
�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	�������������������

��

������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

an author's https://oatao.univ-toulouse.fr/21039

Chaudron, Jean-Baptiste and Saussié, David Towards the design of a distributed aircraft flight control system

connected to simulation components. (2018) In: 12e Conférence Internationale de Modélisation, Optimisation et

Simulation (MOSIM 2018), 27 June 2018 - 29 June 2018 (Toulouse, France).

12th International Conference on MOdeling, Optimization and SIMlation - MOSIM18 - June 27-29 2018
Toulouse - France ”The rise of connected systems in industry and services”

Towards the design of a distributed aircraft flight control

system connected to simulation components

Jean-Baptiste Chaudron David Saussié

Complex systems engineering department Department of Electrical Engineering

ISAE-SUPAERO, University of Toulouse École Polytechnique de Montréal

10 Avenue Edouard Belin, Toulouse, France C.P. 6079, Montréal (QC), H3C 3A7, Canada

jean-baptiste.chaudron@isae-supaero.fr d.saussie@polymtl.ca

ABSTRACT: The design and the implementation of Flight Control Systems (FCS) still remains a key
element of modern avionic systems. During the development process and before flight tests, aeronautical
standards require performing piloted simulations. Based on our background in distributed real-time aircraft
simulation, we developed a distributed flight control system connected to a simulation environment. This
complex distributed architecture is composed of several avionic entities (e.g., primary flight control systems,
autopilot) interconnected to simulated components (e.g., aircraft flight dynamics, primary and secondary control
surfaces, sensors). Based on a detailed bibliography, we present in this paper the building bricks of this special
architecture and the design characteristics of its implementation. In particular, we are introducing architectural
fault tolerance aspects and present results to assess the global behaviour of the system.

KEYWORDS: Aircraft simulation, Hardware-in-the-loop Simulation, Flight Control Systems, Distributed
Systems

1 INTRODUCTION

Simulation consists in imitating the operation of a
real-world system over time, and requires a math-
ematical model of the system behaviour (J. Banks
et al., 2009). It is a well-known design technique,
widely used and accepted among research institutes
and aerospace industry. Compared to the real flight
environment, simulation offers tight control and easy
tuning of the different parameters, and one can swiftly
investigate many different scenarios and operating
conditions. Over the years, the use of simulation
has contributed to the improvement of aircraft, such
as aerodynamic efficiency or advancements in avionic
systems. In particular, to assess the maturity of cer-
tain types of equipment or hardware components, the
use of a dedicated type of simulation called Hardware-
In-the-Loop (HIL) simulation is essential. HIL sim-
ulation combines hardware components (to be im-
planted on the real system) interacting with a sim-
ulation environment, reproducing as close as possible
the behaviour of the system to be controlled, as de-
picted in Fig. 1.

The first digital Flight Control Systems (FCS) were
studied in the early 70s (J.P. Sutherland, 1968). As
an example, in 1972, the F-8C military aircraft be-
came the first aircraft equipped with digital FCS to
operate without a mechanical backup system. Since

Figure 1 – HIL Simulation illustration

then, the industry and research institutes have been
pursuing their effort in this area. Over the years, air-
craft FCS have then become more and more complex
to ensure multiple functionalities and are currently
composed of several redundant components as on-
board computers or fly-by-wire units (I.Moir, 2006).
The Airbus A320 aircraft is a well-known example
and was the first commercial aircraft to contain a
full digital complex FCS architecture with autopilot
and fly-by-wire functionalities (D. Briere and P. Tra-
verse, 1993). The development of an aircraft FCS
typically involves the use of a HIL simulation envi-
ronment where the flight control system components

MOSIM18 - June 27-29, 2018 - Toulouse - France

have to be tested in certain scenarios prior to the
first flight (E.L. Duke, 1989). To allow this, the FCS
architecture under study has to be plugged to a rele-
vant and accurate simulation environment modelling
the realistic behaviour of the aircraft with mathemat-
ical models of flight dynamics, actuators, engines and
sensors. The whole system composed by the FCS
connected to a dedicated simulation environment is
depicted as in Fig. 2.

Figure 2 – HIL Simulation for Flight Control System

In the context of the PRISE project1 (Research Plat-
form for Embedded Systems Engineering), we im-
plemented and tested an aircraft distributed simu-
lation compliant with the High Level Architecture
(HLA) standard and composed of several distributed
simulators (J-B. Chaudron et al., 2014). Based
on this background, we decided to further investi-
gate avionic system architectures and started a new
project called Simulation Modules for Avionics Real-
TIme Embedded Systems (SMARTIES). Based on
literature and assumptions, we designed and imple-
mented from scratch our own aircraft flight control
system which is connected to the simulation architec-
ture.

The remainder of this paper introduces the main
building blocks of the global system and is structured
as follows:

• Section 2 provides a general overview of the
whole architecture;

• Section 3 describes the different implementation
details and design choices;

• Section 5 outlines some fault-tolerance aspects of
our system;

• Section 6 concludes and presents the perspectives
for future works.

1French acronym for Plate-forme pour la Recherche en In-
génierie des Systèmes Embarqués.

2 ARCHITECTURE DESCRIPTION

By analogy with the illustration given in Fig. 2, our
HIL simulation architecture, depicted in Fig. 3, is
also composed of two main blocks: the simulation
environment which is described in Section 2.1 and the
distributed flight control system architecture detailed
in Section 2.2.

Cockpit
Inputs

Cockpit
Outputs

Autopilot
Control Units

Primary Sensors
Fusion Units

Actuators
(Control Surfaces)

Engines

Sensors
- Gyroscopes

-Accelerometers
-Pitot probe

- GPS
- ...

Environment

Flight Dynamics
Data

Logger Units

Distributed Flight Control System Simulation Environment

Primary Flight
Control Units

3D Vizualisation

Secondary Flight
Control Units

Secondary Sensors
Fusion Units

Figure 3 – Our HIL architecture overview

2.1 Simulation Environment

We decided to implement the model of a Boeing 747-
100 (C.R. Hanke, 1970) (C.R. Hanke and D.R. Nord-
wall, 1970). The information provided in these two
references are largely sufficient to reproduce faithfully
the aircraft behaviour. The documents have been re-
leased publicly, and the accuracy and the relevance
of the model have been demonstrated by NASA with
careful comparisons to temporal simulations provided
by Boeing; this motivated our choice to implement
this model2. To be more explicit, the flight simulation
environment is subdivided into several components:

• The Environment component reproduces re-
alistic weather conditions. It models the US
Standard Atmosphere 1976 (NOAA and NASA,
1976) and, depending on the altitude, it cal-
culates the corresponding atmospheric variables
such as temperature, pressure or air density. It
also integrates different types of wind models,
such as wind shears and gusts, as well as turbu-
lence models like Dryden (H.L. Dryden and I.H.
Abbott, 1949) and Von Karman ones (T. Von
Karman, 1948).

• The Actuators component gathers all the con-
trol surfaces whose deflections change the aero-
dynamic forces, and thus influence the aircraft

2Note that the B747-100 aircraft was not equipped with a
current generation FCS system, we are using the flight dynam-
ics model because of its relevance and its accuracy.

MOSIM18 - June 27-29, 2018 - Toulouse - France

motion. We consider here left and right ailerons,
left and right inboard/outboard elevators, stabi-
lizer, upper/lower rudder, slats, flaps and gears.
Each control surface is modeled by a second-
order system with position and rate saturations.
Actuators defaults such as delay, bias, and hys-
teresis phenomena are also considered in our
model. As described in Section 4, aircraft actua-
tor systems are redundant (D. R. Ryder, 1973.)
and four groups of actuators denoted Actuators
Group (AG) are considered.

• The Engines component simulates four high by-
pass ratio Pratt & Whitney JT9D-3 jet engines
whose behaviour changes with the atmospheric
conditions (i.e., temperature) and the aircraft
Mach number. An accurate model of these jet
engines is also described in the B747-100 refer-
ence documents (C.R. Hanke, 1970) (C.R. Hanke
and D.R. Nordwall, 1970) .

• The Flight Dynamics component (or Flight
Dynamics Model, FDM) is the heart of the simu-
lation model as it computes the equations of mo-
tion described, in their simplest form, by a set
of twelve first-order ordinary differential equa-
tions. Under the action of aerodynamic, gravity,
and propulsion forces, the aircraft state evolves
accordingly. This part of the simulator is usu-
ally the most demanding one depending on the
sought fidelity. Fortunately, the reference docu-
ments (C.R. Hanke, 1970) (C.R. Hanke and D.R.
Nordwall, 1970) provide a sufficiently accurate
description of the aerodynamic coefficients.

• The Sensors component simulates different sen-
sors available in an aircraft. The navigation sys-
tem is connected to numerous sensors and warn-
ing systems and they record data and transmit
them to the flight control system. The vari-
ous sensors included in our simulation are In-
ertial Navigation System (INS), Global Position-
ing System (GPS), Pitot Static System, Total
Air Temperature (TAT) probe, Angle of Attack
(AOA) and Side Slip Angle (SSA). We also con-
sider sensors measuring the engines and control
surfaces states. As each type of sensor has its
own imperfection, we added phenomena such as
delay, bias, drift, and noise. The role of these
components is essential as they feed the FCS
with the inputs from the simulation environment,
the details on the hardware and software imple-
mentation will be discussed in Section 3. As de-
scribed in Section 4, aircraft sensors systems are
redundant and we are considering four groups of
Sensors noted Sensors Group (SG).

• The 3D Visualization part is the dis-
play of actual aircraft position, attitude, con-
trol surfaces states and so on, in exist-

ing virtual 3D environments such as Flight-
Gear (http://www.flightgear.org/) or X-
plane (http://www.x-plane.com/). We can in-
stantiate many instances of these flight simula-
tors to be able to reproduce an accurate graph-
ical environment to the user. Currently, we are
using several instances to get a full cockpit win-
dows display with multiples screens and, also, we
are using some other screens to visualize the air-
craft from an external point of view.

2.2 Flight Control System

As mentioned in Section 1, our distributed flight con-
trol system tends to reproduce the behaviour of a real
avionic network. Aircraft FCS are very complex sys-
tems composed by several entities with different pur-
poses such as the autopilot functions or sensors fusion.
For the time being, the different entities considered
in our distributed FCS architecture are as follows:

• The Cockpit Inputs components are in charge
of relaying the pilot/co-pilot inputs coming from
the cockpit elements such as ailerons/elevators-
stick, throttle-stick, flaps-stick, slats-stick and
gears/stick devices in order to send commands
to the aircraft actuators and engines (generally
through the implemented fly-by-wire system).
We also have a Flight Control Unit (FCU) inter-
face which can be used by the pilot/co-pilot to
set the parameters for the autopilot units. For
example, a reference heading or a reference alti-
tude can be selected via this interface and, if the
autopilot in enabled, the FCS system will move
the aircraft in this predefined reference state.

• The Cockpit Outputs elements are mainly
pilot/co-pilot graphical interfaces such as in a
real aircraft cockpit. As of now, our architecture
Primary Flight Display (PFD), Navigation Dis-
play (ND) and Electronic Centralized Aircraft
Monitor (ECAM). These interfaces provide vi-
sual and sound cues to the pilot/co-pilot from
the information sent by the different units of the
distributed system.

• The Primary Flight Control Units (PFCU)
units implement the different algorithms to con-
trol the aircraft and to maintain it in a safe flight
envelope (following a set of configurable rules)
depending on the inputs from the pilot on the
side-stick or throttle stick or the autopilot (via
APCU). There are four PFCU units integrated in
the system to ensure some fault-tolerant proper-
ties as described in Section 4. These flight con-
trol laws are composed of stability and control
augmentation system (CSAS) loops that allow
the pilot to control the normal acceleration in
the longitudinal motion, and the roll rate in the

MOSIM18 - June 27-29, 2018 - Toulouse - France

lateral motion to make the aircraft turn. More-
over, one usually finds protection system of the
angle of attack and speed to avoid stall.

• The Secondary Flight Control Units
(SFCU) also implement some algorithms to
control the aircraft but with degraded features.
There are two SFCU units which are only
used in case of failure of the PFCU units, the
reconfiguration of the architecture from PFCU
to SFCU is not discussed in this paper.

• The Autopilot Units Control Units
(APCU) units are in charge of the au-
topilot calculation based on the inputs from
the pilot or the co-pilot on dedicated interfaces
to select for example a reference altitude or a
reference heading. There are two APCU units:
one unit computes the autopilot functions based
on the inputs from the pilot and the other
one computes it based on the inputs from the
co-pilot.

• The Data Logger Units (DLU) units are in
charge of gathering and storing all the data com-
ing from the whole FCS System. There is only
one unit currently in our architecture.

• The Primary Sensor Fusion Units (PSFU)
implement some algorithms for sensor fusion
based on the inputs from the simulated sensors.
These PFSU units, similar to Air-Data and In-
ertial Reference Units (ADIRU) (M.L. Sheffels,
1992), must provide the most possible accurate
values to the control units for each measured pa-
rameter. Currently, the parameters that are es-
timated by our algorithms are attitude (Euler
angles and quaternions), position (latitude, lon-
gitude and altitude), airspeed parameter (such
as true airspeed), angle of attack, and so on. An
Extended Kalman Filter (EKF), which is an esti-
mation algorithm for non-linear systems, derived
from the original Kalman filter (R.E. Kalman,
1960), has been implemented as a baseline for the
algorithm of these units. There are four PSFU
units, as described in Section 4, and we are illus-
trating the correctness of our algorithm by pre-
senting some results in Section 4.3.

• The Secondary Sensor Fusion Units
(SSFU) also implement Kalman filter-based
algorithms to fuse the data from sensors but
with degraded features. As for SFCU units,
there are two SSFU units which are only used in
case of failure of the PSFU units; however the
reconfiguration of the architecture from PSFU
to SSFU is not discussed in this paper.

3 DESIGN AND IMPLEMENTATION

3.1 Simulation Interfaces and Execution

In an HIL environment, the way to interface the hard-
ware under test and the simulation is paramount be-
cause it must use the same interfaces as the ones
found in the real system. In our case, we are con-
sidering a FCS system based on real-time Ethernet
network to connect all the FCS computing devices
(see Section 3.2). To allow the connection between
the FCS system and the simulation environment, we
used some specific devices called Rackmount, which is
very similar to a computer with multiple Ethernet in-
terfaces. As illustrated in Fig. 4, the Rackmount de-
vice is running Engines, Actuators and Sensors com-
ponents, which are sending and receiving data from
the real-time Ethernet network (via Real-Time Eth-
ernet Switches i.e. RTES).

Engines/Actuators

Rackmount

AG1 AG2 AG3 AG4

Sensors

SG1 SG2 SG3 SG4

RTES

HLA Bridge

Environment

Flight
Dynamics

HLA Bridge

EG1 EG2

High Perf. PC

Figure 4 – Simulation/FCS interfaces illustration

The simulation part must respect the real-time con-
straints inherent to the components under test (such
as the operating frequencies) and, therefore, our sim-
ulation environment has to be executed fairly quickly
to behave according to real-time requirements im-
posed by the FCS system. To ensure a good exe-
cution of the simulation and allow enough computing
power to each simulation component, we distributed
the flight dynamics and the environment simulation
components to another high performance machine.
As depicted in Fig. 4, this distribution has been done
using IEEE HLA standard and especially the open-
source middleware CERTI (E. Noulard et al, 2009).
In particular, HLA and CERTI mechanisms provide
time management algorithms, guaranteeing a consis-
tent global logical time throughout the whole simula-
tion, which are one of the main benefits of this simu-
lation standard. Our simulation models are based on
Ordinary Differential Equations (ODE) and the use
of HLA time management ensures the proper sched-
ule of the computations and the communications be-
tween the distributed ODE based simulators (J-B.

MOSIM18 - June 27-29, 2018 - Toulouse - France

Chaudron et al., 2016). Thus, the global simulation
provides results that will always be fair and relevant
according to simulation model semantics.

From the software point of view, the whole simula-
tion environment has been home made and written
in C/C++. The whole simulation environment is con-
figurable through a set of eXtensible Markup Lan-
guage (XML) files. As an example, the user can select
the numerical integration method and the integration
step to solve the corresponding ODE.

3.2 FCS Interfaces and Execution

As described in Fig. 5, the current version of our FCS
system is composed of 2 standard devices (Cockpit
Inputs/Ouputs and Data Logger) and 14 embedded
devices (2 APCUs, 4 PFCUs, 2 SFCUs, 4 PSFUs and
2 SSFUs). The whole system use Commercial Off-
The-Shelf (COTS) technologies and in particular an
Ethernet based network. Thus, we use Real-Time
Ethernet Switches (RTES), which are compliant with
standard Ethernet protocols, as well as the ARINC
664 part 7 standard (A664p.7) (ARINC Industry Ac-
tivities, 2006) and Time-Triggered Ethernet (TTEth-
ernet) standard (SAE International, 2011).

 RTES 1

 RTES 2

PFCU

1 2 3 4

SFCU

1 2

APCU

1 2

SSFU

1 2

Cockpit
Inputs/

Outputs

PFCU

1 2 3 4 Engines / Actuators
Sensors

Data
Logger

Figure 5 – FCS network illustration

At the processing unit level, the Cockpit and the Data
Logger units are running on high performance ma-
chine with a Linux Fedora 24 (64 bits) installed. For
the embedded units, we decided to use Beagleboards
X15 cards (Gerald Coley, 2016) on which are installed
Xenomai 3 real-time OS (Jan Kiszka, 2016) (one card
per unit). The current version of the communication
stack works with standard UDP Ethernet protocol
and an home-made A664p.7 software-based compli-
ant stack (light version).

As for the simulation, the whole software design and
implementation for each has been home made and
written in C/C++. The APCU, PFCU and PSFU units
have been designed to work at 50Hz or 100Hz and the

SFCU and SSFU units have been designed to work at
20Hz or 50Hz for the moment. The real-time schedul-
ing analysis for the different algorithms implemented
in the FCS devices is out of the scope of this paper.

3.3 Discussion

We have described, in this section, the implementa-
tion details of our global architecture (the simulation
part and the FCS part). We have made some choices
based on our current knowledge and experience. As
an example, we decided to use the HLA standard,
instead of other existing standard as the Functional
Mockup Interface (FMI), because we have a complete
knowledge of HLA CERTI software which we are us-
ing for years now. Also, the HLA synchronization
mechanisms using time management services (which
are not available in other simulation standards) are
extremely useful to ensure proper schedule and consis-
tency of the simulation (J-B. Chaudron et al., 2016).
The whole software (for both simulation and FCS
components) has been done per us and, therefore, we
have a complete control on the implementation and
the tuning of every part.

As a recall, the purpose of this position paper is to
introduce our new project SMARTIES, we have de-
scribed what we have done and how it is related with
the different research areas. The overall architecture
is complex and has required the combination of a
lot of concepts, algorithms and details and it is not
possible to describe every aspects within one paper.
Thus, we have decided to illustrate, in the next Sec-
tion 4, the fault-tolerance and redundancy features
implanted and tested on our platform.

4 FAULT TOLERANCE AND REDUN-
DANCY

4.1 Quadruplex design

The occurrence of a fault in an aircraft flight con-
trol can lead to catastrophic events with significant
costs, both economically and in terms of human life.
Therefore, such systems are said to be safety critical
systems and have to be designed to ensure fault tol-
erant properties to continue operating properly even
if a fault occurs on one of its components (computers
systems, actuators, sensors, etc.). The fault tolerance
analysis is a wide research domain (D.K. PradhanK.
1986) which goes way beyond the scope of this paper.
We introduce in this section the impact on the design
of our architecture.

In avionic systems, the fault tolerance and re-
configuration properties can be considered in the
implemented algorithms themselves (adaptive con-
trol/command laws) as well as in the global system
architecture design (computers, backbone network,

MOSIM18 - June 27-29, 2018 - Toulouse - France

etc.). From the architectural point of view, fault-
tolerance and reconfiguration techniques are usually
built upon per the usage of redundant, specific and
heterogeneous computer based components. In air-
craft flight control systems, fault tolerance is usu-
ally achieved through redundancy, i.e., the comput-
ing units are duplicated, triplicated or quadrupli-
cated (R.P.G. Collinson, 2003). The redundancy en-
sures that the overall cumulative failure probability
required for the whole global system (example, 10−9

failures/hour for civilian transport aircraft) is smaller
than the failure probability of one of its standalone
sub-system (example, 10−7 failures/hour for one pro-
cessing unit). Therefore, if one of the redundant com-
ponents fails, the architecture can ignore the faulty
component, or switch to a spare one depending on the
implanted fault detection and recovery mechanism.

Currently, the primary level of our distributed FCS
is based on a quadruplex architecture (D.B. Mulcare
et al., 1988) with multi-cast communication flows as
illustrated in Fig. 6.

Figure 6 – Communication flows illustration

4.2 Voting algorithms

In addition, due to redundancy and communication
flows (see Fig. 6), a voting technique must be in-
tegrated in order to elect the best3 value to be pro-
cessed. There are many varieties of voting techniques,
which mainly rely on and depend on the architecture
of the system. As detailed in Section 3.2, the current
version of our demonstrator only implements asyn-
chronous communication protocols (standard UDP
and light version of A664 p7) and, therefore, we have
implemented a voting algorithm that is compliant
with this specificity (G.J. Davis and Ames Research
Center, 1987).

Currently, the implemented algorithm is a well known
fault-tolerant median algorithm which is composed
per 4 successive phases and works as follows.

3With respect to the logic implanted in the voting algorithm

1. Collection phase: Collect the incoming data
from each channel (collection duration is a con-
figurable amount of time).

2. Consistency phase: Compare the incoming
values two by two and ensure that they remain
within a pre-defined interval.

3. Selection phase: Sort the incoming data and
remove the smallest and the biggest inputs (only
if 3 or 4 inputs are available).

4. Fusion phase: The remaining values are aver-
aged (in case of 4 inputs) or the median value is
kept as it is (in case of 3 inputs).

4.3 Simulation Results

We will illustrate in this sub-section the behaviour
of the algorithm implanted in the redundant PSFU
units. We have considered a scenario with 100Hz IMU
sensors with 5% of white noise (for gyroscope and ac-
celerometers) and 10Hz GPS sensors with +/-10 me-
ters error in position (worst case) and +/-0.006 me-
ters/second error in speed. Note that the error model
considered here is worst than the navigation grade re-
quirements for civilian transport aircraft sensors. In
the followings graphics (see Figures 7, 8, 9 and 10),
the purple line (the one from the Flight Dynamics
Model i.e. FDM) represents the real value given per
the simulation environment. The others lines show
the output of the different PSFU units (the value es-
timated per our EKF algorithm implanted in PSFU
units) as well as the voted value (i.e. the median
value). For the x-axis, a computation step represents
20 milliseconds (i.e. 50Hz frequency) and, for the y-
axis, Euler angles values are expressed in radians.

Fig. 7 and Fig. 8 show the simulation results obtained
from redundant computations of the roll angle φ by
the PSFU units.

Figure 7 – Roll angle φ redundant calc. (Global)

MOSIM18 - June 27-29, 2018 - Toulouse - France

Figure 8 – Roll angle φ redundant calc. (Zoom)

Fig. 9 and Fig. 10 show the simulation results ob-
tained from redundant computations of the pitch an-
gle θ by the PSFU units.

Figure 9 – Pitch angle θ redundant calc. (Global)

Figure 10 – Pitch angle θ redundant calc. (Zoom)

5 CONCLUSIONS AND PERSPECTIVES

In this position paper, we have presented an overview
of our new SMARTIES architecture. To our knowl-
edge, this is the first academic COTS based aircraft
FCS architecture which tends to capture every as-
pects of real FCS systems, in particular it includes
complex sensors fusion algorithms. This complex
project has required the mastering of many aspects:
from the realistic design of close-to-real avionics sys-
tem unit running on dedicated target to the imple-
mentation of an efficient simulation environment com-
pliant with real-time constraints. We have described
here the current status of our architecture, and we
have introduced fault-tolerant aspects and presented
some first results from redundant computation and
voting algorithms from sensor fusion units.

This experimental and research platform provides
some realistic study cases to investigate different re-
search areas such as fault-tolerance and reconfigura-
tion, modelling and simulation, real-time scheduling
and synchronization or future concepts and technolo-
gies for avionics systems. The project is ongoing and
many parts still have to be investigated, tested and
optimised. On the APCU unit level, we are currently
working on some extension to integrate high level con-
trol loops to mimic the behaviour of aircraft Flight
Management System (FMS) which allows pilot and
co-pilot to define flight plan according to weather,
fuel consumption and so on. We are also currently
planning the integration of new units that aim to re-
produce simple Full Authority Digital Engines Con-
trol Systems (FADEC) (L. Paddon, 1988) to control
the engines. On the system level, we are investigating
the feasibility of the migration to software based time
triggered architecture.

ACKNOWLEDGMENTS

The authors would like to thank TTTech Comput-
ertechnik for their courtesy using theirs switches
hardware components. The authors would also like
to thank Mr. Vashan Srinath Kemthoor for his great
work on the sensor fusion algorithms during his mas-
ter internship at ISAE-SUPAERO.

REFERENCES

J. Banks, J. Carson, B. Nelson. D. Nicol, 2009.
Discrete-Event System Simulation (5th edition).
Prentice Hall.

J.P. Sutherland, 1968. Fly-By-Wire Flight Control
Systems. Joint Meeting of Flight Mechanics and
Guidance and Control Panels of AGARD, Oslo,
Norway, page 1.

D. Briere and P. Traverse, 1993. AIRBUS
A320/A330/A340 electrical flight controls - A

MOSIM18 - June 27-29, 2018 - Toulouse - France

family of fault-tolerant systems. FTCS-23
The Twenty-Third International Symposium on
Fault-Tolerant Computing, Toulouse, France.

I. Moir, 2006. Civil Avionics Systems (Chapter
9: Flight Control Systems). Aerospace Series
(PEP), John Wiley & Sons Ltd.

E.L. Duke, 1989. V&V of flight and mission-critical
software, IEEE Software, vol. 6, no. 3, pp. 39-
45.

J-B. Chaudron, D. Saussié, P. Siron, M. Adelan-
tado, 2014. Real-time distributed simulations in
an HLA framework: Application to aircraft sim-
ulation, Simulation Journal, Vol.90, Issue 6, p.
627-643

C.R. Hanke, 1970. The simulation of a jumbo
jet transport aircraft - Volume I: Mathematical
Model. Prepared by Boeing Company Wishita
Division, Kansas for National Aeronautics and
Space Administration, Ames Research Center,
Moffet Flield California.

C.R. Hanke and D.R. Nordwall, 1970. The simula-
tion of a jumbo jet transport aircraft - Volume II:
Modeling Data. Prepared by Boeing Company
Wishita Division, Kansas for National Aeronau-
tics and Space Administration, Ames Research
Center, Moffet Flield California.

D. R. Ryder, 1973. Redundant Actuator Develop-
ment Study. Report N74-21655. Prepared by
Boeing Commercial Airplane Company Seatle,
Washington for National Aeronautics and Space
Administration, Ames Research Center, Moffet
Flield California.

NOAA and NASA, 1976. Standard US atmosphere.
Washington DC: Government US Printing Of-
fice, N77-16482.

H.L. Dryden and I.H. Abbott, 1949. The Design
of Low-Turbulence Wind Tunnels. Technical
Report 940, National Advisory Committee For
Aeronautics, Washington, D.C, USA.

T. Von Karman, 1948. Progress in the Statistical
Theory of Turbulence. National Academy of Sci-
ence Journal, Vol. 34.

L. Paddon, 1988. Active-control Engines, Flight In-
ternational.

M.L. Sheffels, 1992. A fault-tolerant air
data/inertial reference unit. Proceedings of 11th
Digital Avionics Systems Conference, Seattle,
MA, USA.

R.E. Kalman, 1960. A New Approach to Linear Fil-
tering and Prediction Problems. Journal of Ba-
sic Engineering, Vol. 82.

E. Noulard, J-Y. Rousselot, and P. Siron, 2009.
CERTI, an Open Source RTI, why and how. Pro-
ceedings of the 2009 SISO Spring Simulation In-
teroperability Workshop, San Diego-Mission Val-
ley, United States, p. 23-27.

J-B. Chaudron, David Saussié, Pierre Siron, Martin
Adelantado, 2016. How to solve ODEs in real-
time HLA distributed simulation. Proceedings
of the SISO Spring Simulation Interoperability
Workshop, Orlando, United States.

Gerald Coley, 2016. Beagleboard X15 System Refer-
ence Manual (Revision B1). SRM X15, Released
on July 22, 2016.

Jan Kiszka, 2016. Xenomai 3 - An Overview of
the Real-Time Framework for Linux. Embedded
Linux Conference, San Diego, California, USA,

ARINC Industry Activities, 2006. Aircraft Data
Network Part 7 Avionics Full Duplex Switched
Ethernet (AFDX) Network. ARINC Standard
Document.

SAE International, 2011. Time-Triggered. SAE
Standard Document, AS6802.

R.P.G. Collinson, 2003. Introduction. In: Introduc-
tion to Avionics Systems. Springer, Boston, MA,
USA.

D.K. PradhanK. 1986. Fault-tolerant computing:
theory and techniques. Prentice-Hall, Inc., Vol.
1.

D.B. Mulcare, L.E. Downing and M.K. Smith, 1988.
Quadruplex Digital Flight Control System As-
sessment, National Aeronautics and Space Ad-
ministration, Ames Research Center, Moffett
Field, California.

G.J. Davis and Ames Research Center, 1987. An
analysis of redundancy management algorithms
for asynchronous fault tolerant control systems,
National Aeronautics and Space Administration,
Ames Research Center, Moffett Field, California.

