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a b s t r a c t

The potential impact of Multiwalled Carbon NanoTubes (MWCNTs) was investigated on Xenopus laevis

tadpoles exposed to 0.1, 1 and 10 mg/L. Oxidative stress was measured in entire larvae exposed and DNA

damage (Comet assay) was carried out in erythrocytes of circulating blood from 2 h to 24 h according to

standardized recommendations. Results showed significant H2O2 production when larvae were exposed

to 1 mg/L and 10 mg/L of MWCNTs after 4 h and 2 h of exposure, respectively. Antioxidant enzyme

activities showed significant induction of catalase (CAT), glutathione reductase (GR) and superoxide

dismutase (SOD) from only 2 h of exposure to 10 mg/L of MWCNTs. In presence of 1 mg/L of MWCNTs,

only GR and CAT activities were significantly induced at 4 h. Enzyme activities do not follow a simple

dose-effect relation, but the time of induction is shortened in relation with the tested concentration.

The Comet assay results showed significant DNA damages with a dose dependent response. The profiles

of DNA damages show fluctuations, in course of time, which are characteristics of oxidative stress

response in relation with the continuous balance between damage and compensation process.

1. Introduction

Due to their massive production in relation with their number

of potential applications, the impact of carbon nanotubes (CNTs)

on the environment must be taken into consideration, especially

in aquatic ecosystems which are one of the major potential

receptacle compartments of pollutants. Previous work indicates

that CNTs may lead to hazardous effects on cells, tissues, and

organisms (van der Zande et al., 2011; Zhao and Liu, 2012),

including plants (Patlolla, 2013), human (Bottini et al., 2006;

Monteiro-Riviere et al., 2005), mammals (Mitchell et al., 2007;

Poland et al., 2008) but also aquatic organisms (Krysanov et al.,

2010). It has been reported a growth inhibition of the green alga

Chlorella sp. after 96 h of exposure to 100 mg/L of MWCNTs (Long

et al., 2012). A reduced survival and growth were observed on

chironomid larvae (Chironomus dilutus) after 12 h of exposure to

MWCNTs (Mwangi et al., 2012). MWCNTs can also cause develop-

mental toxicity, gill, liver, brain, intestine pathologies (edema,

altered mucocytes, hyperplasia), respiratory toxicity and oxidative

stress in Rainbow trout (Oncorhynchus mykiss) and Zebrafish

(Danio rerio) according to different exposure conditions (Du et

al., 2013).

Moreover, there is evidence suggesting that oxidative stress

may occur in presence of CNTs, at the origin of reactive oxygen

species (ROS) production (Chen and Jafvert, 2010; Petersen and

Nelson, 2010; Thurnherr et al., 2011). Oxidative stress corresponds

to a disturbance of the redox status of the cells and is related to an

increase of ROS such as superoxide anions (O2
"), hydroxyl radical

(.OH) and hydrogen peroxide (H2O2). To prevent ROS injuries,

organisms have developed various defense mechanisms in order

to transform ROS into less-toxic products. The majority of these

mechanisms depend on metabolic mediation of natural com-

pounds and enzymatic antioxidant systems, among them catalase
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(CAT and EC 1.11.1.6), superoxide dismutase (SOD and EC 1.15.1.1),

glutathione peroxidase (GPX and EC 1.11.1.19) and glutathione

reductase (GR, EC 1.6.4.2). The increased levels of these metabolic

intermediary compounds, and of antioxidant enzymes, lead to

increased stress tolerance against ROS (Matés, 2000).

Over-production of ROS can lead to membrane alteration,

biological macromolecule deterioration, ion leakage, lipid perox-

idation and DNA-strand cleavages (Halliwell and Aruoma, 1991;

Hensley et al., 2000; Nel, 2006). The DNA breaks are often

measured by the Comet assay. The single cell gel electrophoresis

(Comet assay) in alkaline conditions is a highly sensitive biomar-

ker. It detects and quantifies DNA damage, such as single- and

double-strand breakage and alkali-labile sites (Tice et al., 2000).

These types of damage can be induced directly by the contami-

nant, or indirectly via oxidative stress and/or the repair processes

(Tice et al., 2000).

In this study, we have focused our attention on the impact of

MWCNTs using the amphibian model Xenopus leavis, well-known

to be an environmental health warning organism due to their

biphasic life cycle, their permeable eggs, skin and gills (Mouchet

and Gauthier, 2013).

Preliminary studies with MWCNTs helped us to highlight the

effects of chronic toxicity (growth inhibition) at low concentra-

tions under certain experimental conditions (Mouchet et al., 2010).

To better understand the mechanism of toxicity of these tiny

particles and whether they are able to induce an early response,

amphibian larvae were exposed for short times (2, 4, 8, 12 and

24 h) to three different concentrations of MWCNTs (0.1, 1 and

10 mg/L) to evaluate their potential toxicity in term of oxidative

stress and DNA damages induction.

2. Material and methods

2.1. MWCNTs, production and characterization

MWCNTs (Graphistrength C100, Arkema France) were produced by Catalytic

Chemical Vapor Deposition (CCVD) by Arkema facility (Lacq, France) on a Fe–Al2O3-

based supported catalyst using a fluidized bed process. Composition is graphite

(490 percent, [7782-42-5]), Aluminum oxide (Al2O3, r7 percent, [1344-28-1])

and Iron oxide (Fe2O3,r5 percent, [1309-37-1]). The carbon content of the

MWCNTs sample was ca. 90 wt%, as obtained by elemental analysis. The physical

characteristics and Transmission Electron Microscopy (TEM) observation of the

MWCNTs used in this study were previously described by Mouchet et al. (2010).

According to the theory of Brunauer, Emmett and Teller (BET), the specific surface

area was measured after degassing the sample in N2 for 4 h at 120 1C and the

adsorption of nitrogen gas at the temperature of liquid nitrogen (Micrometrics

Flow Sorb II 2300; measurement accuracy E73%). MWCNTs had 5 to 15 walls,

their length ranged from 0.1 mm to 10 mm, and their mean agglomerate size is

between 200 mm and 500 mm (laser scattering granulometer, d (υ: 0.5)). Each

suspension of 0.1, 1 and 10 mg/L of MWCNTs were purchased in 20 ml of deionized

water.

2.2. Animals, breeding and housing

Xenopus males were injected with 50 IU of Pregnant Mare's Serum Gonado-

trophin (PMSG 500; Intervet, France, [9002-70-4]) and the females with 750 IU of

Human Chorionic Gonadotropin (HCG; Organon, France, [9002-61-3]) to induce

spawning. Each pair was then placed together in normal tap water filtered through

active charcoal at 2272 1C. After 48 h, the pairs were separated and viable eggs

were maintained in an aquarium containing normal tap water filtered through

active charcoal (Veolia Water, France [E300CA-7003]) at 2171 1C supplemented

with nutritive salt (294 mg/L, CaCl2 #2H2O, 123.25 mg/L MgSO4 #7H2O, 64.75 mg/L

NaHCO3, 5.75 mg/L KCl) (ISO, 2006), until they reached a development stage

appropriate for experimentation, i.e. stage 50, (Nieuwkoop and Faber, 1956).

The larvae were fed every day on dehydrated aquarium fish food (TetraPhylls).

2.3. Exposure conditions

Exposure began on larvae at stage 50 of the Xenopus development

table (Nieuwkoop and Faber, 1956) characterized by the hind lim bud, constricted

at the base. For each exposure time, larvae were chosen from the same hatch to

reduce inter-animal variability and were placed in Pyrex crystallizing dishes

containing 2 L of either reconstituted water (RW: normal tap water filtered through

active charcoal, to which were added nutritive salts (ISO, 2006) corresponding to

negative control, or RW supplemented with carbon nanotubes (0.1, 1 and 10 mg/L).

Before tadpoles' exposure, each CNT vial was sonicated (Bioblock 89863, typ 570 HF

Freq 35 kHz) for 5 min. The larvae were submitted to a natural light–dark cycle at

22.070.5 1C during exposure.

For enzymatic assays and biochemical assays, 50 tadpoles were exposed in the

same dish for each exposure condition and time: 0.1, 1 and 10 mg/L of MWCNTs at

2, 4, 8, 12 and 24 h of exposure (15 dishes). For each exposure time, a common

control was carried out (5 dishes). All along the experiments, dishes were dark

covered to prevent external disturbance. At the end of each exposure time, the

larvae were frozen into liquid nitrogen and stored at "80 1C. Finally, five groups of

ten tadpoles were taken from each dish and analyzed separately.

For Comet assays, larvae were exposed in groups of 25 animals in 5 L glass

flasks containing 2 min L of RW (negative control), methyl methanesulfonate

(MMS, [66-27-3], purity $99%, Sigma France) at 6.24 mg/L (positive control), or

different concentrations of MWCNTs (0.1, 1, 10 mg/L). To avoid possible artefact due

to separate migration (eight different run), a negative control was realized for each

MWCNTs exposure conditions. A positive control (PC) has been performed in order

to check the sensitivity of the amphibian larvae and to validate the experiments.

For the Comet assays, the concentrations of MWCNTs tested were 0.1, 1 and 10 mg/L

during 2, 4, 8 and 24 h. At the end of each exposure time, 5 tadpoles were randomly

sampled (including controls).

2.4. Acute toxicity

Acute toxicity to the larvae exposed to 0.1, 1 and 10 mg/L of MWCNTs was

examined for 2, 4, 8, 12 and 24 h by visual inspection: death, no growth (severe

toxicity) and abnormal behavior/reduced size/diminished food intake (weak

toxicity), according the ISO recommendations (ISO, 2006). Recording the toxicity

at each experimental time in treated larvae ensured that both biochemical and

Comet assays were performed under conditions that were not acutely toxic.

2.5. Biochemical assays

2.5.1. H2O2 evaluation

Hydrogen peroxide was measured according to Islam et al. (2008). Tadpoles

were homogenized in trichloroacetic acid (TCA) 0.1% (W/V) and centrifuged at

13,500g for 20 min. The mixture assay contained 25% of the supernatant added to

25% of 10 mM potassium phosphate buffer (pH 7.0, Sigma) and 50% of 1 M KI

(Sigma, France). Absorbance was determined at 390 nm and the content of H2O2

was evaluated using a standard curve under the same conditions.

2.5.2. Enzyme activities assay

Tadpoles were homogenized in ice-cold 50 mM phosphate buffer Na/K (pH 7)

containing 1.15% KCl, 0.25% protease inhibitor cocktail, 1 mM PMSF (phenylmethyl-

sulfonyl fluoride) and 0.1 mM aprotinin. The homogenate was centrifuged at

15,800g for 20 min at 4 1C. The protein contents were determined spectrophoto-

metrically (Helios Alfa, Thermo Electron Corporation, USA) according to Bradford

(1976), using bovine serum albumin (BSA, Sigma, France) as standard. The super-

natant was also used for antioxidant enzyme activity. GR activity was assayed

according to Dringen and Gutterer (2002), using Glutathione Reductase Assay Kit

(GRSA-1KT, Sigma, France). The reaction was monitored by following the change in

at 340 nm as oxidized glutathione-dependent oxidation of NADPH for 1 min. CAT

activity was estimated spectrophotometrically using Aebi method (Aebi, 1984).

The decomposition of H2O2 was followed at 240 nm (extinction coefficient of

39.4 M"1 cm"1) for 1 min at 25 1C. SOD activity was measured using a SOD assay

kit (19160-1KT-F, Sigma, France) according to Mockett et al. (2002), based on the

production of O2
." by xanthine–xanthine oxidase, which reduces nitroblue tetra-

zolium (NBT) to blue formazan. Inhibition of the reaction by SOD was monitored

spectrophotometrically at 560 nm for 6 min.

2.6. Comet assay

The Comet assay, also known as the single-cell gel test (SCGE), was performed

according to alkaline procedure described by Singh et al. (1988), with adaptation to

Xenopus laevis larvae (Mouchet et al., 2005). After cardiac puncture on larvae

exposed to MWCNTs (0.1, 1 and 10 mg/L) at 2, 4, 8 and 24 h, an aliquot of

heparinised blood cell suspension was immediately diluted 50-fold in Phosphate

buffered saline (PBS). The slides were then treated according to Mouchet et al.

(2005). The electrophoresis was carried out in alkaline buffer [4 1C; 0.3 M NaOH,

1 mM Na2EDTA (pH413)] for 20 min by applying and electric field of 20 V and

adjusting the current to 30 mA. Five larvae were used for NC (negative control),

PC (positive control) and MWCNTs conditions. Slide analysis was performed using

an epi-fluorescence microscope (LSM 410 ZEISS microscope) at 400% magnifica-

tion, after staining the slides with a 0.05 mM ethidium bromide solution. DNA



strand breakage was quantified as the tail DNA percentage and tail length (TL:

distance between the head and the last DNA fragment) using an image-analysis

system (Komet 5.5; Andor Technologys). For each individual, two slides were

coded and 50 cells were randomly analyzed in each slide. The data obtained from

two slides per animal were pooled for the final processing. Comets with completely

fragmented DNA (hedgehog-like figures with no apparent head) that could not be

measured by the image analysis system were not taken into account (Hartmann et

al., 2003).

For this experiment, erythrocyte viability was determined using the Trypan

blue exclusion test, with samples showing o90% viability discarded (Collins,

2002). In this way, Comet assay has not been carried out in erythrocytes of larvae

exposed to 10 mg/L of MWCNTs.

2.7. ICP-MS analysis

MWCNTs (0.1, 1 and or 10 mg/L) were placed in pyrex crystallizing dishes

containing 2 L of RW. Before contamination, each CNT vial was sonicated (Bioblock

89863, typ 570 HF Freq 35 KHz) for 5 min. No CNT was added for the negative

control.

After 24 h, water was recovered, filtered through 0.2 mm filters (514-0061,

VWR, France), acidified with 3 drops of 69% HNO3 (309079, Sigma, France) and

stored at 4 1C. Before analysis 0.05% of In/Re and 0.3% of HNO3 at 69% were added to

10 ml of samples. Analysis of metallic trace elements (Al, Fe and MO) was

performed by ICP-MS Agilent 7500ce quadruple equipped with a collision cell

He. The ionization source device consists of an inductively coupled plasma

generator coil (auto frequency generator adjusted 27 MHz 1550 W). The analyzer

comprises a quadruple mass spectrometer for sorting ions by mass / electrical load

(about 1 amu resolution). The detector is comprised of a dual mode analog and

pulse counting (electron multiplier) with counting time of 0.1 ms for major

elements, 0.3 ms for trace elements and 1.5 s for the ultra-trace elements. The

collision cell gas (He) eliminates some of the polyatomic interference by kinetic

energy discrimination (KED). To minimize interference related to oxide ions and

charged doubling the reports CeOþ/Ceþ and Ceþþ/Ceþ is controlled and was,

respectively, o1percent and o3percent. Typical detection limits were between

0.1 ng/kg and 100 ng/kg. Indium and rhenium were used as internal standards to

correct for instrumental drift and matrix effects.

2.8. Larvae macro-observations

Macro observations of larvae have been realized on larvae used for the Comet

assay (after blood sampling preventing stress on animals for comet analysis). The

general aspect of the larvae exposed to MWCNTs was visually compared to that of

negative control group under microscope (Olympus CX41) at X4 magnification.

2.9. Statistical analysis

Results (enzymatic, biochemical, ICP-MS, and COMET) are all presented as

mean7standard error of the mean (SEM). Comparison between group pairs is

achieved with Student t-test. Normality and homogeneity of variances are checked

by using Shapiro–Wilk and F tests, respectively. Data transformation is used to

correct (when required) deviation from normality and to stabilize the variance.

We considered power transforms which best candidates were chosen as guided by

the Box–Cox transformation procedure. The significance level is 5percent

(po0.05). Statistical computations were achieved using R Development Core

Team (2012).

3. Results

3.1. Acute toxicity

No signs of acute toxicity were observed for Xenopus tadpoles

exposed to MWCNTs to 0.1–1 and 10 mg/L, whatever the exposure

time (2, 4, 8, 12 and 24 h).

3.2. H2O2 production

Results obtained are represented in Table 1. Compared to the

control, tadpoles exposed to 0.1 mg/L of MWCNTs showed no

significant H2O2 production. At 1 mg/L of MWCNTs, high H2O2

production was observed from 4 h of exposure (po0.05). This

treatment showed H2O2 production of 370.3 mmole/mg of fresh

weight (FW), while control was 1.170.1 mmole/mg of FW. This

production remained constant until 12 h, then decreased to

1.770.1 mmole/mg of FW at 24 h (po0.05). With 10 mg/L of

MWCNTs, H2O2 production was 2.670.5 mmole/mg of FW after

only 2 h of exposure whit control concentrations at 1.27

0.3 mmole/mg of FW. The H2O2 production decreased until 8 h,

and then rose 2.2 70.1 mmole/mg of FW at 12 h to (po0.05).

After 24 h, H2O2 production diminished significantly to production

very near the negative control (1.370.1 mmole/mg of fresh

weight vs. 1.370.1 mmole/mg of fresh weight).

3.3. Enzyme activities

Changes in the activity levels of antioxidant enzymes in X.

laevis tadpoles in the presence of MWCNTs are shown in Fig. 1.

At 0.1 mg/L of MWCNT, induction of GR activities started signifi-

cantly after 8 h (po0.05) of exposure to MWCNTs to reach

84.372.3 mU/mg protein, then gradually decreases to

38.371.6 mU/mg protein at 24 h. With 1 mg/L of MWCNTs, both

GR and CAT activities were significantly induced at 4 h of exposure

to MWCNTs to reach 123.3716.8 mU/mg of protein and 257.27

27.1 mU/mg of protein, respectively. After 24 h, the GR and CAT

activities decreased to 39.771.7 mU/mg of protein and 73.27

5.5 mU/mg of protein, respectively. When larvae were exposed to

10 mg/L of MWCNTs, all antioxidant enzyme activities (CAT, GR

and SOD) were significantly induced after only 2 h of exposure to

MWCNTs. In presence of carbon nanotubes in the exposure media,

GR was 94.375.3 mU/mg of protein, CAT was 147.173.3 mU/mg of

protein and SOD was 7.170.7 U/mg of protein. The controls were

53.677.5 mU/mg of protein, 31.770.9 mU/mg of protein and

3.170.3 U/mg of protein, respectively. A slow decreased was

observed for all GR activities until 24 h. For CAT and SOD activities,

the same fluctuations in time was observed with a significant

enhancement of values at 8 h (109.972.6 mU/mg of protein and

5.570.2 U/mg of protein respectively) and 24 h (only significant

for SOD activity).

3.4. DNA damage

Significant DNA damages were recorded after 4–24 h in larvae

exposed to 0.1 mg/L of MWCNTs (Table 2), compared to the

negative control, for all parameters (Tail DNA and TL). Maximum

Levels of DNA damage were observed at 24 h of exposure con-

sidering Tail DNA (14.370.7), and after 4 h considering TL

(70.771.3). In contrast, no significant DNA damage was measured

after 2 and 8 h of exposure to 0.1 mg/L of MWCNTs. At 1 mg/L of

MWCNTs, significant DNA damages were recorded for all exposure

times and parameters, with maximal DNA damages at 24 h

according the Tail DNA (34.971.4) and TL (55.870.9) values.

Results show no significant evolution of basal DNA damage

(negative control) between each experimental time exposure,

nor evolution of MMS-induced DNA damage

Table 1

Hydrogen peroxide production in Xenopus laevis tadpoles exposed to three

different concentrations of MWCNTs.

Time CTRL MW 0.1 MW 1 MW 10

2 1.270.3a 1.970.2a 1.370.3a 2.670.5b

4 1.170.1a 0.970.1a 3.070.3b 1.370.1c

8 2.270.2a 2.070.1a 2.970.1b 2.170.4a

12 1.970.1a 1.770.1a 3.270.2b 2.270.1c

24 1.370.1a 1.470.1a 1.770.1b 1.370.1a

Hydrogen peroxide production in Xenopus leavis tadpoles exposed during 2, 4, 8, 12

and 24 h to 0.1, 1 and 10 mg/L of MWCNTs compared to negative control condition

(CTRL).

Values expressed as mean7SEM. Concentrations are in millimole/mg of fresh

weight (n¼5).

Means of the same row followed by different letters differ significantly (Po0.05).



3.5. ICP-MS analysis

The measurement of metal concentrations (Al, Fe, Mo) released

in RW containing, 0.1, 1 or 10 mg/L of MWCNTs after 24 h are

presented in Table 3. Results show no significant release of Al and

Fe compared to the control, for all MWCNTs concentrations in RW.

In the case of Mo, a statistically significant, but very low, amount is

released by MWNCTs at 1 mg/L (0.570.02 mg/L) and 10 mg/L

(2.670.04 mg/L), compared to the control (0.270.02 mg/L).

3.6. Macroscopic observations

Macroscopic observations of tadpoles exposed to 0.1 and 1 mg/

L during 2, 4, 8 and 24 h are shown in Figs. 2 and 3. Fig. 2 shows

presence of brown masses in basket gills and intestine at 24 h of

exposure in the control tadpoles. In larvae exposed to MWCNTs,

black masses of carbon particles are suspected after 2 h of

exposure in basket gills and intestine at 0.1 mg/L and increase

with time up to 24 h. However, the agglomerated MWCNTs are not

visible any more after 24 h in intestine. Larvae exposed to 1 mg/L

of MWCNTs during 24 h showed the presence of agglomerated

nanotubes on the surface of gills (Fig. 3D). These black spots are

not to be confused with the natural pigmentation of Xenopus laevis

tadpoles. These agglomerated MWCNTs (as black mass) are also

visible under microscope on gill arches after dissection in larvae

exposed for 24 h to 1 mg/L (Fig. 3E). Presence of MWNCTs can be

suspected as a result of their agglomeration and their increased

dimensions in agglomerates size.

4. Discussion

The result of the present study highlight an increase of the

oxidative stress in Xenopus laevis tadpoles in presence of MWCNTs.

Oxidative stress is defined as an unbalance between pro- and anti-

oxidant systems. It corresponds to a disturbance of the redox

status of the cells, and is related to an increase of reactive oxygen

species (ROS) such as O2
" , singlet oxygen (½O2), hydroxyl radical.

OH and hydrogen peroxide (H2O2). Reactive oxygen species are

Fig. 1. Antioxidant enzymes activities in Xenopus laevis tadpoles exposed to

different concentrations of MWCNTs. Antioxidant enzymes activities in Xenopus

laevis tadpoles after exposure to 0.1, 1 or 10 mg/L of raw MWCNTs during 2, 4, 8, 12

and 24 h. (A) Glutathion reductase activity, (B) Catalase activity, (C) Superoxyde

dismutase activity. Values expressed as mean7SEM. n indicates a significant

induction (Po0.05) of antioxidant enzyme activities compared to the CTRL:

Negative control, MW: MWCNTs.

Table 2

Comet assay parameter variation in Xenopus laevis blood after exposure to MWCNTs.

Time (hours) Measured parameter PC MW 0.1 MW 1

NC MW NC MW

2 Tail DNA 22.371.1n 7.470.4 8.770.5 3.170.2 22.371.1n

TL 50.970.9n 30.270.6 35.570.7 24.270.4 50.970.9n

4 Tail DNA 17.570.8n 5.170.2 12.470.6n 2.570.2 17.570.8n

TL 48.170.9n 50.871.2 70.771.3n 30.870.6 48.170.9n

8 Tail DNA 14.470.8n 5.270.3 7.570.4 3.170.2 14.470.8n

TL 49.170.9n 37.370.9 35.770.7 29.870.6 49.170.9n

24 Tail DNA 34.971.4n 5.070.2 14.370.7n 3.270.2 34.971.4n

TL 55.871.0n 40.970.9 44.470.8n 31.270.7 55.870.9n

Comet assay results in Xenopus laevis blood after exposure to MWCNTs. Mean values7SEM of Tail DNA (percentage of DNA in the tail) and TL (Tail Length) in larvae reared

for 2, 4, 8, and 24 h in 0.1 mg/L (A) and 1 mg/L (B) of MWCNTs.
n Indicates increased significant (po0.05) DNA damage relative to the negative control. NC/PC: negative/positive controls. Comet assay was not carried out on larvae

exposed to 10 mg/L which erythrocyte viability was inferior to 90%.

Table 3

Concentrations of MWCNTs released metals in RW after 24 h.

CTRL MW 0.1 MW 1 MW 10

Al 30.771.2 32.170.3 32.470.4 31.870.7

Fe 0.670.2 0.670.1 0.670.3 0.670.1

Mo 0.270.02a 0.270.03a 0.570.02b 2.670.04c

Concentrations of released metals after 24 h in water containing 0.1, 1 and 10 mg/L

of MWCNTs, compared to negative control condition (CTRL), measured by ICP-MS.

Values expressed as mean7SEM. Concentrations are in mg/L (n¼3), means of the

same row followed by different letters differ significantly (Po0.05).

Al: aluminum, Fe: iron, Mo: molybdenum.



Fig. 2. Head and intestine macroscopic observations of Xenopus laevis larvae exposed or no to MWCNTs at 0.1 mg/L. Macroscopic observation of the Head and intestine

fragment of Xenopus larvae after 2 (A), 4 (B), 8(C) and 24 h (D) of exposure to 0.1 mg/L of MWCNTs (MWCNT) compared to negative control larvae (CTRL). Black dotted arrow

indicates the presence of brown mass of food (Tetraphyll reduced into powder) in the gill at the entire larval level in negative control condition after 24 h. White solid arrows

indicate presence of dark masses of suspected agglomerated MWCNTs in gill area of MWCNT-exposed larvae. Black solid arrows show suspected agglomerated MWCNTs in

the intestine after 2 h of exposure.

Fig. 3. Bronchial area microscopic observation of Xenopus laevis tadpoles exposed to 1 mg/L of MWCNTs. Macroscopic observations of branchial area of Xenopus larvae after

2, 4, 8 and 24 h of exposure to 1 mg/L of MWCNTs. Head macro-observation after 2, 4, 8 and 24 h (A, B, C and D) of exposure to 1 mg/L. Larvae are observed in dorsal view.

Eyes are recognized by their black spherical form. Gill areas are encircled by white dots. Presence of MWCNTs on the surface of gills may be suspected at the entire larval

level under binocular (black arrows) after 24 h of exposure and must be not confused with natural pigmentation of Xenopus larvae. (E) Gill arch macro-observation after its

dissection from larvae 24 h-exposed to 1 mg/L of MWCNTs. White arrow indicates agglomerated MWCNTs (as black mass) on dissected gill tissue suggesting presence of

MWCNTs in gill arcs.



short lived, unstable, and highly chemically reactive molecules,

possessing unpaired valence shell electrons. Although H2O2 is not

a radical, it is a reactive species because of its higher activity than

molecular oxygen. Although all of these oxygen-based toxic

species are ROS but all ROS are not oxygen radicals.

In the present experimental conditions, a significant increase of

H2O2 was observed at 4 h, when tadpoles were exposed to 1 mg/L

of MWCNTs and remained significantly different from the control

until 12 h. This production decreased after 24 h. For the highest

MWCNTs concentration tested (10 mg/L), H2O2 production was

significantly increased after 2 h and decreased rapidly after 8 h.

A second significant, but attenuated, production of H2O2 was

observed after 12 h. These results indicated that (i) H2O2 produc-

tion does not follow a simple dose-effect relation, with a lag time

shortened in relation with the MWCNTs concentration and (ii) the

regulation of the H2O2 production occurs rapidly after tadpole's

exposure. ROS represent a dynamic parameter; they are continu-

ously generated and eliminated (Lushchak, 2011). Even if ROS are

toxic for organisms, they play an important role in cell signaling

and regulation, particularly in cell division and apoptosis. There-

fore, it is of particular importance in constant metamorphosis state

of larvae as Xenopus laevis tadpoles (Menon and Rozman, 2007).

In addition, the fast response obtained in function of the concen-

tration is not in accordance with the intensity of H2O2 production;

since the maximum response (3.270.2 mmole/mg FW) of H2O2

was obtain in presence of 1 mg/L of MWCNTs. These results

indicate that in the presence of 10 mg/L MWCNTs, the maximum

was obtained before 2 h. In this case, the end of the acute oxidative

stress, would be observed as defined by Lushchak (2011). In the

case of in vitro studies, the increase of intracellular ROS has been

explained by the metal traces associated with commercial nano-

tubes (Pulskamp et al., 2007). In this study the absence of

significant release of Al and Fe (the metal particles associated to

MWCNTs catalyze process) in exposure medium (Table 3) sup-

posed that they are biologically inert. In contrast, very low Mo

concentrations are released in water exposure with 10 mg/L of

MWCNTs, but do not correspond to higher enzymatic activities in

larvae. Metals from catalysers would be not responsible of oxida-

tive stress status in the present work.

The antioxidant system includes water soluble compounds as

reduced glutathione, ascorbic acid and lipid-soluble molecules as

carotenoids, retinol and α-tocopherol. They generally operate as

free radical scavengers but they also serve as cofactor for anti-

oxidant enzyme such as glutathione. The most important enzy-

matic pathway for ROS defense are SOD that convert O2
" into H2O2

and CAT which convert H2O2 in h2o and O2 (Donaldson et al.,

2006). In the addition of the CAT action, GPX is involved in the

mobilization of H2O2 by using reduced glutathione (GSH) as

electron donor. This produces oxidized glutathione (GSSG) that

can be reduced by the action of GR enzyme. As for H2O2 produc-

tion, induction of antioxidant enzyme activities does not follow a

simple dose-effect relation. GR activity was induced with 0.1 mg/L

of MWCNTs only after 8 h. For 1 mg/L, the induction appears

significant after 4 h (maximal level) and 8 h, then decreased after

24 h. For 10 mg/L, the induction was only significant after 2 h, with

a rapid decrease after 4 h. In addition, SOD activity was only

significant in presence of 10 mg/L of MWCNTs. Despite the high

H2O2 production observed in tadpoles exposed to 1 mg/L of

MWCNTs, the SOD activity remains low. H2O2 has been described

to modulate the response of enzyme involved in the regulation of

the oxidative stress (Lushchak, 2011). When the level of super-

oxide is low, the peroxidase reaction will dominate, hence regulate

dismutase activity by substrate inhibition and therefore reduce the

level of H2O2 (Gottfredsen et al., 2013). The absence of significant

SOD activation in presence of low MWCNTs concentrations (0.1

and 1 mg/L) suggest different possible sources of H2O2 production.

Several enzymes, such as glucose oxidase, uric acid or amino acid

oxidase in mammalian cells, produce H2O2 directly (Cadenas and

Davies, 2000; Szatrowski and Nathan, 1991). These enzymes are

generally located in cellular organelles as peroxisomes. Mono-

amine oxidase present in the mitochondrial membranes is also

involved in hydrogen peroxide production (Edmondson, 2014;

Sandri et al., 1990).

Nanomaterials, and particularly carbon nanotubes, have been

described to induce oxidative stress in different organisms and cell

types (Shvedova et al., 2012). They can activate the inflammosome

by interaction with phagocytes leading to ROS production. CNTs

could also interfere directly with cell membranes, producing cell

damages at the origin of oxidative stress. In the same way, an

alteration of the mitochondrial respiratory chain could promote a

rise of ROS production. In addition, Fenoglio et al. (2006) reported

that MWCNTs were effective scavengers of both O2
" and OH

free radicals, regardless of how the species were generated. All

these data suggest a complex interaction between MWCNTs and

tadpoles disturbing the redox statute by both inducing and/or

scavenging ROS.

Although it does not constitute the only genotoxic pathway,

oxidative stress was described as being mainly implied in DNA-

damage formation (Halliwell, 1990; Petersen and Nelson, 2010).

This can induce primary damages such as oxidized base, cross-

links, double- and single-strand breaks, alkali-labile sites, and

excision repair sites. In this work, alkaline comet assay has been

used to detect primary lesions in blood erythrocytes tadpoles.

Study of erythrocytes viability (blue trypan exclusion) in larvae

exposed to MWCNTs, revealed a decreased of cellular viability at

10 mg/L from 2 h of exposure, preventing the realization of the

Comet assay as recommended by Collins (2002). Significant DNA

damages, compared to the negative control, appear after 4 h to

24 h of larvae exposed to 0.1 mg/L of MWCNTs, whereas no DNA

damages are measured after 2 h and 8 h. Moreover, in larvae

exposed to 1 mg/L of MWCNTs, DNA damages are significant at all

experimental times. In Table 2 comparison between mean values

for both MWCNTs concentrations (0.1 and 1 mg/L) are shown with

exposure time. DNA damage induction at 1 mg/L of MWCNTs is

higher than that of 0.1 mg/L, suggesting an increasing dose-

response, regardless parameter and exposure time. This maximal

response of DNA damages to 1 mg/L would correspond to the

higher registered enzymatic activity and H2O2 production. Sig-

nificant enzymatic activities and DNA damages are not induced at

the same times. This observed shift could be due to the fact that

DNA damages are evaluated in erythrocytes circulating blood of

larvae, whereas enzymatic activities and H2O2 production are

measured at the entire larval level. Nevertheless, profiles of DNA

damages, H2O2 production and enzymatic activities in course of

time show fluctuations which are characteristics of oxidative

stress response in relation with the continuous balance between

damage and compensation process. This includes the DNA repair

systems based on excision repair enzymes at the origin of DNA

breaks also measured with Comet assay (Petersen and Nelson,

2010). In blood erythrocytes, DNA damages are detected earlier

than enzymatic induction in entire tadpoles. In this way, Comet

assay could be considered as a more sensitive tool than enzyme

induction measurement to evaluate the potential effect of

MWCNTs on oxidative stress. The in vivo micronucleus assay in

amphibians detects fixed DNA damages persisting after at least

one mitotic cycle, i.e. chromosomal and/or genomic mutations

(Mouchet et al., 2005). Alkaline Comet assay detects primary DNA

damages which represent reversible damages (Moretti et al., 2002;

Van Goethem et al., 1997). Unlike the micronucleus assay, which

highlights the cumulative effect of chronic exposure, the Comet

assay provides instantaneous information about the current expo-

sure (Maluf and Erdtmann, 2000). This method, however, does not



allow for predictive information on the possible DNA damage

evolution in transmissible mutations from cell generation to

another.

Macroscopic observation under binocular of tadpoles exposed

to MWCNTs suggests a presence of agglomerated MWCNTs with

food particles on the gills surface from 1 mg/L (Fig. 3) and into

intestine (data not shown). Agglomerated MWCNTs were also

visible from 0.1 mg/L into intestine after 2, 4 and 8 h in a time-

dependent manner (Fig. 2) and were rapidly excreted in mass not

to be more visible after 24 h. Resolution of binocular is limited and

CNTs must be enough agglomerated in mass to be visible under

microscope. Nevertheless, gills and intestine have already been

described as entry pathway in Xenopus laevis larvae when exposed

12 days to MWCNTs exposure (Bourdiol et al., 2013; Mouchet et al.,

2010). However, it has not been demonstrated to date, the

presence of CNTs in enterocytes, hepatocytes, branchial and blood

cells using specific microscopy tools such as Transmission Electro-

nic Microscopy and Raman spectroscopy. Anyway, In Xenopus

larvae, the pathway of contaminant entry from exposure media

is double: dermal (integument and gills) and breeding exposure.

Indeed, Xenopus laevis larvae are detritivorous (Bury and Whelan,

1984), gill-breathing, microphageous feeders, thus leading to high

ingestion rates of suspended particles (Wassersug, 1975), espe-

cially particles of food susceptible to bind CNTs.

It could be hypothesized that CNTs can be adsorbed on the

Xenopus larval surface and especially on gill surfaces, inducing gill

clogging, at the origin of gas exchanges disturbance. Gas altera-

tions could in turn promote larval hypoxia and oxidative stress

(Lushchak, 2011; Tiedke et al., 2014) at the origin of DNA damages,

and induction of antioxidant enzymes.

5. Conclusion

In conclusion, these results demonstrated that exposure of

Xenopus laevis tadpoles to MWCNTs induced an increase of

oxidative stress in entire larvae and DNA break-down in blood

erythrocytes. However, the induction of oxidative stress and DNA

damages appears to be closely related to the concentration of CNTs

in the exposure media. Data also demonstrated that Comet assay is

a more sensitive method than anti-oxidative enzyme activity. The

presence of nanotubes in the gill baskets suggest a possible

hypoxia that must be confirmed by additional work.
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Figure 5:13

TEM microphotographs of raw MWCNTs at high magnification. 14
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