performance and reliability requirements of modern memory systems, hybrid DRAM-

NVM memory architectures have emerged as a more practical approach towards NVM adoption

in main memory [98–107]. The DRAM system filters a majority of the write operations, effec-

tively concealing the high write latency/energy and increasing the lifetime of the NVM system.

Hybrid DRAM-NVM architectures are broadly categorized into two approaches: (i) DRAM as

cache with NVM (DC-NVM), and (ii) DRAM in parallel with NVM (DP-NVM). In DC-NVM,
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DRAM is utilized as an OS-transparent cache in front of NVM main memory as an interface to

the processor [98, 100–103]. In DP-NVM, DRAM and NVM are at the same level in the mem-

ory hierarchy, with the operating system (OS) managing them under a single physical address

space [99, 104–106].

In both DC-NVM and DP-NVM, the DRAM and NVM are unsecure. Whereas the DRAM

is treated as a cache in DC-NVM, it should be mandatorily authenticated using a Merkle tree;

the tags and meta-data should also be authenticated. Although the DRAM is protected by an

MT, the NVM data can be tampered; hence, the NVM should be integrity-protected utilizing a

separate MT. The independent roots of the DRAM and NVM MT should be securely stored on

the processor. Similar to the traditional DRAM-/NVM-only main memories, the performance

if memory authentication can be improved with on-chip caching of the MT nodes and efficient

MT solutions like ASSURE. Similar to DC-NVM, DP-NVM should provide integrity protection

schemes to both NVM and DRAM. Since the DRAM and NVM belong to the same address space

in DP-NVM, they should be protected by a single MT, and efficient MT solutions like ASSURE

can be implemented for reducing MT overheads. The insights for authentication in DC-NVM and

DP-NVM can be translated to access obfuscation since Path ORAM has a similar tree structure

as an MT. Whereas in DC-NVM, two independent ORAMs should be assigned to the DRAM and

NVM, a single integrated ORAM can secure DP-NVM against access-pattern side channels. Note

that both ReadPRO and LEO can be integrated with DC- and DP-NVM Path ORAMs for low

overhead access-obfuscation.

3D integration has facilitated the fabrication of smart memories equipped with logic on the

DIMM, facilitating considerable processing-in-memory capabilities [2, 92, 108–111]. A typical

smart memory like hybrid memory cube (HMC) is composed of several vertically integrated stack

of DRAM dies with a logic layer at the bottom and all the layers connected using through-silicon-

vias (TSVs). Current NVM prototypes are also integrating considerable logic within the DIMM to

support wear leveling, scheduling, and failure re-mapping, etc [92]. Recent work on memory secu-

rity consider the logic on the smart memory DIMM to be trusted and include it in the TCB; only the

processor-memory bus is considered to be unsecure. Although the logic in current smart memory

DIMMs only consists of essential circuitry, it can include cryptographic hardware considering its

area and thermal power budget of around 55W [112]. This cryptographic hardware on the trusted
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logic facilitates the deployment of authenticated encryption using Galois Counter Mode, eliminat-

ing the requirement of MT and significantly reducing authentication overhead [2]. In GCM, the

processor and memory shares an encryption key and encryption counter. The sender generates an

authentication tag based on the encrypted data, the shared counter, and a secret encryption key.

The receiver regenerates the tag from the received encrypted data, the shared counter, and secret

key, accompanied by a validation against the received tag; the equality of the tags ensure integrity

of the data on the channel. A recent work, STASH [113] presents the first security work on smart

hybrid memories, wherein low overhead solutions are proposed to achieve encryption, authentica-

tion, and access-pattern obfuscation. STASH utilizes a page-level MT, recovery-compatible MT

updates, and page migration friendly counter management to reduce memory overhead by 12.7×,

increase system performance by 65%, and improve NVM lifetime by 2.5×.

6.4 AUTHENTICATION AND OBFUSCATION: A BROADER PERSPECTIVE

This dissertation has primarily focused on discussing the technical underpinnings of data authen-

tication and oblivious access in computer memories. This section briefly explores the significance

of the security solutions analyzed in this dissertation to other relevant domains. Since this dis-

sertation mainly addresses data security, all data-centric enterprises are potential beneficiaries of

solutions described in this dissertation. For example, financial and medical enterprises are data

driven, and rely on accuracy and confidentiality of data for smooth and legal operations. Most

medical and financial institutions store massive amounts of data (patient record, transaction de-

tails) in their private data centers, or more commonly, public cloud storage services [114, 115].

Public third-party cloud storage services like Amazon Web Services (AWS) or Microsoft Azure

offer high availability and low latency large scale data storage, without the hassle and high cost of

in-house data storage and management. However, the primary concern of outsourcing data storage

is enforcing necessary data security. The data needs to be encrypted to prevent leakage of plaintext

data to unauthorized parties. Data integrity is also of utmost importance; for example, the amount

stored in a customer’s bank account must remain unmodified over time and should be modified

only on authorized accesses. The data access patterns between the client and the data center must

also be obfuscated to prevent access-pattern-based attacks. A successful access-pattern-based at-
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tacks can completely undo the security provisions of data encryption, leaking confidential data (for

e.g., customer medical records) to unauthorized third parties, exposing both the client enterprise

and the data hosting service to crippling privacy lawsuits. Therefore, access obfuscation solutions

like ORAM are extremely crucial for the proper functioning of the cloud service providers and

consumers. In summary, in this age of big data, most organizations rely of large scale data stor-

age and analysis for their operations, hence, data security solutions covered in this dissertation is

of utmost importance to these enterprises.
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7.0 FUTURE WORK

Future research directions will focus on (i) exploring efficient solutions for ORAM read phase

optimization and secure ORAM resizing, (ii) investigating the security challenges of emerging

processing-in-memory architectures that require plaintext data on the memory modules for pro-

cessing purposes, and (iii) investigating the interplay of security primitives with reliability en-

hancing architectures, focusing on leveraging the reliability improvement techniques to efficiently

reduce security-related overheads.

7.1 IMPROVING ORAM EFFICIENCY

ORAM integration for access-pattern-based obfuscation in main memories incurs considerable

overhead in system performance, memory energy, and memory lifetime (for NVM-based memory

systems). In comparison to a non-secure baseline system, even efficient ORAM constructs pro-

posed in [35–38, 41] incur 10-100× increase in memory traffic, 5-40× increase in access latency,

and 2-10× degradation in system performance. Although the solutions proposed in this disserta-

tion, ReadPRO and LEO, significantly decrease these overheads, the gap between performance of

a memory system integrating ORAM and unsecure memory can be bridged further.

ReadPRO scheduling primarily re-orders the sequence of path accesses dependent on the

type (i.e., read/write) of the original memory access. Following up this solution, the effects of

re-ordering the node accesses within a single path access requires exploration, while preserving

the ORAM security guarantees. The read phase of an ORAM access fetches all blocks from ev-

ery bucket on the path corresponding to the mapped leaf, traditionally from the root (level 0) to the

leaf (level L) [4, 34, 116]. The root-to-leaf scheduling is very effective in the presence of tree-top

ORAM caching, wherein the top ORAM tree levels are stored on the processor chip in an ORAM

cache [31,38,39]. Root-to-leaf scheduling first checks the buckets in the ORAM for the target data
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block. If the target block is present in the cached buckets, it can be forwarded faster to the pro-

cessor, because the on-chip cache read latency is lower than the memory read latency. However,

the majority of target data blocks are located outside the ORAM cache, closer to the leaves (in the

main memory), primarily due to (i) the small ORAM cache size in comparison to the total ORAM

size and (ii) the leaf affinity of the stash eviction algorithm, wherein the data blocks in the stash

are evicted as close to the leaves as possible. Some promising solutions include (i) effective se-

cure caching mechanisms for the ORAM data that supports faster critical data fetch during a path

access, and (ii) secure scheduling of node accesses from the ORAM to decrease data fetch latency

when the critical data block in in the external memory.

Orthogonally, dynamic resizing of ORAM will be explored to reduce effective memory traffic

over the processor-memory channels. One of the crucial features of state-of-the-art ORAM so-

lutions for main memories is that the ORAM size is constant throughout program execution [31,

34–40]. However, the memory footprint, i.e., the resident set size (RSS) varies across (i) differ-

ent workloads and (ii) different execution phases within the same workload (for example, in SPEC

CPU2006 benchmarks [117]). Whereas the RSS of the workloads fluctuates, memory traffic, i.e.,

the number of blocks read/written back in an ORAM access is constant in state-of-the-art ORAM

solutions. The memory traffic depends on the number of tree levels, and due to the constant size

of ORAM prevalent in state-of-the art ORAMs, the number of tree levels are also constant, result-

ing in constant memory traffic. Therefore, workloads with memory footprints lower than the total

address space (throughout or in certain phases of program execution) incur higher-than-necessary

ORAM access overheads. Although dynamic tree sizing solutions proposed in ASSURE solves a

similar problem for MT memory authentication, it assumes memory access locality in the exter-

nal memory; an ORAM is specifically designed to obfuscate memory access pattern, and thereby

memory access locality to the external unsecure memory. This motivates the development of a

secure ORAM tree resizing algorithm and architecture to dynamically scale memory traffic. Pre-

vious work proposed a Resizable ORAM [118] for tree-based ORAM constructions; however, the

resizable ORAM construct is incompatible with state-of-the-art compressed PosMap architecture

proposed in [37]. The architectural and security challenges of integrating resizable ORAM with

compressed PosMap will be investigated to propose efficient solutions to to enable secure dynamic

resizing in state-of-the-art ORAM.
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7.2 SECURITY FOR PROCESSING-IN-MEMORY ARCHITECTURES

Modern applications in domains like machine learning, graph processing, and other similar fields

operate on very large datasets; additionally, these applications demonstrate low inherent spatial and

temporal data locality, rendering caching ineffective [55, 56]. The applications need to read/write

large amounts of data from/to memory and are bound by the processor-memory channel band-

width. However, recent memory technology advancements have enabled 3D-stacked memories,

where layers of memory dies are stacked, connected by through-silicon-vias(TSVs), with a logic

layer at the bottom (for e.g., hybrid memory cube (HMC) and high bandwidth memory (HBM)).

Processing-in-memory (PIM) architectures offload some of the tasks that generate heavy memory

traffic to the logic layer in 3D memory, thereby avoiding the data transfer delay across the memory

channel [44–54, 57].

Although PIM enables processing near-data processing, it requires the data to be in plaintext

on the unsecure external memory. Although previous work like InvisiMem [2] and ObfusMem [92]

provided security solutions for 3D stacked memories, they did not consider PIM architectures and

keep data encrypted in memory. Therefore, to enable PIM, there are 2 options: (i) Implement

homomorphic encryption (HME), where the logic layer can perform simple operations with en-

crypted data (i.e., without decryption); however, HME incurs orders of magnitude higher latency

and dynamic energy, negating all the advantages of PIM. (ii) Perform data decryption on the exter-

nal memory and utilize it for computations without leaking information. This motivates a detailed

exploration of plaintext data security in PIM architectures, and development of efficient security

solutions to prevent reduction in the benefits of PIM.

7.3 SECURITY-RELIABILITY CO-DESIGN

Recent work has demonstrated that co-design of security and reliability constructs improves the

system performance by utilizing authentication constructs to perform efficient error correction in

DRAM-based systems [59]. In [59], the ECC chip on a DIMM is repurposed to store MACs, which

can now be accessed in parallel to the data, reducing additional memory accesses to fetch metadata

for memory authentication. However, [59] is developed around ECC-based reliability systems in
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DRAM memories. As demonstrated in multiple previous work, the error characteristics in NVM-

based systems is significantly different than DRAM-based systems: (i) hard failures are dominant

in NVMs, so dedicated ECC bits are required for them, (ii) the frequency of errors in a single

cache line is significantly higher than what can be handled by standard SECDED codes, (iii) the

hard errors are localized in certain memory regions within a page and within a cache line, enabling

better allocation of resources; these factors motivated the development of a vast array of NVM

reliability improvement techniques over the past few years [21, 60–69]. The effects of reliability

improvement solutions for NVM systems on the security of NVM memory systems should be

evaluated, thereby developing insights for architecting efficient reliable and secure NVM systems.

Additionally, the integration of hard-fault tolerance techniques with NVM ORAMs will be

explored. Due to the significant increase in memory traffic, each ORAM access writes more

blocks (i.e., cache lines) than a normal memory access in unsecure memory. This increased

write frequency will deteriorate the memory lifetime of NVM ORAM implementations, necessi-

tating provisioning of proportional error correction resources (for e.g., error correction pointers, or

ECPs). Previous work demonstrates that equal distribution of error correcting resources across all

blocks is inefficient [119, 120], motivating development of smart provisioning of these resources

across memory domains that experience high write frequency. However, in the ORAM tree, all

paths are accessed with equal probability, without the accesses being focused on any subtree. In

future, novel ways for efficient and secure allocation of error correction resources can be explored

at various ORAM levels to enable ORAM integration with NVM memory systems feasible.
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