
�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	���
��

�

�

�

�

an author's https://oatao.univ-toulouse.fr/21038

Deschamps, Henrick and Cappello, Gerlando and Cardoso, Janette and Siron, Pierre Implementation of a Cyber-

Physical Systems simulation components allocation tool. (2018) In: The 2018 European Simulation and Modelling

Conference, 24 October 2018 - 26 October 2018 (Ghent, Belgium).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/163105383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Implementation of a Cyber-Physical Systems simulation components allocation tool

Henrick Deschamps and Gerlando Cappello Janette Cardoso and Pierre Siron
Airbus Operation SAS ISAE-SUPAERO, University of Toulouse

Modelling and Simulation department 10 avenue Édouard Belin, 31055 Toulouse, France
316 Route de Bayonne, 31300 Toulouse, France Email: {firstname.name}@isae-supaero.fr

Email: {firstname.name}@airbus.com

KEYWORDS
Aeronautics, CPS, Modelling, Simulation, Allocation,
Scheduling, HLA, CERTI.

ABSTRACT

This paper presents ongoing work on the formalism of
Cyber-Physical Systems (CPS) simulations. In this pa-
per, we consider distributed CPS simulations, for which
there are strong constraints on the interaction of simu-
lation components. In our previous work, we suggested
a method to estimate a simulation scheduling on a given
architecture and to verify constraints a priori. Trying
to integrate these components manually is very time-
consuming, and can lead to mistakes. We introduce
a tool to make an automatic allocation and schedul-
ing of CPS simulation. We base this on the real-time
scheduling literature and adopt a heuristic-based ap-
proach, adapted to our framework. We then present a
complete case study, including simulations and the phys-
ical architecture of the simulations, and we illustrate the
generation of the scheduling with different heuristics.

Introduction

A Cyber-Physical System (CPS) is a feedback system
comprised of communicating real-time systems and hu-
mans or environment in the loop.
Aircraft, Airbus and ISAE-SUPAERO activity area, is a
type of CPS, where pilots, avionics, aircraft surfaces and
the aircraft environment are tightly interacting through
control loops to stabilize the vehicle.
CPS design work-flow can integrate simulation phases;
this is particularly true in the aeronautical sector, dif-
ferent steps of the CPS design are illustrated in fig. 1.
Development cycles are long and expensive on avionics
product. They can be shortened using simulation during
development and integration life-cycle.
Due to the complexity of the simulated systems and
the simulated environment, as well as the need to in-
crementally improve systems, simulations are more and
more modular. In our method, we consider that every
modular component of the simulation is sufficiently rep-
resentative. Furthermore, in our cases study, we only
considered CPS with the physical part discretized, with

Figure 1: Steps of a CPS design and implementation

linear and non-linear ODEs, as depicted in fig. 2. For
that, we rely on the existing skills of model engineering.
These skills can be different if the model represents a
physical part or a cyber part. Also, we do not address
the problem of parallelization, or of the distribution of
large model simulations. Our starting point is a set
of components produced by experts in model engineer-
ing and distributed simulation engineering. With these
components, specific abstracted constraints and degrees
of freedom are expressed for the integration.

Figure 2: CPS discretization considered in our study

With these hypotheses, our problem is the composition
of the existing simulation components that respect the
abstracted constraints. In (Deschamps et al. 2017) and
(Deschamps et al. 2018), a formalism for expressing the
CPS simulation has been introduced. With small ex-
amples, temporal constraints can be verified on a CPS
simulation, manually. Nevertheless, in an industrial con-
text, a simulation of CPS can be composed of a sub-
stantial number of components and constraints. Our
problem is the specification and implementation of tools
that can automate the verification of constraints and the

generation of scheduling from the description of a CPS
simulation.
In the following, after the related work, an overview
of the CPS scheduling formalism is presented. Then
we present our framework and will focus on the Alloca-
tion function, with an illustration using a concrete case-
study. Finally, we will give concluding remarks and our
future work.

Related work

Latterly, progress has been made in the study of accu-
rate CPS simulation using modular blocks.
Numerous studies on CPS simulation in which the em-
phasis is on fidelity or verification uses the Functional
Mock-up Interface (FMI) standard (Blockwitz et al.
2012). The FMI standard defines an implementation in-
terface, the Functional Mock-up Unit (FMU), allowing
the integration of heterogeneous models. This standard
is therefore ideally suited for CPS simulation. An in-
stance of FMU, also called a slave, can have a specific
solver and be executed standalone or can wait for an exe-
cution directed by a master. The master algorithm also
synchronizes FMUs, following specific synchronization
points, and manages communication between FMUs.
In (Sadvandi et al. 2018), the authors present a CPS
simulation platform capable of executing simulation
loops with models, software, or hardware in the loop.
These platform objectives are to meet the same needs
as those presented in the introduction, namely the re-
duction of development costs through early validation
through simulation. In this study, the constraints inher-
ent to the CPS are highlighted, particularly at the level
of the temporal behavior of the simulation integration,
to validate a whole control system. FMI was chosen to
meet the interaction needs of simulation components;
however, the configuration of execution and time cycle
modes is left to simulation designers. The scheduling of
a simulation depends mostly on synchronization, as well
as solvers. This is not part of the FMI standard, and
the handling of fidelity problems due to interactions is
left to simulation designers.
(Saidi et al. 2016) highlights the problem of correct data
exchange between models, due for example to depen-
dencies between models, using the FMI standard. In
this study, the evolution of time and the way data ex-
change occurs is highlighted, and the focus is on the
effectiveness of synchronizations. The authors propose
solutions and tools to reduce execution times, based on
acyclic graphs, and by proposing allocation heuristics,
respecting specific constraints, in particular, interdepen-
dence between models while trying to accelerate simula-
tions. This approach is similar to the SynDEx approach
(Lavarenne et al. 1991). Our study also deals with the
heuristic allocation proposal, but we do not use acyclic
graphs. However, our targeted use cases for testing are
frequently in real time. Simulation acceleration is not

relevant.
In the position paper (Zheng and Julien 2015), the au-
thors propose to check a CPS by observing its behavior
during execution. The paper raises the problem of the
current lack of control over the fidelity of the temporal
behavior for a CPS simulation. It is reminded in this
paper that the setting of synchronizations with FMI is
left to simulation integrators, which is complicated and
error-prone. The authors also focus on Modelica and as-
sert that Modelica is not applicable to the heterogeneous
models that constitute a CPS. However, (Henriksson
and Elmqvist 2011) contains an example of CPS with
heterogeneous models simulated with Modelica, but in
this last study, the integration with tools allowing the
execution time analysis is left to the future work.
In this paper, the components and architecture used
are not linked to FMI, to avoid unnecessary dependen-
cies. Nevertheless, a full description of the components
is available in (Deschamps et al. 2017), and the “C-
function” aspect, as well as data port, are very similar to
FMI. The objective being to ensure the accuracy of the
temporal behavior of a CPS simulation, as well as the
expression of temporal requirements, and porting solu-
tion to FMI will not be considered before the full proof
of concept.

The Simulation Distributed Architecture Model

This study is part of work on CPS simulation scheduling.
The following briefly presents the method developed in
(Deschamps et al. 2017) and (Deschamps et al. 2018).
The method relies on the expression in a first formal-
ism of the simulation logical architecture, sLa, and in a
second formalism of the simulation execution architec-
ture, sEa. The sLa allocation on the sEa generates the
scheduling. Implementation details are added.

The Simulation Logical Architecture, sLa

The sLa allows the expression of structural and behav-
ioral constraints of the simulation, abstracting its execu-
tion. This formalism is primarily inspired by the DEVS
formalism (Zeigler et al. 2000), using components, cou-
plings, states and internal/external functions.
The components have information about input and out-
put ports, their refreshing frequency, the simulated sys-
tem or physical phenomena states, the initial states. In-
ternal or transition function, periodically called, update
component states, and output functions update compo-
nent outputs.
Channels are used to connect one component output
port to another component input port.
Requirements that can be described in the sLa, for now,
are:

• Latency requirements – The most common in aero-
nautical sector. Due to real-time data exchange

delay between avionics, data-path loops in logical
time can be broken in a simulation.

• Coincidence requirements – Some simulated sys-
tems might need to receive data from other compo-
nents at the same logical time to be representative.

• Affinity requirements – From simulation integrators
expertise, some simulation components might oper-
ate better if in the same logical processor.

• Precedence requirements – From simulation in-
tegrators expertise, some simulation components
might require to be scheduled in a specific order.

An illustration of sLa components and channels is pre-
sented in figure 3.

Figure 3: sLa components and channels

The Simulation Execution Architecture, sEa

The sEa is a formalism allowing the estimation of sim-
ulation execution parameters. This is a simple Archi-
tecture Description Language (ADL), in the form of a
generic off-line partitioned scheduler. An illustration of
the generic sEa is available in figure 4.
The sEa can represent multiple simulators, with very
different execution and communication methods, as long
as the following are respected:

• A global scheduler schedules logical processors, in
the concurrent domain.

• Each logical processor has a similar local scheduler
that schedules its tasks, in the sequential domain.

• Communication between tasks in a same logical
processor and tasks in different logical processors
might be different (various media, synchronizations,
or latencies for instance).

Figure 4: An sEa, with its double level of scheduling

The allocation function

The allocation function partitions the sLa components
and maps them to the sEa tasks on logical processors.
Knowing the sEa behavior, the resulting scheduling can
be determined, and sLa requirements verified.
The allocation method is illustrated in figure 5.
The partition and mapping of components are inspired
from (David et al. 1992). Partitioning consists in group-
ing and splitting the components into different sets.
Mapping consists in choosing an order for all the sets
of the chosen partition.

Figure 5: Determination of scheduling based on alloca-
tion of sLa on sEa

Implementation of the allocation tool

The allocation tool implements the previous formalisms
and allocation. In this study, we will focus on the al-
location of sLa on sEa use case. Other use cases are,

for instance, validation of existing scheduling, or verifi-
cation of sLa or sEa syntax.
The allocation tool is represented in figure 6.

Figure 6: Allocation tool modules

The allocation tool modules

In the allocation use case, the sLa module and the
sEa module read sLa and sEa respectively as XML
files, and produce objects that the allocation function
can use.
The allocation module contains the classes that allow
the representation of scheduling, and the writing of this
scheduling in an XML file. This module also contains
the functions to verify the sLa requirements depending
on the sEa implementation.
The problem of allocating tasks offline on a partitioned
scheduler is known to be equivalent to the bin packing
problem, which is NP-hard (Dhall and Liu 1978). The
allocation function uses a heuristic to partition and
map sLa components on sEa tasks. This allocation
function uses the allocation module to create the al-
location object and uses allocation object methods to
verify the sLa requirements. Heuristics implementa-
tions are independent of the allocation function. As for
now, four heuristics are implemented. The four heuris-
tics are variations of the most known heuristics used
to solve the bin packing problem. The difference with
the classical heuristics being that a logical processor can
schedule a component if the utilization allows it (regard-
ing the logical processor’s components’ time budgets and
periods), but also if the requirements are valid. If there
is at least one logical processor left that is not full, but
no allocation without breaking requirements, then a new
allocation search is executed, considering the deletion of
requirements, from the least to the most important ones.
Considering an ordered set of components, and an or-
dered set of logical processors:

• First-fit – Each component is allocated to the first
logical processor in the set. If this logical processor
cannot schedule it, then the component is allocated
to the next one, and so on. Logical processor set
can be manipulated as a list.

• Next-fit – Same as First-fit, but the search of logical
processor starts at the one following the last allo-
cated. Logical processor set can be manipulated as
a circular buffer.

• Best-fit – Search for the logical processor starts
from the least, up to the most utilized one. Logical
processor set can be manipulated as a binary heap,
indexed by utilization.

• Worst-fit – Search for the logical processor starts
from the most, down to the least utilized one. Log-
ical processor set can be manipulated as a binary
heap, indexed by utilization, in reverse order.

Compatible simulators

As long as a simulator can be described with the off-line
partitioned scheduler, this simulator is compatible with
the allocation results. Different simulators are already
compatible with the allocation results.
ASPIC (Atelier de Simulation Pour l’Intégration et la
Conception, in English, simulation framework for inte-
gration and design) and DSS (Distributed Simulation
Scheduler) at Airbus. sEaPLANES (sEa Partition-
based Logical processor Allocator Node with Extensible
inline Scheduler) at ISAE-SUPAERO.
DSS is a framework for scheduling AP2633 models: Air-
bus simulation model containing entry points, state ma-
chine, and variables needed for scheduling. This frame-
work schedules logical processors in logical time, and
regularly synchronize data between them. Logical pro-
cessors in logical time can be synchronized with wall-
clock time. The primary component of a DSS simu-
lation is its configuration file. This file contains the
AP2633 models used, with their location and execution
frequency. The allocation produced by the allocation
module can be converted in DSS configuration file. A
more detailed description of DSS can be found in (De-
schamps et al. 2017).
ASPIC is a real-time simulation framework. In this
framework, logical processors are scheduled according
to the scheduling policy, in real-time. Depending on the
scheduling policy, logical processors can be preempted.
A description of ASPIC can be found in (Casteres and
Ramaherirariny 2009).
sEaPLANES is a C++ framework of simulation built
at the ISAE-SUPAERO in the scope of our study, based
on CERTI (Bréholée and Siron 2002). CERTI is an
Open source implementation of the general purpose ar-
chitecture for distributed simulation HLA (High-Level
Architecture) (Institute of Electrical and Electronics
Engineers and IEEE-SA Standards Board 2010), de-
veloped and supported by the ONERA and the ISAE-
SUPAERO. The HLA standard defines methods and
a framework to build global simulation comprised of
smaller simulation, the federates.

sEaPLANES is inspired from (Gervais et al. 2012), ev-
ery logical processor of sEaPLANES can periodically
execute tasks, exchange the data between tasks through
a RunTime Infrastructure, and advance time through
HLA time management services. sEaPLANES is also
inspired by Airbus best practices on distributed simula-
tion framework.
Each logical processor schedules its tasks depending
on their periods, and manages intraprocessor and ex-
traprocessor communications. Intraprocessor communi-
cation, between two tasks in a single processor, is done
with shared memory. Extraprocessor communication,
between two tasks in two different logical processors,
is managed using the HLA publication-/subscription-
based communication mechanisms. Models associated
with logical processors can be manually developed, au-
tomatically generated, from instance from Matlab, or
retargeted from real target or older simulations. The
block diagram in fig. 8 illustrates the association of sim-
ulation models in tasks on logical processors. Fig. 7
illustrates the implementation of sEaPLANES with
HLA/CERTI, with three sEaPLANES logical proces-
sors on two CPUs, for scheduling four models. Fig. 9
illustrates an allocation with associated flows of an sLa
on sEaPLANES. sEaPLANES were also used in inter-
action with Matlab HLA toolbox-based simulation, and
with Ptolemy-HLA, embedding C-code generated from
Matlab (Cardoso and Siron 2018).

Figure 7: Example of HLA/CERTI, sEaPLANES, and
R-ROSACE integration

R-ROSACE on sEaPLANES case study

This case study illustrates the allocation of an aircraft
simulation, R-ROSACE, on a physical architecture of
simulation, sEaPLANES.

R-ROSACE

The ROSACE (Research Open-Source Avionics and
Control Engineering) case study (Pagetti et al. 2014)
is a longitudinal flight controller of a medium-size air-
craft. It covers different steps from the conception to
the implementation of such a controller. ROSACE was
chosen since it is an excellent example of a CPS, where a

Figure 8: RROSACE sEaPLANES implementation

significant challenge is the need of interactions between
the engineers responsible for the aerodynamic character-
istics (physical part) and the control law (cyber part).
The design of the simulation adds extra interaction with
software engineers because of the need to tackle physical
system requirements, such as stability, and computers
science requirements, such as tasks schedulability and
network resources.

Figure 9: sLa components allocation on sEaPLANES

R-ROSACE is an extension of the open source ROSACE
case study, adding redundant controllers. The compo-
nent breakdown of R-ROSACE, presented in fig. 10,
allows the generation of the R-ROSACE sLa. R-
ROSACE has been implemented with multiple frame-
works, following the architecture of simulation de-
scribed in sec. “The Simulation Distributed Architecture
Model”; the redundancy of controllers is illustrated in

Figure 10: RROSACE components breakdown

the components breakdown figure, with FCC for Flight
Control Computer. In R-ROSACE, there are 15 com-
ponents, 57 channels, and 6 requirements. The require-
ments are due to the redundancy between FCCs. There
is coincidence between each FCCs couple and the wiring,
as well as between data received by FCCs couple, and
FCC monitoring. An excerpt of this sLa, with a com-
ponent, a channel and a requirement, is shown in lst. 1.
In this excerpt, the following is written:

• Component engine – the engine is simulated with a
period of 50 ms and an estimated time budget of 1
ms. The simulated engine component has an input
port the delta_x_c, a change of thrust command,
and an output port, T, a simulated thrust.

• Channel engine T to flight_dynamic T – the en-
gine to flight dynamic thrust channel.

• Coincidence requirement between fcc_1a, fcc_1b,
and wiring – a coincidence requirement for the
wiring to receive the delta thrust computed by FCC
1A and the validation of this command by FCC 1B
at the same logical time.

R-ROSACE implementations are tested through
multiple operational scenarios. An operational
scenario is a set of events that includes the inter-
action of a system with its environment and its
users. A full description of R-ROSACE, opera-
tional scenarios, and Simulink models, are available
at https://svn.onera.fr/schedmcore/branches/
ROSACE_CaseStudy/redundant/. The coincidence re-
quirements in R-ROSACE are described in (Deschamps
et al. 2018).

R-ROSACE allocation on sEaPLANES

The full sEaPLANES sEa, with an unlim-
ited number of logical processors, and with-

out real-time constraints, is shown in lst. 2.

Listing 1: R-ROSACE sLa excerpt
<?xml ve r s i on=" 1 .0 " ?>
<s l a name=" r r o s a c e " xmlns="">

<components>
<component name=" engine " per iod="50ms"
time_budget="1ms">

<ports_in>
<port l a b e l="delta_x_c"/>

</ports_in>
<ports_out>

<port l a b e l="T"/>
</ports_out>

</component>
<!−− . . . −−>

</components>
<channe l s>

<channel>
<from component=" engine " port="T"/>
<to component=" f l ight_dynamics " port="T"/

>
</ channel>

<!−− . . . −−>
</ channe l s>
<requi rements>

<requirement weight="100">
<co inc id ence>

<path>
<ord index="0">

<channel>
<from component=" fcc_1a" port="

delta_x_c"/>
<to component=" wir ing " port="

delta_x_c_1"/>
</ channel>

</ord>
</path>
<path>

<ord index="0">
<channel>

<from component=" fcc_1a" port="
delta_x_c"/>

<to component=" fcc_1b" port="
delta_x_c_com"/>

</ channel>
</ord>
<ord index="1">

<channel>
<from component=" fcc_1b" port="

relay_delta_x_c"/>
<to component=" wir ing " port="

relay_delta_x_c_1"/>
</ channel>

</ord>
</path>

</ co inc id ence>
</ requirement>

<!−− . . . −−>
</ requi rements>

</ s l a>

The allocation tool was run with multiple configura-
tions. Configuration consisted of different heuristics,
various inputs order, and additional constraints. In all
the cases tested, an allocation has been found, and few
cases did not satisfy all constraints. Nevertheless, the
allocation is not guaranteed, and with a different case
study, we could have had configurations that do not

https://svn.onera.fr/schedmcore/branches/ROSACE_CaseStudy/redundant/
https://svn.onera.fr/schedmcore/branches/ROSACE_CaseStudy/redundant/

allow allocations. The resulting allocations have been
tested with the real simulator, with tracing and data
logging for verification. All the resulting scheduling es-
timation from allocation were similar to real schedulings
on real targets.

Listing 2: sEaPLANES sEa
<?xml ve r s i on=" 1 .0 " ?>
<sea name=" seap lane s " xmlns="">

<log i c a l_p r o c e s s o r s mu l t i p e r i od i c="True"
rea l−time=" False ">

<intraprocessor_communicat ion />
<interprocessor_communicat ion opt ion="

p2p" sync=" synchronous "/>
</ l o g i c a l_p r o c e s s o r s>

</ sea>

When choosing different heuristics, with the inputs pro-
vided in the default order and no additional constraints,
the results are different allocations, with constraints sat-
isfied in all the cases. First-fit andWorst-fit heuristic are
similar; all the components are pushed on the first logi-
cal processor. The resulting allocation file is provided in
lst. 3, with one component per logical processor, sched-
uled respecting their orders (ord), and their periods. It
should be noted that the two different allocations have
slightly different simulation results, all acceptable, and
different performances. Simulation with first-fit/worst-
fit heuristics uses 0,1 s to run one simulation second,
while simulation with first-fit/worst-fit heuristics uses
0,4 s to run one simulation second. This is due to the
use of the time-consuming synchronization mechanism
that is increased with the second allocation.
When modifying the input orders, especially between
the FCCs and wiring, or when adding constraints, such
as an affinity constraint, the resulting allocation might
not verify all the constraints.
Two examples can be considered:

• With the input sequence [FCC1A, wiring, FCC1B]
and first-fit heuristic – After allocating FCC1A and
wiring in this order on a same logical processor,
which means a logical latency of 0 s between the
two components, FCC1B cannot be allocated with
a logical latency of 0 s from FCC1A, and a logical
latency of 0 s to wiring. FCC1B is allocated in
the same logical processor, and the logical latency
to wiring is 50 ms. Trying to allocate FCC1B to
another logical processor leads to 200 ms of logical
latency from FCC1A, and 200ms to wiring.

• With the input sequence [FCC1A, FCC1B,
FCC2A, FCC2B, wiring], next-fit heuristic, and
adding an affinity constraint between FCC1A,
FCC1B – FCC1A and FCC1B will be allocated
in the same logical processor, while FCC2A and
FCC2B in two different one. When trying to allo-
cate wiring, two of the coincidence constraints can-
not be satisfied, irrespective of the logical processor
chosen.

Listing 3: Allocation with first-fit and worst-fit
<?xml ve r s i on=" 1 .0 " ?>
<a l l o c a t i o n name=" a l l o c " xmlns="">

<log i c a l_p ro c e s s o r>
<task name=" engine " ord="0" per iod="50ms"/>
<task name=" e l e v a t o r " ord="1" per iod="50ms"/>
<task name=" f l ight_dynamics " ord="2" per iod="
50ms"/>
<task name=" h_ f i l t e r " ord="3" per iod="100ms"/>
<task name=" a z_ f i l t e r " ord="4" per iod="100ms"/
>
<task name=" Vz_f i l t e r " ord="5" per iod="100ms"/
>
<task name=" q_ f i l t e r " ord="6" per iod="100ms"/>
<task name=" Va_f i l t e r " ord="7" per iod="100ms"/
>
<task name=" fcu " ord="8" per iod="200ms"/>
<task name=" fl ight_mode" ord="9" per iod="200ms
"/>
<task name=" fcc_1a" ord="10" per iod="200ms"/>
<task name="fcc_1b" ord="11" per iod="200ms"/>
<task name=" fcc_2a" ord="12" per iod="200ms"/>
<task name="fcc_2b" ord="13" per iod="200ms"/>
<task name=" wir ing " ord="14" per iod="50ms"/>

</ l og i c a l_p ro c e s s o r>
</ a l l o c a t i o n>

Conclusion and perspectives

In this paper, we presented an allocation tool imple-
menting the method we developed in previous work.
We developed an extensible allocation tool, that can use
multiple methods for allocating sLa components on sEa
tasks. We developed basic heuristics to test the alloca-
tion tool, and we displayed them with the R-ROSACE
on sEaPLANES case study. Although this case study
is straightforward regarding the target at Airbus, we
proved on this small case study that we can automati-
cally generate allocation and scheduling, respecting re-
quirements, from the description of the components and
execution architecture.
Nevertheless, one of the first criticisms we can make
on our tool is that the implemented heuristics are too
limited. Indeed, depending on the components input
order, the result can vary enormously. The problem is
that a component placed during the execution of one of
these heuristics cannot be moved, even if a move could
significantly improve the results.
Moreover, the result depends greatly on the validity of
the inputs. Adding constraints that do not exist due
to overzealousness can have a negative impact on the
result. Conversely, not identifying a constraint can lead
to unrepresentative scheduling, without our tool being
able to indicate it fully.
Finally, the currently developed tool is modular and ex-
tensible, with different scheduler, communication, syn-
chronization, and heuristics. An inconvenience is that
adding a sEa with exotic local schedulers or communica-
tions is currently expensive in our tool. Many methods
need to be overridden. For instance, the delays estima-
tion on data paths. We are aware that our tool is today
only a proof of concept, but such complexity is not to
be neglected in the context of industrialization.

While the problems of input validities and the cost
of adding new sEas are implementation or integration
challenges, for which we do not have any improvement
proposals for the moment, we do have a way to im-
prove the heuristics. The next step in our work is to
implement a heuristic for which the order of the in-
put components has no impact. We have already iden-
tified a metaheuristic candidate, simulated annealing
adapted to CPS simulation scheduling, by considering
simulation constraints, and generating state neighbor-
hood from partitioning and mapping.
Finally, the step of creating sEaPLANES federates from
allocation files is currently quite fast, but manual. We
also plan to set up code generators from the allocation
files.

Acknowledgment

The work described in this paper is supported through
an Industrial Agreement for Research Training —
CIFRE — financed by the National Association for Re-
search in Technology (ANRT). This work is also financed
and supervised by Airbus, and supervised by the ISAE-
SUPAERO, University of Toulouse.

REFERENCES

Blockwitz T.; Otter M.; Akesson J.; Arnold M.; Clauss
C.; Elmqvist H.; Friedrich M.; Junghanns A.; Mauss
J.; Neumerkel D.; Olsson H.; and Viel A., 2012. Func-
tional Mockup Interface 2.0: The Standard for Tool
independent Exchange of Simulation Models. 173–184.
doi:10.3384/ecp12076173.

Bréholée B. and Siron P., 2002. Certi: Evolutions of the
onera rti prototype. In Fall Simulation Interoperability
Workshop.

Cardoso J. and Siron P., 2018. Ptolemy-HLA: A
Cyber-Physical System Distributed Simulation Frame-
work. M Lohstroh et al (Eds): Lee Festschrift,
Springer, LNCS 10760, 1—-21. doi:10.1007/
978-3-319-95246-8_8.

Casteres J. and Ramaherirariny T., 2009. Aircraft inte-
gration real-time simulator modeling with AADL for
architecture tradeoffs. In Automation Test in Europe
Conference Exhibition 2009 Design. 346–351. doi:
10.1109/DATE.2009.5090686.

David V.; Fraboul C.; Rousselot J.Y.; and Siron
P., 1992. Partitioning and mapping communication
graphs on a modular reconfigurable parallel architec-
ture. Parallel Processing: CONPAR 92—VAPP V,
43–48.

Deschamps H.; Cappello G.; Cardoso J.; and Siron P.,
2017. Toward a formalism to study the scheduling
of cyber-physical systems simulations. In Proceedings

of the 2017 IEEE/ACM 21st International Sympo-
sium on Distributed Simulation and Real Time Ap-
plications. IEEE Computer Society, Rome, Italy.

Deschamps H.; Cappello G.; Cardoso J.; and Siron P.,
2018. Coincidence Problem in CPS Simulations: the
R-ROSACE Case Study. In Proceedings of the 2018
9th European Congress Embedded Real Time Software
and Systems. Toulouse, France.

Dhall S.K. and Liu C.L., 1978. On a Real-Time Schedul-
ing Problem. Operations Research, 26, no. 1„ 127–140.

Gervais C.; Chaudron J.B.; Siron P.; Leconte R.;
and Saussié D., 2012. Real-time distributed air-
craft simulation through HLA. In Proceedings of the
2012 IEEE/ACM 16th International Symposium on
Distributed Simulation and Real Time Applications.
IEEE Computer Society, 251–254.

Henriksson D. and Elmqvist H., 2011. Cyber-Physical
Systems Modeling and Simulation with Modelica.

Institute of Electrical and Electronics Engineers and
IEEE-SA Standards Board, 2010. IEEE standard for
modeling and simulation (M & S) high level archi-
tecture (HLA): object model template (OMT) specifi-
cation. Institute of Electrical and Electronics Engi-
neers, New York. ISBN 978-0-7381-6249-2. OCLC:
682577410.

Lavarenne C.; Seghrouchni O.; Sorel Y.; and Sorine M.,
1991. The SynDEx software environment for real-time
distributed systems design and implementation. In Eu-
ropean Control Conference. vol. 2, 1684–1689.

Pagetti C.; Saussié D.; Gratia R.; Noulard E.; and Siron
P., 2014. The ROSACE case study: from Simulink
specification to multi/many-core execution. In 2014
IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 309–318.

Sadvandi S.; Corbier F.; and Mevel E., 2018. Real time
and interactive co-execution platform for the valida-
tion of embedded systems. In Proceedings of the 2018
9th European Congress Embedded Real Time Software
and Systems. Toulouse, France.

Saidi S.E.; Pernet N.; Sorel Y.; and Khaled A.B., 2016.
Acceleration of FMU Co-Simulation On Multi-core
Architectures. 106–112. doi:10.3384/ecp16124106.

Zeigler B.P.; Praehofer H.; and Kim T.G., 2000. Theory
of modeling and simulation: integrating discrete event
and continuous complex dynamic systems. Academic
Press, San Diego, 2nd ed ed. ISBN 978-0-12-778455-7.

Zheng X. and Julien C., 2015. Verification and Valida-
tion in Cyber Physical Systems: Research Challenges
and a Way Forward. IEEE. ISBN 978-1-4673-7088-2,
15–18. doi:10.1109/SEsCPS.2015.11.

	Introduction
	Related work
	The Simulation Distributed Architecture Model
	The Simulation Logical Architecture, sLa
	The Simulation Execution Architecture, sEa
	The allocation function

	Implementation of the allocation tool
	The allocation tool modules
	Compatible simulators

	R-ROSACE on sEaPLANES case study
	R-ROSACE
	R-ROSACE allocation on sEaPLANES

	Conclusion and perspectives

