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Abstract

[1] showed that rotational acceleration stabilized the leading-edge vor-
tex on revolving, low-aspect-ratio wings, and hypothesized that a Rossby
number of around three, which is achieved during each half-stroke for a va-
riety of hovering insects, seeds, and birds, represents a convergent high-lift
solution across a range of scales in nature. Subsequent work has verified
that, in particular, the Coriolis acceleration plays a key role in LEV sta-
bilization. Implicit in these results is that there exists an optimal aspect
ratio for wings revolving about their root, because it is otherwise unclear
why, apart from possible morphological reasons, the convergent solution
would not occur for an even lower Rossby number. We perform direct
numerical simulations of the flow past revolving wings where we vary the
aspect ratio and Rossby numbers independently by displacing the wing
root from the axis of rotation. We show that the optimal lift coefficient
represents a compromise between competing trends with competing time
scales where the coefficient of lift increases monotonically with aspect ra-
tio, holding Rossby number constant, but decreases monotonically with
Rossby number, when holding aspect ratio constant. For wings revolving
about their root, this favors wings of aspect ratio between three and four.
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1 Introduction

Compared to conventional helicopter blades, wings of animal species capable of
hovering flight have low aspect ratio, and they operate in the low Reynolds num-
ber, separated flow regime. [2] have shown that the aerodynamics of flapping
flight mostly rely on the generation of a large-scale leading-edge vortex (LEV).
The principal contributor to vortex-lift generation, this LEV forms during each
half stroke as the wing revolves through an angle about its root, and it was
found to remain stably attached to low aspect ratio wings throughout the whole
revolving motion. This is contrary to the LEV that forms on translating wings
where the initial LEV is shed into the wake and is typically followed by cyclic
vortex shedding, even at low aspect ratio [3]. Recent works by [1] and [4, 5]
suggest that the Coriolis acceleration associated with rotation plays a key role
in this robust attachment of the LEV. In particular, theoretical considerations
suggest that the Coriolis acceleration is accompanied by a spanwise flow behind
the LEV [1] that is conducive to spanwise vorticity transport. By balancing the
production of vorticity at the leading edge, spanwise vorticity transport limits
vortex growth [6] and hence promotes LEV attachment. While this hypothesis
is supported by other recent works [7, 8], there is no consensus about the role
of Coriolis acceleration on LEV attachment. In particular, [9] do not conclude
on the stabilizing or destabilizing effect of the Coriolis acceleration but indicate
that the latter drives the spanwise extent of a stable LEV. On the other hand,
[10] suggest that Coriolis acceleration has a destabilizing effect and that cen-
tripetal acceleration plays a dominant role in LEV attachment. Nevertheless,
all studies support the idea that rotational effects promote LEV attachment.
Coriolis acceleration, and more generally rotational effects, can be quantified
using the Rossby number.

[1] observed that over a range of scales corresponding to Reynolds numbers
(defined precisely below) from 100 < Re < 14000, over 300 species of birds,
bats, insects, and auto-rotating seeds, an associated Rossby number (defined
in their paper as the tip radius to chord length ratio) was Ro = 3. Owing to
morphological constraints, these wings rotate about their root, and in this case,
under hovering flight conditions, the Rossby number is also proportional to the
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wing’s aspect ratio. Note, however, that this is not always the case as the wing
root may begin at a distance from the hinge in some species like crane flies.
Yet, an obvious question is why Ro ≈ 3, apart from possible morphological
constraints, represents a convergent solution, rather than, say, a smaller value
of Ro where Coriolis effects are yet stronger? Again, for wings revolving about
their root, detailed analysis of the flow structure revealed an overall loss in
coherency of the LEV as the Rossby number increases [1, 11, 12]. Likewise,
[13], [10] and [14] showed that for wings undergoing finite amplitude (< 360◦)
revolution there are two distinct flow regions along the wing span: (1) an inboard
region where the LEV is stable and generates high lift and (2) an outboard
region where the LEV lifts away from the surface, resulting in a local loss in
flow coherency. Furthermore, [15] showed that the mean transition between
inboard and outboard regions measured for wings undergoing multiple rotations
is located approximately four chords away from the axis of rotation.

In this paper we attempt to separate the effects of aspect ratio and Rossby
number by varying them independently in the low Reynolds number regime.
We perform three-dimensional direct numerical simulations of the flow past an
impulsively-started revolving wing at 45◦ angle of attack. We first examine
wings of different aspect ratio revolving about their root, and confirm that lift
coefficient is maximized at the aforementioned Ro ≈ 3 (which coincides with
wings of aspect ratio between 3 and 4). We then vary aspect ratio and Rossby
number independently by considering wings whose roots are displaced from the
center of rotation, and demonstrate that the optimal solution is associated with
a compromise between monotonically increasing lift coefficient with aspect ra-
tio, holding Rossby number constant, and monotonically decreasing lift with
Rossby number, when holding aspect ratio constant, which is line with some
recent observations by [16]. We show that the relative contributions of aspect
ratio and Rossby number effects on lift depends on the non-dimensional dis-
tance travelled by the wing - i.e. physical mechanisms associated with these
parameters have different time scales - and that initial transients have a key
role in lift optimality. Specifically, while aspect ratio effects are immediately at
play, Ro effects develop with a larger time scale such that large AR wings can
produce larger lift for very short distances of travel. However, this occurs for
distances of travel corresponding to flapping amplitudes that are not typical of
real world observations. As such, we show that wings with AR between 3 and 4
are always optimal in terms of lift production for flapping amplitudes between
70◦ and 180◦, i.e. typical of real world observations. Finally, we provide insights
into the physical mechanisms associated with AR and Ro effects. We show that
low AR and low Ro limit leading edge vortex growth through downward and
spanwise induced velocities, respectively. For sufficiently large damping of the
growth rate, the LEV does not interact with the trailing edge, hence avoiding
a potential mechanism for vortex shedding [17].
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Figure 1: Geometric parameters of the wing and relation with aspect ratio AR
and Rossby number Ro. Different colours indicate different AR. Each colour
gets darker as Ro increases, i.e. as the wing is displaced from the axis of rotation.
The inset shows the cases addressed in this study including constant R1 = 0
(◦), constant AR (�) and constant Ro (�) cases.

2 Problem setup

The Navier-Stokes equations are solved for a flat-plate airfoil of rectangular plan-
form using the immersed boundary (IB) and Lattice Green’s Function (LGF)
method developed by [18, 19]. As depicted in Figure 1, a wing of chord, c,
and span, b rotates with angular velocity ω about an axis displaced a distance
R1 from the wing root such that R2 = R1 + b is the wing tip. The aspect
ratio AR = b/c. Following previous work, the Reynolds and Rossby num-
bers are defined with respect to the wing chord and a characteristic velocity,
V = ωRg, where Rg is the radius of gyration. For a wing of arbitrary planform

R2
g =

√
1
A

∫ R2

R1
r2c(r)dr, where A is the area, so that for a rectangular wing

Rg =

√
R3

2−R3
1

3b . Then Re = V c/ν and Ro = V/(ωc) = Rg/c where ν is the

kinematic viscosity of the fluid. In this paper, cases with AR ∈ [1 − 7] and
Ro ∈ [0.58 − 6.03] are addressed. Note that Ro = 0.58 is the lowest possible
Rossby number for the range of AR tested. Also note that the definition of
Ro differs from that used by [1] where the tip radius rather than the radius
of gyration was used, such that Ro was equal to AR for wings with root lo-
cated on the axis of rotation (R1 = 0). Re is set to 577, which corresponds to
a Reynolds number based on the mean wing speed across the span of 500 for
wings with R1 = 0 (i.e. comparable to cases addressed in [4, 5]), and within
the range of Reynolds numbers considered by [1]. The lift coefficient is defined
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as CL = L/ 1
2ρV

2A, where L is the lift of the wing (force parallel to the axis of
rotation) and ρ is the density of the fluid.

The IB-LGF method discretizes the incompressible Navier-Stokes equations
on a formally unbounded (infinite) staggered Cartesian grid using a second-
order finite-volume scheme [18]. The system of differential algebraic equations
resulting from the spatial-discretization of the momentum equation and the
incompressibility constraint are integrated in time by using an integrating fac-
tor technique for the viscous terms and a specialized half-explicit Runge-Kutta
scheme for the convective term and the incompressibility constraint. The flow
is solved using only information contained in the finite grid region where the
vorticity and the divergence of the Lamb vector have non-negligible support.
An adaptive block-structured grid and a velocity refresh technique are used to
limit operations to a relatively snug finite computational domain surrounding
the wing. The flow is solved in a frame of reference accelerating with the im-
mersed wing. The IB treatment is similar to the original approach of [20] and
based on the discrete delta function of [21]. The projection approach of [22] is
utilized to determine the surface forces that identically yield a slip-free condi-
tion for the velocity field interpolated onto a set of quadrature points that define
the immersed surface. In our case, the grid resolution and immersed boundary
point spacing are set to ∆s = 0.015c. Grid convergence tests were performed
for a reference case (R1 = 0, AR = 4) and showed that the mean lift coeffi-
cient obtained using the reported spatial resolution is only 1.7% away from the
Richardson-extrapolated solution [23]. To ensure time accuracy, the time step
is chosen to ensure that the Courant number (CFL) does not exceed 0.5.

Figure 2 compares the three-dimensional flow field obtained for this reference
case with results obtained by [24] at a higher, yet low Reynolds number (Re ≈
3000). Q-criterion isosurfaces are used, with iso-values equal to 0.9 in both
cases (non-dimensionalized using the wing chord and the velocity at the radius
of gyration). Very good agreement is observed, although experimental flow
fields exhibit smaller scale structures that arise from Reynolds number effect
and measurement noise. In addition, we reproduce simulations by [25], where
R1 = 0.52c, AR = 1 and Re = 520. Figure 3 compares the mean lift and
drag coefficients (averaged over φ ∈ [45◦ − 315◦]) obtained using the present
approach with those obtained by [25]. Here again, good agreement is observed
despite slight discrepancies that may arise from slightly different setup; i.e.
[25] considered a non-zero thickness wing with a different acceleration program.
Note that non-dimensional values reported in [24] and [25] have here been re-
calculated with respect to the wing chord and the wing velocity at the radius
of gyration.

In what follows, we consider an angle of attack of 45◦ and an impulsively-
started rotation (step function) through 180◦ of rotation to simulate the half-
stroke of a hovering, flapping wing. This amplitude of rotation encompasses
that observed in nature (typically between 70 and 180◦) [26]. and somehow
consitutes an upper anatomical limit. This setup allows to investigate the quasi-
steady state of the flow, as is commonly achieved in revolving wing studies. In
addition, it further allows to extract the fundamental role of initial transients
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Figure 2: Comparison ofQ-criterion isosurfaces obtained experimentally (stereo-
scopic Particle Image Velocimetry - PIV - measurements) by [24] with those
obtained using the present numerical approach (DNS). The iso-value of the
Q-criterion (non-dimensionalized using the wing chord and the velocity at the
radius of gyration) is set to 0.9 in both numerical and experimental cases.
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Figure 3: Comparison of mean lift and drag coefficients obtained by [25] with
those obtained using the present approach.

6



on the three-dimensional mechanisms that drive lift generation by discarding
any dependency to flapping wing kinematics (which considerably reduces the
parameter space of the problem). It is stressed that because only a simple ro-
tation is considered, additional mechanisms pertaining to flapping flight (such
as wake capture) are not taken into account. Caution must therefore be exer-
cised in drawing implications for flapping flight, as is discussed more fully in
section 3 3.4.

The flow is analyzed in terms of Q-criterion [27] isosurfaces at the end of
the revolving motion (φ = 180◦) where the flow has reached a quasi-steady
state. Cross-sectional vorticity and spanwise velocity contours are also shown
at different instants. These quantities are correlated with lift generation. In
what follows, unless otherwise specified, all data are non-dimensionalized with
respect to the wing chord and the wing velocity at the radius of gyration.

3 Results

3.1 Wings revolving about their root

We first consider different aspect ratio wings with R1 = 0. Figure 4a shows
the mean lift coefficient C̄L (averaged over the first 180◦ of revolution) obtained
for aspect ratios ranging from 1 to 7. An optimal lift coefficient is obtained
for an aspect ratio between 3 and 4, which correlates well with the aspect ratio
of hummingbird wings (on the order of 3.7) and that of other species [26, 1].
Figures 4b and 4c show Q-criterion [27] iso-surfaces obtained for each case at
the end of the revolving motion (φ = 180◦). For sufficiently high aspect ratios
(AR > 4), it is observed that a conical LEV develops on the upper surface
of the wing and extends from the wing root to approximately 3 chords away
from it. Further outboard of the wing, the flow is characterized by smaller scale
unsteady vortices that indicate local flow instability. This distinction between
inboard quasi-steady flow and outboard unsteady flow reflects local Rossby num-
ber (r/c) effects and the enhanced role of Coriolis effects on flow stability as r
decreases [1]. The extent of the quasi-steady inboard region where the LEV is
found to be robustly attached is consistent with data obtained by [15] on wings
undergoing multiple rotations. Overall, it can be speculated from these results
that increasing aspect ratio beyond 4 is detrimental (as seen in figure 4(a)) be-
cause of the instability that occurs in the outboard region of the wing. For lower
aspect ratios (AR < 4), the tip condition influences the inboard quasi-steady
region such that the conical LEV reorients along the chord as it merges with
the tip vortex (TV), at a position r/c < 3 (e.g. see inset of AR = 2 case in
figure 4b).

Figure 5a shows the evolution of the lift coefficient CL as a function of the
revolution angle φ for all cases. Occurrence of flow instability in the outboard
region can be correlated with a rapid drop in lift for cases with AR > 4. Natu-
rally, the drop in lift does not occur at similar instants for cases with AR = 5, 6
and 7 because the distance traveled by the wing at a given φ scales with φ×Rg
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Figure 4: (a) Mean lift coefficient obtained for wings with aspect ratio AR ∈
[1 − 7] and constant root location R1 = 0. (b) Perspective and (c) back view
of Q-criterion isosurfaces (iso-values 0.01 and 1 are displayed in light grey and
blue respectively) obtained at φ = 180◦ for AR ∈ [1− 6].
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Figure 5: Instantaneous lift coefficient as a function of (a) the revolution angle φ
and (b) non-dimensional distance travelled by the wing at the radius of gyration
δ, obtained for wings with aspect ratio AR ∈ [1 − 7] at constant root location
R1 = 0.

Figure 6: Isolines and contours of instantaneous sectionnal lift coefficient CL,sec
as a function of the revolution angle φ and the position along the span (r−R1)/b
obtained for wings with aspect ratio (a) AR = 2, (b) 4 and (c) 6 at constant
root location R1 = 0.
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Figure 7: Q-criterion isosurfaces (iso-values 0.01 and 1 are displayed in light grey
and blue respectively) obtained every φ = 10◦ for the AR = 6 case. The time-
sequence shows the development of outboard flow unsteadiness characterized by
small scale structures for r/c > 3, as opposed to the quasi-steady inboard flow
characterized by a stable LEV for r/c < 3.

(or any arbitrary radial length of reference), and Rg increases with AR. That
is, lift drop occurs more quickly for higher values of AR. Plotting the evolution
of CL as a function of the non-dimensional distance traveled by the wing at the
radius of gyration δ = φRg/c, or convective time at the radius of gyration, in
figure 5b shows that the instant of lift drop for AR > 4 better matches, sug-
gesting that flow instability in the outboard region of the wing scales with δ.
This point will be further addressed in section 33.4.

The footprint of outboard flow instability on lift can also be clearly visualized
by mapping contours of sectional lift coefficient CL,sec as a function of (r−R1)/b
and φ in figure 6. For AR = 6, it can be seen that iso-lines have a preferential
orientation along the vertical direction from root to mispan (i.e. in the r/c < 3
region). This indicates that CL,sec (1) increases with r and (2) saturates as φ
tends to 180◦. Such a trend is typical of a conical LEV reaching a steady state.
On the contrary, iso-lines beyond midspan (i.e. in the r/c > 3 region) do not
have a preferential orientation. This indicates both time-fluctuations and non-
monotonic spanwise variations in CL,sec, which is indicative of vortex shedding
and loss in coherency in the outboard region. For AR = 4, this outboard
unsteadiness and loss in coherency occurs over a much smaller proportion of the
wing. Therefore, the drop in CL,sec does not have a significant impact on the
global lift coefficient CL. For AR = 2, there is no clear evidence of any flow
instability inducing significant temporal fluctuations in CL,sec. Correspondingly,
the CL versus φ curve is roughly constant.
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Figure 7 provides further evidence of the occurence of outboard flow un-
steadiness with time. The time sequence shows Q-criterion isosurfaces obtained
for AR = 6 (R1 = 0) every 10◦ of rotation. At φ = 10◦, the flow exhibits smooth
leading, trailing (or starting) and tip vortices (LEV, SV and TV respectively).
The SV is rapidly shed into the wake while being connected with the TV. The
LEV initially develops close to the wing surface but is also found to rapidly de-
tach from the leading edge in the outboard region, as indicated by the cut in the
outboard Q-criterion isosurfaces at φ = 20◦. This cut then propagates towards
the wing midspan as φ increases, together with a global increase in the size of
the outboard LEV. At some point, the outboard LEV that merges with the TV
forms an outboard protuberance (φ = 50◦ and 60◦) that eventually bursts into
small scale structures (φ = 70◦) [28]. For φ > 70◦, there are no clear changes
in the spanwise position of the cut in Q-criterion isosurfaces, which corresponds
to the frontier between quasi-steady inboard and unsteady outboard region. It
can be observed that while the inboard flow exhibits a smooth conical LEV,
it is characterized in the outboard region by fluctuating small scale structures
without any preferential orientation.

3.2 Aspect ratio variation with constant Rossby number

We now consider wings of different aspect ratios at constant Rossby number.
Physically this is achieved by displacing the wing root from the axis of rotation in
inverse proportion to the aspect ratio. Figure 8(a) shows the mean lift coefficient
C̄L obtained for aspect ratios ranging from 1 to 6 at Rossby numbers of 1.73,
2.31, 3.46 and 5.77. It is shown that lift monotonically increases with AR for all
Rossby numbers. In particular, the increase is relatively strong for low AR and
follows an asymptotic trend for larger AR. This trend is qualitatively similar
to that observed by [3] for translating wings (Ro → ∞) at low Re, where it
was also pointed out that the trends were qualitatively similar to predictions
from the three-dimensional potential flow (inviscid) theory [29, 30]. Because at
high angle of attack, in the separated flow regime, the total aerodynamic force
principally acts in a direction normal to the wing surface, the dependence of drag
on wing parameters is similar to that of lift. A figure showing the mean drag
coefficient as a function of AR is provided as supplementary material, figure A.
Figure 8b shows Q-criterion isosurfaces obtained for cases with Rossby number
3.46 at the end of the revolving motion (φ = 180◦). As AR decreases, the
outboard unsteady region appears to be truncated (in that its spanwise extent
is reduced) while the inboard quasi-steady region exhibits an increase in LEV
conicity. Here again, the transition from quasi-steady to unsteady regions is
found to occur around three chord from the axis of rotation for AR > 1, which
supports the idea that LEV stability is driven by r/c, i.e. the local Rossby
number. In the AR = 1 case, the proximity between root and tip vortices tend
to damp outboard unsteadiness such that both root and tip vortices exhibit
relatively smooth shape, as opposed to higher AR cases where the tip vortex
comprises multiple smaller scale structures.

The increased effect of root and tip vortices in the AR = 1 case can also be
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observed by comparing cross-sectional contours of spanwise vorticity obtained at
the radius of gyration for cases with AR = 1, 2 and 4 and Ro = 3.46. Snapshots
are shown in figure 9 for four values of δ = 0.5, 1, 1.5 and 2, corresponding
to the build-up and shedding phases of the intial LEV. At δ = 0.5, all cases
exhibit relatively similar patterns with leading edge and trailing edge vorticity
sheets that roll up into leading edge and trailing edge vortices, respectively.
While the trailing edge vortex, or starting vortex (SV), is rapidly shed, the
LEV develops close to the wing surface. At δ = 1, for AR = 2 and 4, the
LEV in turn sheds into the wake. LEV shedding is promoted by the eruption
of opposite sign vorticity from the wing upper surface, that tends to cut the
feeding leading edge shear layer [17]. Conversely, although the bottleneck in the
leading edge shear layer of the AR = 1 case suggests imminent shedding (in that
a bottleneck generally precedes a cut in Q-criterion isolines, which we assume to
be representative of vortex shedding), the LEV remains attached to the wing due
to downward induced velocity from root and tip vortices. Snapshots at δ = 1.5
show a clear offset between the position of the attached LEV for AR = 1 and
that of the shed LEV that advects downstream for AR = 2 and 4. The induced
downwash is further reflected by the nearly horizontal leading edge shear layer
in the AR = 1 case, as opposed to an inclined shear layer in the AR = 2 and
4 cases, which indicates that the wing operates at a lower effective incidence.
Overall, the induced downwash and its increased relative importance on the
global flow structure as the aspect ratio decreases result in reduced lift, which
explains the trend observed on figure 8a. In addition to the induced downwash,
it is important to note that favorable spanwise flow may also play a role on
the LEV attachment observed in the AR = 1 case, specifically at low Ro. This
point is discussed in the next section.

3.3 Rossby number variation at fixed aspect ratio

Finally, we consider wings at different Rossby numbers and constant aspect
ratio. Figure 10a shows the mean lift coefficient C̄L obtained for Rossby numbers
ranging from 0.58 to 6.03 and aspect ratio 1, 2, 3 and 4. Here again, it is
demonstrated that lift evolves monotonically with Ro for all ARs. In particular,
C̄L is found to increase roughly linearly as Ro decreases within the range of
Ro considered, with a slope that appears to be roughly independent of AR.
Similar results are obtained for the drag coefficient (see figure B provided as
supplementray material). Figure 10b shows Q-criterion isosurfaces obtained for
cases with aspect ratio 2 at the end of the revolving motion (φ = 180◦). As
previously found by [1] and [11], it can be seen that the flow loses coherency
as Ro increases from 1.15 to 3.06. That is, the outboard unsteady region gains
relative importance along the span with respect to the inboard region as Ro
increases. Further evidence of this is provided in figure 11 where contours of
sectional lift coefficient CL,sec are mapped as a function of (r−R1)/b and φ for
AR = 2 and Ro = 1.15, 2.08 and 3.06. It is shown that as Ro increases, vertical
iso-lines inboard reorients along arbitrary directions, indicating the occurence of
time-fluctuations and non-monotonic spanwise variations in CL,sec, i.e. vortex
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Figure 8: (a) Mean lift coefficient for wings with aspect ratios AR ∈ [1− 6] and
constant Rossby numbers Ro = 1.73, 2.31, 3.46 and 5.77. (b) Q-criterion iso-
surfaces (iso-values 0.01 and 1 are displayed in light grey and blue respectively)
obtained at φ = 180◦ for Ro = 3.46 cases.

shedding and loss in coherency. As Ro is further increased, changes in the flow
structure are less striking (figure 10b). Rather, the quasi-steady flow observed
inboard results from root vortex (RV) effects, in a similar way to what can
be observed for translating wings. These effects do not change much as Ro
increases, although the asymetry between root and tip vortices decreases.

Figures 12 and 13 show cross-sectional contours of spanwise vorticity and
spanwise velocity obtained at the radius of gyration for cases with Ro = 1.15,
2.08 and 3.06 and AR = 2. Again, snapshots are displayed at δ = 0.5, 1 and
1.5, which is representative of the build-up and shedding phases of the intial
LEV. First, figure 12 clearly indicates that a lower Rossby number is conducive
to LEV attachment. In particular, while evidence of LEV shedding can be
observed at δ = 1 for Ro = 3.06, it is postponed to δ = 1.5 for Ro = 2.08 and
absent for Ro = 1.15. For Ro = 1.15, there is no striking changes between the
LEV structure at δ = 1 and that at δ = 1.5, which is consistent with the nearly
constant lift observed on figure 5 and the corresponding maps of instantaneous
lift shown in figure 11a. This is also in line with recent results on flapping
and revolving wings (obtained by [31] and [32], respectively) where increased
LEV growth rate, quicker vortex shedding and lower lift were observed with
increasing Ro. Second, it can be seen from figure 13 that LEV attachment is
highly correlated with the development of spanwise flow. Present results show
that a lower Rossby number is conducive to the development of outboard flow
in the core and behind the LEV. Spanwise flow was also observed to increase
with reduced Rossby numbers by [11].

Spanwise flow due to lower Rossby numbers do not appear immediately but
still rather early in the motion (note that δ = 0.5 corresponds to φ = 25◦ when
Ro = 1.15). This spanwise flow adds to that arising from spanwise gradients
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Figure 9: Cross-sectional spanwise vorticity contours obtained at the radius of
gyration at δ = 0.5, 1 and 1.5. Cases with Ro = 3.46 and AR = 1, 2 and 4
(from top to bottom) are displayed. LEV shedding is observed for AR = 2 and
4 but not for AR = 1 where the effective angle of attack is reduced.
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Figure 10: (a) Mean lift coefficient for wings with Rossby numbers Ro ∈ [0.58−
6.03] and constant aspect ratio AR = 1, 2, 3 and 4. (b) Q-criterion isosurfaces
(iso-values 0.01 and 1 are displayed in light grey and blue respectively) obtained
at φ = 180◦ for the AR = 2 cases.

Figure 11: Isolines and contours of instantaneous sectionnal lift coefficient CL,sec
as a function of the revolution angle φ and the position along the span (r−R1)/b
obtained for wings with aspect ratio AR = 2 and Rossby numbers (a) Ro = 1.15,
(b) 2.08 and (c) 3.06.

in flow speed [4], hence spanwise gradients in LEV circulation, which develops
independently to the Rossby number. Indeed, although spanwise gradients in
flow speed are inherent to revolving motion (the velocity in the non-inertial
frame of reference is higher at the wing tip than at the wing root), they are
related to the presence of spanwise shear and thus occur in any type of shear
flows without rotational effects. The combination of spanwise flows arising from
rotational effects and spanwise gradients in flow speed contributes to spanwise
vorticity drainage, which helps balance vorticity production at the leading edge
(also see some recent analytical model by [7] on this matter).

To further quantify spanwise vorticity drainage, we perform a vorticity trans-
port analysis similar to that described in [33]. The analysis is performed on a
control surface defined by the intersection of a closed vorticity isocontour and
vertical lines located at the leading and trailing edges. The value of the vor-
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Figure 12: Cross-sectional spanwise vorticity contours obtained at the radius of
gyration at δ = 0.5, 1 and 1.5. Cases with AR = 2 and Ro = 1.15, 2.08 and
3.06 (from top to bottom) are displayed.
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Figure 13: Cross-sectional spanwise velocity contours obtained at the radius of
gyration at δ = 0.5, 1 and 1.5. Cases with AR = 2 and Ro = 1.15, 2.08 and
3.06 (from top to bottom) are displayed.
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ticity isocontour is set to -0.1, which is approximately 1% of the peak vorticity
value in the control surface. In our low Reynolds number cases, there is no clear
distinction between the LEV and the aft vorticity layer in terms of vorticity
levels. This is contrary to higher Reynolds number cases [33] where the LEV
is more compact and can thus be isolated from the aft vorticity layer with a
reasonably low value of vorticity isocontour. Figure 14a shows an example of
the control surface used, together with vorticity fluxes. Here, fx,i =

∫
Li
vxωzdy

and fx,o =
∫
Lo
vxωzdy are the chordwise fluxes of vorticity through the leading

and trailing edge lines, Li and Lo, respectively. fx,i feeds vorticity inside the
control surface whereas fx,o contributes to chordwise drainage. The resulting
chorwise flux is fx = fx,i + fx,o. fz =

∫
S
vz∂ωz/∂zdxdy is the spanwise flux

through the control surface S.
Figure 14b shows the fz/fx ratio computed in a chordwise cross section

located 1/4 span away from the wing root (i.e. at r = R1 + b/4) for the
three cases AR = 2 and Ro = 1.15, 2.08 and 3.06. The 1/4 span location is
chosen to allow better comparison with the previous analysis by [33] and to
ensure sufficient distance to the wing tip to reduce any potential tip effects on
spanwise flow. It can be seen that for all cases the fz/fx ratio increases during
the initial stages of the motion, yet with different growth rates. The growth rate
is the highest for the lowest Rossby number Ro = 1.15, where the fz/fx ratio
reaches values on the order of 0.6 near δ = 0.5 and then remains at sustained
levels. In the Ro = 2.08 case, fz/fx rapidly stops increasing to oscillate in
the range 0.2 − 0.3, and eventually decreases monotonically for δ > 1. In the
Ro = 3.06 case, fz/fx rapidly drops and even changes sign near δ = 0.6. Overall,
these results corroborate the fact that outboard spanwise vorticity drainage
is enhanced as the Rossby number decreases. The sustained value of fz/fx
correlates well with the attached LEV in the Ro = 1.15 case whereas the rapid
drop in fz/fx correlates well with LEV shedding in the Ro = 3.06 case; the
Ro = 2.08 being an intermediary case where LEV attachment is postponed
with respect to higher Rossby number cases. However, it can also be noted
that outboard drainage cannot, in its own, balance streamwise fluxes. This is
line with previous results by [33] who suggested that vorticity annihilation due
to the interaction between the LEV and the opposite sign vorticity layer on
the wing surface could play an important role in vorticity regulation inside the
control surface. In addition, although not shown here for the sake of conciseness,
our results suggest that in these low Reynolds number cases a non negligible
amount of vorticity is advected through the aft vorticity layer to the wake,
resulting in a fx,o/fx,i ratio that rapidly increases to 0.1 for all cases. While
different mechanisms may exist to regulate vorticity inside the control surface,
it is here shown that lower Rossby numbers are conducive to spanwise vorticity
drainage and thus contributes to limiting LEV growth. If the growth rate is
sufficiently reduced, the LEV will not interact with the trailing edge, hence
avoiding a potential mechanism for vortex shedding [17].

Finally, the control surface displayed in figure 14a can be used to estimate
the Coriolis force acting on it. In the non-inertial reference frame of reference,
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Figure 14: (a) Representative control surface for the vorticity transport analysis.
(b) Ratio of spanwise to chordwise vorticity fluxes through the control surface
at r = R1 + b/4 for AR = 2 and Rossby numbers Ro = 1.15, 2.08 and 3.06.

a fluid particle in still air experiences an inboard Coriolis force with magnitude
2ρωr2. If a revolving wing is introduced, this inboard force will be reduced
because the azimuthal component of the velocity in the non-inertial frame of
reference will be reduced (the velocity of the wing in this reference frame is zero)
[8]. Note that the centrifugal force won’t change because it does not depend
on the fluid velocity. Therefore, a fluid particle will experience an outboard
force with respect to that in still air, with magnitude 2ρωu′θ (where u′θ is the
azimuthal component of the fluid velocity perturbation with respect to the still
air case). Integrating 2ρωu′θ over the control surface shows that the outboard
force coefficient

∫
S

2ωu′θdxdy/c(ωr)
2 (i.e. non-dimensionalized using the local

wing velocity at a quarter span) decreases with Ro. For instance, values of 0.21,
0.12 and 0.07 are obtained at δ = 0.5 for Ro = 1.15, 2.08 and 3.06 respectively.

3.4 Discussion

While an aspect ratio between 3 and 4 maximizes lift on a wing undergoing a
180◦ rotation about its root, this does not necessarily imply that the same is
true for a flapping wing. In particular, flapping wings with high aspect-ratio
(AR > 4), for which LEV shedding is observed outboard, could adopt kine-
matics such that pronation/supination occurs prior to LEV shedding, hence
avoiding the associated drop in lift. Nevertheless, figure 5 suggests that, for
AR > 4, the flapping amplitude should be reduced to approximately 30◦ to
avoid such a drop. As pronation and supination phases are known to be detri-
mental to the overall production of lift, because the rotational speed decreases
to zero during stroke reversal, the time over which they occur should be min-
imized with respect to the flapping period. This means that for a given time
of pronation/supination (and fixed wing speed, or Reynolds number), flapping
amplitude should be maximized. This was shown by [34]. It therefore appears
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Figure 15: Influence of the amplitude of rotation on the mean lift coefficient
obtained for wings with aspect ratio AR ∈ [1 − 7] and constant root loca-
tion R1 = 0. Results are shown in terms of revolution angle φ (a) and non-
dimensional distance travelled by the wing at the radius of gyration δ (b).

that reducing the flapping amplitude such that LEV shedding does not occur
during the revolving phase of an aspect ratio AR > 4 flapping wing would not
compensate for the loss in lift, because pronation and supination phases would
encompass a greater percentage of the flapping period. And this despite the
fact that effects such as wake capture can mitigate the lift decrement due to
decreasing rotational speed. Figure 15a replicates figure 6 for lower amplitudes
of rotation φ. Amplitudes tested are withing the range [70◦-180◦] (10◦ step),
which encompasses flapping amplitudes of most insects [26]. It is striking that
for all amplitudes, the lift-optimal aspect ratio is always between 3 and 4. In
other words, the lift optimal aspect ratio of a revolving wing appears to be
roughly independent of the amplitude of rotation within the range observed in
nature. In addition, around the optimal aspect ratio, curves collapse as the am-
plitude increases, which indicates that for such low aspect ratio the flow reaches
a quasi-steady state.

We emphasize that the mean lift is obtained by averaging the instantenous
lift from the impulsive start, i.e. φ = 0◦, thereby taking into account initial
transients. It can be observed from figure 5 that averaging once intital transients
have decayed would not reveal a clear lift optimum because the lift coefficients
of AR = 2, 3 and 4 cases converge towards similar values. This may partly
explain why studies on rotating wings [15] cannot reveal a clear optimal lift.

Therefore, although early studies suggested this (but in a different, two-
dimensional framework where physical mechanisms are different), we insist on
the fact that initial transients have a key role in lift generation on revolving and
flapping wings. Mechanisms such as the development of spanwise flow, the de-
velopment of root and tip vortices and the production of vorticity at the leading
edge have competing time scales that eventually drive the development of the
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LEV during intial transients, hence the lift force. A model of lift generation
on flapping wings has to take into account these competing time scales. In this
regard, as previously addressed in section 33.1, the thorough analysis of AR and
Ro effects on revolving wings should be achieved keeping the non-dimensional
distance travelled by the wing constant. This is true in the post-transients phase
(unless all lift coefficients reach a quasi-steady state) but it is even more crucial
when initial transients are taken into account. Again, when comparison is made
between different cases keeping the revolving amplitude constant, the distance
travelled by the wing increases with AR or Ro. Therefore, mean coefficients
computed at fixed AR or Ro include effects of variation in non-dimensional dis-
tance of travel. For the sake of completeness, we averaged lift over constant δ
(computed at the radius of gyration) rather than constant revolving amplitude
φ and plotted it as a function of the aspect ratio for cases with constant root
location on figure 15b. Values of δ are within the range [0.5 − 4] (with step of
0.5). It is shown that the lift increases monotonically with AR for low values
of δ whereas it peaks for an aspect ratio between 3 and 4 for larger values.
In the range δ ∈ [0.5 − 2.5], higher aspect ratio cases still benefit from initial
transients and the impact of vortex stabilization (through rotational accelera-
tion) on lift is not yet effective. Figure 5 shows that during initial transients,
lift increases monotonically with AR. However, as δ increases beyond 2.5, Ro
effects counteract AR effects and an optimal lift is observed for an aspect ratio
between 3 and 4. Note that the above limit δ = 2.5 corresponds to amplitude
φ below 70◦ for AR ≥ 4 cases, i.e. below typical amplitudes observed in nature
[26]. Transient effects are further highlighted on figures 16a and b where the
lift coefficients at constant Ro and constant AR are averaged over 2 chords of
travel. It is striking that the constant Ro curves on figure 16a collapse, indi-
cating the weak dependence of lift on rotational effects during initial transients.
This trend can also be observed on figure 16b where constant AR curves are
roughly horizontal for sufficiently large values of Ro. Yet, one can still observe
the impact of rotational effects for low values of Ro. The threshold at which
constant AR curves diverge from a horizontal line is found to be around 3,
again echoing observations by [1]. These constant Ro and AR curves converge
towards those obtained in figures 8a and 10b if the distance of travel over which
the lift is averaged increases. This is illustrated in figures 17a and b where the
lift coefficients are averaged over 10 chords of travel. In some way, this can be
viewed as rotational effects propagating radially outboard from the wing root,
again highlighting the role of the local Rossby number r/c. This propagation
and the importance of local Rossby number can further be observed on figure 18
which shows cross-sectional contours of spanwise velocity vz,loc obtained in the
AR = 6, R1 = 0 case at different radial locations r/c. Contours are displayed for
3 values of non-dimensional distance of travel δloc. Note that spanwise velocity
and distance of travel are here non-dimenzionalized using the local wing speed
at the corresponding r/c location (noted with subscript loc). It is evident from
figure 18 that LEV growth rate decreases and spanwise velocity increases with
both decreasing r/c and increasing δloc.

Overall, it can be seen that AR effects always have a strong impact on lift
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Figure 16: Lift coefficients averaged over 2 chords of travel for constant Ro (a)
and constant AR (b) wings.

Figure 17: Lift coefficients averaged over 10 chords of travel for constant Ro (a)
and constant AR (b) wings.
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Figure 18: Cross-sectional spanwise velocity contours obtained at 1/2, 1/4 and
1/6 span of the AR = 6 and R1 = 0 case. Non-dimensionalized local distances
of travel δloc = 0.52, 1.04 and 1.57 (from top to bottom) are displayed.
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Figure 19: Mean lift coefficient obtained for wings with aspect ratio AR ∈ [1−7].
Mean values are obtained including (plain line) and discarding (dash-dotted and
dotted lines) initial transients.

generation. Conversely, Ro effects first appear on low Ro cases, and then on
larger Ro cases as the distance of travel increases. Therefore, at fixed root
location, the lift on low AR cases, which correspond to low Ro values, is always
driven by competing AR and Ro effects. On the contrary, the lift on larger AR
cases is first driven by AR effects and then by competing AR and Ro effects
as rotational effects propagate from root to tip with the distance of travel. On
lower AR cases, Ro effects can never compensate for detrimental AR effects,
resulting in lower lift. On larger AR cases, beneficial AR effects are dominant
during initial transients but are counteracted by Ro effects at large distance of
travels, here again resulting in lower lift.

The effect of initial transients on lift optimality can further be revealed
by averaging the lift force in the post-transient phase, i.e. discarding intitial
transients. Figure 19 compares the lift coefficient computed discarding the first
120◦ of revolution with that taking into account initial transients. It can be
seen that when initial transients are discarded, no clear lift optimum emerges
(lift oscillates between AR = 2 and 4). This is also shown with data from [16]
where the lift is averaged over 171◦ < φ < 261◦, leading to a plateau between
AR = 2 and 4 (also see results on rotating wings in [15]). Revolving wing studies
in the litterature generally focus on the post-transients phase of the revolving
motion, i.e. where the LEV inboard reaches a quasi-steady state. Therefore,
while some of our conclusions are in line with these studies (e.g. [32]), and in
particular with recent observations by [16] who equally concluded on the role of
aspect ratio and Rossby number effects, our results indicate a clear optimal lift
that we demonstrate to arise from competing mechanisms with competing time
scales.

Finally, it is important to note that our results pertain to hovering flight and
the results do not necessarily imply that an aspect ratio between 3 and 4 will
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maximize lift for forward flight. In particular, forward speed increases Rossby
number which is detrimental to LEV stability [35]. Thus, in relation with the
above discussion on transient effects, the amplitude and reduced frequency at
which the wing flaps may also be important parameters for lift optimization
during forward flight (i.e. they can be adapted to avoid lift drop due to LEV
shedding). On the other hand, producing lift is more challenging during hovering
flight as it relies on the rotational motion alone, and it seems reasonable to
suppose that wing configurations and kinematics have evolved to satisfy this
more restrictive contraint than that imposed by forward flight conditions. We
thus view our calculations as supporting [1] hypothesis of a convergent high-
lift solution across a range of scales in nature, but further work is required to
determine whether species employing higher or lower aspect ratios do so for lift
optimality, or for other reasons.

4 Conclusions

We numerically computed the flow past an 45◦ angle of attack rectangular wing
undergoing a 180◦ revolving motion at a Reynolds number based on the wing
chord and the velocity at the radius of gyration of 577. We analyzed the lift and
flow structure obtained for different aspect ratios at constant wing root position,
and for different aspect ratios and Rossby numbers at constant Rossby number
and aspect ratio respectively.

For higher aspect ratio wings (AR > 4) with root located on the axis of
rotation, the flow is characterized by an inboard quasi-steady region, where a
robust conical spanwise LEV develops, and an outboard unsteady region, where
the LEV bursts into smaller scale structures and reorients chordwise, along with
the tip vortex (figure 20a). The transition between quasi-steady and unsteady
regions appears to be driven by local Rossby number r/c and occurs around
r/c = 3, which is consistent with previous studies [1, 15]. For r/c < 3, the LEV
does not reach the trailing edge because of a limited growth rate. For r/c > 3,
the LEV reaches the trailing and cross-wake interactions occur, which promotes
shedding.

If the radial position of the wing tip R2/c approaches or deceeds r/c = 3
(with R1/c sufficiently below three), then the transition between quasi-steady
and unsteady regions is pushed towards lower values of r/c (figure 20b). In this
case, induced velocity at the wing tip promotes LEV bursts despite enhanced
rotational effects at local values of r/c below three. Spanwise velocity compo-
nent of the tip vortex on the upper surface of the wing is here oriented inboard
and opposes outboard velocity due to rotational effects and spanwise gradients
in flow speed [4]. A detailed analysis of this mechanism is provided in [28] for
an AR = 2 wing with R1/c = 0.5.

If the radial position of the wing root R1/c approaches or exceeds r/c = 3
(with R2/c sufficiently greather than three), then the transition between quasi-
steady and unsteady regions is pushed towards higher values of r/c (figure 20c).
In this case, the inboard flow is not stabilized due to enhanced rotational effect
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Figure 20: Schematic of the flow topology for representative cases. The transi-
tion between quasi-steady inboard region and unsteady outboard region in (a),
(b) and (c) relies on (a) rotational effects, (b) rotational and tip effects and (c)
root effects. No transition is observed in (d) where root and tip effects tend to
stabilize the flow.
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but exhibits a quasi-steady pattern due to induced velocity at the wing root.
The influence of the root vortex on flow stablity is limited to a small portion in
the vicinity of the wing root, comparable to that observed for translating wings.

Accordingly, all cases exhibit a wake composed of a relatively smooth RV
inboard and burst LEV/TV structures outboard, except AR = 1 cases where
the proximity of RV and TV tends to stabilize the flow (figure 20d). These
differences between inboard and outboard patterns reflect the asymmetry asso-
ciated with Ro and are expected to be reduced as Ro increases, Ro→∞ being
the translating wing case.

Overall, these results suggest that effects of aspect ratio on the flow structure
are different at low and high Rossby numbers according to whether LEV stability
is promoted or not. Despite this, it is shown that variations in mean lift due
to changes in aspect ratio do not significantly depend on Rossby number and,
reciprocally, that variations in mean lift due to changes in Rossby number do not
significantly depend on aspect ratio. In particular, our results support recent
observations by [16] in that the mean lift decreases and increases monotonically
with Ro and AR respectively. As a consequence, varying the aspect ratio for an
impulsively started wing revolving around its root, such that the Rossby number
also increases, results in two competing effects that lead to an optimum lift for
AR between 3 and 4, which matches the aforementioned convergent solution
found in nature. Furthermore, we show that Ro and AR effects have different
time scales such that initial transients play a key role in lift optimality, which
we verify to occur for AR between 3 and 4 for a range of flapping amplitudes
relevant to real world observations. The existence of lift optimality is also
demonstrated at a lower Reynolds number typical of fruitflies (Re = 115, see
supplementary material, figure C) where viscous effects are hypothesized to alter
mechanisms of LEV stabilization [36].

Yet, it is important to mention that a revolving motion constitutes a sim-
plified model of a half stroke of a hovering flapping wing. Specifically, our
model allows to extract the role of initial transients on the dynamics of the
three-dimensional flow and on the resulting lift, discarding any dependency to
flapping wing kinematics (i.e. discarding the effect of kinematic parameters re-
lated to pronation/supination phases, which greatly complexify the problem).
Thus, flapping kinematics should be considered in the future to confirm lift op-
timality as a function of aspect ratio and Rossby number for flapping wings.
In particular, attention should be paied as to how three-dimensional transient
mechanisms are affected by wing kinematics, including initial wing acceleration.

Finally, while global parameters AR and Ro are convenient to parameter-
ize the problem and reveal salient features of revolving wing aerodynamics, we
showed that three-dimensional, transient mechanisms are correlated with the
local Rossby number. Thus, because the distribution of local Rossby number
along the span depends on the wing planform, future studies are needed to un-
derstand the precise role of wing planform on the three-dimensional mechanisms
at play.

This article has additional data provided as electronic supplementary mate-
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