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Numerical Modeling of a Granular
Collapse Immersed in a Viscous Fluid

Edouard Izard, Laurent Lacaze, Thomas Bonometti
and Annaïg Pedrono

1 Introduction

Dense particulate flows in an incompressible Newtonian fluid are encountered in a
large number of applications such as civil and chemical engineering, transportation,
steel and food industries, geophysics and oceanography. In these applications,
granular flows can be gravity-driven, shear-driven by a fluid flow or both. Here, we
focus on a gravity-driven case, namely the collapse of granular column immersed in
a Newtonian fluid where grains motion is induced by the difference of density
between the granular media and the surrounding fluid. Note that depending on the
fluid properties (density, viscosity), the characteristics of the flow can be drastically
different due to the relative influence of particles contact forces and fluid-particle
interaction forces. Moreover, the processes involved in these granular avalanches
from the particle scale to that of the full system are not fully understood. In
particular, it is complicated to experimentally measure fluid and particles local
dynamics inside a moving granular bed.

Empirical observations of granular columns collapse in the air were conducted
either in an axisymmetric configuration by Lube et al. [1] and Lajeunesse et al. [2]
or in two dimensions in a rectangular channel by Lube et al. [3] and Balmforth and
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Kerswell [4]. In both cases, the final granular deposit is shown to be a function of
the initial geometry of the column, namely, the initial aspect ratio a defined as the
ratio between the initial column height Ho and its radius Ro. Thompson and Huppert
[5] have observed a strong modification in the collapse dynamics of a granular
column when the ambient fluid play a role, e.g. using water as surrounding fluid.
More recently, an experimental investigation of the granular collapse in a viscous
fluid highlighted the strong influence of the initial packing fraction of the granular
column on the granular dynamics and deposits [6]. In particular, the fluid pressure,
relative to the hydrostatic pressure, measured at the basis of the column was shown
to be positive (resp. negative) when the initial packing fraction of the column is
below (resp. above) the critical value of Uic � 0:59, at the initial stage of the
collapse. In addition, this difference of initial dynamics alters the granular deposit at
small aspect ratio between a dense and loose initial state of the granular media. For
instance, for a ¼ 0:5, the shape of the deposit can be trapezoidal or triangular in a
dense or loose configuration, respectively. This mechanism, partly due to the
contracting nature or dilatancy of the granular materials, is called pore pressure
feedback by Iverson [7].

Numerical simulations of dry granular collapses, e.g. when the ambient fluid has
no effect on the granular dynamics, using the discrete element methods
(DEM) qualitatively reproduce the experimental observations (see [8–11]).
Simulations of granular collapses, where the fluid has an influence on the grains
motion, are rare. Topin et al. [12] performed two-dimensional simulations of
granular collapses in a viscous fluid using a finite element method for the resolution
of Navier–Stokes equations coupled with the non-smooth contact dynamics method
for the grains motion. In this method, an artificial ring of fluid is prescribed around
the particles so that the fluid can flow around the grains in a dense two-dimensional
granular configuration. Fixing the initial packing fraction of the column, the authors
observed deposition laws in the viscous, inertial and dry regimes. These regimes
were formerly found experimentally by du Pont et al. [13] in the case of granular
avalanche experiments in various fluids. The collapse time is shown to be similar
between the dry and inertial regimes while it is longer in the viscous regime. During
the early times of collapse, granular kinetic energy in the inertial and viscous
regime is lower than in the dry regime. During the propagating phase, the lubri-
cation force between the grains tends to locally decrease the intergranular friction
which promotes spreading while the viscous drag slows down the grains. Overall, it
turns out that the length of final deposits in the dry regime is larger than in the
viscous but could be similar in inertial regimes. These numerical simulations
highlighted the complex influence of the fluid phase on the collapse dynamics. It
has to be noted that the influence of the initial packing fraction has not yet been
reported numerically. Moreover, due to the local nature of the pore pressure
feedback at the grain scale, the quantitative influence of the packing fraction should
be addressed by three-dimensional simulations. Here, we study the collapse of
granular columns in a fluid by three-dimensional simulations in the viscous regime.
An immersed boundary method (IBM) which resolves the fluid flow around moving
non-deformable particles is coupled to a soft-sphere discrete element method



(DEM) which computes the Lagrangian motion of the particles, including grain–
grain interactions. A lubrication force is added to the equation of the grains motion
to properly capture rebound interactions in a fluid.

This article is structured as follows. First, the description of the numerical
methods is presented. Then, the three-dimensional collapse of granular columns in a
fluid is simulated in the viscous regime. After some preliminary tests, we pay a
special attention to the effect of the initial packing fraction and aspect ratio on the
collapse dynamics.

2 Numerical Methods

In this section, the coupled IBM/DEM is outlined. The reader may refer to [11] for a
detailed description and validation of the numerical approaches and coupling.

2.1 Fluid Flow Computation

The Immersed Boundary Method [14], denoted by IBM, solves the modified
Navier–Stokes equations (1) and (2) for a Newtonian fluid on a Cartesian grid in the
entire computational domain, e.g. in the fluid domain as well as inside the particles.

r � V ¼ 0; ð1Þ

q
@V
@t

þ qV � rV ¼ qgþr � l rVþ trVð Þ½ � � rPþ qf ; ð2Þ

where q and l denote the fluid density and dynamic viscosity whereas V and P are
the local fluid velocity and pressure, respectively, and g is the gravity vector.
A body-force source term, namely f ¼ a U � Vð Þ=Dtf , is added to the Navier–
Stokes momentum equation (2) so that the presence and motions of the solid
particles in the fluid are accounted for. U and a are the local velocity of the solid
particle and the solid volume fraction, respectively, and Dtf is the fluid time
step. The hydrodynamic force and torque generated by the fluid upon the particle p
of volume #p are calculated as

Fh ¼ � qqp
qp � q

Z
#p

fdV ; ð3Þ

sh ¼ � qqp
qp � q

Z
#p

r� fdV ; ð4Þ



where r is the position vector inside the solid particle, starting from the centre of
mass and qp is the particle density.

2.2 Particle Motion Computation

A discrete element method is used to compute the dynamics of the granular phase,
described as a collection of spherical particles in contact. Newton’s equations (5)
and (6) for the particle linear and angular momentum, respectively, are solved to
calculate the motion of a solid element p, of mass mp, evolving in a collection of
grains entirely immersed in a fluid:

mp
dup
dt

¼ mpgþ
X
j6¼p

Fc�pj þ
X
j 6¼p

Fl�pj þFh; ð5Þ

Ip
dxp

dt
¼

X
j6¼p

sc�pj þ sh; ð6Þ

where up and xp are, respectively, the translational and rotational velocities of the
particle p, and Ip ¼ 2

5mpR2
p is the inertia coefficient of the spherical particle p of

radius Rp. The forces applied on the particle p can be divided in four types of
contributions, namely the particle weight; the contact forces Fc�pj which arise from
the contact between particles p and j, the lubrication forces Fl�pj which emerge
from the liquid film drainage when other particles j move closely to the particle p
and the hydrodynamic force Fh, defined in (3). The torques applied to the particle
p originate from contact interactions of other particle j, e.g. sc�pj, and from the local
hydrodynamics near particle p, e.g. sh defined in (4). We define these force and
torque contributions in the following.

Solid–solid interactions are modelled with a DEM method [15]. We consider the
normal unit vector n which links the centre of mass of the two solids involved in a
contact interaction. A tangent unit vector t to n is defined and permits to decompose
the contact force such as Fc�pj ¼ Fn

c�pjnþFt
c�pjt. A small overlap, noted dn,

between the solid spheres during the contact allows to determine the normal con-
tribution Fn

c�pj of the contact force with a damped mass-spring model as

Fn
c�pj ¼

0
max 0;�kndn � cn

ddn
dt

� � if dn [ 0
otherwise ;

�
ð7Þ

where kn and cn are the normal stiffness and the damping coefficient, respectively,
and are defined as a function of the dry restitution coefficient emax and the contact
time tc by cn ¼ �2m�ln emaxð Þ=tc and kn ¼ m�p2=t2c þ c2n=4m�, where m� ¼
mpmj= mp þmj

� �
is the effective mass.



The tangential contribution Fn
c�pj of the contact force is computed with a

mass-spring model while satisfying the Coulomb’s law as follows

Ft
c�pj ¼ �min ktdtj j; lcF

n
c�pj

��� ���� �
sign dtð Þ; ð8Þ

ddt
dt

¼ up � uj
� � � t ð9Þ

where lc is the friction coefficient between the particle p and j, dt is the tangential
penetration which verifies at all times the differential equation (9) starting from 0 at
the beginning of the contact interaction. The tangential stiffness is defined by
kt ¼ 0:2kn as in [16].

The torque due to tangential contact interaction between the particle p and j is
calculated as sc�pj ¼ Rpn� Ft

c�pjt.
When two particles approach or separate from each other in a fluid, the flow

structure may not be entirely captured by the present IBM method. As shown by
several authors (see [17–20], for example), this issue is addressed using a normal
lubrication force Fl�pj ¼ FL�pjn which reads

FL�pj ¼ � 6pl up:n�uj�nð Þ
dn þ ge

R2
�

0

(
if 0� dn � R�

2
otherwise;

ð10Þ

where R� ¼ RpRj= Rp þRj
� �

is the effective radius of the particles p and j and ge is a
so-called effective roughness length which accounts for particle surface asperities
and may range in 10�6R�; 10�3R�

� 	
(see [19]). A contact time step Dtc ¼ tc=100 is

set to resolve the time integration of (5), (6) and (9).

2.3 Particles-Fluid Numerical Coupling

A numerical coupling of the immersed boundary method with the discrete element
method is here done based on the assumption that the fluid timescale tf is much
larger than the contact time tc. Consequently, one can solve the particle motion
equations (5) and (6) with (9) separately from the Navier–Stokes equations (1) and
(2) and considering that the fluid is frozen on a time scale of the order of tf .

The fluid pressure and velocity are first calculated with the IBM in the whole
domain, second, the contributions of the hydrodynamic forces and torques on each
particles in the system are computed and transmitted to the DEM solver. Then, the
new position and velocity of particles are computed taking into account contact and
hydrodynamics interactions including lubrication, using several contact time steps
within a fluid time step. Subsequently, the new particles position and velocity are
given back to the IBM solver.



3 Collapse of a Granular Column in a Fluid

The three-dimensional IBM/DEM simulations of the collapse of a granular column,
composed of approximately O 103ð Þ particles, are presented for a Stokes number

St ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
qpDDqg

p
D

18
ffiffi
2

p
l

� 1:7, a density ratio r ¼
ffiffiffiffi
qp
q

q
¼ 2:8, a Reynolds number Re ¼

St
r � 0:6 and a Galileo number Ga ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qp
q � 1

� �
gD3

r
=l � 15:5. In the view of the

avalanche regime classification of Courrech [13] in the St; rð Þ parameter space, one
can expect our simulations to be in the viscous regime.

Throughout this work, the gravity is set to 9:81m/s2 and is pointing in the
−y direction (see the Cartesian system of reference in Fig. 1), solid contact
parameters are emax ¼ 0:87, tc

ffiffiffiffiffiffiffiffiffi
g=D

p ¼ 2:5:10�3 and lc ¼ 0:25, the effective
roughness length in the lubrication model is set to ge=R� ¼ 2:10�4, and the fluid
parameters are l ¼ 1 Pa s, q ¼ 1000 kg/m3 and Dtf

ffiffiffiffiffiffiffiffiffi
g=D

p ¼ 2:5� 10�2. To avoid
crystallization phenomena in the granular medium, the diameter of particles is
varied in a range of 	5% from its mean D ¼ 15:2mm. A no-slip boundary con-
dition is imposed on all walls of the domain except in the spanwise direction z,

Fig. 1 Initial configurations used for simulations. a 1 and 2, b 3, c 4 and d 5. The Cartesian
system of reference x; y; zð Þ, the size of the fluid domain L;H;W½ � and the initial dimensions of the
granular column Ro;Ho½ � are defined. Half spheres are glued to the bottom wall to imitate a rough
base



where periodic boundary conditions are applied. Also, half-grains are glued on the
bottom wall in order to numerically mimic a rigid rough bottom as seen in Fig. 1.
The solid particles of the bottom roughness have the same contact parameters than
the ones free to move. All the simulations performed are summarized in Table 1
with the corresponding geometrical and numerical parameters.

In the following, some preliminary observations and tests on the fluid grid
resolution Dx and on the spanwise length W of the column are discussed. Then, a
simulation of collapse is presented in details from its initial configuration to its final
state where all gains are deposited and statics. After, we investigate the effect of the
initial aspect ratio and packing fraction on the granular dynamics and deposits.

3.1 Preliminary Observations

3.1.1 Discussion About the Initial Packing Fraction

The initial granular columns can be obtained using only the DEM approach by letting
the particles freely fall in an elongated box which permits to create granular columns
with an important initial packing fraction /i ¼ 0:6	 0:002. This packing fraction is
measured inside the granular column for simulations 1–5 where the solid fraction a,
issued from the IBM, is averaged in a given control volume. A 40% variation of the
control volume leads to a 0.7% variation of the packing fraction. As done in granular
collapse experiments of [6], anotherway to estimate/i is to calculate the ratio between

the volume occupied by the grains 1=qp
PNg

i¼1 mi and the granular column volume
RoHoWo. In our case, this estimation leads to a packing fraction 0.585 which is 2.5%
less than the calculation with the solid fraction of the IBM. This subtle but noticeable
difference may be due to the definition and estimation of the average height of the
columnHo.We shall come back to this point in the results section.Note that, this initial
state will be referred as the dense packing state in the following. In order to make a
granular column with a loose state, the viscous dissipation on the particle dynamics
during sedimentation is accounting for by using the IBM/DEM coupling. In that case,
the viscous drag modifies the dynamics of the grains and allows an initial packing
fraction /i ¼ 0:58 that we will denote as the loose case (see simulation 6 in Table 1).
A similar 2.6% bias on this estimation is obtained when measuring the ratio of grains
volume and box volume, as in the dense case.

3.1.2 A Typical Granular Collapse

IBM/DEM simulation of a granular collapse for a ¼ 0:5, /i ¼ 0:6 and D=Dx ¼ 10,
is considered here with a spanwise direction size 5D (see simulation 3 in Table 1).
The mesh size used for simulation 3 is Nx;Ny;Nz½ � ¼ 512; 176; 52½ � and the initial
column is made of 798 grains. The meshes are uniform in size where the granular
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media may flow, e.g. in the region 0� x=D� 50, 0� y=D� 16 and 0� z=D� 5;
whereas the grid size outside of this region is varied following an arithmetic pro-
gression up to walls. This permits to put the limits of the domain far enough so that
it does not influence the collapse dynamics and it saves computational resources.
Initially, a wall represented in dark blue in Fig. 2 at the time t

ffiffiffiffiffiffiffiffiffi
g=D

p ¼ 0� and
supporting the granular column, is released so that the collapse occurs in the x
direction. Several instants during the collapse are depicted in Fig. 2 where
iso-surface of vorticity is plotted as well as iso-contours of pressure in a vertical
plane perpendicular to the spanwise direction. Initially, the pressure is in hydrostatic
equilibrium and the fluid and grains are at rest. At the time t

ffiffiffiffiffiffiffiffiffi
g=D

p ¼ 12:7, vorticity
stemming from a local shear stress is created in the avalanche zone, e.g. where the
grains flow. At this moment, the avalanche front velocity is maximum as seen in
Fig. 4b. Then, for 25:4� t

ffiffiffiffiffiffiffiffiffi
g=D

p � 38:1, the granular front abruptly slows down
and residual vorticity at the surface of the granular deposit is dissipated while the
pressure relaxes towards the hydrostatic equilibrium. In the present simulation, the
granular deposit has a final length 25D and a final high 8D forming a trapezoidal
form.

Fig. 2 Three-dimensional IBM/DEM simulation of a granular column collapse composed of
approximately 800 grains in a viscous fluid. Iso-contours of pressure are represented in a vertical
plane perpendicular to the spanwise direction. The fluid pressure scaled by DqgHo (where
Dq ¼ q� qp) between consecutive iso-contours is 9� 10�3. An iso-surface of vorticity is plotted
for a value of 0.4 and is represented in light blue. At t ¼ 0�, a wall which supports the granular
column is plotted in dark blue plane. The grains are represented by an iso-surface of solid fraction
a ¼ 0:8. Time and vorticity are scaled by

ffiffiffiffiffiffiffiffiffi
D=g

p
,

ffiffiffiffiffiffiffiffiffi
g=D

p
, respectively



3.1.3 Effect of the Spatial Resolution

Two simulations with a ¼ 0:5, /i ¼ 0:6, W ¼ 2D and Np ¼ 327 are considered for
two grid resolutions, namely Dx ¼ D=10 in simulation 1 and Dx ¼ D=20 in sim-
ulation 2. The meshing used for simulation 1 (resp. 2) is Nx;Ny;Nz

� 	 ¼
512; 176; 22½ � (resp. 1008; 344; 42½ �). The time evolution of the outer envelope of
the granular column is plotted for simulations 1 and 2 in Fig. 3. Also, the granular
front location is plotted as a function of time for these simulations in Fig. 4a. The
temporal evolution of the front is similar up to t

ffiffiffiffiffiffiffiffiffi
g=D

p ¼ 17. Then, its position
seems frozen for simulation 2 while it continues to move for simulation 1, i.e. the
dissipation due to the fluid is slightly underestimated for a lower spatial resolution
of the fluid phase. When the grains are statics, the granular deposit has a similar
shape in both cases. The relative position of the front between simulation 1 and 2 is
10%. Although this 10% error in the final front position is somehow not negligible,
the time evolution of the front position highlights a similar trend in both cases.
Given the computational cost of the highest spatial resolution, a spatial resolution

Fig. 3 Temporal evolution of the outer envelope of the granular column during the collapse in a
fluid with a spatial resolution. a Dx ¼ D=10 and b Dx ¼ D=20. The time is scaled by

ffiffiffiffiffiffiffiffiffi
D=g

p
and

varies from 0 to 37.2 with steps of 2.48. Note that the collapse starts at time t ¼ 0

Fig. 4 Temporal evolution of the granular front location scaled by the initial length of the column
( xfront � Roð Þ=Ro a o (resp. □) for simulation 1 (resp. 2) with a spatial resolution Dx ¼ D=10
(resp. Dx ¼ D=20) and b o (resp. x) for simulation 1 (resp. 3) with a spanwize direction size
W ¼ 2D (resp. W ¼ 5D)



Dx ¼ D=10 seems adapted to perform simulations of granular collapse in the
configuration studied here. In the following, we will, therefore, use this spatial
resolution.

3.1.4 Effect of the Domain Size in the Spanwise Direction

Two simulations with a ¼ 0:5 and /i ¼ 0:6 are considered for two different
spanwise directions W ¼ 2D (simulation 1) and W ¼ 5D (simulation 3). The
granular front is plotted as a function of time in Fig. 4b. In both cases, the spreading
is similar and the granular deposit has the same shape (not shown here).
Nevertheless, we note that the collapse in simulation 3 is faster than in simulation 1
around t

ffiffiffiffiffiffiffiffiffi
g=D

p ¼ 7. In addition, at t
ffiffiffiffiffiffiffiffiffi
g=D

p ¼ 20, the granular front is static in

simulation 1 while it continues to slowly move in simulation 3 up to t
ffiffiffiffiffiffiffiffiffi
g=D

p ¼ 40
where the static state is reached. These differences may be a consequence of the
granular confinement in the spanwise direction which tends to modify the rear-
rangement of grains at low speed as it is the case in the present simulation in the
viscous regime and for a small aspect ratio. Note that, the quantitative influence of
the confinement observed here is of the same order as the one due to the spatial
resolution discussed in the previous section.

The uncertainties on the granular dynamics should, therefore, be accounted for
but are actually small compared with the influence of the aspect ratio in the range
considered in this study. In the light of these preliminary tests, we, therefore, decide
to perform a parametric study of the granular collapse in a fluid with a spatial
discretization Dx ¼ D=10 and a computational domain width of 2D.

3.2 Effect of Initial Aspect Ratio

Three granular collapses are simulated with the IBM/DEM approach with aspect
ratios a ¼ 0:5; 1; 1:5½ � and an initial packing fraction /i ¼ 0:6 (simulations 1, 4 and
5 in Table 1). We recall that the fluid and particles properties are the same than
presented in previous sections.

Following Courrech du Pont et al. [13], the time scale of the granular collapse in
a fluid could be controlled by various temporal scaling, namely the characteristic

viscous time Tv ¼ 18l
DqgHo

, inertial time Ti ¼
ffiffiffiffiffiffiffiffi
qHo
2Dqg

q
and dry or free-fall time

Tff ¼
ffiffiffiffiffiffiffiffiffi
2qpHo

Dqg

q
. As already explained at the beginning of Sect. 3, in the view of the

avalanche regime classification of Courrech [13] in the St; rð Þ parameter space, our
collapse simulations are expected to be in the viscous regime, meaning that the
motion of grains is controlled by the viscous time Tv. For the presented simulations,
the time evolution of the front is plotted in Fig. 5, where the time is scaled by Tv, Ti
and Tff . The front position accelerates first then the front velocity is approximately



constant and, at last, it decelerates abruptly for all studied aspect ratios. When the
viscous time Tv is used to scale the time, a linear master curve is found in Fig. 5 (on
the left) which corresponds to a constant velocity for the front propagation equals to
approximately 10�3Ro=Tv m/s. This confirms that the dynamics of the dense
granular flow generated by the collapse corresponds to a viscous regime in the
range of parameters considered here.

Let us consider, the total granular horizontal kinetic energy defined as Ekx ¼PNg

i¼1
1
2miuix tð Þ2 where uix is the streamwise velocity of grain i and mi is the mass of

grain i. The maximal horizontal kinetic energy for the whole duration of a simu-
lation is noted Emax

kx and is given in Table 1. It can be noted that Emax
kx increases with

the initial aspect ratio a as this energy is transferred at early stages of the collapse
from the initial potential energy of the column which increases with a. In the case
a ¼ 1, Topin et al. [12] found in their two-dimensional numerical simulations
Emax
kx = mgDð Þ � 0:02 whereas we get 0.082 for the same a (simulation 4). Even if

these values are of the same order of magnitude, a factor 4 exists. This quantitative
discrepancy between 2D and 3D simulations would deserve a deeper investigation.
In the current state of research, one can conclude that 3D simulations could enhance
the horizontal kinetic energy of the granular mass compared with 2D simulations.

The final granular deposit height H1 and length R1 are compared to the
experiments of [6] and plotted in Fig. 6. The final deposit length obtained from the
IBM/DEM simulations is in accordance with the experimental measurements for a
similar initial packing fraction. One can note that the final deposit height found in
the simulations for a
 1 lies in between the experimental results of Rondon [6],
where the initial packing fraction varies from 0.55 to 0.6. Recalling the discussions

Fig. 5 Position of the granular front xfront � Roð Þ=Ro with different initial aspect ratios a ¼
0:5; 1; 1:5½ � ¼ M;�;h½ � versus time scaled by Tv, Ti and Tff . In all cases, the front propagation
has an S-form where three phases are observed: the acceleration, the constant velocity propagation
and the deceleration. A red dashed line in the left graph shows a master curve for a large portion of
the propagation phase for all simulations, which shows the relevance of the viscous time scale Tv
in the present simulations for all aspect ratios



in Sect. 3.1.1 about the discrepancy estimation on the initial packing fraction, this
numerical prediction seems consistent with experiments. For comparison,
two-dimensional numerical predictions of Topin et al. [12] are represented in
Fig. 6. As a conclusion, in the viscous regime, it seems that there is a quantitative
agreement between the 2D numerical simulations of [12] and the 3D present
simulations regarding the morphology of the deposits.

3.3 Effect of Packing Fraction

Rondon et al. [6] have observed in their experiments an effect of the initial packing
fraction /i on the granular collapse dynamics in the viscous regime. At the end of
the collapse, all grains are static and, as shown by [6], the granular deposit can be
found in a triangular or trapezoidal form depending on the initial aspect ratio a and
the initial packing fraction /i. The geometry of the granular deposit for the
experiments of [6] and the present IBM/DEM simulations are depicted in the /i; að Þ
parameter space in Fig. 7. A good qualitative agreement is found between exper-
iments and present simulations. In particular, the shape evolution from trapezoidal
to triangular shape for decreasing /i at small a and increasing a observed in the
experiments is also obtained in the simulations. However, a quantitative discrep-
ancy is obtained as the simulation 6, i.e. for a ¼ 0:5 and /i ¼ 0:58, leads to a
triangular form whereas [6] found a trapezoidal one for this specific value of /i; að Þ.
This discrepancy on the transition from triangular to trapezoidal shape as a function
of /i may be explained by the procedure to estimate the initial packing fraction /i
in the simulation which is different from the one used in the experiments [6], as
mentioned in Sect. 3.1.1. These definitions of the packing fraction may not be
equivalent and an artificial offset is likely to exist between those values. For
example, a 4% offset in the direction of the small values of /i would make all the
present numerical results to be in full agreement with the experiments of [6]. Recall
that computing the initial packing fraction from the local integration of the solid

Fig. 6 Final deposit height H1=Ro (left) and final deposit length R1=Ro (right) as a function of
the aspect ratio a. □: IBM/DEM simulations for /i ¼ 0:6; ○ and ●: experiments of Rondon [6]
for an initial packing fraction /i ¼ 0:55 and /i ¼ 0:6, respectively; ◊: 2D simulations of Topin
et al. [12] in the viscous regime for an initial packing fraction /i ¼ 0:8



volume fraction or from the average height of the granular leads to a 2.5% dif-
ference from our simulation results.

Let us define, a reference case which is simulation 1 with a ¼ 0:5 and /i ¼ 0:6
(see Table 1) that we will refer to the dense case. The temporal evolution of the
granular front for the loose (/i ¼ 0:58) and the dense (/i ¼ 0:6) cases are plotted in
Fig. 8. The collapse in the loose case occurs earlier than in the dense case with a
delay of approximately 1000Tv. Also, the final deposit length in the loose config-
uration is greater by 10% than the dense one. This has been already found in the
experimental work of [6] and confirms the influence of the initial packing fraction
on the collapse dynamics of a granular column immersed in a viscous fluid.

Several instances of these two collapses (loose and dense) are depicted in Fig. 9
showing the pressure field which has been averaged in the spanwise direction, and
the outer envelope of the granular column. At early times, e.g. at t ¼ 900 (scaled by
the viscous time TvÞ, a low-pressure (resp. high-pressure) region, relative to the
hydrostatic pressure, develops inside the column in the dense (resp. loose) con-
figuration. This is a consequence of the rearrangement of the granular media which

Fig. 8 Time evolution of
granular fronts for the dense
(○) and the loose (◊) cases;
simulations 1 and 6
respectively. Time is scaled
by the viscous time Tv (see
the definition in the text in
Sect. 3.3)

Fig. 7 Granular deposit
forms observed in the
presented simulations (△ for
triangle and □ for trapeze)
and in the experiments of
Rondon et al. ([6]) (▲ for
triangle and ■ for trapeze) in
the /i; að Þ parameter space



Fig. 9 Time evolution of the fluid pressure with the form of the external envelop for two collapses
of aspect ratio of a ¼ 0:5, Dx ¼ D=10 and /i ¼ 0:6 on the left and /i ¼ 0:58 on the right. The
time is scaled by Tv, defined in Sect. 3.2. The pressure fields are averaged over the spanwise
direction



undergoes a decompaction and compaction, respectively. At the time t ¼ 2700, the
low-pressure region is always present in the dense case while it appears in the loose
case as a consequence of the granular column motion. At the time t ¼ 3600,
granular fronts of the two columns are spreading and the low-pressure zones tend to
disappear while a high-pressure is observed at the front of the granular avalanche in
both cases. Once the column is at rest, pressure relaxes up to the hydrostatic
equilibrium. At time t ¼ 18000, the final deposit has a triangular (resp. trapezoidal)
form in the loose (resp. dense) case. The measured static avalanche angles are
approximately 26° in both cases. These results on the final form of the granular
deposits are in qualitative accordance with the experiments of Rondon et al. [6].

The initial packing fraction has an influence on grains rearrangement during the
granular collapse in a viscous fluid. In the loose state, the fluid initially located in the
pores is pushed away from the column by the grains which leads to the creation of
high-pressure regions. In this case, the fluid flow from the inner region of the granular
medium to the outer region can occur simultaneously with the granular collapse. On
the other hand, for an initially dense granular column, a local decompaction of the
granular medium is necessary prior any motion of the grains, leading to low-pressure
regions. This low-pressure region is associated with a fluid flow from the outer region
into the inner region. The fluid flow occurs on a viscous time scale and delays the
granular collapse phenomenon. To quantify this pressure phenomena and to compare
to the experiments, the time evolution of the basal pore pressure, noted Pb and defined
as the pressure under the column (at a distance x ¼ 0:36R0 and x ¼ 0:8R0 in the
experiments and simulations, respectively), is plotted in Fig. 10 for the experiments of
Rondon et al. [6] (a) and present simulations (b).We observe a similar trend for the two
methods: an initial zero value for basal pressure is followed by a negative or positive
peak pressure depending on the initial packing fraction, and eventually returns to zero
relative pressure at time t ¼ 15000Tv. Note that the pressure signals between the
dense and the loose cases look symmetrical in both the simulations and the experi-
ments. Nevertheless, the dispersion of the pressure signal obtained by numerical
simulations is greater than in the experiments, which is to be expected since the
number of grains involved in the collapse is smaller in the simulations.Onemay define
the signedmaximal pressure over time, namelyPmax

b which is plotted versus the initial
packing fraction/i in Fig. 10c for the experiments of Rondon et al. [6] and the present
simulations. Quantitative agreement is observed, which confirms that the pore pres-
sure feedback phenomenon observed in a viscous regime is captured by the IBM/
DEM coupling model.

4 Conclusions

The three-dimensional unsteady collapse of the granular column in a viscous fluid
has been investigated with an IBM/DEM approach. Present numerical simulations
allow one to confirm quantitatively several experimental observations of Rondon
et al. [6] regarding morphology, characteristic sizes of granular deposits and the



basal pressure below the column. In the presented simulations, the collapse
dynamics is controlled by the viscous time Tv. To our knowledge, a numerical
approach, e.g. the IBM/DEM method, is able for the first time to capture the pore
pressure feedback phenomenon in flowing fluid-grains mixture. The effect of the
initial packing fraction has a great influence of the dynamics of granular collapse in
the simulation results as in the experiments of Rondon et al. [6]. Furthermore, the
IBM/DEM permits to investigate the inner state of the granular column during the
collapse, in particular, the evolution of the pressure field inside the granular column
can be analyzed which is difficult to do in experiments. Simulations of the collapse
of a granular column immersed in a fluid can be performed in the inertial and
free-fall regimes as well varying the nature of the fluid and/or the particles. This
opens the way to perform a parametric study on the collapse dynamics in the
parameter spaces qp=q; St

� �
and ð/i; a). Furthermore, local information from these

simulations may give a better understanding of the rheology of these complex
grains-fluid mixture dynamics; these numerical perspectives should be investigated
in a future work.
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Fig. 10 a Time evolution of the basal pore pressure Pb (relative to the hydrostatic pressure) in the
granular column collapse in some fluid experiments of Rondon et al. [6] for an initial aspect ratio
a ¼ 0:67 for a dense (●) and a loose (○) initial configurations where the initial packing fractions
are /i ¼ 0:6 and /i ¼ 0:55, respectively. This image is extracted from [6] and the probe is located
at x ¼ 0:36R0. b Temporal evolution of the basal pressure (at a distance x ¼ 0:8R0) scaled by
DqgHo in the present IBM/DEM simulations for a dense (●) and a loose (○) initial cases with
/i ¼ 0:6 and /i ¼ 0:58, respectively. c Maximal basal pressure Pmax

b versus initial packing
fraction /i: experiments of Rondon [6] are represented with small black squares (■) and present
IBM/DEM simulations for a dense (●) and a loose (○) initial granular states
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