

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: http://oatao.univ-toulouse.fr/20931

Official URL: https://doi.org/10.2136/vzj2018.04.0067

To cite this version:

Gaillardet, Jerome and Braud, Isabelle and Gandois, Laure → and Probst, Anne → and Probst, Jean-Luc → and Sánchez-Pérez, José Miguel → and Simeoni-Sauvage, Sabine → OZCAR: the French network of Critical Zone Observatories. (2018) Vadose Zone Journal, 17 (1). 1-24. ISSN 1539-1663

Any correspondence concerning this service should be sent to the repository administrator: <u>tech-oatao@listes-diff.inp-toulouse.fr</u> Page 1 of 103

1 OZCAR: the French network of Critical Zone Observatories

Gaillardet J.¹, Braud I.², Hankard F.¹, Anquetin S.³, Bour O.⁴, Dorfliger N.⁵, de Dreuzy J.R.⁴,
Galle S.³, Galy C.⁶, Gogo S.⁷, Gourcy L.⁵, Habets F⁸., Laggoun F.⁷, Longuevergne L.⁴, Le
Borgne T.⁴, Naaim-Bouvet F.⁹, Nord G.³, Simonneaux V.¹⁰, Six D.³, Tallec T.¹⁰, Valentin C.¹¹

- Abril G.¹², Allemand P.¹³, Arènes A.¹⁴, Arfib B.¹⁵, Arnaud L.³, Arnaud N.^{16,29}, Arnaud P.¹⁷, 6 Audry S.¹⁸, Bailly Comte V.¹⁹, Batiot C.²⁰, Battais A.⁴, Bellot H.⁹, Bernard E.²¹, Bertrand C.²², 7 Bessière H.⁵, Binet S.⁷, Bodin J.²³, Bodin X.²⁴, Boithias L.¹⁸, Bouchez J.¹, Boudevillain B.³, 8 Bouzou Moussa I.²⁵, Branger F.², Braun J. J.¹⁸, Brunet P.²⁰, Caceres B.,²⁶ Calmels D.²⁷, Cappelaere B.²⁰, Celle-Jeanton H.²², Chabaux F.²⁸, Chalikakis K.²⁹, Champollion C.³⁰, Copard 9 10 Y.³¹, Cotel C.²⁸, Davy P.⁴, Deline P.²⁴, Delrieu, G.³, Demarty J.²⁰, Dessert C.¹, Dumont M.³², 11 Emblanch C.²⁹, Ezzahar J.³³, Estèves M.³, Favier V.³, Faucheux M.³⁴, Filizola N.³⁵, 12 Flammarion P.³⁶, Floury F.¹, Fovet O.³⁴, Fournier M.³¹, Francez A. J.³⁷, Gandois L.⁴⁶, Gascuel 13 C.³⁴, Gayer E.¹, Genthon C.³, Gérard M. F.⁴, Gilbert D.²², Gouttevin I.³², Grippa M.¹⁸, Gruau 14 G.⁴, Jardani A.³¹, Jeanneau L.⁴, Join J. L.³⁸, Jourde H.²⁰, Karbou F.³², Labat D.¹⁸, Lagadeuc 15 Y.³⁷, Lajeunesse E.¹, Lastennet R.³⁹, Lavado W.⁴², Lawin, E.⁴⁷, Lebel T.³, Le Bouteiller, C.⁹, 16 Legout C.³, Le Meur E.³, Le Moigne N.³¹, Lions J.⁵, Lucas A.¹, Malet, J. P.⁴¹, Marais-Sicre 17 C.¹¹, Maréchal J. C.¹⁹, Marlin C.^{27,42}, Martin P.⁴³, Martins J.³, Martinez J. M.¹⁸, Massei N.³¹, 18 Mauclerc A.⁵, Mazzilli N.²⁹, Molénat, J.⁴⁴, Moreira-Turcq P.¹⁸, Mougin E.³, Morin S.³², Ndam 19 Ngoupayou J.⁴⁵, Panthou G.³, Peugeot C.¹⁸, Picard G.³, Pierret M. C.²⁸, Porel G.²³, Probst A.⁴⁶, 20 Probst J. L.⁴⁶, Rabatel A.³, Raclot D.⁴⁴, Ravanel L.²⁴, Rejiba F.³¹, René P.⁴⁸, Ribolzi, O.¹⁸, 21 Riotte J.¹⁸, Rivière A.⁴⁹, Robain H.¹¹, Ruiz L.³⁴, Sanchez-Perez J. M.⁴⁶, Santini W.¹⁸, Sauvage 22 S.⁴⁶, Schoeneich P.⁵⁰, Seidel J. L.²⁰, Sekhar M.⁵¹, Sengtaheuanghoung O.⁵², Silvera N.¹¹, 23 Steinmann M.²², Soruco A.⁵³, Tallec G.⁵⁴, Thibert E.⁹, Valdes Lao D.⁵⁵, Vincent C.³, Viville 24 D.²⁸, Wagnon P.³, Zitouna R.⁵⁶ 25
- 26 27

- Affiliations
- 281. IPGP, Sorbonne Paris Cité, University Paris Diderot, CNRS, Paris 75231, France
- 292. IRSTEA, UR RiverLy, centre de Lyon-Villeurbanne, 69625 Villeurbanne, France
- 303. Université Grenoble Alpes, CNRS, IRD, Grenoble-INP, IGE, 38000 Grenoble, France
- 314. Géosciences Rennes, UMR 6118, CNRS, Université Rennes 1, Rennes, France
- 325. BRGM. Water Environment and Ecotechnologies Division. Orléans, France
- 336. ANDRA Research and development division, 55290 Bure, France.
- 347. UMR ISTO, CNRS, BRGM, Université d'Orléans, Orléans, France
- 358. UMR Métis, Sorbonne Université, UPMC, CNRS, Paris 75252, France.
- 369. Univ. Grenoble Alpes, Irstea, UR ETNA
- 3710. Centre d'Etudes Spatiales de la Biosphère, Toulouse, France
- 3811. iEES-Paris, SU, USPC, UPEC, CNRS, INRA, IRD, F-93140 Bondy, France.
- 3912. UMR BOREA, MNHN, Paris, France.
- 4013. Université de Lyon, UCBL, ENSL, CNRS, LGL-TPE, 69622 Villeurbanne, France
- 4114. SOC Société d'Objets Cartographiques, Paris, France

- 4215. Aix Marseille Univ, CNRS, IRD, Coll France, CEREGE, Aix-en-Provence, France
- 4316. CNRS INSU, Paris, France.
- 4417. IRSTEA, UR Recover, Aix en Provence, France
- 4518. Géosciences Environnement Toulouse (GET), CNRS, IRD, UPS, Toulouse, France
- 4619. BRGM, D3E, NRE, 1039 rue de Pinville, 34000 Montpellier, France,
- 4720. Hydrosciences Montpellier (HSM), Univ. Montpellier, CNRS, IRD, Montpellier, France
- 4821. Univ. Franche-Comte, Théma, Besançon, France
- 4922. Université Bourgogne/Franche-Comté, CNRS, Chrono-environnement-UMR 6249, Besançon,
- 50 France
- 5123. IC2MP, CNRS Université de Poitiers, Poitiers France.
- 5224. Univ. Savoie, Edytem, le Bourget de Lac, France
- 5325. Univ. Abdou Moumouni (UAM), Niamey, Niger
- 5426. INAMHI, Quito, Ecuador
- 5527. GEOPS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
- 5628. UMR LHyGeS, EOST, Université de Strasbourg, Strasbourg, France
- 5729. UAPV, UMR1114 EMMAH, F-84914 Avignon, France
- 5830. Géosciences Montpellier, CNRS, Université Montpellier, UA, F-34095 Montpellier, France.
- 5931. Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France
- 6032. Météo-France CNRS, CNRM UMR 3589, Centre d'Etudes de la Neige, Grenoble, France
- 6133. Ecole Nationale des Sciences Appliquées (ENSA), Université Cadi Ayyad, Safi, Morocco
- 6234. UMR SAS, INRA, Agrocampus Ouest, Rennes, France
- 6335. Amazonas State University (UFAM), Geography Department, Manaus, Brazil
- 6436. IRSTEA Présidence, Antony, France
- 6537. Univ Rennes, CNRS, Ecobio UMR 6553, F-35000 Rennes, France.
- 6638. Université de la Réunion, Saint Denis de la Réunion, France.
- 6739. Université de Bordeaux, Laboratoire I2M, UMR 5295, France
- 6840. Peruvian National Service of Meteorology and Hydrology (SENAMHI), Lima, Peru
- 6941. IPGS, EOST, Strasbourg, France.
- 7042. Ministère de l'Enseignement Supérieur, la Recherche et l'Innovation, DGRI/SSRI, Paris,71 France.
- 7243. Université d'Avignon et des Pays de Vaucluse, UMR ESPACE 7300 du CNRS, 8402973 Avignon cedex, France
- 7444. LISAH, Univ Montpellier, INRA, IRD, Montpellier SupAgro, Montpellier, France
- 7545. Department of Earth Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- 7646. EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- 7747. Université d'Abomey Calavi, Benin
- 7848. Association Moraine, Luchon, France
- 7949. Mines ParisTech, PSL, géosciences. Fontainebleau, France.
- 8050. Univ. Grenoble Alpes, Pacte, Grenoble, France
- 8151. Indian Institute of Science and Indo-French Cell for Water Sciences, Bangalore, India.
- 8252. Department of Agricultural Land Management (DALaM), Vientiane, Lao PDR
- 8353. UMSA, University of La Paz, Bolivia
- 8454. IRSTEA, UR Hycar, 92 761 Antony, France
- 8555. UPMC Univ Paris 06, UMR 7619 METIS, 4 Place Jussieu, F-75005 Paris, France
- 8656. INRGREF, Tunis, Tunisia

88 Abstract

89 This paper presents the French Critical Zone initiative, called OZCAR (Observatoires de la 90 Zone Critique – Application et Recherche – Critical Zone Observatories – Application and 91 Research), a National Research Infrastructure (RI), OZCAR-RI is a network of instrumented 92 sites, organized in 21 pre-existing research observatories, or observation services, and 93 monitoring over the long term, different compartments of the zone situated between "the rock 94 and the sky", the Earth's skin or Critical Zone (CZ). These observatories are regionally-based 95 and all have their individual initial scientific questions, monitoring strategies, databases and 96 modeling activities. The diversity of OZCAR-RI observatories and sites is well representative 97 of the heterogeneity of the Critical Zone and of the scientific communities studying it.

98 Despite this diversity, all OZCAR-RI sites share a main overarching scientific question, 99 which is: how to monitor, understand and predict ("earthcast") the fluxes of water, solutes, 90 gases and sediments of the Earth's near surface and how they will change in response to the 101 "new climatic regime" (climate change, land use and land cover changes).

102 We describe in this paper a vision for OZCAR strategic development in the next decade, 103 aiming at designing an open infrastructure, building a national CZ community able to share a 104 common and systemic representation of CZ dynamics, and educating a new generation of 105 scientists more apt to tackle the wicked problem of the Anthropocene. We propose to 106 articulate OZCAR around the following main points: i) a set of common scientific questions 107 and cross-cutting scientific activities using the wealth of OZCAR-RI observatories along 108 gradients and the diverse disciplines, ii) an ambitious instrumental development program, iii) 109 a better interaction between data and models as a way of integrating the different time and 110 spatial scales as well as fostering dialogue between communities.

111 At the international level, OZCAR-RI aimed at strengthening the CZ community by providing

a model of organization for pre-existing observatories and by widening the range of CZ
instrumented sites. Embedded into the international CZ initiative, OZCAR is one of the
French mirrors of the European eLTER-ESFRI (European Strategy Forum on Research
Infrastructure) project.

117 Keywords: Critical Zone, Observatories, long-term observation, Earthcast, modeling, eLTER118

119 **1. Introduction**

120

121 We have entered the Anthropocene (Crutzen, 2002), a new period in which human activities 122 have become a geological force. Anthropogenic forcing affects many components of the Earth 123 system (Steffen et al., 2015) at a particularly high rate compared to the last million years since 124 Homo Sapiens have lived on the planet. This "great acceleration" (Lewis and Maslin, 2015) 125 has global manifestations, the more evident of which is the shifts in atmospheric greenhouse 126 gas concentrations and associated climate change, as well as accelerated land uses and land 127 cover changes due to urbanization and increased human pressure on the environment. This 128 "new climatic regime" is anticipated to have important implications at the regional scale, in 129 the "territories", as defined by Latour (2018), where resources such as water, soil, and 130 biodiversity may dangerously be impacted, potentially leading to an unprecedented 131 degradation of human habitats, dramatic migrations or economic disasters. The terrestrial 132 surface, i.e. the zone located between the bedrock and the lower atmosphere, sustains basic 133 human needs such as water, food, energy (Banwart et al., 2013), and is critical for the 134 sustainability of the economical and recreational services they provide (Easterling, 2007; 135 Millenium Ecosystem Assessment Board, 2005). Achieving the Sustainable Development Goals (UN, 2015) requires better understanding and prediction of the functions of this"critical zone".

138 The term "Critical Zone" (CZ) was defined by the U.S. National Research Council (NRC), as 139 the zone extending from the top of the canopy down to the base of the groundwater zone. 140 NRC listed the study of this "CZ" as one of the Basic Research Opportunities in the Earth 141 Sciences (U.S. National Research Council Committee on Basic Research Opportunities in the 142 Earth Sciences, 2001). The term "critical" emphasizes two notions. First is that the CZ is one 143 of the main planetary interfaces of Earth, i.e. the lithosphere-atmosphere boundary layer. It is 144 the layer where life has developed, where nutrients are released from rocks, and on which 145 ecosystems and food production rely. Almost by definition, the CZ is a planetary boundary, 146 shaped by both solar energy and internally-driven plate tectonics (mantle convection). This 147 geological vision of Earth's surface is close to that developed one century ago by Vladimir 148 Vernadsky (1998), re-defining the term "biosphere" to denote the part of our planet that is 149 transformed by biogeochemical cycles triggered by the input of solar energy and by life 150 processes. The second notion implied by the term "critical" is that we need to take care of it. 151 The CZ is the human habitat in which we build our cities, from which we extract our food and 152 our water and where we release most of our wastes (Guo and Lin, 2016). As quoted by Latour 153 (2014), "under stress, it may break down entirely or shift to another state".

The concept of the CZ offers a geological perspective on environmental questions, by considering all transformation time scales from the million year to the second, and by relocalizing environmental questions at the local/regional level, thus taking into account not only global forcing but also local geological, ecosystemic, economic and societal constraints (Arènes et al., 2018). The CZ initiative aims at fostering different scientific disciplines of geosciences and biosciences (climatology, meteorology, glaciology, snow sciences, hydrometeorology, hydrology, hydrogeology, geochemistry, geomorphology, geophysics, land surface interactions, pedology, agronomy, ecology, microbiology, Fig. 1) to work on the
same questions, and at developing an integrated system-oriented understanding of the
habitable part of the planet (Brantley et al., 2017).

164 The Critical Zone Exploration Network (CZEN) initiative (http://www.czen.org/) was 165 proposed in 2003 under the leadership of the US National Science Foundation (Anderson et 166 al., 2004). CZEN aims to create a worldwide community of researchers and educators who 167 study the physical, chemical and biological processes shaping and transforming Earth's CZ 168 through the development of Critical Zone Observatories (CZOs), i.e. well-instrumented and 169 well-characterized field sites in which the different scientific communities can collaborate to 170 better understand the transformations affecting this thin veneer coveringx Earth's surface. 171 This integrated scientific approach must take into account short and long time scales, the 172 interaction between deep subsurface processes and their coupling with above ground 173 dynamics.

So far there is no "official" definition for how a CZO should be designed. Multidisciplinary and systemic approaches ("the CZ as an entity", Brantley et al., 2017) seem to be common denominators of all the so-called CZOs. In the US, CZOs were first established in 2007 (Anderson et al., 2008; White et al., 2015) and presently feature nine instrumented sites, generally river catchments or a whole landscape of limited size (Brantley et al., 2017).

Following the US CZO initiative, several countries successfully launched CZO programs. This paper presents the French Critical Zone initiative, called OZCAR (Observatoires de la Zone Critique –Application et Recherche – Critical Zone Observatories – Application and Research), a National Research Infrastructure (RI). The aim of this paper is to provide an overview of the OZCAR network, its objectives, components, scientific questions and data management (section 2); the current status of instrumentation (section 3) along with that of databases and metadatabases (section 4), and existing initiatives for linking data and models based on OZCAR data (section 5). The discussion (section 6) builds on the current
achievements to take a step forward and describe the ambitions of OZCAR and how this
initiative can be related to others worldwide. Most of the ideas in this paper were discussed
during the kickoff meeting of OZCAR held in Paris, Feb 7, 2017.

190 **2. Presentation of the OZCAR network**

191

192 <u>2.1. OZCAR, a network of networks</u>

193 OZCAR is a Research Infrastructure launched in December 2015 with the support from the 194 French Ministry of Education and Research. OZCAR gathers and organizes more than 60 195 research observation sites in 21 pre-existing observatories that are operated by diverse 196 research institutions and initially created for a specific environmental question of societal 197 relevance, some of them, more than 50 years ago. The details of OZCAR constitutive 198 observatories and sites are in Table S1. All these observatories share however the same 199 characteristic of being highly instrumented areas designed to answer a particular scientific and 200 societal question of local importance, generating continuous standardized series of 201 observations on water quality, discharge, ice and snow, soil erosion, piezometric levels, soil 202 moisture, gas and energy exchange between ground and atmosphere, and ecosystem 203 parameters (Table S1). They cover different compartments of the CZ (Fig. 2).

Over the last decade, considerable efforts have been made in France to encourage the various research institutions to join together to monitor Earth's surface. This was enabled through the creation of the Alliance for Environmental studies "AllEnvi" (<u>www.allenvi.fr</u>) in 2010, formally gathering all the research institutions in charge of studying Earth's terrestrial surface.

208

209 2.2. The "building blocks" of OZCAR

7

Below, we present a short description of the architecture, aims and significant results of the different blocks composing the OZCAR infrastructure that is organized according to seven thematic networks. A detailed description of the existing observatories and their most significant scientific achievements are given in Appendix 1.

214

215 2.2.1. The RBV network (Réseau des Bassins Versants) is constituted of catchments ranging 216 from zero order basins to the whole Amazon River system (see Table S1 in supplementary 217 material for the details about site location, climate, geology, land use, main scientific 218 questions and measured variables). A number of them are shared with research institutions 219 from Southern Hemisphere countries. The common denominator is the use of catchments as 220 integrators of hydrological, biogeochemical or solid transport processes at different scales. 221 They constitute sentinels of land use/land cover and climate change at the regional level, some of them for more than 40 years. They have all been designed to address a specific basic or 222 223 applied scientific question, span climate gradients ranging from the tropics to the temperate 224 zone, and cover a range of bedrock types (Fig. 3). While some of them can be considered as 225 "pristine", most of the RBV catchments are intensively cultivated or managed for forestry, the 226 extreme case being a peri-urban catchment draining into the Rhône River in Lyon. Well 227 represented in RBV are monitored karst systems as complex hydro-geol-ogic entities that are 228 characterized by strong surface/subsurface interactions and significant water, mass, energy, 229 and geochemical transport within the CZ. RBV also addresses larger scale (typically 230 continental issues such as the concurrent role of climate and land-use changes on the water 231 and energy budgets on the terrestrial surface in western Africa, continental hydrology and the 232 biogeochemistry of the Amazon, Orinoco and Congo basins, or the genesis of extreme 233 precipitation events and flash floods in southern France. The long term monitoring reveals 234 fast-changing environments, as illustrated for instance by the decrease of sulfate recorded in the Strengbach stream since 1986 (Fig. 4; OHGE, Vosges, France). This decrease of sulfate in
the stream is an iconic case showing the virtue of continuous long term river monitoring and
the reduction of anthropogenic acidic emission by European and North American industries
since the 1980's.

239

240 2.2.2. The H+ observation service (hplus.ore.fr), created in 2002, is a network of 241 hydrogeological sites located in France and India, aimed at characterizing and modeling 242 flows, transport and reactivity in heterogeneous aguifers. The aim of H+ is the development 243 of characterization and modeling methods adapted to describe the strong heterogeneity (i.e. in 244 terms of permeability and thus residence times) that characterizes the deep CZ. Within this 245 framework, H+ scientists investigate the hydrological functioning and the reactive transport 246 aspects in heterogeneous reservoirs, including karstic aquifers (Larzac, HES Poitiers, LSBB, 247 Mallorca), altered fractured systems (Choutuppal, India, Ploemeur), and alluvial systems 248 (Auverwatch). H+ observatories have particularly developed a specific hydrogeophysical and 249 hydrochemical instrumentation approach for imaging and characterizing the hydrodynamics 250 and transport processes, for measuring residence time distributions but also for taking into 251 account heterogeneity within appropriate predictive models.

252

253 2.2.3. The **CRYOBS-CLIM** observatory focuses on the cryosphere. It aims to answer the 254 following scientific questions: i) How will climate changes impact surface energy and mass 255 budgets of snow / ice-covered surfaces and permafrost ground temperature at different spatial 256 (local to regional) and temporal (seasonal to multidecadal) scales? ii) How will snow/climate 257 feedback mechanisms enhance or attenuate glacier, ice sheet and permafrost changes in the 258 near future? How can observations help to identify climate models weaknesses and to 259 improve the simulations of cryosphere components? iii) What is the future snow and ice-cover 260 retreat and wastage and what will be the impact on water resources and sea level rise? iv) 261 How do glaciers, rock glaciers and ice sheet dynamics respond to changes in temperature, 262 surface mass balance and hydrological processes, and what are the impacts in terms of natural 263 hazards? In order to address these questions, the CRYOBS-CLIM network collects, archives 264 and disseminates a comprehensive and consistent set of observations on the main components 265 of the terrestrial cryosphere (glaciers, snow, permafrost) in a series of instrumented sites 266 located at high altitudes and high latitudes (European Alps, tropical Andes, Himalayas, 267 Antarctica, Svalbard). The monitored variables and research topics are described in **Table S1**.

269 2.2.4. The *Tourbières* (Peatland) observatory is a network of four French instrumented sites 270 and one Siberian mire aimed at studying the effect of global change on the carbon sink 271 function and the hydrological budget of temperate and sub-boreal peatlands which are 272 ecosystems containing a third of the global surface carbon stock in an area accounting for 273 only 3-5% of the land surface. The French sites were set up in 2008-2010, according to a 274 climatic gradient (lowland to mountain climate), to ensure long-term monitoring of 275 greenhouse gases (GHG: CO₂, CH₄, H₂O, N₂O), dissolved and particulate organic carbon 276 (DOC, POC) fluxes as well as environmental variables that impact GHG, DOC and POC 277 fluxes, and to generate interoperable databases.

278

268

2.2.5. The **OSR (Regional Spatial Observatory)** is documenting the long term effects of climate change and increasing anthropogenic pressures on the hydrologic and agro-ecologic evolution of agricultural regions, at various spatial and temporal scales, in a perspective for sustainable management of water and soil resources. The OSR concept is implemented in two sites located in south-west France and in Morocco (Tensift Basin). The specific OSR approach is the extensive use of remote sensing for surface characterization (land use, vegetation cover, evapotranspiration, soil moisture, snow cover, etc.) combined with a multiscale monitoring network of (1) continuous long-term monitoring of experimental plots (crop and snow sites), (2) hundreds of plots annually monitored for surface state, land cover, etc., and (3) experiments conducted at catchment scale with reinforced observations for water and energy budget evaluation.

290

291 2.2.6. The **ROSES** (Observatory network for groundwater systems at French national level) 292 was initially set up to answer water management issues and was strengthened in the 293 framework of the implementation of the European Water Directive. It gathers more than 294 77 000 stations, with 74 000 groundwater quality-moniroring stations and 4400 monitoring 295 wells. All types of aquifers are monitored in Metropolitan territories as well as French 296 territories. All data within the ADES overseas are stored database (http://www.ades.eaufrance.fr) managed by several governmental agencies. 297

298

299 2.2.7. **OPE** (Long-lasting Observatory of the Environment) focuses on a landscape in the 300 eastern part of the Paris Basin (a few hundred km²) around the site pre-selected as the French 301 deep geological repository of high-level and intermediate-level long-lived radioactive wastes. 302 OPE is currently constituted of a monitoring network, covering forest and agricultural areas 303 and measuring atmospheric, meteorological, soil, surface and ground water, land use and 304 biodiversity indicators, providing a unique opportunity to document the interactions between 305 human activities and the CZ around an industrial project scheduled to run over 100 years (if 306 accepted).

307

308 2.3. Exploring the CZ with OZCAR observatories

309 As demonstrated in the above brief overview, OZCAR is a network of networks consisting of 310 highly instrumented sites: individual, nested or paired catchments, hydrogeological sites, 311 plots, glaciers, and lakes that are each monitored for a given set of parameters according to 312 the specific disciplinary question under which they have been designed. Table S1 shows that 313 the current situation is quite diverse in terms of monitored CZ compartments and scales, and 314 measured variables. This diversity not only reflects the heterogeneity of the CZ but also the 315 span of scientific questions and communities and in turn, the diversity of institutional 316 environmental research. The disciplines represented in the OZCAR are hydrology, 317 hydrogeology, biogeochemistry, agronomy, pedology, glaciology, meteorology, climatology, 318 and snow sciences.

319 As shown in Fig. 5 and Table S1, the OZCAR sites are located all around the world. In 320 France, they include sites in overseas territories like the tropical Caribbeans and Reunion 321 Island. OZCAR sites also exist in 18 other countries through partnerships between the French 322 Research Institute for sustainable Development (IRD) and national research institutions from 323 other countries (north Africa, west Africa, south-east Asia, India, and Amazonia, Andean, 324 Arctic, Antarctica, and Himalayan nations). The sites then cover a large range of climates 325 (oceanic, continental, mountainous, Mediterranean, tropical, polar), lithology (granites, 326 schists, volcanic rocks, limestone and sedimentary basins) and land use/land cover (tropical, 327 Mediterranean, mountainous forest; more or less intensive agriculture, peatland, urbanized areas, snow- and ice-covered areas). All sites have experienced several centuries, if not 328 329 millennia, of land management for agricultural practices, especially in the continental part of 330 France and in North Africa, Although focused on diverse scientific questions and variables, 331 all OZCAR observatories and sites can be considered as sharing the main overarching goal 332 which is how to monitor, describe and simulate the CZ evolution of a changing planet

333 (climate change, land use changes, changes in practices).

334 3. Instrumentation in OZCAR

335

336 All observatories integrated into OZCAR are highly instrumented. They have in common 337 standard field meteorological stations recording precipitation (liquid or solid), radiation, air 338 temperature and humidity, wind velocity and direction, atmospheric pressure. 339 Hydrometeorological observatories use radars, rain gauge networks and disdrometers to 340 provide accurate estimates of rainfall fields (e.g. Boudevillain et al., 2016). In the case of 341 glaciers and snow observatories, conventional meteorological observations are complemented 342 by field and remote monitoring of snow and ice related variables such as snow water 343 equivalent (SWE), surface specific area, runoff and albedo, or ground temperature, etc. The 344 height and extent of the snow surface are measured by various means (ultrasonic snow depth 345 sensors, photogrammetry, LiDar, RADAR, UAV and satellite) for all sites. Specific 346 measurements of the cryosphere also include cosmic ray counts for SWE measurements 347 (Morin et al., 2012), Snow Particle counter for drifting snow flux measurements (Trouvilliez et 348 al., 2014), high spatial and temporal resolution spectroradiometer for monitoring surface 349 albedo, or radar and seismic method for mapping bedrock. Observatories focusing on the 350 exchange of energy and matter between the ground and the lower atmosphere (including those 351 on glaciers) are equipped with eddy covariance towers or manual and automatic accumulation 352 chambers producing high resolution measurements.

Water discharge is measured at standardized gauging stations with high resolution recording by water level sensors of different types (floats, pressure sensors, radar sensors or ultrasound, Nilometer digital scales). For gauging flood discharge, non-contact methods have been developed and evaluated: surface radar, LS-PIV (Large Scale Particle Image Velocimetry) based on images from fixed cameras or videos on YouTube (Dramais et al., 2014; Welber et
al., 2016; Le Boursicaud et al., 2016). For large rivers, satellite data or ADCP surveys are
used (e.g. Mangiarotti et al., 2013; Paris et al., 2016).

360 Ground water levels are monitored using pressure transducers. Depending on the process of 361 interest (hydrological cycle, tides, barometric effect, earthquakes) the frequency of 362 measurements varies from one per day to 1 Hz or even greater. These conventional 363 measurements are complemented using multiparameter probes and sampling to analyze major 364 chemical elements and isotopic ratios using a wide range of natural and anthropogenic tracers 365 for water residence time (Leray et al., 2012; Celle-Jeanton et al., 2014). The use of heat as a 366 groundwater tracer is currently tested on several H+ sites (Chatelier et al., 2011; Klepikova et 367 al., 2014). Precise borehole sampling and monitoring is achieved through multipacker 368 systems, well nests or well clusters.

369 The unsaturated zone is less frequently instrumented, usually by soil moisture probes (TDR 370 sensors) and lysimeters allowing soil solution sampling (i.e. one RBV site (OHGE) or OPE). 371 Chemical analyses of river water and suspended matter are usually performed on discrete 372 samples collected in the field manually or by automatic remotely-controlled samplers or 373 triggered to water level or turbidity thresholds, therefore allowing for capture of extreme 374 flood events. Only a limited number of chemical variables in OZCAR are measured at a high 375 frequency, using commercial probes (conductivity, water temperature, dissolved organic 376 matter with fluorimeter and nutrients). Suspended matter concentration is also indirectly 377 recorded continuously at a number of sites using turbidimeters. At the OPE, significant efforts 378 have been made to develop in-situ chemical probes to expand our present ability of high-379 frequency chemical monitoring.

380 This brief overview of the in-situ instrumentation in OZCAR shows a large variety of 381 measurements, sensor types and frequencies of analysis, as well as the absence of

14

382 standardization. Different sub-networks inside OZCAR have however established common 383 measurement protocols. This is possible when relatively similar (homogeneous) 384 environmental settings are studied (like peatlands, hydrogeological sites, glaciers, permafrost 385 sites), but remains challenging for catchments of very different sizes or at sites studied from 386 the perspective of different disciplines each having different scientific conceptual views. As a 387 community effort, the RBV network (catchment approach) agreed upon a set of common 388 variables that should be measured in all observatories, meant to describe the CZ at the 389 catchment scale. The main difficulty of this exercise lies in the fact that all the required 390 disciplinary skills rarely exist in individual observatories. However, the advantage of 391 networking is that these disciplinary skills can be shared at the network level. Table 1 shows 392 the list of the 24 common parameters agreed upon and measured in small order catchments of 393 OZCAR. The variables cover all the measurable compartments of the CZ and are thought to be the best compromise among the cost of measurements, the ease of implementation and 394 395 their scientific relevance.

396 In 2011, the two networks RBV and H+ launched CRITEX, a program funded (2012-397 2020) by the French Government (Equipex program) for developing innovative instruments to 398 monitor the CZ. The overall goal of CRITEX (Challenging equipments for the temporal and 399 spatial exploration of the Critical Zone at the catchment scale) was to build a shared and 400 centralized instrumental facility for the long-term monitoring and exploration of the CZ 401 complementing and over-performing the existing site-specific equipments of RBV and H+ 402 networks. The instruments proposed in CRITEX (Fig. 6) can be grouped into three categories: 403 "state-of-the-practice", "state-of-the-research" and "state-of-the-science" (Robinson et al. 404 (2008). The "state-of-the-practice" instruments in CRITEX are well-established techniques 405 that are classically used to characterize the CZ (seismic, electric resistivity techniques, flux 406 towers, groundwater well equipements). They are typically used to characterize the OZCAR 407 CZOs. The "state-of-the-science" instruments are innovative and emergent (scintillometry, 408 hydrogravimetry, hydrogeodesy, optical fiber sensors, UAV exploration, self-potential and 409 spectral-induced polarization electrical methods, isotopic tracing, reactive and inert gas tracer 410 experiments). Examples of such intrumental developments by the CRITEX community are 411 given by Read et al. (2014) on the use of fiber optic distributed temperature sensing down 412 boreholes, Pasquet et al. (2015) for the coupling between P and S wave velocities, Schuite et 413 al. (2015) for the use of ground surface deformation for deducing properties of fractured 414 aquifers, Chatton et al. (2017) for the use of CF-MIMS (Continuous Flow Membrane Inlet 415 Mass Spectrometer) to monitor in-situ N₂, O₂, CO₂, CH₄, N₂O, H₂, He, Ne, Ar, Kr, Xe) at 416 high frequency (1 measure every 1.5 seconds) for exploring the CZ, and Mazzilli et al. (2016) 417 for the use of Magnetic Resonance Sounding (MRS) in karst aquifers to identify the presence 418 of water and to reconstruct seasonal variations of water within the unsaturated zone. Finally, 419 the "state-of-the-research" instruments are not commercially available yet and have been 420 developed as prototypes or instrumental platforms (marked by a star in Fig. 6) through 421 academic and industrial collaborations. Such instruments include a u-wave scintillometer for 422 determining latent heat fluxes in catchments over 1 km distances; the development of a soil 423 moisture sensor determing soil permittivity and bulk soil conductivity based on the soil 424 dielectric properties (Chavanne and Frangi, 2014); integrative sensors based on DGT 425 (Diffusive Gradient in Thin film) properties to measure U, Sr, Nd and Ni isotopes; the passive 426 "DIAPASON" system deployed in groundwater for isotope tracing (Gal et al., 2017) and the 427 development of a new MRS system for the unsaturated zone (Legchenko et al., 2016). 428 Different platforms were also developped in CRITEX. For example, the hydrosedimentary 429 platform RIPLE is specifically designed for extreme flood monitoring of mountainous rivers 430 measuring every 10 minutes water, fine and coarse sediment fluxes (Michielin et al., 2017). 431 The "River Lab" is a CRITEX prototype set up upon a "lab-in-the-field" concept, measuring

the chemical composition (major elements) of the river every 30 minutes (Floury et al., 2017).
Finally, the "River Truck" is a mobile laboratory containing instruments for continous
measurement of the concentration of dissolved gas (CF-MIMS) and major elements, to be
deployed during hot moments in the field. More information on CRITEX is available at
<u>http://www.critex.fr.</u>

437 Significant instrumentation efforts have also been achieved by the French cryosphere 438 community. POSSSUM (Profile Of Snow Specific Surface Area Measurement Using SWIR 439 reflectance) is an instrument that measures the specific surface area (SSA, a measure for the 440 grain-size) profile in snow boreholes with a vertical resolution of one centimeter and down to 441 20 m depth (Arnaud et al., 2011). RLS (Rugged Laser Scan) is an automatic laserscan designed to work in Antarctica that scans an area of 150 m^2 every day and allows for 442 443 monitoring snow accumulation, roughness change, sastrugi dynamics and more (Picard et al., 444 2016a). Solexs is an optical instrument for the measurent of irradiance profiles in snow which 445 can be related to snow microstructure and ice absorption (Picard et al. 2016b).

446 **4. Databases and metadatabases in OZCAR**

447

In order to comply with the public data policy, a mandatory condition for recurrent funding, most of the OZCAR observatories developed data and/or metadata portals where data can be accessed and sometimes downloaded. All portals in OZCAR provide research data with the exception of the ADES¹ portal that provides monitoring information about groundwater level and quality for the whole French territory and was primarily designed for operational use. A critical analysis of the portals reveals a large heterogeneity in practices in OZCAR: i) free access vs. access through login/password, or no access; ii) type of data that are provided:

¹ http://www.ades.eaufrance.fr/ConsultationPEBSSLocalisation.aspx

455 metadata only vs. possible downloading of the data; raw data vs. corrected data or more 456 elaborated products including simulation results; iii) access through information system and 457 GIS interfaces, including sometimes visualization tools, vs. access to files or to ftp files; iv) 458 data formats and storage: relational databases vs. files repositories; v) granularity of a dataset 459 (e.g. one rain gauge or all the data collected within one catchment); vi) level of information 460 provided in the metadata. More specific information on the diversity of current practices in 461 OZCAR is given in Appendix 2 (**Table S2**).

462 In terms of metadata provision, the RBV metadata catalog² (André et al., 2015) is a common 463 initiative for providing visibility to the data collected within RBV. It follows the INSPIRE³ 464 (INfrastructure for SPatial InfoRmation in Europe) norms and can harvest existing sites, when 465 the latter are compliant. For the other portals, a manual system was proposed to feed the 466 metadata. The usefulness of the data portal remains however limited because currently the 467 definition of the granularity of datasets is heterogeneous; metadata which are not 468 automatically harvested are quickly obsolete; metadata documentation is incomplete implying 469 that access to the data portals is not granted. One particular ambition of OZCAR is to improve 470 data accessibility and interoperability, building on the experience of the scientific teams 471 involved in the network. (see section 6.2).

472 5. Linking data and CZ models within OZCAR

473

In this section different modeling initiatives developed by the various scientific communities
gathered in OZCAR are reviewed. Surprisingly, despite the wide disciplinary spectrum found
in OZCAR, common trends can be depicted and observed at the international scale.

² <u>http://portailrbv.sedoo.fr/#WelcomePlace</u>:

³ <u>http://inspire.ec.europa.eu/</u>

477 Classically, models in OZCAR can be classified into process understanding, system
478 understanding and management/prediction purposes (Baatz et al., 2018).

479 All scientific communities in OZCAR have developed or used simple models for identifying 480 and **understanding CZ processes** at different scales in their observatories. Models are built 481 in order to interpret the collected data, but data can also question existing representations, in 482 particular when new sensors or increased resolution are available. Process identification is 483 performed by each discipline using mechanistic/physically-based models deployed usually at 484 small scales (plot to small catchment scale) that intend to represent processes complexity 485 using (partial) differential equations and describing the medium heterogeneity. Examples of 486 studies linking data and models conducted in the different OZCAR observatories are shown in 487 Appendix (**Table S3**). In-situ, long-term data as well as experimentation or laboratory 488 experiments are used to test these mechanistic models. For instance in H+, Klepikova et al. 489 (2016) showed how a series of thermal push-pull tests efficiently complement solute tracers to 490 infer fracture aperture and geometry by inverse modeling and better describe aquifer 491 heterogeneity.

492 Once elementary processes are identified, they can be combined in more or less integrated 493 models to provide a representation of system functioning. Several disciplines and/or 494 compartments of the CZ are involved at larger spatial scales (e.g. small to medium catchment) 495 and are generally addressed. Process representations are often simplified (i.e. process-based 496 models with approaches such as reservoir models) as compared to models deployed for 497 process understanding, because they must cope with a larger degree of heterogeneity. A 498 model calibrated with in-situ data is thus a powerful tool to extend the knowledge acquired at 499 local sites both in space and time (see examples in Table S3). Sensitivity analysis can also 500 help to identify functioning hypotheses that are the most consistent with observations, by 501 varying model parameters or comparing different processes representations. The AMMA-

502 CATCH observatory, in collaboration with African researchers, gives a good example of this 503 effort. In the Ara catchment (10 km²), observations of surface fluxes, soil moisture and 504 groundwater monitoring as well as geochemical, geophysical data and gravimetric 505 measurements (**Fig.** 7) showed that water uptake by deep rooted trees is the main driver of 506 groundwater discharge in dry season (Richard et al., 2013; Hector et al., 2015). The 507 mechanistic ParFlow-CLM model (Maxwell and Miller, 2005) incorporating the identified 508 processes, was chosen to reproduce the observed functioning (Hector et al., 2018).

509 Finally, a significant number of approaches developed in the OZCAR observatories are 510 motivated by societal challenges such as a better estimation of sea level rise, the prediction of 511 natural risks (floods, droughts, erosion, snow and ice avalanches, contamination, etc..), water 512 resources management, carbon storage, and other ecosystemic functions. The models used for 513 management and prediction purposes are usually inspired from those developed for system 514 understanding and are generally simplified to represent the main active processes and to be 515 used operationally and/or in real-time, due to computational time constraints, and to lower 516 data availability. For instance, Crocus (Brun et al., 1992), a numerical model used to simulate 517 snow cover stratigraphy and the blowing snow scheme SYTRON (Vionnet et al., 2018) were 518 initially tested using field experiments (Col de Porte and Col du Lac Blanc, CRYOBS-CLIM 519 observatory). They are implemented into the French operational chain for avalanche hazard 520 forecasting. Other examples are provided in Table S3.

521 Model integration and coupling between compartments of the CZ requires the development of 522 dedicated tools. Modeling platforms allowing for building models from available components, 523 and for managing exchanges of variables and fluxes between components have been 524 successfully developed in OZCAR, mainly by the hydrological community. KARSTMOD⁴ 525 was specifically designed to represent karstic aquifers and provides flexibility to build

⁴ http://www.sokarst.org/index.asp?menu=karstmod

526 reservoir-based models of various complexity (Mazzili et al., 2017). LIQUID (Branger et al., 527 2010) was designed to represent the heterogeneity of land surfaces using an object-oriented 528 approach (representing explicitly landscape objects). It was used to address different scientific 529 questions related to the impact of urbanization on water flow (Jankowfsky et al., 2014, 530 OTHU/Yzeron observatory) or flash flood understanding (Vannier et al., 2016, OHM-CV 531 observatory). OpenFLUID (Fabre et al., 2013) was developed in OZCAR to improve the 532 spatial modelling of landscapes dynamics and was successfully used to combine the 533 MHYDAS (Moussa et al., 2002) distributed hydrological model, along with an extension to 534 couple runoff and erosion (Gumières et al., 2011). Other initiatives addressed the automation 535 of time-consuming activities such as pre and post-processing (Lagacherie et al., 2010 for 536 agricultural catchments or Sanzana et al., 2017 for periurban catchments) or visualization and 537 analysis of the simulation results (Anguetin et al., 2014).

538 **6. Discussion**

539

540 OZCAR organizes pre-existing observatories and well-established communities, supported by 541 diverse funding institutions that have their own vocabularies and representations of the CZ 542 and are working at different timescales. This diversity mimics the physical and biological 543 heterogeneity of the CZ inherited from the geological and climatic histories at the local scale. 544 OZCAR was designed in order to allow the defragmentation of the CZ community at the 545 national scale. In this section, ambitious actions promoted by OZCAR, which should enable 546 the CZ community to progress towards a better integration of scientific questions, data, 547 instruments and models are presented. Visions of the internal organization of the network and 548 its involvements in international initiatives are also discussed.

549 6.1 Challenging scientific questions that can be addressed in OZCAR

550 Underlying the broad diversity of the disciplines, measured parameters and models 551 encountered throughout OZCAR sites are common, overarching scientific questions that serve 552 to provide fundamental insight into the inner dynamics of the CZ. These grand scientific 553 questions can be separated into three principal topics: 1) the "dynamical architecture" of the 554 CZ; 2) processes and fluxes that shape the CZ; and 3) CZ feedbacks and responses to 555 perturbations (**Fig. 8**).

556 <u>6.1.1. Dynamical architecture of the Critical Zone.</u>

557 The architecture of the CZ refers to its structural, physical, chemical and biological 558 organization. The spatial extent of the CZ is still poorly defined, which emphasizes the need 559 to better investigate its lateral and vertical organization, 1) to identify the role of the different 560 interfaces; 2) to quantify the impact of spatial heterogeneity and temporal intermittence on 561 fluxes, connectivity, concentrations and micro-organisms; and 3) to determine residence and 562 exposure times of material in the CZ. Here, the architecture of the CZ is defined in a 563 dynamical rather than in a static view. The dynamical architecture of the CZ can be translated 564 into a series of questions detailed in the following.

565 (i) What is the upper, lower and lateral extent of the Critical Zone?

The upper limit of the CZ is classically defined as the top of the atmospheric boundary layer. The portion of the atmosphere involved in the CZ as characterized by the location of this upper limit is variable and site specific, depending on local topography and wind patterns. On the catchment scale only the lower portion of the atmosphere is relevant, but when continental scale energy couplings are considered the whole atmosphere plays a role. As an example, a critical question in the assessment of geochemical mass budget studies in CZOs is in determining how to incorporate atmospheric inputs of dust or of Volatile Organic 573 Compounds. These compounds can be produced locally (in which case they are part of the 574 "soil" system) or can be produced at great distance (like Saharan dust in the Lesser Antilles or 575 the Amazon) in the form of marine aerosols that can serve as significant external input 576 sources to a given CZ site of interest.

577 The lower limit of the CZ is also often poorly defined and this question is complicated by the 578 fact that in many cases the CZ can be composed of multi-layered aquifers in which water 579 infiltrating from the surface can percolate very deeply with very long residence times 580 (Goderniaux et al., 2013; Flipo et al., 2014; Aquilina et al., 2015).

Since the CZ is not a 1D system, its lateral extent is equally as important as its vertical extent. Lateral compartments such as floodplains, peatlands, glaciers, or colluvium are important biogeochemical reactors on the continents that should be considered to fully address CZ functions. Describing the dynamical architecture of the CZ is thus a composition exercise, that requires not only the spatial, geomorphologic heterogeneity to be taken into account, but also the connectivity, i.e. the way hydrological patches are connected in space and time.

(ii) What are the residence and exposure times of water and matter in the different CZcompartments?

589 Determining the duration of time that matter spends in the CZ (residence time), as well as the 590 time that the matter is in favorable biogeochemical conditions to react (exposure time), is a 591 primary step in defining CZ architecture, as it is a direct indicator of its dynamical structure. 592 The residence time concept is typically associated with waters, but it can also be applied to 593 surface (glaciers) or ground (permafrost) ice, sediments and soils. For example, the residence 594 time of soil material results from a subtle balance between weathering and erosion and, 595 therefore, can provide insightful information into the rates at which soil material is formed or 596 transported out of the catchment as part of the CZ architecture characterization. Ecosystem 597 characteristic times are shown to change significantly with spatial scale and thus these diverse

598 scales must be investigated, taking advantage of the nested structure of observatories (Billings

599 and Sullivan, in press).

600 (iii) What are the Critical zone interfaces?

601 To overcome the inherent difficulty of describing a "dynamical architecture" of the CZ, one 602 can describe the CZ as a series of critical interfaces. At these interfaces between reservoirs or 603 compartments, energy, water and matter are transformed because of biological, physical and 604 chemical gradients (such as redox gradients). These interfaces may be permanent or transient, 605 depending on the hydrological cycle or on the succession of dry and wet seasons. Examples of 606 CZ interfaces are the topography, the atmosphere/ice-snow interface, the unsaturated-607 saturated zone interface, hyporheic zones, riparian zones, or more generally the groundwater – 608 river interface, or the topography of the bedrock-saprolite interface (weathering front).

609 (iv) What is the role of biota in the CZ architecture?

610 Biota plays a crucial role in most of the chemical and physical reactions in the CZ by 611 regulating hydrological and matter budgets through the control of evapotranspiration, the 612 production of physical stresses on the CZ, and through facilitating chemical reactions. Life is 613 not an explicit variable in all OZCAR sites, but a number of biological variables are measured 614 (particularly, through remote sensing). A challenge of CZ science and observatories is to 615 incorporate measurements that assess more explicitly the role of living organisms (and 616 humans) in the CZ. For example, the role of the "microbiome" is particularly unknown in the 617 world and is thought to be a significant contributor to the major geochemical and hydrological 618 processes governing the CZ (Sullivan et al., 2017).

619 <u>6.1.2. Processes and budgets: biogeochemical cycles, sediment and contaminant propagation</u> 620 through the CZ from highlands to sea.

621 The CZ, essentially fueled by solar energy, is controlled by a large number of chemical,

622 physical and biological processes that are tightly coupled at the plot, watershed and 623 continental scales. The concept of terrestrial biogeochemical cycles is probably the best 624 adapted to describe the loops in which water, matter, elements and contaminants occur at 625 Earth's surface. These loops act at different spatial and temporal scales and are not necessarily 626 closed at the size of a CZO. An overarching question is therefore: how to identify and 627 quantify the hierarchy of CZ processes that govern terrestrial biochemical cycles across 628 space and time? The search for these coupled processes shaping the CZ and their 629 quantification in terms of kinetics (i.e. of fluxes involved) is therefore central to the OZCAR 630 network. The different processes may be identified and quantified over small spatial scales 631 (grain, plot, hillslope) or may be described over very large scale in the case of large 632 watersheds (Billings and Sullivan, in press). Typical associated timescales may range from seconds to millions of years (Anderson et al., 2004; Robinson et al., 2008; Sullivan et al., 633 634 2016). Moving up through scales, new processes emerge that are not necessarily the sum of 635 the processes described at a smaller scale. Through a suite of observatories and nested 636 catchments, covering a mountain-to-sea continuum, combined with modeling, OZCAR aims 637 to address the following major questions related to the processes and fluxes through the CZ.

638 (i) Can we better quantify budgets of mass and energy across CZ observatories?

639 This includes constraining the different processes at play in the hydrological budget and their 640 spatial and temporal variabilities: precipitation, evapotranspiration or more generally 641 atmosphere-surface exchanges, wind erosion, infiltration or groundwater recharge, and 642 groundwater-river exchanges. These budgets, first applied to water, must also be applied to 643 other components (sediments, nutrients, contaminants or total mass) and thus to any particular 644 element regardless of its phase (gas, solute, particulate), including trace elements and 645 micronutrients, and should be established on timescales relevant to the systems considered. 646 OZCAR aims to combine different techniques, models, and tracers to achieve such a goal 647 (e.g. Sullivan et al., 2016).

648 (ii) How can high-frequency sampling help decipher CZ functioning?

Solving this question requires time series with sampling frequencies adapted to the different processes and to the scale of investigation. The couplings between processes at the plot or catchment scale can only be disentangled if high frequency measurements (from 1/hr to 1/min, depending on the process dynamics) are available. At larger scales, as inter-annual variability is large in the CZ, typically decadal observation series are necessary. Such longtime series have rarely been collected at the global scale so far and require a focused effort by the international CZ community.

656 (iii) What are the functions of biota in the CZ?

657 The role of biological processes and their quantification remains difficult in the CZ, partly 658 because measurable proxies of life-related processes are lacking. So-called "abiotic" and "biotic" processes are so intertwined that deciphering the causalities is a "chicken and egg" 659 660 problem. An important question, beyond species diversity, is to identify the functions of 661 macro and microorganisms in the CZ. "Biolifting" is a particularly interesting mechanism that 662 consists of nutrient withdrawal at depth by roots and release by organic matter decomposition 663 or throughfall inputs in the top soil. Spatially, the dynamics of organic carbon and nutrients 664 through the mountain to sea continuum also deserves more attention.

665

666 <u>6.1.3. Responses and feedbacks to biological, climatic and geological perturbations and global</u> 667 change: Earth's dynamic surface system.

668 The ultimate scientific question that OZCAR wants to tackle is "what is the response of the 669 CZ to perturbations and forcings that can be either "natural" (such as geologic or 670 meteorological forcing) or anthropogenic (such as climate change, shifts in land use, increase of resources exploitation)? Human activities are now considered as one particular and now prominent forcing factor of Earth's surface, and most of the OZCAR sites have been strongly impacted by human practices over time. As the CZ holds resources and offers goods and services to humanity, understanding how this dynamical system as a whole responds to events that can be, exceptional, periodic or continuous, is important in terms of better informing society and stakeholders (predicting flood events and associated risks, chemical or radioactive dispersion) and propose a scientific basis for an alternative management of these resources.

678 (i) How can we use Critical Zone Observatories to Earthcast?

679 Humanity faces unprecedented changes in climate, water and food security issues, and 680 population growth, so the main question is, how can we use different CZOs and their design 681 along gradients to quantitatively predict the response of Earth's surface to changes in global 682 or local forcing parameters, or in short, "Earthcast" (Godderis and Brantley, 2013; Sullivan et 683 al., 2018)? This question is associated with that of the representativeness of observatories. Is 684 heterogeneity the overriding controlling factor or can we, beyond the local diversity in 685 geology, rock texture, climate, soil and vegetation, land use and human practices define 686 general properties (such as state variable) characterizing the systems? Through their large 687 diversity of location, climatic and geological contexts, OZCAR observatories offer an 688 unprecedented opportunity to test the relevance of this hypothesis. Monitoring Earth's surface 689 through a series of observatories (Banwart et al., 2013, Kulmala et al., 2018) poses the 690 question of how these observatories should be chosen, designed and monitored and also 691 highlights the necessity of defining common metrics for CZOs (Brantley et al., 2016, Sullivan 692 et al., 2017).

693 (ii) How do processes with small characteristic times and limited spatial imprint694 influence the longer timescales and larger spatial scales?

695 The perturbations induced by human activities on the CZ are a typical case of coupling

696 between timescales, where human actions may be short-lived, but could have lasting 697 consequences over long timescales. A typical example is that of Laos where a change of land-698 use from rice crop to teak forest resulted in spectacular and irreversible acceleration of 699 erosion rates (Valentin et al., 2008; Ribolzi et al., 2017). The idea that biota in the CZ 700 responds quickly to climate change and that the structure, function and dynamics of the CZ 701 can change on timescales much faster than currently considered is particularly important 702 (Sullivan et al., 2018).

703 The knowledge acquired from observatories can be incorporated into integrated models, able 704 to model and couple the various components of the CZ at different space and time scales, in 705 order to better quantify fluxes and storages in the CZ and simulate its response to global 706 change. These models should also have a predictive power to address questions raised by 707 societies and stakeholders, such as risk assessment related to floods, droughts, landslides, 708 contamination or water resources shortage. By increasing the common use of models and 709 data, well-instrumented CZOs offer a unique opportunity to understand small-scale processes 710 and to hierarchize their importance according to different environmental and climatic 711 conditions. The development of nested instrumentation, as already done in some OZCAR 712 observatories, provides tools to assess the validity of simplifying assumptions and to address 713 the change of scale problem and how dominant processes may change when moving from 714 small to larger scales. Another challenge, also highlighted in the first scientific question, is the 715 proper integration of the biotic components as well as representations of human 716 infrastructures and activities in CZ integrated models (Billings and Sullivan, in press).

717

(iii) Can we predict CZ trajectories?

718 All parameters being constant, is the evolution of the CZ at a CZO reproducible? In other 719 words, if the same initial conditions are met, would two similar CZOs follow the same 720 evolutionary trend under the same forcing? Could it also be possible that bifurcations in the

evolution of the CZ caused by heterogeneities or sudden changes would result in different evolutionary patterns? Human actions, fires, sudden erosional events, the importance of extreme events on system evolution are factors that could act as tipping events in the evolution of the CZ which clearly need to be better appreciated and incorporated into CZ models. This is why working with socio-ecology is essential.

726

727 *6.2. Challenges in instrumental development*

728 A main challenge of future CZ instrumentation is to define tools and methods to image how 729 water flows, and how the heterogeneous structure of the geological, soil and biospheric media 730 generates reactivity hotspots at moving interfaces. Adapted spatial and temporal resolution 731 over a wide range of scales is therefore required to capture emerging patterns driven by water 732 flow in the subsurface, with the main challenge being how to define the right scale of 733 heterogeneity and adapt the instrumentation accordingly. A number of techniques currently 734 available for exploring and probing the CZ may not be adapted to the necessary scale of 735 investigation. This is particularly true at the smallest spatial scales (such as the catchment or 736 plot scale) where geophysical imaging is usually at insufficient resolution, where geochemical 737 signals are not recorded at a sufficiently high temporal frequency, and where spatial 738 techniques are still irrelevant.

(i) Addressing the challenges in instrumentation in order to significantly move forward in our understanding of the CZ functioning

First, high time- and space-frequency of measurements is clearly a frontier in CZ instrumentation. High-frequency acquisition already exists for parts of the CZ like those for atmospheric-ground exchanges of matter and energy (using flux tower or accumulation chambers), or for water levels in piezometers and river gauging stations, but significant 745 progress still needs to be accomplished particularly for spatialization. Better spatial resolution 746 of ground sensors will improve the link with remote sensing data. Cosmic ray investigation or 747 scintillometry are promising techniques that link local to larger scale observations but still 748 require important technological and theoretical development to be adapted to observatories 749 with marked topography. Compared to water and gas, chemical parameters and solids (in 750 suspension or as bedload) are rarely measured at a high temporal frequency in rivers and 751 aquifers, which should be considered as a priority at the catchment or watershed scale. Commercially-available lab instruments could be beneficially deployed in the field to 752 753 decrease required manpower and allow for cost-effective sample manipulation, provided that 754 the issue of water filtration can be solved. This concept has been developed in oceanography 755 ("lab on ship") but is still in its infancy in terms of CZ research. The "River Lab" concept 756 described above (Floury et al. 2017) is an example of such a promising approach. A "snow 757 lab" to probe the surface and the snowpack would also provide a major step forward in the 758 observing capabilities of snow. Industrial solutions exist including in-situ sampling, pumping, 759 filtration and on-line analysis, which should be adapted to field requirements to be sufficiently 760 resistant to extreme field conditions (cyclones, extreme cold events). If, in principle, all lab 761 instruments can be deployed in the field, the "lab-in-the-field" concept would strongly benefit 762 from the development of low-cost sensors, which have the advantage of being miniaturized, 763 less sensitive to fouling than most commercial probes, deployable at a high spatial resolution 764 and eventually able to provide real-time data. The development of low-cost chemical sensors 765 for major solutes, for water in the unsaturated zone and for monitoring solid fluxes in rivers 766 and glaciers is an instrumental challenge that needs a significant investment. Biological data 767 (smart tracers, DNA) acquired at high frequency is also an area of instrumentation requiring 768 considerable development.

769 The second promising direction of instrumental development, requiring a significant

30

770 experimental and theoretical effort, is the improvement of the time resolution of geophysical 771 imaging of the CZ ("time-lapse" geophysics) in order to move from snapshot views of the 772 inaccessible CZ to the imaging of preferential water pathways. In addition, down-hole 773 exploration and associated experimentation for time-lapse imaging need to be developed as a 774 complement to the ground-based time-lapse exploration. The sensitivity of some geophysical 775 properties to biogeochemical reactions is transforming "hydrogeophysics" into 776 "biogeophysics" (Binley et al., 2015), a promising field at the frontier of ecological and earth 777 sciences.

778 Finally, data transmission and synchronization are prerequisites for developing high 779 frequency observation strategies. Autonomy is also particularly important for reducing the 780 costs of human resources as well as for studying inaccessible CZ components (anoxic 781 groundwaters, caves) or moments (extreme events). It is necessary to develop low-cost/low-782 energy tele-transmission strategies and systems for harsh and remote environments in order to 783 minimize time-series discontinuity and obtain a large spatial coverage. It is also essential to 784 explore new energy sources and to consolidate existing solutions, in particular within cold 785 environments.

(ii) How can OZCAR help achieve significant instrumentation advances in the exploration of the CZ?

Given the instrumental challenges listed above, a significant effort in the upstream development of sensors is required, necessitating the collaboration of users (CZ scientists) with sensor developers. Regardless of the need for higher space- and time-frequency, many variables of interest in CZ science are still challenging to measure (e.g. most snow internal properties, precipitation amount and phase; Grazioli et al., 2017) and require innovative developments. Overall, there is a real challenge in encouraging the CZ community to meet with fundamental chemists, physicists, computer scientists or biologists to develop new

795 sensors. A good example is the extraordinary development of microfluidic techniques 796 supporting unprecedented miniaturization of sensors as exemplified by numerous medical 797 applications. The role of OZCAR will therefore be to develop a network-level technology 798 survey on emerging technologies and technological forums associating sensor developers and 799 CZ scientists on network-level questions like sensor autonomy, data transmission, and 800 assessment of the ability and reliability of automatic sensors to accurately measure CZ 801 parameters (Trouvilliez et al., 2015, Cucchi et al., 2017). Ocean and atmospheric scientists 802 have also made significant progress over the last decades on the real-time acquisition of 803 chemical and physical data that should be of high impact for CZ communities. Existing 804 structures exist like ENVRIplus (an inter ESFRI initiative addressing instrumental challenges) 805 or SPICE (Snow Precipitation Intercomparison Experiment) that should also help create 806 favorable conditions for sensor development. An assessment of the ability and reliability of 807 automatic sensors to accurately measure CZ parameters is still required. This is even more 808 true when low-cost sensors are considered (Trouvilliez et al., 2015). This can be done through 809 specific campaigns organized in the framework of OZCAR, similar to what has been done 810 globally by WMO during the SPICE project in which CRYOBSCLIM participated.

OZCAR finally aims to be a community space for dissemination of sensors and skills and for sharing instruments among the field sites along varying environmental conditions. Sharing instruments within the OZCAR network will follow the model of the CRITEX instrumental facility. Instruments are purchased and managed by individual teams but are accessible to any OZCAR community member. This organization requires training workshops for field-based teams to learn how to use instruments and treat data.

817

32

818 6.3 Challenges in data management

819 The large amount and variety of data produced in the OZCAR is expected to increase in the 820 near future due to the increase of high-frequency acquisition systems and the development of 821 new sensors. Simultaneously Open Data is pushed in Europe by the INSPIRE directive for 822 spatial data and the Aarhus agreement⁵ for environmental data. This requires data to be 823 permanently and freely accessible on-line, allowing data discovery, visualization and 824 downloading. Open data is expected to enhance new connections between datasets, data 825 mining, and easier use in models. Scientists are aware of these possibilities, but may remain 826 reluctant to openly provide their datasets. Reasons put forward are: lack of technical skills or 827 human resources, legal constraints, data quality and validation, priority for their personal use 828 through embargo on their datasets, lack of traceability of open data and lack of 829 acknowledgement of their work. Open data also raises practical questions about the definition 830 of a dataset, its granularity, its documentation, the juridical status of data (Becard et al., 2016) 831 and technical issues about interoperability between systems often developed independently, 832 the availability of the required expertise for web sites design and maintenance, and of course 833 of associated costs.

834 (i) The challenges in CZ data and metadata access

Identifying, cataloging, and sharing data within OZCAR is a great challenge, starting from a very heterogeneous situation (see section 3), that is common in environmental observation (Horsburgh et al., 2009). Visibility within the scientific community is also a great challenge, pleading for a common metadata/data portal. Given the investment of observatories in data portals and the preference that data remain as close as possible to their producer (Zaslavsky et al., 2011), it seems unrealistic to begin anew and propose the same technical solution for all observatories. The most efficient approach is to work on interoperability between existing

⁵ <u>http://ec.europa.eu/environment/aarhus/</u>

842 sites, so that metadata first, and data soon after, can be harvested and accessed transparently 843 by users (e.g. Ames et al., 2012). This challenge of data sharing and interoperability is 844 common to the environmental science community and has lead to initiatives such as the 845 Hydrologic Information System by the CUAHSI⁶ consortium (Horsburgh et al., 2009, 2011) 846 for hydrological observatories, EarthChem system (Lehnert et al., 2010) for geochemical data 847 or CZOData (Zaslavsky et al., 2011) for the CZO Data Management System. All these 848 initiatives had to address semantic and syntactic heterogeneity and proposed shared controlled 849 vocabulary for data and variable indexation (e.g. Horsburgh et al., 2014) and common 850 standards for a data model (e.g. Horsburgh et al., 2008; Zaslavsky et al., 2011). Although 851 individually successful, these initiatives showed limitations in incorporating new data types or 852 sharing data between communities. This led to the development of a second generation of 853 Observation Data Model (Horsburgh et al., 2016; Hsu et al., 2017) handling different kinds of 854 data. Concepts such as the O&M (Observation & Measurement⁷) and SOS (Sensor 855 Observation Service⁸) for data harvesting must also be explored and the cost of their 856 deployment evaluated before designing the OZCAR portal.

857 (ii) How can OZCAR help achieve progress in CZ data management?

OZCAR aims at building a common metadata/data portal gathering metadata first, thus ensuring data discovery, and going very soon to data access, taking advantage of the expertise present in the various observatories and of existing international initiatives. First exchanges with the OZCAR community showed that, to be useful, the data portal must provide information down to the level of available variables with their associated location and detailed time windows. This task will require working on the following points: i) agreement on the fields and file format for providing the metadata so that they can be exposed following

⁶ Consortium of Universities for the Advancement of Hydrological Sciences, <u>https://www.cuahsi.org/</u>

⁷ <u>http://www.opengeospatial.org/standards/om</u>

⁸ http://www.opengeospatial.org/standards/sos

865 standards (e.g. INSPIRE) and can be used for other purposes such as DOI declaration; ii) 866 agreement on the various entries to find data in the portal (location, dates, variables, climate, 867 geology, observatory, programs, funding institutions (Ames et al., 2012) and iii) definition of 868 a common ontology and controlled vocabulary for naming the variables. Mapping of existing 869 variables towards a commonly shared vocabulary based on the GCMD⁹ (Global Change 870 Master Directory) keywords is in progress; iv) define fluxes of information between the 871 OZCAR portal and existing portals so that the information is always up to date; and v) 872 document the data lifecycle and propose archiving solutions for long term preservation 873 (Massol and Rouchon, 2010; Diaconnu et al., 2014).

The metadata portal should enable users to download data even if the latter are located in distributed data centers. The downloaded data will be supplied to the users in an identical format. The portal will be considered as a success if researchers use it to retrieve the latest versions of their own data.

The recognition of scientists acquiring data is also a major point to which attention must be paid. Initiatives such as DOI (Digital Object Identifier), data papers (e.g. Nord et al., 2017; Guyomarc'h et al., 2018) and licensing of the datasets (e.g. Creative Common licenses¹⁰) will be encouraged within OZCAR by providing guidelines on the definition of the corresponding datasets, their granularity, and on filling the associated metadata. It is also planned to propose a minimum Information System kit for observatories that lack the required expertise.

- 884 6.4 Linking data and models, ambitions and objectives
- 885 OZCAR aims to provide a seamless holistic understanding of the terrestrial compartments of
- the Earth System and an integrated representation of the coupled water, energy and matter

⁹ https://earthdata.nasa.gov/about/gcmd/global-change-master-directory-gcmd-keywords

¹⁰ https://creativecommons.org/share-your-work/licensing-types-examples/
cycles, including biogeochemical cycles (e.g. Filser et al., 2016), covering various spatial and temporal scales and incorporating the heterogeneity of the critical zone. Such integrated approaches are required to "earthcast", i.e. assess the effect of future global change or socioeconomic scenarios on all the compartments of the CZ (Godderis and Brantley, 2013). To address these scientific challenges, stronger interactions between data science and modeling approaches are necessary (e.g. Kirchner, 2006; Braud et al., 2014; Brantley et al., 2016), raising key cognitive and technical challenges.

894 (i) Scientific and technical challenges in linking CZ data and models?

895 A first challenge is related to the process representation at different scales. At small scale, the 896 identification of elementary processes can benefit from instrumental progresses listed in 897 section 6.2. One example is the development of geochemical reactive transport models (i.e. 898 Steefel et al., 2015) at the catchment scale exploiting in particular high frequency datasets of 899 stream chemistry, constraints from new isotopic systems (Sullivan et al. 2016), and the new 900 representation of heterogeneities at the grain-size (Le Borgne et al., 2013). Another challenge 901 is the proper representation of vegetation and biological activity on chemical and physical 902 reactions that determine hydrological and matter budgets. When moving to larger scales, 903 unstructured heterogeneity, non-linearity and thresholds at all scales (Blöschl and Zehe, 904 2005), and the scarcity of integrated data at the scale of interest (Cook, 2015), preclude the 905 use of the same approach. It also becomes necessary to include human interactions within the 906 system (water uses, infrastructures, agricultural and forested land management, etc..), to 907 create socio-hydrological models (Sivapalan et al., 2012). Equations and representations 908 derived at small scales are often used for larger scales, but this approach is questioned as data 909 reveal behaviors such as "emergent properties" (Sivapalan, 2003; McDonnell et al., 2007) that 910 cannot be represented by aggregation of small scale processes to larger scales, calling for new 911 theories (e.g. Kirchner, 2009, Braun et al., 2016) as well as new concepts for non-explicitly

912 resolved processes (i.e. "parameterization" as defined by the atmospheric science913 community).

914 A second challenge is to progress towards integrated modeling of the CZ, requiring the 915 deployment of coupling strategies. Direct coupling is relevant for exchanges such as water 916 and energy fluxes across the surface that are represented in land – surface models and now 917 incorporate many processes of the continental surface and sub-surface (e.g. SURFEX 918 (Masson et al., 2013) or ORCHIDEE¹¹ (Ducoudre et al., 1993; Krinner et al., 2005). Other 919 examples such as PARFLOW-CLM (Kollet and Maxwell, 2006), DHSVM (Wigmosta et al., 920 2002), PIHM suite (Duffy et al., 2014) as well as the Dhara modeling framework (Le and 921 Kumar, 2017), are built around an initial model that can be enriched with different coupled 922 modules. They all require specific data transfer and the integration of new modules to fit the 923 model requirements (language; mesh and grid resolution; name of variables; etc). Another option is to use couplers such as OPEN-MI¹², OpenPALM¹³ (Piacentini, 2003) that generally 924 925 preserve model legacies and provides interfaces for their coupling, but also robust coupling 926 methods and complementary tools such as data interpolation. A third option is to design 927 platforms that allow coupling various modules and model representations, keeping the 928 specificity of each component in terms of model mesh, time steps, and that provide interfaces 929 to couple models but also a framework for the runtime environment such as LIQUID (Branger et al., 2010), CSDMS¹⁴ (Peckham et al., 2013), OpenFLUID¹⁵ (Fabre et al., 2013), and 930 JAMS¹⁶ (Kralisch and Krause, 2006). Process coupling may also call for the definition of 931 932 more adapted variables and/or standardized interfaces to favor the coupling between modules

¹¹ <u>http://forge.ipsl.jussieu.fr/Orchidee</u>

¹² https://sites.google.com/a/openmi.org/home/dashboard2

¹³ <u>http://www.cerfacs.fr/globc/PALM_WEB/</u>

¹⁴ http://csdms.colorado.edu/wiki/Main_Page

¹⁵ <u>http://www.openfluid-project.org/</u>
¹⁶ <u>http://iams.uni-iena.de/</u>

933 describing various processes. Choosing or designing technical solutions adapted to the 934 complexity and heterogeneity of the CZ remains challenging and is an active area of research. 935 In some cases, the dynamics of interfaces should be considered in itself as a research issue 936 requiring adapted characterization and modeling methods. Interactions between vegetation 937 and sediment transport in rivers benefit from the development of accurate topographical 938 devices like LiDAR and require new models for sediment transport and river evolution 939 (Brodu and Lague, 2012; Jourdain et al., 2017). New data can also reveal the spatiotemporal 940 dynamics of exchange variables and fluxes (McDonnell, 2017), questioning current 941 representations. For example, aquifer-river fluxes revealed by fiber-optic temperature data 942 potentially modify the status of the exchange fluxes from boundary conditions to forcing 943 terms (Anderson, 2005; Klepikova et al., 2014). In hydrogeo-eco-logy, coupled nutrient 944 transfer and characterization of microorganisms requires recasting classical residence time 945 concepts in the framework of exposure time concepts where hotspot organization can be 946 integrated (Pinay et al., 2015).

Common issues shared at each step of modeling, either when identifying processes or when coupling them, are related to the ability to manage uncertainties coming from observations, process understanding and model parameterizations. This requires the design of calibration and model evaluation criteria and data assimilation systems that are able to account for this uncertainty. Numerical uncertainty must also be quantified when models are used for predictive purposes.

From a more technical point of view, important challenges are related to our ability to perform coupling between process modules running at different space and time scales; and to link databases, GIS layers and models (Bhatt et al., 2014). Facilitating data – model interactions to build integrated modeling requires novel technical developments allowing both data interoperability and model sharing (e.g., OLES project; Anguetin et al. (2014); CSMDS

project, Peckham et al. (2013), CUAHSI community model¹⁷ and web services based on the 958 959 Basic Model Interface (Jiang et al., 2017)) and needs to be extended to a larger scientific 960 community (Kumar, 2015; Yu et al., 2016). Such platforms may also benefit from distributed 961 computing facilities that help to keep model development closer to the developers. Moreover, 962 improved visualization capacities are also necessary to represent modeling results and provide 963 more accessible pathways to environmental processes for the broader scientific community 964 (Leonard and Duffy, 2014). Implementing such tools (e.g. Paraview¹⁸) in the modeling 965 platform will benefit both observational data and modeling data exploration.

966 In addition, the availability of new data, at unprecedented space and time resolutions, related 967 to the rapid development of new sensors, high resolution satellite data and data obtained by 968 experimentations that provide information on more diverse variables, sometimes indirectly 969 related to the variables of interest. Big data challenge current modeling practices that were 970 developed in a data scarce context. This will transform relations between data and models 971 with critical improvements needed in computation, calibration and assimilation capacities 972 (Liu et al., 2012). The availability of a large amount of data also opens new perspectives for 973 the derivation of data-driven models (e.g., Kirchner, 2009), that can benefit from data mining 974 and big data analysis (e.g., Bui, 2016) and allow for reduction in uncertainties. Data mining 975 can also be used to infer the geometry and model parameters for large systems (Bodin et al., 976 2012), and provide complementary calibration strategies for high-dimensional models (Bui, 977 2016; Hsu et al., 1995; Shortridge et al., 2016).

978 (ii) How can the OZCAR community contribute to these challenges?

Einking data and models will be one of the pillars of OZCAR. In terms of processrepresentations, the large climatic/ecological/pedological/biological gradients covered by

¹⁷ https://www.cuahsi.org/data-models/community-models/

¹⁸ https://www.paraview.org/

981 OZCAR, including sites highly impacted by human activity, offer opportunities for providing 982 data at small scales (grain, macropore and catchment scale) and identifying the elementary 983 processes to be implemented into models. Nested instrumented catchments provide data to 984 tackle the change of scale problem and identify and model "emergent" behaviors.

985 To cope with the diversity of models used within the OZCAR community (see Table S3), not 986 a single CZ model will be considered (Duffy et al., 2014) and coupling between existing 987 models or modular modeling platforms will be used, in order to build dedicated models, 988 adapted to the scientific questions and data availability. Such platforms have already started to 989 be used for integrated land surface - aquifer modeling (e.g. the AquiFR project in France; 990 Habets et al., 2015) and other examples were listed in section 5. OZCAR will also explore 991 complementarity approaches that are often opposed in the literature, like in the use of detailed 992 mechanistic models (Godderis and Brantley, 2013) versus simplified models able to capture 993 the main functions within the critical zone (Savenije and Hrachowitz, 2017). With the 994 development of adapted assimilation techniques approaches, the combination of data and 995 models will ultimately lead to CZ reanalysis, providing valuable and novel information about 996 the CZ; as already widely used by the atmospheric science community to produce reanalyses 997 of the state of the atmosphere and of the components of the water cycle at the global scale 998 (e.g. ERA-Interim; Berrisford et al., 2011). Implementing all the tools will require that the 999 OZCAR community expand to applied mathematicians and computing engineers, and train a 1000 new generation of CZ modelers.

1001 6.5 Structural framework of the OZCAR network: possible topologies for OZCAR

1002 OZCAR gathers scientists from different disciplines, both from academic and applied 1003 research, and a large number of monitored sites that share a common set of instruments used 1004 for probing the near surface of our planet. Organizing the topology of such a network is important not only for helping this heterogeneous community to identify network-level ideas and scientific hypotheses to be tested, but also to help promote CZ science and maintain recurrent funding by institutions, to improve the visibility of CZ science to society, and to improve collaborations with other Earth surface and environmental science networks.

1009 Several topologic models that optimize the goals pursued by OZCAR are proposed. In all 1010 cases, site-based observatories are the permanent and pivotal structures, recurrently funded by 1011 different environmental research institutions.

1012 A number of existing research infrastructures, developed in particular by climate and 1013 atmospheric science communities, measure one parameter or a limited set of parameters in a 1014 series of instrumented sites along gradients. One successful example of such variable-centered 1015 RI is provided by ICOS, (Integrated Carbon Observation System) a network of flux towers 1016 measuring CO₂, as well as other GHG and energy fluxes along climate gradients then directly 1017 connected to climate models. By contrast, OZCAR, and more generally worldwide CZ or 1018 LTER (Long Term Ecological Research) observatories assemble a more complex and diverse 1019 set of instruments measuring parameters determined by local or regional processes (geology, 1020 climatology), that are used to target a systemic approach.

1021 A first possible topology is to define a set of common scientific questions within the 1022 network and to organize OZCAR in sub-networks targeting these questions. Several common 1023 questions or scientific themes can be proposed that supersede the heterogeneity of existing 1024 site-based observatories and foster scientists and disciplines to collaborate. One theme could 1025 be reactive transport in porous media. It would associate research teams focusing on 1026 hydrogeological, hydrological and biogeochemical processes to understand and model the 1027 interaction between water, minerals, life and solids in aquifers using the diversity of OZCAR 1028 observatories. Another group could be organized on CZ science in headwater catchments, 1029 targeting the identification of elementary mechanisms or closing mass and energy budgets

1030 locally. Another transverse theme common to numerous observatories could be a "CZ-1031 carbon" theme on the topic of carbon storage in the CZ and its relation to functional 1032 biodiversity and the 4‰ initiative¹⁹. A last thematic cross-site program could address the 1033 upscaling issue by targeting the large spatial scales, including the remote sensing resources 1034 from OZCAR and taking advantage of the regional-to-continental scale observatories (e.g. 1035 Amazon basin).

1036 A second topology model would be a **network organization in clusters of sites**. In such a 1037 model, the different site-based observatories of OZCAR, targeting variable compartments of 1038 the CZ (glaciers, peatlands, catchments) would ideally be co-located within a territorial entity 1039 that can be a large river basin or a "geo-climatic" entity. This organizational scheme is not far 1040 from that of the TERENO (Terrestrial Environmental Observatories) terrestrial infrastructure 1041 developed by the German Helmoltz Association (Bogena et al., 2006, Zaccharias et al., 2011). 1042 Each TERENO consists of a series of instrumented atmospheric, hydrological, ecological co-1043 located sites representing the dominant terrestrial processes, land use, climate and 1044 demographic gradients. The entities could also be socio-ecological systems in which the long-1045 term observatories of OZCAR are co-located. Socio-ecosystems are typically the setting of 1046 the Long Term Socio-Ecological Research (LTSER) observatories (Haase et al., 2018). This 1047 organization in clusters is also close to the "hub-and-spoke" topology proposed by Brantley et 1048 al. (2017) in the US. A hub is a highly instrumented CZO (essentially river catchments) in 1049 which the broader common metrics of measurements have been defined and which is 1050 connected to "satellite" sites focused on a particular compartment of the CZ and in which 1051 fewer parameters are monitored.

1052 Finally, a last topologic model for OZCAR could be based on instrumentation. OZCAR

1053 could be seen as a network of instruments, some of them mobile (e.g. seismology), some

¹⁹ <u>https://www.4p1000.org/</u>

1054 others permanent and site-based (i.e. gauging stations, piezometers). The infrastructure could 1055 then be organized according to the different sub-networks of instruments allowing for 1056 exchange of good practice, data, and models between scientists and centralization of data at 1057 the national scale. The instruments and instrumented sites would then be considered as a 1058 resource community to test hypotheses along gradients or by combining different exploration 1059 techniques. For example, one could imagine a network of mobile hydro-geochemical stations 1060 acquiring high-temporal resolution (Floury et al., 2017) data and covering climate, geological, 1061 and land use gradients. On-site experimentation could also be an added value of such an 1062 infrastructure. This vision of OZCAR as a national equipment facility for the study of the CZ 1063 does not preclude a site-based systemic approach, which is important for the societal 1064 relevance of CZ studies at the local scale (at the scale of "territories"), but it offers structure 1065 for the RI and is fostering collaboration within disciplines. Such a model of organization has 1066 been chosen by other RIs in physics and deep Earth science. A good benchmark is the EPOS 1067 RI monitoring earthquakes, volcanic eruptions, tsunamis and plate tectonics in general with a 1068 common set of integrated data, models and facilities (https://www.epos-ip.org/).

Whatever the structure of OZCAR will be in the future, it is essential that the elementary components, the long-term observatories, be maintained and funded. Any topology should be flexible enough to incorporate new sites or instruments and be interoperable with the other RI dedicated to the study of Earth's surface.

1073 6.6 Insertion into international networks

1074 Born under the leadership of the US-NSF, the CZEN initiative has fostered the development 1075 of CZ networks in various countries either by restructuring existing geoscience-centric 1076 observatories or by launching competitive calls for encouraging multidisciplinary approaches 1077 on existing observatories (Sullivan et al., 2017; Feder, 2018). The Biological and 1078 Environmental Research Subsurface Biogeochemistry Program of the Department of Energy 1079 (DEO) in the USA has developed the "Watershed Function Project", a instrumented 1080 watershed-based network taking a "system-of-systems" approach (Hubbard et al., 2018) and 1081 utilizes a scale-adaptive simulation approach to quantify how fine-scale processes occurring 1082 in different watershed subsystems contribute to the integrated, time-dependent export of 1083 water, nitrogen, carbon, and metals. In Germany, the TERENO network created in 2008 is 1084 constituted of 4 distributed observatories exploring the long-term ecological, social, and 1085 economic impacts of global change at the regional level by measuring above- and below-1086 ground variables and biosphere parameters, and coupling them to remote sensing techniques 1087 (Zaccharias et al., 2011). The EU funded between 2009 and 2014 the SoilTrec program 1088 gathering 4 European CZOs located along a conceptual life cycle of soil. SoilTrec developed 1089 an integrated model quantifying soil processes that support food and fiber production; 1090 filtering, buffering and transformation of water, nutrients and contaminants; storage of 1091 carbon, and biological habitat and gene pool (Banwart et al., 2013). China and UK co-funded 1092 in 2016, 6 CZOs representing different geology, soil and land use types in China. In Australia, 1093 CZOs have been established in synergy with existing LTER and the Terrestrial Ecosystem 1094 Research Network (TERN) (Karan et al., 2016).

1095 In 2014, the EU started to fund different projects aimed at building a pan-European 1096 infrastructure, integrating European LTER, Critical Zone and Socio-Ecological Research 1097 observatories. This led to an ESFRI (European Strategy Forum on Research Infrastructure) 1098 project (eLTER RI) that has been included on the ESFRI road map in 2018 (http://www.lter-1099 europe.net/elter-esfri). This initiative echoes the need of initiating a dialog between 1100 geoscience, bioscience and social science communities, restructuring the existing 1101 observatories and co-designing Earth Surface models and observation strategies that take into 1102 account socio-economical constrains (Richter and Billings, 2015; Mirtl et al., 2018). Together

with the French LTSER network of the "Zones Ateliers" (RZA), OZCAR constitutes theFrench mirror of eLTER ESFRI.

Though the scientific approach and the monitoring strategies are different from the US-NSFfunded program, we hope OZCAR offers a model of integration of pre-existing observatories of the CZ at the national scale motivated by ambitious scientific and educational goals shared by the international community (Sullivan et al. 2017).

1109 **7. Conclusions**

1110 In this paper, we described the ambitions and goals of the newly-created national research 1111 infrastructure OZCAR. OZCAR-RI aims to be the French initiative for the global Critical 1112 Zone Exploration Network (CZEN). OZCAR is gathering a number of pre-existing 1113 instrumented sites grouped in 21 observatories and used for conducting long-term 1114 observations or experimentations and encompassing wide gradients of climate, geology, land 1115 use and land cover. The OZCAR network is assembling sites initially developed for 1116 hydrometeorological, hydrological, hydrogeological, biogeochemical questions, as well as 1117 sites focused on the cryosphere or using remotely sensed observations. The wealth of OZCAR 1118 observatories is inherited not only from the geologic, pedologic and climatic heterogeneity of 1119 the CZ along the mountain-to-sea continuum and along depth, but also from the range of 1120 timescales that characterize its functioning. OZCAR sites and observatories have their own 1121 initial scientific questions, monitoring strategies, databases, and modeling activities, but all 1122 share the main overarching goal: to monitor, understand and simulate CZ adaptation to a 1123 changing planet in the "new climatic regime" (Latour, 2018).

1124 The challenge of OZCAR is thus to build upon the heterogeneity of sites, scientific cultures,

1125 data management practices, to define a strategy at the network level enabling scientists to

share models and data in order to significantly improve our integrated understanding of the

1127 CZ as a system and form a new generation of scientists.

The OZCAR community aims to achieve this goal by defining cross-site activities, through the construction of a common data base and metadata base environment, by developing and sharing new instruments for exploring the CZ, by defining a set of parameters in some representative sites that should be measured at all sites and through facilitating the interaction between data and Earth sub-surface models, in particular through a better representation of the coupled water, energy and biogeochemical cycles at all times scales.

To face the unique environmental change that our planet is experiencing in the Anthropocene, and to achieve the sustainable development goals as defined by the UN, a significant community effort is needed to better model and predict the response of the Earth system. Beyond the need to better structure the existing French observatories, OZCAR hopes to serve as a benchmark for better organizing the environmental research observatories in other countries and to be part of the European and international CZ network, in particular thanks to its contribution to the pan-European research infrastructure eLTER.

1141 **8. Acknowledgements**

1142 OZCAR-RI is supported by the French Ministry of Education and Research, through the 1143 Allenvi Alliance. OZCAR observatories have benefited from numerous sources of funding 1144 coming from the different research institutions supporting the infrastructure (ANDRA, BRGM, CEA, CNES, CNRS, Ifsttar, INRA, IPEV, IPGP, IRD, IRSN, Irstea, Météo-France, 1145 1146 LNE, CEA, IRSN), Universities (Avignon Pays de Vaucluse, Bourgogne Franche-Comté, 1147 Bretagne Occidentale, Grenoble-Alpes, La Réunion, Lyon, Montpellier, Orléans, Paris 1148 Diderot, Pierre et Marie Curie, Rennes, Rouen-Normandie, Savoie-Mont Blanc, Strasbourg, 1149 Toulouse, Clermont-Auvergne) and institutes (INP-Toulouse, Mines Telecom, VetAgroSup, 1150 IPGP). In the Southern countries, the following universities: UCAM, TREMA International 46

Joint Laboratory, Morocco; INRGREF, INAT, Tunisia; Univ. Abdou Moumouni, Niger; 1151 1152 Univ. Abomey-Calavi, Bénin; Univ. des Sciences des Techniques et des Technologies de 1153 Bamako, Mali; UFAM in Manaus, Brazil; UFF in Rio de Janeiro, Brazil; UNALM in Lima, 1154 Peru; UMSAin La Paz, Bolivia; UCV in Caracas, Venezuela; UMNG in Brazaville, Republic 1155 of the Congo; as well as the following national hydrological services: ANA, CPRM in Brazil, 1156 SENAMHI in Peru and Bolivia, INAMHI in Ecuador and DEAL in France, are thanked for 1157 making international collaboration possible. The French Ministry of Ecological and Inclusive Transition (AFB/ONEMA) is supporting the piezometer network (ROSES). 1158 1159 A number of sites were supported by the ANR and PIA (Programme Investissement 1160 d'Avenir): Equipex CRITEX (ANR-11-EQPX-0011), LabexOSUG@2020, Labex DRIIHM -

- 1161 OHM du Haut Vicdessos.
- 1162 We also thank the administrative and scientific staff of all institutions contributing to the
- 1163 collection, analysis and diffusion of the data collected within OZCAR.
- 1164 Tim White and two anonymous reviewers are thanked for their suggestions that improved the
- 1165 manuscript. Lin Ma and Nicole Fernadez are thanked in particular for their careful rereadings.

1166 **9. References**

- Anderson, M.P. 2005. Heat as a Ground Water Tracer. Groundwater 43: 951-968.
 doi:doi:10.1111/j.1745-6584.2005.00052.x.
- Anderson, S.P., J. Blum, S.L. Brantley, O. Chadwick, J. Chorover, L.A. Derry, et al. 2004.
 Proposed initiative would study Earth's weathering engine. Eos, Transactions
 American Geophysical Union 85: 265-269. doi:doi:10.1029/2004E0280001.
- Anderson, S.P., R.C. Bales and C.J. Duffy. 2008. Critical Zone Observatories: Building a network to advance interdisciplinary study of Earth surface processes.
 Mineralogical Magazine 72: 7-10. doi:10.1180/minmag.2008.072.1.7.
- André, F., G. Brissebat, L. Fleury, L., J. Gaillardet and G. Nord. 2015. The RBV metadata
 catalog, EGU General Assembly 2015, 12-17 April, 2015, Vienna, Austria, Vol. 17,
 EGU2015-5960.

1178	Anquetin, S., X. Beaufis, V. Chaffard and P. Juen. 2014, OLES: Online Laboratory for
1179	Environmental Sciences, International Environmental Modelling and Software
1180	Society (iEMSs), Env. Modelling and Software, San Diego, CA, USA, Vol 1, 630 -638.
1181	Ames, D.P., J.S. Horsburgh, Y. Cao, J. Kadlec, T. Whiteaker and D. Valentine. 2012.
1182	HydroDesktop: Web services-based software for hydrologic data discovery,
1183	download, visualization, and analysis. Environmental Modelling & Software 37:
1184	146-156. doi:https://doi.org/10.1016/j.envsoft.2012.03.013.
1185	Aquilina, L., V. Vergnaud-Ayraud, A.A. Les Landes, H. Pauwels, P. Davy, E. Pételet-Giraud,
1186	et al. 2015. Impact of climate changes during the last 5 million years on
1187	groundwater in basement aquifers. Scientific Reports 5: 14132.
1188	doi:10.1038/srep14132.
1189 1190 1191	Arènes, A., B. Latour and J. Gaillardet 2018. Giving depth to the surface: An exercise in the Gaia-graphy of critical zones. The Anthropocene Review, in press. 2053019618782257. doi:10.1177/2053019618782257.
1192	Arnaud, L., G. Picard, N. Champollion, F. Domine, J.C. Gallet, E. Lefebvre, et al. 2011.
1193	Measurement of vertical profiles of snow specific surface area with a 1 cm
1194	resolution using infrared reflectance: instrument description and validation.
1195	Journal of Glaciology 57: 17-29. doi:10.3189/002214311795306664.
1196	Baatz, R., P.L. Sullivan, L. Li, S.R. Weintraub, H.W. Loescher, M. Mirtl, et al. 2018. Steering
1197	operational synergies in terrestrial observation networks: opportunity for
1198	advancing Earth system dynamics modelling. Earth Syst. Dynam. 9: 593-609.
1199	doi:10.5194/esd-9-593-2018.
1200	Banwart, S.A., J. Chorover, J. Gaillardet, D. Sparks, D. , T. White, S. Anderson, S. et al. 2013.
1201	Sustaining Earth's Critical Zone Basic Science and Interdisciplinary Solutions for
1202	Global Challenges, The University of Sheffield, UK, 48 pp.
1203	Becard, N., C. Castets-Renard, G. Chassang, MA. Courtois, M. Dantant, N. Gandon et al.
1204	2016. Ouverture des données de la recherche. Guide d'analyse du cadre juridique
1205	en France. DOI : 10.15454/1.481273124091092E12,
1206	http://prodinra.inra.fr/record/382263
1207	Berrisford, P, D.P. Dee, P. Poli, R. Brugge, K. Fielding, M. Fuentes et al. 2011. The ERA-
1208	Interim archive Version 2.0, ECMWF, 27 pp.
1209 1210 1211	Bhatt, G., M. Kumar and C.J. Duffy. 2014. A tightly coupled GIS and distributed hydrologic modeling framework. Environmental Modelling & Software 62: 70-84. doi:http://dx.doi.org/10.1016/j.envsoft.2014.08.003.
1212 1213 1214	Billings, S.L., Sullivan, P.L. 2018. Working across scales to project soil biogeochemical responses to climate. In Multi-scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes. (in press)

1215	Binley, A., S. Hubbard Susan, A. Huisman Johan, A. Revil, A. Robinson David, K. Singha, et
1216	al. 2015. The emergence of hydrogeophysics for improved understanding of
1217	subsurface processes over multiple scales. Water Resources Research 51: 3837-
1218	3866. doi:10.1002/2015WR017016.
1219	Blöschl, G. and E. Zehe. 2005. On hydrological predictability. Hydrological Processes 19:
1220	3923-3929. doi:10.1002/hyp.6075.
1221	Bodin, J., P. Ackerer, A. Boisson, B. Bourbiaux, D. Bruel, JR.d. Dreuzy, et al. 2012.
1222	Predictive modelling of hydraulic head responses to dipole flow experiments in a
1223	fractured/karstified limestone aquifer: Insights from a comparison of five
1224	modelling approaches to real-field experiments. Journal of Hydrology 454-455: 82-
1225	100. doi:https://doi.org/10.1016/j.jhydrol.2012.05.069.
1226 1227 1228	Bogena, H., K. Schulz and H. Vereecken. 2006. Towards a network of observatories in terrestrial environmental research. Adv. Geosci. 9: 109-114. doi:10.5194/adgeo-9-109-2006.
1229	Boudevillain, B., G. Delrieu, A. Wijbrans and A. Confoland. 2016. A high-resolution
1230	rainfall re-analysis based on radar–raingauge merging in the Cévennes-Vivarais
1231	region, France. Flash floods, hydro-geomorphic response and risk management
1232	541: 14-23. doi:10.1016/j.jhydrol.2016.03.058.
1233	Branger, F., I. Braud, S. Debionne, P. Viallet, J. Dehotin, H. Henine, et al. 2010. Towards
1234	multi-scale integrated hydrological models using the LIQUID® framework.
1235	Overview of the concepts and first application examples. Environmental Modelling
1236	& Software 25: 1672-1681. doi:https://doi.org/10.1016/j.envsoft.2010.06.005.
1237 1238 1239	Brantley, S.L., R.A. DiBiase, T.A. Russo, Y. Shi, H. Lin, K.J. Davis, et al. 2016. Designing a suite of measurements to understand the critical zone. Earth Surf. Dynam. 4: 211-235. doi:10.5194/esurf-4-211-2016.
1240 1241 1242 1243	Brantley, S.L., W.H. McDowell, W.E. Dietrich, T.S. White, P. Kumar, S. Anderson, et al. 2017. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth. Earth Surf. Dynam. Discuss. 2017: 1-30. doi:10.5194/esurf-2017-36.
1244	Braud, I., PA. Ayral, C. Bouvier, F. Branger, G. Delrieu, J. Le Coz, et al. 2014. Multi-scale
1245	hydrometeorological observation and modelling for flash-flood understanding.
1246	Hydrology and Earth System Sciences 18: 3733-3761. doi:10.5194/hess-18-3733-
1247	2014.
1248 1249 1250	Braun, J., J. Mercier, F. Guillocheau and C. Robin. 2016. A simple model for regolith formation by chemical weathering. Journal of Geophysical Research: Earth Surface 121: 2140-2171. doi:doi:10.1002/2016JF003914.

1251 1252 1253 1254	Brodu, N. and D. Lague. 2012. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS Journal of Photogrammetry and Remote Sensing 68: 121-134. doi:https://doi.org/10.1016/j.isprsjprs.2012.01.006.
1255	Brun, E., P. David, M. Sudul and G. Brunot. 1992. A numerical model to simulate snow-
1256	cover stratigraphy for operational avalanche forecasting. Journal of Glaciology 38:
1257	13-22. doi:10.3189/S0022143000009552.
1258	Bui, E.N., 2016. Data-driven Critical Zone science: A new paradigm. Science of The Total
1259	Environment, 568: 587-593.
1260	DOI:http://dx.doi.org/10.1016/j.scitotenv.2016.01.202
1261	Celle-Jeanton, H., D. Schemberg, N. Mohammed, F. Huneau, G. Bertrand, V. Lavastre, et al.
1262	2014. Evaluation of pharmaceuticals in surface water: Reliability of PECs
1263	compared to MECs. Environment International 73: 10-21.
1264	doi:10.1016/j.envint.2014.06.015.
1265	Chatelier, M., S. Ruelleu, O. Bour, G. Porel and F. Delay. 2011. Combined fluid
1266	temperature and flow logging for the characterization of hydraulic structure in a
1267	fractured karst aquifer. Journal of Hydrology 400: 377-386.
1268	doi:10.1016/j.jhydrol.2011.01.051.
1269	Chatton, E., T. Labasque, J. de La Bernardie, N. Guihéneuf, O. Bour and L. Aquilina. 2017.
1270	Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to
1271	the Physics and Biogeochemistry of Groundwater Flow. Environmental Science &
1272	Technology 51: 846-854. doi:10.1021/acs.est.6b03706.
1273 1274 1275	Chavanne, X. and JP. Frangi. 2014. Presentation of a Complex Permittivity-Meter with Applications for Sensing the Moisture and Salinity of a Porous Media. Sensors 14: 15815-15835. doi:10.3390/s140915815.
1276 1277	Cook, P.G. 2015. Quantifying river gain and loss at regional scales. Journal of Hydrology 531, Part 3: 749-758. doi:https://doi.org/10.1016/j.jhydrol.2015.10.052.
1278	Crutzen, P.J. 2002. The "anthropocene". J. Phys. IV France 12: 1-5.
1279	Cucchi, K., A. Rivière, A. Baudin, A. Berrhouma, V. Durand, F. Rejiba, et al. 2017. LOMOS-
1280	mini: A coupled system quantifying transient water and heat exchanges in
1281	streambeds. Journal of Hydrology.
1282	doi:https://doi.org/10.1016/j.jhydrol.2017.10.074.
1283	Diaconu S., S. Kraml, S. Surace, D. Chateigner, T. Libourel Rouge, A. Laurent et al. 2014.
1284	Scientific Data Preservation. REDON Project White Book, 73p.
1285	http://hal.in2p3.fr/in2p3-00959072v1

1286	Dramais, G., B. Blanquart, J. Le Coz, G. Pierrefeu, A. Hauet, D. Atmane, et al. 2014.
1287	Hydrometric inter-laboratory tests, procedure and applications. Houille Blanche-
1288	Revue Internationale De L Eau: 17-23. doi:10.1051/lhb/2014045.
1289	Ducoudré, N.I., K. Laval and A. Perrier. 1993. SECHIBA, a New Set of Parameterizations of
1290	the Hydrologic Exchanges at the Land-Atmosphere Interface within the LMD
1291	Atmospheric General Circulation Model. Journal of Climate 6: 248-273.
1292	doi:10.1175/1520-0442(1993)006<0248:Sansop>2.0.Co;2.
1293 1294 1295	Duffy, C., Y. Shi, K. Davis, R. Slingerland, L. Li, P.L. Sullivan, et al. 2014. Designing a Suite of Models to Explore Critical Zone Function. Procedia Earth and Planetary Science 10: 7-15. doi:http://dx.doi.org/10.1016/j.proeps.2014.08.003.
1296 1297 1298	Easterling, W.E. 2007. Climate change and the adequacy of food and timber in the 21st century. Proceedings of the National Academy of Sciences of the United States of America 104: 19679-19679. doi:10.1073/pnas.0710388104.
1299	Fabre, JC., M. Rabotin, D. Crevoisier, A. Libres, C. Dagès, R. Moussa et al. 2013.
1300	OpenFLUID: an open-source software environment for modelling fluxes in
1301	landscapes, Vol. 15, EGU2013-8821-1, EGU General Assembly 2013, Vienna
1302	(Austria).
1303	Feder, T. 2018. Earth's skin is an interdisciplinary laboratory. Physics Today 71(1): 22-
1304	27. https://doi.org/10.1063/PT.3.3813 .
1305	Filser, J., J.H. Faber, A.V. Tiunov, L. Brussaard, J. Frouz, G. De Deyn, et al. 2016. Soil fauna:
1306	key to new carbon models. SOIL 2: 565-582. doi:10.5194/soil-2-565-2016.
1307	Flipo, N., A. Mouhri, B. Labarthe, S. Biancamaria, A. Rivière and P. Weill. 2014.
1308	Continental hydrosystem modelling: the concept of nested stream–aquifer
1309	interfaces. Hydrol. Earth Syst. Sci. 18: 3121-3149. doi:10.5194/hess-18-3121-
1310	2014.
1311 1312 1313 1314	Floury, P., J. Gaillardet, E. Gayer, J. Bouchez, G. Tallec, P. Ansart, et al. 2017. The potamochemical symphony: new progress in the high-frequency acquisition of stream chemical data. Hydrol. Earth Syst. Sci. 21: 6153-6165. doi:10.5194/hess-21-6153-2017.
1315 1316 1317	Gal. F., P. Négrel P. and B. Chagué. 2017. Development and deployment of a passive sampling system in groundwater to characterize the Critical Zone through isotope tracing, EGU 2017.
1318	Goddéris Y. and S.L. Brantley. 2013. Earthcasting the future Critical Zone. Elem Sci Anth.
1319	1:19. DOI: <u>http://doi.org/10.12952/journal.elementa.000019</u>
1320 1321	Goderniaux, P., P. Davy, E. Bresciani, J.R. Dreuzy and T. Borgne. 2013. Partitioning a regional groundwater flow system into shallow local and deep regional flow

1322	compartments. Water Resources Research 49: 2274-2286.
1323	doi:doi:10.1002/wrcr.20186.
1324	Grazioli, J., JB. Madeleine, H. Gallée, R.M. Forbes, C. Genthon, G. Krinner, et al. 2017.
1325	Katabatic winds diminish precipitation contribution to the Antarctic ice mass
1326	balance. Proceedings of the National Academy of Sciences 114: 10858-10863.
1327	doi:10.1073/pnas.1707633114.
1328	Gumiere, S.J., D. Raclot, B. Cheviron, G. Davy, X. Louchart, J.C. Fabre, et al. 2011.
1329	MHYDAS - Erosion: a distributed single - storm water erosion model for
1330	agricultural catchments. Hydrological Processes 25: 1717-1728.
1331	doi:doi:10.1002/hyp.7931.
1332 1333	Guo, L. and H. Lin. 2016. Critical Zone Research and Observatories: Current Status and Future Perspectives. Vadose Zone Journal 15. doi:10.2136/vzj2016.06.0050.
1334 1335 1336 1337	Guyomarc'h, G., H. Bellot, V. Vionnet, F. Naaim Bouvet, Y. Déliot, F. Fontaine, et al. 2018. A meteorological and blowing snow dataset (2000–2016) from a high-altitude alpine site (Col du Lac Blanc, France, 2720 m a.s.l.). Earth Syst. Sci. Data Discuss. 2018: 1-18. doi:10.5194/essd-2018-74.
1338	Haase, P., J.D. Tonkin, S. Stoll, B. Burkhard, M. Frenzel, I.R. Geijzendorffer, et al. 2018. The
1339	next generation of site-based long-term ecological monitoring: Linking essential
1340	biodiversity variables and ecosystem integrity. Science of The Total Environment
1341	613-614: 1376-1384. doi:https://doi.org/10.1016/j.scitotenv.2017.08.111.
1342	Habets, F., P. Ackerer, N. Amraoui, B. Augeard, F. Besson, Y. Caballero et al. 2015. Aqui-
1343	FR, un système multi-modèle hydrogéologique à l'échelle nationale. Géologues,
1344	Géologues 187 : 105-109.
1345	Hector, B., L. Séguis, J. Hinderer, J.M. Cohard, M. Wubda, M. Descloitres, et al. 2015. Water
1346	storage changes as a marker for base flow generation processes in a tropical humid
1347	basement catchment (Benin): Insights from hybrid gravimetry. Water Resources
1348	Research 51: 8331-8361. doi:doi:10.1002/2014WR015773.
1349 1350 1351	Hector, B., J.M. Cohard, L. Séguis, S. Galle and C. Peugeot. 2018. Hydrological functioning of West-African inland valleys explored with a critical zone model. Hydrol. Earth Syst. Sci. Discuss. 2018: 1-35. doi:10.5194/hess-2018-219.
1352	Horsburgh, J.S., D.G. Tarboton, D.R. Maidment and I. Zaslavsky. 2008. A relational model
1353	for environmental and water resources data. Water Resources Research 44:
1354	W05406. doi:10.1029/2007WR006392.
1355	Horsburgh, J.S., D.G. Tarboton, M. Piasecki, D.R. Maidment, I. Zaslavsky, D. Valentine, et
1356	al. 2009. An integrated system for publishing environmental observations data.
1357	Environmental Modelling & Software 24: 879-888.
1358	doi:http://dx.doi.org/10.1016/j.envsoft.2009.01.002.

1359 1360 1361	Horsburgh, J.S., D.G. Tarboton, D.R. Maidment and I. Zaslavsky. 2011. Components of an environmental observatory information system. Computers & Geosciences 37: 207-218. doi:http://dx.doi.org/10.1016/j.cageo.2010.07.003.
1362 1363 1364 1365	Horsburgh, J.S., D.G. Tarboton, R.P. Hooper and I. Zaslavsky. 2014. Managing a community shared vocabulary for hydrologic observations. Environmental Modelling & Software 52: 62-73. doi:http://doi.org/10.1016/j.envsoft.2013.10.012.
1366	Horsburgh, J.S., A.K. Aufdenkampe, E. Mayorga, K.A. Lehnert, L. Hsu, L. Song, et al. 2016.
1367	Observations Data Model 2: A community information model for spatially discrete
1368	Earth observations. Environmental Modelling & Software 79: 55-74.
1369	doi:http://doi.org/10.1016/j.envsoft.2016.01.010.
1370	Hsu, K.l., H.V. Gupta and S. Sorooshian. 1995. Artificial Neural Network Modeling of the
1371	Rainfall - Runoff Process. Water Resources Research 31: 2517-2530.
1372	doi:doi:10.1029/95WR01955.
1373	Hsu, L., E. Mayorga, J.S. Hornburgh,M.R. Carter, K.A. Lehnert, S.L.Brantley. 2017.
1374	Enhancing Interoperability and Capabilities of Earth Science Data using the
1375	Observations Data Model 2 (ODM2), Data Science Journal. 16(4): 1-16.
1376 1377 1378 1379 1380 1381	 Hubbard S.S., K.H. Williams, D. Agarwal, J. Banfield, H. Beller; N. Bouskill, E. Brodie, R. Carroll, B. Dafflon, D. Dwivedi, N. Falco, B. Faybishenko, R. Maxwell, P. Nico, C. Steefel, H. Steltzer, T. Tokunaga, P.A. Tran, C.Varadharajan and H. Wainwright The East River, CO Watershed: A Mountainous Community Testbed for Improving Predictive Understanding of Multi-Scale Hydrological-Biogeochemical Dynamics,2018, doi: 10.2136/vzj2018.03.0061, Vadose Zone Journal
1382	Jankowfsky, S., F. Branger, I. Braud, F. Rodriguez, S. Debionne and P. Viallet. 2014.
1383	Assessing anthropogenic influence on the hydrology of small peri-urban
1384	catchments: Development of the object-oriented PUMMA model by integrating
1385	urban and rural hydrological models. Journal of Hydrology 517: 1056-1071.
1386	doi:http://dx.doi.org/10.1016/j.jhydrol.2014.06.034.
1387	Jiang, P., M. Elag, P. Kumar, S.D. Peckham, L. Marini and L. Rui. 2017. A service-oriented
1388	architecture for coupling web service models using the Basic Model Interface
1389	(BMI). Environmental Modelling & Software 92: 107-118.
1390	doi:https://doi.org/10.1016/j.envsoft.2017.01.021.
1391	Jourdain, C., P. Belleudy, M. Tal and JR. Malavoi. 2017. The role of hydrology on
1392	vegetation removal in a heavily managed gravel bed river: the Isere, Combe de
1393	Savoie, France. Geomorphologie-Relief Processus Environnement 23: 203-217.
1394	doi:10.4000/geomorphologie.11761.

1395 1396 1397 1398	Karan, M., M. Liddell, S.M. Prober, S. Arndt, J. Beringer, M. Boer, et al. 2016. The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory. Science of The Total Environment 568: 1263-1274. doi:http://dx.doi.org/10.1016/j.scitotenv.2016.05.170.
1399 1400 1401	Kirchner, J.W. 2006. Getting the right answer for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research 42: W03S04, doi: 10.1029/2005WR004362.
1402 1403 1404	Kirchner, J.W. 2009. Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res. 45: W02429. doi:10.1029/2008wr006912.
1405 1406 1407 1408	Klepikova, M.V., T. Le Borgne, O. Bour, M. Dentz, R. Hochreutener and N. Lavenant. 2016. Heat as a tracer for understanding transport processes in fractured media: Theory and field assessment from multiscale thermal push - pull tracer tests. Water Resources Research 52: 5442-5457. doi:10.1002/2016WR018789.
1409 1410 1411 1412	 Klepikova, M.V., T. Le Borgne, O. Bour, K. Gallagher, R. Hochreutener and N. Lavenant. 2014. Passive temperature tomography experiments to characterize transmissivity and connectivity of preferential flow paths in fractured media. Journal of Hydrology 512: 549-562. doi:10.1016/j.jhydrol.2014.03.018.
1413 1414 1415 1416	Kollet, S.J. and R.M. Maxwell. 2006. Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Advances in Water Resources 29: 945-958. doi:https://doi.org/10.1016/j.advwatres.2005.08.006.
1417 1418 1419 1420 1421	Kralisch, S. and P. Krause. 2006. JAMS - A Framework for Natural Resource Model Development and Application, in <i>Proceedings of the iEMSs Third Biannual Meeting</i> <i>"Summit on Environmental Modelling and Software"</i> , edited by A. Voinov, A. Jakeman, and A. Rizzoli, Burlington, USA. Available from: <u>http://www.iemss.org/iemss2006/papers/s5/254 Kralisch 1-4.pdf</u>
1422 1423 1424 1425	Krinner, G., N. Viovy, N.d. Noblet-Ducoudré, J. Ogée, J. Polcher, P. Friedlingstein, et al. 2005. A dynamic global vegetation model for studies of the coupled atmosphere - biosphere system. Global Biogeochemical Cycles 19. doi:doi:10.1029/2003GB002199.
1426	Kulmala, M. 2018. Build a global Earth observatory. Nature 553: 21-23.
1427 1428 1429	Lagacherie, P., M. Rabotin, F. Colin, R. Moussa and M. Voltz. 2010. Geo-MHYDAS: A landscape discretization tool for distributed hydrological modeling of cultivated areas. Computers & Geosciences 36: 1021-1032.

1430 doi:doi:10.1016/j.cageo.2009.12.005.

1431	Latour, B. 2014. Some Advantages of the Notion of "Critical Zone" for Geopolitics.
1432	Procedia Earth and Planetary Science 10: 3-6.
1433	doi:https://doi.org/10.1016/j.proeps.2014.08.002.
1434	Latour, B. 2018. Down to Earth: Politics in the new climatic regime. Polity Press.
1435 1436 1437 1438	Le, P.V.V. and P. Kumar. 2017. Interaction Between Ecohydrologic Dynamics and Microtopographic Variability Under Climate Change. Water Resources Research 53: 8383-8403. doi:doi:10.1002/2017WR020377.
1439	Le Borgne, T., M. Dentz and E. Villermaux. 2013. Stretching, Coalescence, and Mixing in
1440	Porous Media. Physical Review Letters 110. doi:10.1103/PhysRevLett.110.204501.
1441	Le Boursicaud, R., L. Pénard, A. Hauet, F. Thollet and J. Le Coz. 2016. Gauging extreme
1442	floods on YouTube: application of LSPIV to home movies for the post-event
1443	determination of stream discharges. Hydrological Processes 30: 90-105.
1444	doi:10.1002/hyp.10532.
1445	Legchenko, A., J. Vouillamoz, F. Lawson, C. Alle, M. Descloitres and M. Boucher. 2016.
1446	Interpretation of magnetic resonance measurements in the varying earth's
1447	magnetic field. GEOPHYSICS 81: WB23-WB31. doi:10.1190/geo2015-0474.1.
1448 1449	Lehnert, K., D. Walker, C. Chan and J. Ash. 2010. EarthChem: Next generation of data services in geochemistry. Geochimica Et Cosmochimica Acta 74: A578-A578.
1450	Leonard, L. and C.J. Duffy. 2014. Automating data-model workflows at a level 12 HUC
1451	scale: Watershed modeling in a distributed computing environment.
1452	Environmental Modelling & Software 61: 174-190.
1453	doi:10.1016/j.envsoft.2014.07.015.
1454 1455 1456	Leray, S., J.R. de Dreuzy, O. Bour, T. Labasque and L. Aquilina. 2012. Contribution of age data to the characterization of complex aquifers. Journal of Hydrology 464-465: 54-68. doi:10.1016/j.jhydrol.2012.06.052.
1457	Lewis, S.L. and M.A. Maslin. 2015. Defining the Anthropocene. Nature 519: 171.
1458	doi:10.1038/nature14258.
1459	Liu, Y., A.H. Weerts, M. Clark, H.J. Hendricks Franssen, S. Kumar, H. Moradkhani, et al.
1460	2012. Advancing data assimilation in operational hydrologic forecasting:
1461	progresses, challenges, and emerging opportunities. Hydrol. Earth Syst. Sci. 16:
1462	3863-3887. doi:10.5194/hess-16-3863-2012.
1463	Mangiarotti, S., J.M. Martinez, M.P. Bonnet, D.C. Buarque, N. Filizola and P.M. Ciamp.
1464	2013. Discharge and suspended sediment flux estimated along the mainstream of
1465	the Amazon and the Madeira Rivers (from in situ and MODIS Satellite Data).
1466	International Journal of Applied Earth Observation and Geoinformation 21: 341-
1467	355. doi:10.1016/j.jag.2012.07.015.

1468	Massol M. and O. Rouchon. 2010. Quality insurance through business process
1469	management in a french archive. 7th International Conference on Preservation of
1470	Digital Objects. http://www.ifs.tuwien.ac.at/dp/ipres2010/papers/massol-6.pdf
1471	Masson, V., P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, et al. 2013. The
1472	SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of
1473	earth surface variables and fluxes. Geosci. Model Dev. 6: 929-960.
1474	doi:10.5194/gmd-6-929-2013.
1475	Maxwell, R.M. and N.L. Miller. 2005. Development of a Coupled Land Surface and
1476	Groundwater Model. Journal of Hydrometeorology 6: 233-247.
1477	doi:10.1175/jhm422.1.
1478	Mazzilli, N., M. Boucher, K. Chalikakis, A. Legchenko, H. Jourde and C. Champollion. 2016.
1479	Contribution of magnetic resonance soundings for characterizing water storage in
1480	the unsaturated zone of karst aquifers. Geophysics 81: WB49-WB61.
1481	doi:10.1190/GE02015-0411.1.
1482	Mazzilli, N., V. Guinot, H. Jourde, N. Lecoq, D. Labat, B. Arfib, et al. 2017. KarstMod: A
1483	modelling platform for rainfall - discharge analysis and modelling dedicated to
1484	karst systems. Environmental Modelling & Software.
1485	doi:https://doi.org/10.1016/j.envsoft.2017.03.015.
1486	McDonnell, J.J. 2017. Beyond the water balance. Nature Geoscience 10: 396.
1487	doi:10.1038/ngeo2964.
1488	McDonnell, J.J., M. Sivapalan, K. Vaché, S. Dunn, G. Grant, R. Haggerty, et al. 2007. Moving
1489	beyond heterogeneity and process complexity: a new vision for watershed
1490	hydrology. Water Resources Research 43: W07301, doi:
1491	07310.01029/02006WR005467.
1492	Michielin, Y., G. Nord, M. Esteves, T. Geay and A. Hauet. 2017. River Platform for
1493	Monitoring Erosion (RIPLE) in mountainous rivers, EGU General Assembly 2017.
1494 1495	Millenium Ecosystem Assessment Board. 2005. Living Beyond our Means: Natural Assets and Human Well-Being, 2005.
1496	Mirtl, M., E. T. Borer, I. Djukic, M. Forsius, H. Haubold, W. Hugo, et al. 2018. Genesis, goals
1497	and achievements of Long-Term Ecological Research at the global scale: A critical
1498	review of ILTER and future directions. Science of The Total Environment 626:
1499	1439-1462. doi:https://doi.org/10.1016/j.scitotenv.2017.12.001.
1500 1501 1502 1503	Morin, S., Y. Lejeune, B. Lesaffre, J.M. Panel, D. Poncet, P. David, et al. 2012. An 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models. Earth Syst. Sci. Data 4: 13-21. doi:10.5194/essd-4-13-2012.

1504	Moussa, R., M. Voltz and P. Andrieux. 2002. Effects of the spatial organization of
1505	agricultural management on the hydrological behaviour of a farmed catchment
1506	during flood events. Hydrological Processes 16: 393-412.
1507	doi:doi:10.1002/hyp.333.
1508	Nord, G., B. Boudevillain, A. Berne, F. Branger, I. Braud, G. Dramais, et al. 2017. A high
1509	space–time resolution dataset linking meteorological forcing and hydro-
1510	sedimentary response in a mesoscale Mediterranean catchment (Auzon)
1511	of the Ardèche region, France. Earth Syst. Sci. Data 9: 221-249. doi:10.5194/essd-
1512	9-221-2017.
1513	Paris, A., R. Dias de Paiva, J. Santos da Silva, D. Medeiros Moreira, S. Calmant, PA.
1514	Garambois, et al. 2016. Stage-discharge rating curves based on satellite altimetry
1515	and modeled discharge in the Amazon basin. Water Resources Research 52: 3787-
1516	3814. doi:10.1002/2014WR016618.
1517 1518 1519 1520	 Pasquet, S., L. Bodet, L. Longuevergne, A. Dhemaied, C. Camerlynck, F. Rejiba, et al. 2015. 2D characterization of near-surface VP/VS: surface-wave dispersion inversion versus refraction tomography. Near Surface Geophysics 13: 315-331. doi:10.3997/1873-0604.2015028.
1521 1522 1523	Peckham, S.D., E.W.H. Hutton and B. Norris. 2013. A component-based approach to integrated modeling in the geosciences: The design of CSDMS. Computers & Geosciences 53: 3-12. doi:http://dx.doi.org/10.1016/j.cageo.2012.04.002.
1524 1525 1526 1527 1528	 Piacentini, A. 2003. PALM: A Dynamic Parallel Coupler, in High Performance Computing for Computational Science — VECPAR 2002: 5th International Conference Porto, Portugal, June 26–28, 2002 Selected Papers and Invited Talks, edited by J. M. L. M. Palma, A. A. Sousa, J. Dongarra and V. Hernández, pp. 479-492, Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/3-540-36569-9_32.
1529	Picard, G., L. Arnaud, JM. Panel and S. Morin. 2016a. Design of a scanning laser meter
1530	for monitoring the spatio-temporal evolution of snow depth and its application in
1531	the Alps and in Antarctica. The Cryosphere 10: 1495-1511. doi:10.5194/tc-10-
1532	1495-2016.
1533 1534 1535	Picard, G., Q. Libois, L. Arnaud, G. Verin and M. Dumont. 2016b. Development and calibration of an automatic spectral albedometer to estimate near-surface snow SSA time series. The Cryosphere 10: 1297-1316. doi:10.5194/tc-10-1297-2016.
1536	Pinay, G., S. Peiffer, JR. De Dreuzy, S. Krause, D.M. Hannah, J.H. Fleckenstein, et al. 2015.
1537	Upscaling Nitrogen Removal Capacity from Local Hotspots to Low Stream Orders'
1538	Drainage Basins. Ecosystems 18: 1101-1120. doi:10.1007/s10021-015-9878-5.
1539	Read, T., O. Bour, J.S. Selker, V.F. Bense, T.L. Borgne, R. Hochreutener, et al. 2014.
1540	Active - distributed temperature sensing to continuously quantify vertical flow in

1541	boreholes. Water Resources Research 50: 3706-3713.
1542	doi:10.1002/2014WR015273.
1543	Ribolzi, O., O. Evrard, S. Huon, A. De Rouw, N. Silvera, K.O. Latsachack, et al. 2017. From
1544	shifting cultivation to teak plantation: effect on overland flow and sediment yield
1545	in a montane tropical catchment. Scientific Reports 7. doi:10.1038/s41598-017-
1546	04385-2.
1547	Richard, A., S. Galle, M. Descloitres, J.M. Cohard, J.P. Vandervaere, L. Séguis, et al. 2013.
1548	Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian
1549	West Africa (northern Benin). Hydrol. Earth Syst. Sci. 17: 5079-5096.
1550	doi:10.5194/hess-17-5079-2013.
1551	Richter, D., deB. and Billings, S. A. 2015. 'One physical system': Tansley's ecosystem as
1552	Earth's critical zone. <i>New Phytologist, 206</i> (3), 900-912.
1553	Robinson, D.A., Binley, A., Crook, N., Day-Lewis, F.D., Ferré, T.P.A., Grauch, V.J.S., Knight,
1554	R., Knoll, M., Lakshmi, V., Miller, R. and Nyquist, J., 2008. Advancing process-based
1555	watershed hydrological research using near-surface geophysics: A vision for, and
1556	review of, electrical and magnetic geophysical methods. <i>Hydrological Processes</i> ,
1557	<i>22</i> (18), pp.3604-3635.
1558	Sanzana, P., J. Gironás, I. Braud, F. Branger, F. Rodriguez, X. Vargas, et al. 2017. A GIS-
1559	based urban and peri-urban landscape representation toolbox for hydrological
1560	distributed modeling. Environmental Modelling & Software 91: 168-185.
1561	doi:http://dx.doi.org/10.1016/j.envsoft.2017.01.022.
1562	Savenije, H.H.G. and M. Hrachowitz. 2017. HESS Opinions "Catchments as meta-
1563	organisms – a new blueprint for hydrological modelling". Hydrol. Earth Syst. Sci.
1564	21: 1107-1116. doi:10.5194/hess-21-1107-2017.
1565	
1566	Schuite, J., L. Longuevergne, O. Bour, F. Boudin, S. Durand and N. Lavenant. 2015.
1567	Inferring field - scale properties of a fractured aquifer from ground surface
1568	deformation during a well test. Geophysical Research Letters 42.
1569	doi:10.1002/2015GL066387.
1570	Shortridge, J.E., S.D. Guikema and B.F. Zaitchik. 2016. Machine learning methods for
1571	empirical streamflow simulation: a comparison of model accuracy, interpretability,
1572	and uncertainty in seasonal watersheds. Hydrol. Earth Syst. Sci. 20: 2611-2628.
1573	doi:10.5194/hess-20-2611-2016.
1574 1575 1576	Sivapalan, M. 2003. Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? Hydrological Processes 17: 1037-1041. doi:doi:10.1002/hyp.5109.

1577 1578	Sivapalan, M., H.H.G. Savenije and G. Bloeschl. 2012. Socio-hydrology: A new science of people and water. Hydrological Processes 26: 1270-1276. doi:10.1002/hyp.8426.
1579	Steefel, C.I., C.A.J. Appelo, B. Arora, D. Jacques, T. Kalbacher, O. Kolditz, et al. 2015.
1580	Reactive transport codes for subsurface environmental simulation. Computational
1581	Geosciences 19: 445-478. doi:10.1007/s10596-014-9443-x.
1582	Steffen, W., K. Richardson, J. Rockström, S.E. Cornell, I. Fetzer, E.M. Bennett, et al. 2015.
1583	Planetary boundaries: Guiding human development on a changing planet. Science
1584	347. doi:10.1126/science.1259855.
1585	Sullivan, P.L., L. Ma, N. West, L. Jin, D.L. Karwan, J. Noireaux, et al. 2016. CZ-tope at
1586	Susquehanna Shale Hills CZO: Synthesizing multiple isotope proxies to elucidate
1587	Critical Zone processes across timescales in a temperate forested landscape.
1588	Chemical Geology 445: 103-119.
1589	doi:https://doi.org/10.1016/j.chemgeo.2016.05.012.
1590	Sullivan, P. L., Wymore, A. S., & McDowell, W. H. (2017). New Opportunities for Critical
1591	Zone Science. 2017 CZO Arlington. <i>White Booklet.</i>
1592 1593 1594	Sullivan PL, Goddéris Y, Shi Y, Schott J, Duffy CJ, Brantley SL. 2018. Earthcasting reveals weathering fluxes increase with warming temperatures but decrease with nutrient cycling. JGR Earth's Surface. (In Revision)
1595	Trouvilliez, A., F. Naaim-Bouvet, H. Bellot, C. Genthon and H. Gallee. 2015. Evaluation of
1596	the FlowCapt Acoustic Sensor for the Aeolian Transport of Snow. Journal of
1597	Atmospheric and Oceanic Technology 32: 1630-1641. doi:10.1175/jtech-d-14-
1598	00104.1.
1599	Trouvilliez, A., F. Naaim-Bouvet, C. Genthon, L. Piard, V. Favier, H. Bellot, et al. 2014. A
1600	novel experimental study of aeolian snow transport in Adelie Land (Antarctica).
1601	Cold Regions Science and Technology 108: 125-138.
1602	doi:10.1016/j.coldregions.2014.09.005.
1603	United Nations. 2015 <u>http://www.un.org/sustainabledevelopment/sustainable-</u>
1604	<u>development-goals/</u>
1605	U.S. National Research Council Committee on Basic Research Opportunities in the Earth
1606	Sciences. 2001. Basic Research Opportunities in Earth Science, National Academy
1607	Press, Washington, D.C.
1608	Valentin, C., F. Agus, R. Alamban, A. Boosaner, J.P. Bricquet, V. Chaplot, et al. 2008. Runoff
1609	and sediment losses from 27 upland catchments in Southeast Asia: Impact of rapid
1610	land use changes and conservation practices. Agriculture, Ecosystems &
1611	Environment 128: 225-238. doi:10.1016/j.agee.2008.06.004.

1612	Vannier, O., S. Anquetin and I. Braud. 2016. Investigating the role of geology in the
1613	hydrological response of Mediterranean catchments prone to flash-floods:
1614	Regional modelling study and process understanding. Journal of Hydrology.
1615	doi:10.1016/j.jhydrol.2016.04.001.
1616	Vernadsky, V.I. 1998. The Biosphere. A Peter N. Nevraumont Book. New York:
1617	Vionnet, V., G. Guyomarc'h, M. Lafaysse, F. Naaim-Bouvet, G. Giraud and Y. Deliot. 2018.
1618	Operational implementation and evaluation of a blowing snow scheme for
1619	avalanche hazard forecasting. Cold Regions Science and Technology 147: 1-10.
1620	doi:https://doi.org/10.1016/j.coldregions.2017.12.006.
1621	Welber, M., J. Le Coz, J.B. Laronne, G. Zolezzi, D. Zamler, G. Dramais, et al. 2016. Field
1622	assessment of noncontact stream gauging using portable surface velocity radars
1623	(SVR). Water Resources Research 52: 1108-1126. doi:10.1002/2015WR017906.
1624	White T., S. Brantley, S. Banwart, J. Chorover, W. Dietrich, L. Derry, et al. 2015, The role of
1625	critical zone observatories in critical zone science, in Principles and Dynamics of
1626	the Critical Zone, (eds. R. Giardino and C. Hauser), Elsevier. Chapter 2,
1627	Developments in Earth Surface Processes 19: 15–78
1628	Wigmosta, M.S., B. Nijssen, P. Storck, and D.P. Lettenmaier. 2002: The Distributed
1629	Hydrology Soil Vegetation Model, In Mathematical Models of Small Watershed
1630	Hydrology and Applications, V.P. Singh, D.K. Frevert, eds., Water Resource
1631	Publications, Littleton, CO., p. 7-42.
1632	Yu, X., C. Duffy, Y. Gil, L. Leonard, G. Bhatt and E. Thomas. 2016. Cyber-Innovated
1633	Watershed Research at the Shale Hills Critical Zone Observatory. Ieee Systems
1634	Journal 10: 1239-1250. doi:10.1109/jsyst.2015.2484219.
1635	Zacharias, S., H. Bogena, L. Samaniego, M. Mauder, R. Fuß, T. Pütz, et al. 2011. A Network
1636	of Terrestrial Environmental Observatories in Germany. Vadose Zone Journal 10:
1637	955-973. doi:10.2136/vzj2010.0139.
1638 1639 1640 1641 1642 1643	Zaslavsky, I., T. Whitenack, M. Williams, D.G. Tarboton, K. Schreuders and A. Aufdenkampe. 2011. The initial design of data sharing infrastructure for the Critical Zone Observatory. In: Proceedings of the Environmental Information Management Conference, Santa Barbara, CA, 28e29 September, EIM 2011. <u>http://dx.doi.org/10.5060/D2NC5Z4X</u> .
1015	

1644 List of figures

Fig. 1: The Critical Zone, shown here in particular at the catchment scale, is the thin porous layer at the surface of the Earth formed by the actions of water and acids on rocks. It is located between the lower atmosphere and unweathered bedrock, and strongly influenced by visible and invisible life activities. The integrated study of Critical Zone relies on the collaboration of different scientific communities, listed non-exhaustively in italic.

1650

1651 Fig. 2: Location of the different OZCAR-RI observatories on a land-to-sea continuum. Each

acronym corresponds to a long-term observatory (primarily defined by a scientific question),

1653 and may be constituted of several instrumented sites. The numbers in parentheses correspond

1654 to the list of different observatories described in **Table S1**.

1655

Fig. 3: River catchment sites (the cubes) from OZCAR plotted according to the climatic and 1656 1657 lithological gradients, noted with land use types. This diagram shows the range of 1658 environmental conditions covered by OZCAR and illustrates the theoretical idea that spatial 1659 gradients can be used to predict the temporal evolution of the Critical Zone (e.g. predicting 1660 the effect of climate change at constant rock type). Heterogeneity and sensitivity to initial 1661 conditions are limitations to this approach. Site names refer to Table S1: AC: AmmaCatch, 1662 ACd: Auzon-Claduène, Aq: karst from Aquitaine, Av: Avène, Ba: Baget, Br: Brusquet, Ca: Dong Cao, Cp: Capesterre, Cr: Craie, Do: Donga, FN: Fontaine de Nîmes, Fo: Fontaine de 1663 1664 Vaucluse, Ju: Jurassic karst, Ka: Kamech, Ke: Kerien, La: Laval, Lo: Lozère, M: Madiri, Ma: 1665 Huay Ma Nai, Me: Medycyss, Mo: Montoussé, MH: Mule Hole, Na: Naizin, NS: Nsimi, Or: 1666 Orgeval, Pa: Houay Pano, PM: Port Miou, RC: Real-Collobrier, Re: Réunion Island, Ro: 1667 Roujan, St: Strengbach, To: Tourgueille, Va: Valescure, VO: Val d'Orléans, Yz: Yzeron.

1668

Fig. 4: The 32-years evolution of the sulfate ion concentration in the stream of the Strengbach catchment (OHGE observatory) showing the wealth of information provided by long-term data series. The overall trend shows a decrease of sulfate concentration due to the decrease of industrial emissions in Western Europe over the period. Superimposed are seasonal variations and abrupt short-term changes.

1674

Fig. 5: World map of OZCAR instrumented sites. More than 60 instrumented sites (with scales ranging from the plot to the whole river catchment) are included in 21 observatories or observation services (not represented) funded and evaluated by diverse research agencies. All are monitoring parts of the CZ.

1679

Fig. 6: Overview of the CRITEX program (2012-2020) with the list of the work packages and associated instrumentation. The red stars correspond to "state-of-the-science" instruments developed as prototypes in CRITEX. CRITEX instruments are organized for tackling two scientific objectives: i) high-frequency monitoring in in the CZ (at the interface with the atmosphere, in the subsurface and at the outlet of catchments) and ii) multi-disciplinary monitoring of "hot spots" and during "hot moments" of the CZ.

1686

Fig. 7: Simulation of the hydrological cycle components in the Nalohou catchment (AMMA-CATCH Benin observatory) using the ParFlow-CLM Critical Zone model. The model was set up based on observations and previous understanding of the processes, and is run without any calibration. (a) Constructing the model from observations: geophysical exploration using Electrical Resistivity Tomography (ERT, top) contributes to define the conceptual subsurface architecture, which is implemented in ParFlow (middle) (adpated from Hector et al., 2015).

1693	(Bottom): simulated saturation along profile A shown in part (b). (b) Map of the Nalohou
1694	catchment (0.16 km ²) with topographic elevation, instrumentation and ERT profile locations
1695	(adapted from Hector et al., (2015). (c) Simulated and observed Critical Zone variables:
1696	evapotranspiration (ET) at point 1 in (b); surface soil moisture at 5 cm at point 2 in (b);
1697	saturation, permanent and perched water table in the inland valley ("bas-fond") (red) at point
1698	3 in (b) (adapted from Hector et al., 2018).
1699	
1700	Fig. 8: The main scientific questions defined by the OZCAR community and discussed in the
1701	text.

1702 List of tables

1703

Table 1. List of the 24 variables measured in common in the catchments of the RBV network
grouped by the different considered compartments. The frequency of the measurement is not
fixed but depends on the characteristic timescales.

1707

1708

Table 1. List of the 24 variables measured in common in the catchments of the RBV network grouped by the different considered compartments. The frequency of the measurement is not fixed but depends on the characteristic timescales.

n°	ATMOSPHERIC	n°	RIVER
1	Rainfall amount	10	Discharge
2	Air temperature	11	Electrical conductivity
3	Wind velocity	12	Water temperature
4	Wind direction	13	Turbidity
			Suspended sediment
5	Air pressure	14	concentration
6	Humidity	15	Chemical composition of water
			Isotopic composition of water O
7	Radiation	16	and H
8	Chemical composition of rain		
	Isotopic composition of rain O and		
9	Н		

n°	GROUNDWATER	n°	SURFACES
17	Soil moisture content	23	land use/land cover
			Chemical composition of
18	Groundwater level	24	agricultural inputs
	Electrical conductivity of		
19	groundwater		
20	Temperature of groundwater		
	Chemical composition of		
21	groundwater		
	Isotopic composition of		
22	groundwater O and H		

Supplementary material of the paper by Gaillardet et al. « OZCAR, the French network of Critical Zone Observatories ».

Appendix 1: Description of OZCAR observatories (Table S1)

A.1.1. **The RBV network** (Réseau des Bassins Versants) is constituted of catchments ranging from zero order basins to the Amazon river system. The different RBV observatories can be grouped into several categories according to their initial scientific questions.

- Group I. The AMMA-CATCH and OHMCV observation systems can be defined as "hydrometerological observatories", aimed to understand the complex interactions between meteorological events and land surfaces. AMMA-CATCH is an observatory located in West Africa studying the concurrent role of climate and land use changes on the water and energy partitioning over terrestrial surfaces, and the impacts on ecosystem dynamics and water resource along a South-North transect (Lebel et al., 2009; Galle et al., 2018). Long-term observations in AMMA-CATCH have in particular allowed for an interpretation of the "Sahel paradox", consisting in a continuous rise of aquifer's level and river runoff (Leduc et al.; 2001; Gal et al. 2017; Descroix et al. 2012) despite the observed decrease of precipitation since the 1970's (Lebel and Ali, 2009). The role of land cover modifications on the increase of superficial runoff, and in particular by the vegetation degradation due to drought and/or land use changes (Favreau et al., 2009; Descroix et al., 2012; Gal et al., 2017) and through rainfall intensification (Panthou et al., 2014) is still under investigation. These processes have been introduced in integrated modelling approaches (Massuel et al., 2011; Boucher et al., 2012; Velluet et al., 2014; Gal et al., 2017) to better explore future changes in the continental water cycle (Leauthaud et al., 2015). Data from AMMA-CATCH have also been used in a study highlighting changes in global circulation and frequency of extreme rainfall in the Sahel (Taylor et al., 2017). The OHMCV observatory (Delrieu et al., 2005; Boudevillain et al., 2011) and Real Collobrier observatory are working towards an accurate evaluation and prediction of the hydro-meteorological risk associated to extreme precipitation events that characterize the southern border of the Massif Central (Cévennes and Vivarais) and Mediterranean regions. To capture and to document the dispersed risk at the regional scale, the OHMCV observation strategy relies on three main approaches: i) in-situ "classical" monitoring of surface hydrology and hydro-sedimentary variables (precipitation, runoff, infiltration, suspended solids), ii) post-flood socio-hydrometeorological experiments (Ruin et al., 2014) in order to retrieve both hydrometeorological and social observations after a major event, iii) historical archives dating from the XVIth century to better characterize rain and discharge probabilistic distributions. The OHMCV observatory seeks to develop a continuous social observation strategy and collaborates with the co-located socio-ecological sites on issues related to environmental quality and low water levels.

- Group II consists of low-order catchments conducting hydrological and biogeochemical observations, often using nested sites, in particular in order to balance water or geochemical budgets in variable environmental conditions. The ObsErA and part of the M-TROPICS observatories are established in pristine tropical conditions. The Mule Hole Catchment in India is one of the first watersheds in which geophysical techniques coupled with geochemical mass budgets were applied to map the regolith depth and establish weathering mass balances (Braun et al., 2009). It is also the first in which, by coupling observations and modeling in hydrology and ecology, the importance of vertical water niche separation on tree demography was demonstrated for a diverse forest (Chitra-Tarak et al., 2018). The OHGE observatory in the Vosges Mountains was set up in 1985 in order to understand the response of temperate mountain forest ecosystems to acid rain (Probst et al., 1990; Dambrine et al., 1998). The decrease of sulfate concentrations in the Strengbach stream observed since 1986 is

an iconic case showing the virtue of continuous long term river monitoring (Probst et al., 1995, Pierret et al., submitted; see also **Fig. 3** in the main text). Also in group II, the Auradé, AgrHys, OMERE, Orgeval observatories and the other part of the M-TROPICS observatory are characterized by intense and long-standing agricultural practices and are focus on the impact of agricultural practices on water, nutrient (i.e. nitrate), pesticides, and element cycles in general (Perrin et al., 2008; Ferrant et al., 2013; Molénat et al., 2008; Aubert et al., 2013; Garnier et al. 2016; Buvaneshwari et al., 2017). The OTHU/Yzeron basin is established in urban and perirurban conditions and addresses the impact of urbanization on hydrology (Braud et al., 2013). Group II also includes small catchments of AMMA-CATCH (Galle et al., 2018) and OHMCV observatories (Braud et al., 2014). The HYBAM observatory is thematically related to this group, but as much larger catchments, they are monitored either at ground (Abril et al., 2014) or by satellite (Martinez et al., 2009) for hydrology and hydrogeochemistry. Hybam focus on the Amazon, Orinoco and Congo River systems.

- Group III is constituted of hydrological sites developed for monitoring soil erosion, either in natural conditions (ObsErA, Allemand et al., 2014) or in strongly human-impacted conditions (OMERE sites, OHMCV-Claduègne site, M-TROPICS-Huay Ma Nai site). The Draix-Bléone observatory was set up in 1983 for understanding the influence of reforestation onto erosion fluxes in mountain Mediterranean climate (i.e. Mathys et al., 2003), similar to the Dong Cao catchment (M-TROPICS) since 2002 in Vietnam (Valentin et al., 2008). The OMERE observatories (in Tunisia and Southern France) were designed to study the impact of agricultural practices on water and sediment budgets at the catchment scale (Raclot et al., 2009; Inoubli et al., 2017). For example, research at the Houay Pano catchment (M-TROPICS observatory), aiming at understanding the impact of agricultural or forestry practices on soil erosion has shown that the the conversion of rice-based shifting cultivation to teak plantation-based systems raised sediment yields from 98 to 610 Mg/km²/yr (Ribolzi et al., 2017).

- Group IV (SNO Karst) is dedicated to the study of karst systems that are complex and heterogeneous hydro(geo)logic entities, characterized by strong surface/subsurface interactions and a high sensitivity to erosion and weathering, making karstic water resource systems highly vulnerable to contamination and climate change. By linking data and models, SNO Karst aims to better understand and model water, mass, energy, and geochemical transport in karstic systems and to enhance the modeling capacity to reproduce variations of water and matter fluxes. Nine sites located in different climatic conditions (see **Table S1**) are instrumented and measure rainfall, discharge, water levels and isotopic and hydro-geochemical properties in rainfall, springs, rivers, karstic cavities and drilling.

All the catchment sites from RBV can be placed on a lithology versus climate diagram (see **Fig. 4** in the main text). Their degrees of disturbance are variable and range from "natural" catchments to highly-managed sites.

Although most of the observatories were set up independently, major scientific questions shared by several observatories can be defined: what is the carbon cycle at the catchment scale and how is it perturbed by local and global forcing factors? What are the erosion rates and their controls? What is the influence of extreme events on the cycling of nutrient at the catchment scale? What are the residence time of matters in catchments?

A.1.2. The H+ network of hydrogeological sites, created in 2002, provides in-situ observations and experimental data to address current open questions regarding coupled flow, transport and biogeochemical reactions in heterogeneous aquifers, i.e. the deep critical zone. H+ sites are instrumented to quantify the consequences of subsurface heterogeneity on groundwater residence times, flow path structures, solute transport and biogeochemical reactions. This requires the development of specific site instrumentation as well as the

development of innovative methods for imaging, characterizing and modelling hydrodynamic, transport and processes. Methodological challenge addressed by H+ scientists include i) the development of hydrogeophysical methods to image the dynamics hydrological processes (recharge, flow, transport, reactivity...), ii) the integration of experiments and observations carried out on the H+ sites into models to quantify and predict the dynamics of heterogeneous hydrogeological systems. The latter step is essential to transfer the knowledge obtained on H+ sites to generic modeling tools that can be used in other contexts.

The H+ scientists address three main scientific questions.

- Understanding the hydrological functioning of heterogeneous reservoirs, such as karstic aquifers (Larzac, SHE Poitiers, LSBB, Mallorca), fractured systems (Choutuppal, Ploemeur) and alluvial systems (Auverwatch). One of the main objective of H+ sites is to provide field data to understand the role of heterogeneities (permeability distribution, preferential flow paths, fractures, karst conduits, anisotropy, double porosity...) on the recharge of underground reservoirs, their flow dynamics, storage properties and their exchanges and interactions with hydrological systems of surface. This is a particularly critical issue for assessing the resilience of hydrological systems to anthropogenic disturbances and global changes.
- Characterizing and modelling the transport dynamics of dissolved chemical elements, such as contaminants and chemical elements that play a key role in critical zone processes (e.g. transport of carbon, nitrogen, and elements originating from rock erosion). The existence of heterogeneity at multiple scales leads to transport phenomena (dispersion, retention, distribution of residence times) that cannot be treated within the framework of conventional models. Modeling of transport phenomena in heterogeneous hydrogeological systems is also an important issue for assessing geothermal and heat storage capabilities of subterranean environments.

- Elucidating the role of hydrogeological systems as biogeochemical reactors. During its journey in the soil and the subsurface, the chemical composition of water evolves by interaction with minerals and bacteria. This process plays a major role in the evolution of the quality of water resources, the transport of contaminants, and the geochemical functioning of watersheds. The H + teams thus explore the links between the distribution of flow velocities and residence times, kinetics of reactions and microbial biodiversity in hydrogeological systems.

A.1.3. The **CRYOBS-CLIM observatory** aims is to answer the following scientific questions: i) How will climate changes impact surface energy and mass budgets of snow / ice-covered surfaces and on permafrost ground temperature at different spatial (local to regional) and temporal (seasonal to multidecadal) scales? ii) How will snow/climate feedback mechanisms enhance or attenuate glaciers, ice sheets and permafrost changes in the near future? How can observations help to identify climate models weaknesses and to improve the simulations of cryosphere components? iii) What is the future snow and ice-covered retreat and wastage and what will be the impact on water resources and sea level rise? iv) How do glaciers, rock glaciers and ice sheet dynamics respond to changes in temperature, surface mass balance and hydrological processes, and what are the impacts in terms of natural hazards?

The overarching goal of CRYOBS-CLIM network is to collect, archive and disseminate a comprehensive and consistent set of observations on the main components of the terrestrial cryosphere (glaciers, snow, permafrost) in a series of well-chosen sites ranging from high altitudes to high latitudes (European Alps, tropical Andes, Himalayas, Antarctica, Svalbard). The monitored variables and research topics are described in **Table S1**. A recent paper by Brun et al. (2017) illustrates the value of the observation strategy. The authors used more than

50,000 ASTER satellite images to derive digital elevation models and to track glacier thickness changes for the period 2000-2016 over High Mountain Asia. They provided the first estimate of glacier volume change in this under-studied region of the world showing that approximately 90 000 km² of glaciers had melted between 2000 and 2016. These data will help to constrain glacio-hydrological models and to better understand the contribution of glaciers to stream flow and sea level rise in the context of climate change.

A.1.4. The *Tourbières* (Peatland) observatory is a network of four French instrumented sites and one Siberian mire aimed at studying the effect of global change on carbon sink function and hydrological budget of temperate and sub-boreal peatlands, wetland ecosystems that contain a third of Earth's carbon stock in an area accounting for only 3-5% of the land surface. The French sites were set up in 2008-2010, according to a climatic gradient (lowland to mountain climate, D'Angelo et al., 2016), to ensure long-term monitoring of greenhouse gas (GHG: CO₂, CH₄, H₂O, N₂O), dissolved and particulate organic carbon (DOC, POC) fluxes as well as environmental variables that impact GHG, DOC and POC fluxes, and to generate interoperable databases. The instrumentation of the sites was carried out according to standardized protocols to monitor GHG, DOC and POC concentrations, meteorological parameters, surface and soil temperature and moisture, water table depth and groundwater chemistry at high resolution. Vegetation cover and net primary production are estimated during the growing season. CO2 (Net Ecosystem Exchange and Respiration) and CH4 fluxes are monitored at different spatial scales: at ecosystem scale (1000 m^2 high frequency measurements by flux towers) and at plot scale (1 m^2 , seasonal resolution by static chambers measurements). So far, instrumented sites are used to deploy experiments on two types of forcing variables: (i) temperature with artificial air warming by using open-top chambers
(OTCs) (Delarue et al., 2011; Delarue et al., 2015); (ii) water table depth with ecohydrological restoration operation (Bernard-Jannin et al., 2017; Gogo et al., 2017)

A.1.5. The OSR (Regional Spatial Observatory). OSR is documenting the long term effects of climate change and increasing anthropogenic pressures on the hydrologic and agroecologic evolutions of agricultural regions, at various spatial and temporal scales, in a perspective for sustainable management of water and soil resources. The specificity of the OSR approach is the extensive use of remote sensing for surface characterization (land use, vegetation cover, evapotranspiration, soil moisture, snow cover, etc.) combined with a multi-scale monitoring network of (1) continuous long-term monitoring of experimental plots (crop and snow sites), (2) hundreds of plots annually monitored for surface state, land cover, etc., and (3) experiments conducted at catchment scale with reinforced observations for water and energy budget evaluation.

The OSR concept has been yet implemented in two sites located in the South West of France and in Morocco (Tensift basin). In SW France, OSR monitors land use to understand effects of agricultural practices and climate variability on crop functioning from plot to regional scales, in terms of greenhouse/water budgets and production (Battude et al., 2017; Marais Sicre et al., 2016; Tallec et al. 2013). Marti et al. (2016) used high-resolution remote sensing data to monitor snow cover in the Pyrenean Mountain to quantify available water resource. The Tensift OSR is typical of Mediterranean semi-arid watersheds, with an upstream mountainous part receiving most of the precipitations and providing water to a downstream plain occupied by both rain-fed and irrigated agriculture. The measured variables allow the simulation of the impact of climate and anthropogenic changes on water resources in the upstream producing areas (Marchane et al., 2017) and on the downstream aquifer solicited by irrigation and domestic use (Le Page et al., 2012). A.1.6. The ROSES (Observatory network of groundwater systems at national France level) has been set up to address water management issues reinforced in the framework of the implementation of the European Water Directive. It also answers scientific questions such as (i) the impact of climate change on the behavior of aquifers at national and regional scale, performing assimilation of groundwater level data and modeling (e.g. Vergnes et al., 2012; El Janyani et al., 2012); (ii) the link between the geochemical signature of groundwater and the geological settings in the saturated zone at national scale (e.g. Wendland et al., 2008); (iii) the transfer time and contaminants behavior of agriculture origin as well as emergent contaminants within aquifers of large catchments in France (e.g. Lopez et al., 2015); and (iv) the development of database tools (interoperability) and data treatment (statistical tools). It gathers more than 77 000 stations, with 74 000 groundwater quality stations and 4400 monitoring wells. All types of aquifers are monitored in Metropolitan territories as well as French overseas territories. All data are stored within the ADES database (http://www.ades.eaufrance.fr), a collective work involving several governmental agencies.

A.1.7. The OPE (Long-lasting Observatory of the Environment). OPE focuses on a territory in the eastern part of Paris Basin (up to a few hundred km²) around the project site pre-selected as a French deep geological repository of high level and intermediate level long lived radioactive waste. OPE is currently constituted of a monitoring network, covering forest and agricultural areas and measuring atmospheric, meteorological, soil, surface and ground water, land uses and biodiversity indicators, providing a unique opportunity to document the interactions between human activities and the critical zone around an industrial project scheduled to run over 100 years (if accepted).

Thematic network	Observatory/sites	Database type	Database portal	Data access	Remarks
RBV	AgrHys ¹	Relational	yes	Public	Basis of the relational data base shared with OMERE
	M-TROPICS ²	Relational	yes	Public	Basis of the relational data base shared with Auradé
	HYBAM ³	Relational	yes	Login/password	
	BDOH ⁴	Relational	yes	Login/password	Branger et al. (2014). Shared by several observatories (Draix-Bléone, Oracle, Real Collobrier, OTHU/Yzeron. Not conceived to easily provide metadata
	AMMA-CATCH ⁵	Relational	yes	Public with login/password	Fully interoperable and fulfills the INSPIRE requirements
	OHMCV ⁶ OHGE ⁷	Simple file repository	yes	Ask contact person or	Part of the OHMCV observatory data available
	ObseRA ⁸	arborescence		login/password	in the BDOH data base
	OMERE ⁹	Relational	no	Only metadata	Same initial relational data base as AgrHys
	Auradé	Under construction	no	Only metadata	Same initial relational data base as M-TROPICS
	SNO Karst	Under construction			

Appendix 2: Diversity of current practices in the OZCAR network for databases and metadatabases (Table S2)

¹ https://www6.inra.fr/ore_agrhys_eng/Data
² https://mtropics.obs-mip.fr/data-access/
³ http://www.ore-hybam.org/index.php/eng/Data

<u>http://www.ore-nyoam.org/mdex.php/eng/D</u>
<u>http://bdoh.irstea.fr/</u>
<u>http://bd.amma-catch.org/main.jsf</u>
<u>http://ohmcv.osug.fr/spip.php?article30</u>
<u>http://bdd-ohge.u-strasbg.fr/index.php/bdd</u>

⁸ https://morpho.ipgp.fr/Obsera/Home

⁹ <u>http://www.obs-omere.org/index.php?page=geonetwork&lang=fr</u>

H^{+10}	All sites	Relational	yes	Login/password	Normalized variable names based on the GCMD
					keywords ¹¹
CRYOBS- CLIM ¹²	All sites	Relational	yes	Login/password	Based on the same information system as AMMA-CATCH. Fully interoperable and fulfills the INSPIRE requirements
Tourbières	-	Under construction			
OSR	-	Relational and file repository arborescence	yes	Relational and file repository arborescence	Information system including in-situ data and satellite images
ROSES ¹³	ADES	Relational	yes		Operational data base used for the Water Framework Directive reports about groundwater
OPE	-	No	-	Public	• •

 ¹⁰ <u>http://hplus.ore.fr/base-de-donnees-fr</u>
 ¹¹ Global Change Master Directory, <u>https://gcmd.nasa.gov/</u>
 ¹² <u>http://data.cryobsclim.fr/main.jsf</u>
 ¹³ <u>http://www.ades.eaufrance.fr/LienLocalisation.aspx</u>

Appendix 3: Examples of scientific papers published within OZCAR community combining data and models (Table S3)

Scientific/operational question	References	Main approach and findings	CZ compartment
Use of data and models for process unders	standing		
How to represent snow-pack evolution?	Lafaysse et al. (2017)	A 18-year time series of climatological variables and snow characterization from the Col de Porte site (CRYOBS-CLIM observatory) was used to compare various snow-pack evolution models, that were included as a modeling toolbox in the SURFEX land surface model (Masson et al., 2013).	Cryosphere
How does fractured media heterogeneity impact transport processes and biogeochemical reactions in groundwater?	Kang et al. (2015) ; Guihéneuf et al., (2017)	A combination of convergent and push-pull tracer tests can be effectively used to decipher the role of transit time distribution and velocity correlation for modeling transport processes.	Fractured aquifers
	Dorn et al. (2012); Read et al. (2013); Klepikova et al. (2016) Shakas et al. (2017)	Repeated measurements combining electrical, electromagnetic, thermal, hydraulic and geochemical data have provided key in-situ experimental data sets to understand transport processes in fractured media.	Fractured aquifers
	Arfib and Charlier (2016)	Data and models were used to understand salt intrusion in a karstic aquifer.	Karstic aquifers
	Roques et al. (2014) Ben Maamar et al. (2015) Boisson et al. (2013)	Chemical and microbiological sampling, and field hydraulic and tracer tests were used to infer biogeochemical reaction processes in fractured aquifers	Fractured aquifers
What are the main hydrological controls of dissolved organic carbon in a restored peatland?	Binet et al. (2013); Bernard-Jannin et al. (2017)	A hydrological model, calibrated on water table levels, and coupled with a biogeochemical module was shown to correctly reproduced pore water dissolved organic carbon (DOC) concentration time series in a restored peatland. Water table drawdown severity has been identified as the major factor controlling DOC dynamics.	Peatland
What are the water and solute pathways in karst and fractured aquifers?	Maréchal et al. (2004); Le Borgne et al. (2006); Audoin et al. (2008);	Data and models of various complexities helped to identify water and solutes pathways.	Fractured aquifers
	Binet et al. (2017); Cholet et al. (2017); Charlier et al. (2012); Mazzilli et al. (2017) Labat and Mangin	Data and models were used to discriminate between rapid flow via conduits networks and slower flow via matrix or fractured systems	Karstic aquifers

	(2015) Labet et al. (2016)		
What is the level of complexity required to model erosion at the hillslope scale?	Cea et al. (2016) Cea et al. (2014); Cea et al. (2016)	The 2D surface runoff model of Cea et al. (2014) was coupled with an erosion module and plot data from the OHMCV observatory to assess the model complexity required to correctly reproduce the observed sediment yields.	Surface water and sediment transport
	Gumière et al. (2014)	Connectivity of sediment transport was taken into account in the modeling of erosion, with evaluation with data from the OMERE Observatory to properly represent erosion yields.	Surface water and sediment transport
Use of data and models for system unders	tanding		
Can we explain long-term trends in nitrate concentration in rivers in Britanny?	Fovet et al. (2015)	A process-based model, calibrated using a 40-year time series of discharge and nitrogen concentrations, was used to estimate nitrogen transit times and was able to simulate the constant increase of nitrate linked to the increased of fertilization since the 1960s.	Surface water and nitrate
What are the appropriate representations of subsurface water and solute pathways and what are the relevant data and inverse modeling strategies to constrain them?	Leray et al. (2012)	The paper demonstrates the interest of combining hydraulic and age information for the prediction of residence time distributions within hydrogeological models, and showed the possibility of identifying global hydrogeological structures from point-like data.	Fractured aquifer
What are the interactions between hydrological and vegetation cycles in SW Niger?	Velluet et al. (2014); Leauthaud et al, (2017)	A calibrated mechanistic SVAT (Soil Vegetation Atmosphere Transfer) model was first used to retrieve a climatology of water and energy budgets in Niger at the plot scale. Then the model was coupled with the STEP ecological model and the SARAH agronomic model to study interactions between hydrological and vegetation cycles in SW Niger.	Soil – vegetation – atmosphere interface
What are the controlling factors of weathering in the Strengbach catchment and the Mule Hole catchment?	Godderis et al. (2006); Violette et al. (2010)	The WITCH model, coupling kinetics of silicate weathering reactions to the water and carbon cycle in forest ecosystems, initially designed and applied to the granitic Strengbach catchment (OHGE observatory), was coupled with a lumped hydrological model to successfully reproduce the stream chemistry of the Mule Hole catchment.	Catchment hydrology, geochemistry
Can we improve the knowledge of the water balance of the Amazon?	Getirana et al. (2010; 2011)	In large catchments where data are scarce, such as the Amazon, satellite altimetry data were combined with in-situ data from gauging stations to assess and strengthen the water balance computed using a distributed hydrological model. Such datasets were also used for the evaluation of large-scale land surface models.	Continental scale catchment hydrology
Can we predict nitrates and pesticides behavior and transfer in agricultural catchments using agro-hydrological	Ferrant et al. (2011) ; Boithias et al. (2011)	A comparison of a distributed (TNT2) and a semi-distributed model (SWAT) allowed the authors to better understand nitrogen transfer dynamics in a small agricultural catchment. Using the SWAT model,	Soil- Water, Catchment scale

modelling?		the introduction of the partition coefficient Kd to predict pesticides behavior in stream waters improved pesticide transfer modelling	
What are the main hydrological controls of bacteria in a tropical mountain watershed?	Kim et al. (2017)	The SWAT model was improved by implementing in-stream resuspension of sediments and transient storage in the hyporheic zone (Houay Pano catchment)	
What is the role played by geology on the hydrological processes during flash-flood events?	Vannier et al. (2016)	A regional distributed hydrological model was used to perform long- term and flash-flood event simulations at the regional scale. Discharge simulation was improved when the weathered bedrock layer was included into the model.	Surface and ground water
Use of model and data for management/p	rediction purposes		
Can we design a flash flood forecasting system in a karstic environment?	Maréchal et al. (2008)	Hydrological and geochemical data (SNO Karst) were used to design a flash flood warning model for the city of Nîmes (SE France)	Surface water
What is the sustainability of water resources under climate change in the Andes region?	Chevallier et al. (2010) ; Rabatel et al. (2013)	Time series of discharge and glacier mass balance data (CRYOBS- CLIM) were used to provide a synthesis of glacier mass balance evolution for the whole Andean region.	Cryosphere
What are water and irrigation needs in different contexts , and what is the impact of irrigation on water table levels?	Battude et al. (2017); Le Page et al. (2012)	Once calibrated using local information, remote sensing data combined with a water balance model (SAMIR) provided suitable tools for simulating water needs and irrigation. In-situ and remote sensing data were used to model water resources in the area of Marrakech (Morocco), using a coupling between the WEAP (Water Evaluation And Planning System) hydrological model and the MODFLOW groundwater model.	Surface water, aquifers, biosphere
What would be the impact of small ponds rehabilitation on nitrate contamination in the Seine catchment?	Passy et al. (2012)	Observations at small scale (Orgeval observatory) were used to calibrate the Riverstrahler model (Ruelland et al., 2007) that was then applied to the whole Seine river basin.	Catchment hydrology, river geochemistry, nitrate cycle
What is the level of contamination of French aquifers with respect to contaminants from agriculture and emergent pollutants?	Lopez et al. (2015)	The ROSES data base was used to model transfer time and the behavior of agricultural and emergent contaminants within aquifers of large catchments in France.	Groundwater
Can we predict the risk of nitrates and pesticides transfer to surface waters and propose best environmental practices to reduce contaminant fluxes?	Macary et al. (2013 a, b) Ferrant et al. (2013)	A multi-scale method and a multi-criteria modelling coupled with a GIS was applied to assess pesticide contamination risks in agricultural watersheds. The effect of best environmental practices on reducing pesticide and nitrates pollution towards surface water, was assessed. The long term impact of nitrate mitigation scenarios was simulated in a pilot study basin using an agrohydrological modelling.	Soil and Catchment scales
What is motorists' exposure to flash floods and what are their behaviors and mobility	Shabou et al. (2017)	A distributed hydrological model was used to assess exposure of road	Surface water ; Human exposure to

Vadose Zone J. Accepted Paper, posted 08/30/2018. doi:10.2136/vzj2018.04.0067

adaptations with respect to roads flooding?	users to extreme hydrometeorological events. This model requires the combination of social and hydrometeorological data as well as	flash flood events
	road hooding impact data.	

References cited in the Appendixes

- Abril, G., J.M. Martinez, L.F. Artigas, P. Moreira-Turcq, M.F. Benedetti, L. Vidal, et al. 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505: 395-+. doi:10.1038/nature12797.
- Allemand, P., C. Delacourt, E. Lajeunesse, O. Devauchelle and F. Beauducel. 2014. Erosive effects of the storm Helena (1963) on Basse Terre Island (Guadeloupe — Lesser Antilles Arc). Geomorphology 206: 79-86. doi:10.1016/j.geomorph.2013.09.020.
- Arfib, B. and J.-B. Charlier. 2016. Insights into saline intrusion and freshwater resources in coastal karstic aquifers using a lumped Rainfall–Discharge–Salinity model (the Port-Miou brackish spring, SE France). Journal of Hydrology 540: 148-161. doi:10.1016/j.jhydrol.2016.06.010.
- Aubert, A.H., C. Gascuel-Odoux, G. Gruau, N. Akkal, M. Faucheux, Y. Fauvel, et al. 2013.
 Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study.
 Hydrology and Earth System Sciences 17: 1379-1391. doi:10.5194/hess-17-1379-2013.
- Audouin, O., J. Bodin, G. Porel and B. Bourbiaux. 2008. Flowpath structure in a limestone aquifer: multi-borehole logging investigations at the hydrogeological experimental site of Poitiers, France. Hydrogeology Journal 16: 939-950. doi:10.1007/s10040-008-0275-4.
- Battude, M., A. Al Bitar, A. Brut, T. Tallec, M. Huc, J. Cros, et al. 2017. Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery. Agricultural Water Management 189: 123-136. doi:https://doi.org/10.1016/j.agwat.2017.04.018.
- Ben Maamar, S., L. Aquilina, A. Quaiser, H. Pauwels, S. Michon-Coudouel, V. Vergnaud-Ayraud, et al. 2015. Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths. Frontiers in Microbiology 6: 1457. doi:10.3389/fmicb.2015.01457.
- Bernard-Jannin, L., S. Binet, S. Gogo, F. Leroy, C. Défarge, N. Jozja, et al. 2017.Hydrological control of dissolved organic carbon dynamics in a rehabilitated

Sphagnum–dominated peatland: a water-table based modelling approach. Hydrol. Earth Syst. Sci. Discuss. 2017: 1-24. doi:10.5194/hess-2017-578.

- Bicalho, C.C., C. Batiot-Guilhe, J.L. Seidel, S.V. Exter and H. Jourde. 2012. Hydrodynamical changes and their consequences on groundwater hydrochemistry induced by three decades of intense exploitation in a Mediterranean Karst system. Environmental Earth Sciences 65: 2311-2319. doi:10.1007/s12665-011-1384-2.
- Binet, S., S. Gogo and F. Laggoun-Défarge. 2013. A water-table dependent reservoir model to investigate the effect of drought and vascular plant invasion on peatland hydrology. Journal of Hydrology 499: 132-139. doi:https://doi.org/10.1016/j.jhydrol.2013.06.035.
- Binet, S., E. Joigneaux, H. Pauwels, P. Albéric, C. Fléhoc and A. Bruand. 2017. Water exchange, mixing and transient storage between a saturated karstic conduit and the surrounding aquifer: Groundwater flow modeling and inputs from stable water isotopes. Journal of Hydrology 544: 278-289. doi:https://doi.org/10.1016/j.jhydrol.2016.11.042.
- Boisson, A., P. de Anna, O. Bour, T. Le Borgne, T. Labasque and L. Aquilina. 2013. Reaction chain modeling of denitrification reactions during a push–pull test. Journal of Contaminant Hydrology 148: 1-11. doi:10.1016/j.jconhyd.2013.02.006.
- Boithias, L., S. Sauvage, L. Taghavi, G. Merlina, J.-L. Probst and J.M. Sánchez Pérez. 2011. Occurrence of metolachlor and trifluralin losses in the Save river agricultural catchment during floods. Journal of Hazardous Materials 196: 210-219. doi:https://doi.org/10.1016/j.jhazmat.2011.09.012.
- Boudevillain, B., G. Delrieu, B. Galabertier, L. Bonnifait, L. Bouilloud, P.E. Kirstetter, et al.
 2011. The Cevennes-Vivarais Mediterranean Hydrometeorological Observatory
 database. Water Resources Research 47.
- Boucher, M., G. Favreau, Y. Nazoumou, B. Cappelaere, S. Massuel and A. Legchenko. 2012. Constraining Groundwater Modeling with Magnetic Resonance Soundings. Ground Water 50: 775-784. doi:10.1111/j.1745-6584.2011.00891.x.
- Branger, F., F. Thollet, M. Crochemore, M. Poisbeau, N. Raidelet, P. Farissier, et al. 2014.
 Database for hydrological observatories: a tool for storage, management and access of data produced by the long-term hydrological observatories of Irstea. Houille Blanche 1: 33-38. <u>https://doi.org/10.1051/lhb/2014005</u>

- Braud, I., P.-A. Ayral, C. Bouvier, F. Branger, G. Delrieu, J. Le Coz, et al. 2014. Multi-scale hydrometeorological observation and modelling for flash-flood understanding.
 Hydrology and Earth System Sciences 18: 3733-3761. doi:10.5194/hess-18-3733-2014.
- Braud, I., P. Breil, F. Thollet, M. Lagouy, F. Branger, C. Jacqueminet, et al. 2013. Evidence of the impact of urbanization on the hydrological regime of a medium-sized periurban catchment in France. Journal of Hydrology 485: 5-23. doi:10.1016/j.jhydrol.2012.04.049.
- Braun, J.-J., M. Descloitres, J. Riotte, S. Fleury, L. Barbiéro, J.-L. Boeglin, et al. 2009.
 Regolith mass balance inferred from combined mineralogical, geochemical and geophysical studies: Mule Hole gneissic watershed, South India. Geochimica et Cosmochimica Acta 73: 935-961. doi:10.1016/j.gca.2008.11.013.
- Brun, F., E. Berthier, P. Wagnon, A. Kääb and D. Treichler. 2017. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience 10: 668. doi:10.1038/ngeo2999
- Buvaneshwari, S., J. Riotte, M. Sekhar, M.S. Mohan Kumar, A.K. Sharma, J.L. Duprey, et al.
 2017. Groundwater resource vulnerability and spatial variability of nitrate contamination: Insights from high density tubewell monitoring in a hard rock aquifer.
 Science of The Total Environment 579: 838-847.

doi:https://doi.org/10.1016/j.scitotenv.2016.11.017.

- Cea, L., C. Legout, F. Darboux, M. Esteves and G. Nord. 2014. Experimental validation of a 2D overland flow model using high resolution water depth and velocity data. Journal of Hydrology 513: 142-153. doi:http://dx.doi.org/10.1016/j.jhydrol.2014.03.052.
- Cea, L., C. Legout, T. Grangeon and G. Nord. 2016. Impact of model simplifications on soil erosion predictions: application of the GLUE methodology to a distributed event based model at the hillslope scale. Hydrological Processes 30: 1096-1113. doi:10.1002/hyp.10697.
- Charlier, J.-B., C. Bertrand and J. Mudry. 2012. Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system. Journal of Hydrology 460-461: 52-64. doi:10.1016/j.jhydrol.2012.06.043.
- Chevallier, P., B. Pouyaud, W. Suarez and T. Condom. 2011. Climate change threats to environment in the tropical Andes: glaciers and water resources. Reg Environ Change 11: 179-187. doi:10.1007/s10113-010-0177-6.

- Chitra Tarak, R., L. Ruiz, H.S. Dattaraja, M.S.M. Kumar, J. Riotte, H.S. Suresh, et al. The roots of the drought: Hydrology and water uptake strategies mediate forest wide demographic response to precipitation. Journal of Ecology 0. doi:doi:10.1111/1365-2745.12925.
- Cholet, C., J.B. Charlier, R. Moussa, M. Steinmann and S. Denimal. 2017. Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection–diffusion equation. Hydrol. Earth Syst. Sci. 21: 3635-3653. doi:10.5194/hess-21-3635-2017.
- D'Angelo, B., S. Gogo, F. Laggoun-Défarge, F. Le Moing, F. Jégou and C. Guimbaud. 2016. Soil temperature synchronisation improves representation of diel variability of ecosystem respiration in Sphagnum peatlands. Agricultural and Forest Meteorology 223: 95-102. doi:10.1016/j.agrformet.2016.03.021.
- Dambrine, E., B. Pollier, A. Poszwa, J. Ranger, A. Probst, D. Viville, et al. 1998. Evidence of Current Soil Acidification in Spruce Stands in the Vosges Mountains, North-Eastern France. Water, Air, and Soil Pollution 105: 43-52. doi:10.1023/A:1005030331423.
- Delarue, F., A. Buttler, L. Bragazza, L. Grasset, V.E.J. Jassey, S. Gogo, et al. 2015.
 Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum-dominated peatland. Science of The Total Environment 511: 576-583. doi:10.1016/j.scitotenv.2014.12.095.
- Delarue, F., F. Laggoun-Défarge, A. Buttler, S. Gogo, V.E.J. Jassey and J.-R. Disnar. 2011.
 Effects of short-term ecosystem experimental warming on water-extractable organic matter in an ombrotrophic Sphagnum peatland (Le Forbonnet, France). Organic Geochemistry 42: 1016-1024. doi:10.1016/j.orggeochem.2011.07.005.
- Delrieu, G., V. Ducrocq, E. Gaume, J. Nicol, O. Payrastre, E. Yates, et al. 2005. The catastrophic flash-flood event of 8-9 September 2002 in the Gard region, France: a first case study for the Cévennes-Vivarais Mediterranean hydrometerorological observatory. Journal of Hydrometeorology 6: 34-52. DOI: 10.1029/2010WR010353
- Descroix, L., J.P. Laurent, M. Vauclin, O. Amogu, S. Boubkraoui, B. Ibrahim, et al. 2012. Experimental evidence of deep infiltration under sandy flats and gullies in the Sahel. Journal of Hydrology 424-425: 1-15. doi:10.1016/j.jhydrol.2011.11.019.
- Dorn, C., N. Linde, T. Le Borgne, O. Bour and M. Klepikova. 2012. Inferring transport characteristics in a fractured rock aquifer by combining single hole ground -

penetrating radar reflection monitoring and tracer test data. Water Resources Research 48. doi:10.1029/2011WR011739.

- El Janyani, S., N. Massei, J.-P. Dupont, M. Fournier and N. Dörfliger. 2012. Hydrological responses of the chalk aquifer to the regional climatic signal. Journal of Hydrology 464-465: 485-493. doi:10.1016/j.jhydrol.2012.07.040.
- Favreau, G., B. Cappelaere, S. Massuel, M. Leblanc, M. Boucher, N. Boulain, et al. 2009. Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review. Water Resources Research 45. doi:doi:10.1029/2007WR006785.
- Ferrant, S., F. Oehler, P. Durand, L. Ruiz, J. Salmon-Monviola, E. Justes, et al. 2011.
 Understanding nitrogen transfer dynamics in a small agricultural catchment:
 Comparison of a distributed (TNT2) and a semi distributed (SWAT) modeling
 approaches. Journal of Hydrology 406: 1-15.

doi:https://doi.org/10.1016/j.jhydrol.2011.05.026.

- Ferrant, S., P. Durand, E. Justes, J.-L. Probst and J.-M. Sanchez-Perez. 2013. Simulating the long term impact of nitrate mitigation scenarios in a pilot study basin. Agricultural Water Management 124: 85-96. doi:10.1016/j.agwat.2013.03.023.
- Fovet, O., L. Ruiz, M. Faucheux, J. Molénat, M. Sekhar, F. Vertès, et al. 2015. Using long time series of agricultural-derived nitrates for estimating catchment transit times. Journal of Hydrology 522: 603-617.

doi:https://doi.org/10.1016/j.jhydrol.2015.01.030.

- Gal, L., M. Grippa, P. Hiernaux, L. Pons and L. Kergoat. 2017. The paradoxical evolution of runoff in the pastoral Sahel: analysis of the hydrological changes over the Agoufou watershed (Mali) using the KINEROS-2 model. Hydrol. Earth Syst. Sci. 21: 4591-4613. doi:10.5194/hess-21-4591-2017.
- Galle S., M. Grippa, C. Peugeot, I. Bouzou Moussa, B. Cappelaere, J. Demarty et al. 2018. AMMA-CATCH a critical zone observatory in West Africa monitoring a region in transition, Vadose Zone Journal, in press, doi: 10.2136/vzj2018.03.0062.
- Garnier, J., J. Anglade, M. Benoit, G. Billen, T. Puech, A. Ramarson, et al. 2016.
 Reconnecting crop and cattle farming to reduce nitrogen losses to river water of an intensive agricultural catchment (Seine basin, France): past, present and future.
 Environmental Science & Policy 63: 76-90. doi:10.1016/j.envsci.2016.04.019.

- Getirana, A.C.V., M.P. Bonnet, O.C. Rotunno Filho, W. Collischonn, J.L. Guyot, F. Seyler, et al. 2010. Hydrological modelling and water balance of the Negro River basin: evaluation based on in situ and spatial altimetry data. Hydrological processes 24: 3219-3236. doi:10.1002/hyp.7747.
- Getirana, A.C.V., J.C.V. Espinoza, J. Ronchail and O.C. Rotunno Filho. 2011. Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin. Journal of Hydrology 404: 304-322. doi:10.1016/j.jhydrol.2011.04.037.
- Goddéris, Y., L.M. François, A. Probst, J. Schott, D. Moncoulon, D. Labat, et al. 2006.
 Modelling weathering processes at the catchment scale: The WITCH numerical model.
 Geochimica et Cosmochimica Acta 70: 1128-1147. doi:10.1016/j.gca.2005.11.018.
- Gogo, S., F. Laggoun-Défarge, F. Leroy, C. Guimbaud, L. Bernard-Jannin. 2017, Plant diversity affects GHG fluxes in an ecological engineering experiment in a disturbed Sphagnum peatland (La Guette, France), Vol. 19, EGU2017-12194, 2017.
- Guihéneuf, N., O. Bour, A. Boisson, T. Le Borgne, M.W. Becker, B. Nigon, et al. 2017. Insights about transport mechanisms and fracture flow channeling from multi-scale observations of tracer dispersion in shallow fractured crystalline rock. Journal of Contaminant Hydrology 206: 18-33.

doi:https://doi.org/10.1016/j.jconhyd.2017.09.003.

- Gumiere, S.J., J.-S. Bailly, B. Cheviron, D. Raclot, Y.L. Bissonnais and A.N. Rousseau. 2014. Evaluating the impact of the spatial distribution of land management practices on water erosion: case study of a Mediterranean catchment. Journal of Hydrologic Engineering 20: C5014004. doi:10.1061/(ASCE)HE.1943-5584.0001076.
- Inoubli, N., D. Raclot, I. Mekki, R. Moussa and Y. Le Bissonnais. 2017. A Spatiotemporal Multiscale Analysis of Runoff and Erosion in a Mediterranean Marly Catchment. Vadose Zone Journal 16. doi:10.2136/vzj2017.06.0124.
- Kang, P.K., T.L. Borgne, M. Dentz, O. Bour and R. Juanes. 2015. Impact of velocity correlation and distribution on transport in fractured media: Field evidence and theoretical model. Water Resources Research 51: 940-959. doi:doi:10.1002/2014WR015799.
- Kim, M., L. Boithias, K.H. Cho, N. Silvera, C. Thammahacksa, K. Latsachack, et al. 2017.
 Hydrological modeling of Fecal Indicator Bacteria in a tropical mountain catchment.
 Water Research 119: 102-113. doi:https://doi.org/10.1016/j.watres.2017.04.038.

Klepikova, M.V., T. Le Borgne, O. Bour, M. Dentz, R. Hochreutener and N. Lavenant. 2016. Heat as a tracer for understanding transport processes in fractured media: Theory and field assessment from multiscale thermal push - pull tracer tests. Water Resources Research 52: 5442-5457. doi:10.1002/2016WR018789.

- Labat, D. and A. Mangin. 2015. Transfer function approach for artificial tracer test interpretation in karstic systems. Journal of Hydrology 529: 866-871. doi:10.1016/j.jhydrol.2015.09.011.
- Labat, D., B. Sivakumar and A. Mangin. 2016. Evidence for deterministic chaos in longterm high-resolution karstic streamflow time series. Stoch Environ Res Risk Assess 30: 2189-2196. doi:10.1007/s00477-015-1175-5.
- Lafaysse, M., B. Cluzet, M. Dumont, Y. Lejeune, V. Vionnet and S. Morin. 2017. A multiphysical ensemble system of numerical snow modelling. Cryosphere 11: 1173-1198. doi:10.5194/tc-11-1173-2017.
- Leauthaud, C., B. Cappelaere, J. Demarty, F. Guichard, C. Velluet, L. Kergoat, et al. 2017. A
 60 year reconstructed high resolution local meteorological data set in Central
 Sahel (1950-2009): evaluation, analysis and application to land surface modelling.
 International Journal of Climatology 37: 2699-2718. doi:doi:10.1002/joc.4874.
- Leauthaud, C., J. Demarty, B. Cappelaere, M. Grippa, L. Kergoat, C. Velluet, et al. 2015.
 Revisiting historical climatic signals to better explore the future: prospects of water cycle changes in Central Sahel. Proc. IAHS 371: 195-201. doi:10.5194/piahs-371-195-2015.
- Lebel, T. and A. Ali. 2009. Recent trends in the Central and Western Sahel rainfall regime (1990–2007). Journal of Hydrology 375: 52-64. doi:https://doi.org/10.1016/j.jhydrol.2008.11.030.
- Lebel, T., B. Cappelaere, S. Galle, N. Hanan, L. Kergoat, S. Levis, et al. 2009. AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. Journal of Hydrology 375: 3-13. doi:https://doi.org/10.1016/j.jhydrol.2009.03.020.
- Le Borgne, T., O. Bour, F.L. Paillet and J.P. Caudal. 2006. Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. Journal of Hydrology 328: 347-359. doi:10.1016/j.jhydrol.2005.12.029.
- Le Page, M., B. Berjamy, Y. Fakir, F. Bourgin, L. Jarlan, A. Abourida, et al. 2012. An Integrated DSS for Groundwater Management Based on Remote Sensing. The Case of

a Semi-arid Aquifer in Morocco. Water Resources Management 26: 3209-3230. doi:10.1007/s11269-012-0068-3.

- Leduc, C., G. Favreau and P. Schroeter. 2001. Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger. Journal of Hydrology 243: 43-54. doi:https://doi.org/10.1016/S0022-1694(00)00403-0.
- Leray, S., J.R. de Dreuzy, O. Bour, T. Labasque and L. Aquilina. 2012. Contribution of age data to the characterization of complex aquifers. Journal of Hydrology 464-465: 54-68. doi:10.1016/j.jhydrol.2012.06.052.
- Lopez, B., P. Ollivier, A. Togola, N. Baran and J.P. Ghestem. 2015. Screening of French groundwater for regulated and emerging contaminants. Science of the Total Environment 518: 562-573. doi:10.1016/j.scitotenv.2015.01.110.
- Macary, F., J. Almeida-Dias, D. Uny and A. Probst. 2013. Assessment of the effects of best environmental practices on reducing pesticide contamination in surface water, using multi-criteria modelling combined with a GIS. International Journal of Multicriteria Decision Making 73 3: 178-211. doi:10.1504/IJMCDM.2013.053725.
- Macary, F., S. Morin, J.-L. Probst and F. Saudubray. 2014. A multi-scale method to assess pesticide contamination risks in agricultural watersheds. Ecological Indicators 36: 624-639. doi:10.1016/j.ecolind.2013.09.001.
- Marais Sicre, C., J. Inglada, R. Fieuzal, F. Baup, S. Valero, J. Cros, et al. 2016. Early Detection of Summer Crops Using High Spatial Resolution Optical Image Time Series. Remote Sensing 8. doi:10.3390/rs8070591.
- Marchane, A., Y. Tramblay, L. Hanich, D. Ruelland and L. Jarlan. 2017. Climate change impacts on surface water resources in the Rheraya catchment (High Atlas, Morocco). Hydrological Sciences Journal 62: 979-995. doi:10.1080/02626667.2017.1283042.
- Maréchal, J.C., B. Dewandel and K. Subrahmanyam. 2004. Use of hydraulic tests at different scales to characterize fracture network properties in the weathered fractured layer of a hard rock aquifer. Water Resources Research 40. doi:doi:10.1029/2004WR003137.
- Maréchal, J.C., B. Ladouche and N. Dörfliger. 2008. Karst flash flooding in a Mediterranean karst, the example of Fontaine de Nîmes. Engineering Geology 99: 138-146. doi:10.1016/j.enggeo.2007.11.013.

- Marti, R., S. Gascoin, E. Berthier, M. de Pinel, T. Houet and D. Laffly. 2016. Mapping snow depth in open alpine terrain from stereo satellite imagery. The Cryosphere 10: 1361-1380. doi:10.5194/tc-10-1361-2016.
- Martinez, J.M., J.L. Guyot, N. Filizola and F. Sondag. 2009. Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data. CATENA 79: 257-264. doi:10.1016/j.catena.2009.05.011.
- Masson, V., P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, et al. 2013. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev. 6: 929-960. doi:10.5194/gmd-6-929-2013.
- Massuel, S., B. Cappelaere, G. Favreau, C. Leduc, T. Lebel and T. Vischel. 2011. Integrated surface water–groundwater modelling in the context of increasing water reserves of a regional Sahelian aquifer. Hydrological Sciences Journal 56: 1242-1264. doi:10.1080/02626667.2011.609171.
- Mathys, N., S. Brochot, M. Meunier and D. Richard. 2003. Erosion quantification in the small marly experimental catchments of Draix (Alpes de Haute Provence, France).
 Calibration of the ETC rainfall-runoff-erosion model. CATENA 50: 527-548.
 doi:https://doi.org/10.1016/S0341-8162(02)00122-4.
- Mazzilli, N., V. Guinot, H. Jourde, N. Lecoq, D. Labat, B. Arfib, et al. 2017. KarstMod: A modelling platform for rainfall discharge analysis and modelling dedicated to karst systems. Environmental Modelling & Software.

doi:https://doi.org/10.1016/j.envsoft.2017.03.015.

- Molenat, J., C. Gascuel-Odoux, L. Ruiz and G. Gruau. 2008. Role of water table dynamics on stream nitrate export and concentration in agricultural headwater catchment (France). Journal of Hydrology 348: 363-378. doi:10.1016/j.jhydrol.2007.10.005.
- Panthou, G., T. Vischel and T. Lebel. 2014. Recent trends in the regime of extreme rainfall in the Central Sahel. International Journal of Climatology 34: 3998-4006. doi:10.1002/joc.3984.
- Passy, P., J. Garnier, G. Billen, C. Fesneau and J. Tournebize. 2012. Restoration of ponds in rural landscapes: Modelling the effect on nitrate contamination of surface water (the Seine River Basin, France). Science of The Total Environment 430: 280-290. doi:10.1016/j.scitotenv.2012.04.035.

- Perrin, A.-S., A. Probst and J.-L. Probst. 2008. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales. Geochimica et Cosmochimica Acta 72: 3105-3123. doi:10.1016/j.gca.2008.04.011.
- Pierret M.C., D. Viville, E. Dambrine, S. Cotel, A. Probst. submitted. Twenty-five years record of chemicals in open field precipitation and throughfall from a medium altitude forest catchment Strengbach - NE France): an obvious response to atmospheric pollution trend. Science of the Total Environment.
- Probst, A., E. Dambrine, D. Viville and B. Fritz. 1990. Influence of acid atmospheric inputs on surface water chemistry and mineral fluxes in a declining spruce stand within a small granitic catchment (Vosges Massif, France). Journal of Hydrology 116: 101-124. doi:https://doi.org/10.1016/0022-1694(90)90118-H.
- Probst, A., B. Fritz and D. Viville. 1995. Mid-term trends in acid precipitation, streamwater chemistry and element budgets in the strengbach catchment (Vosges Mountains, France). Water, Air, and Soil Pollution 79: 39-59. doi:10.1007/BF01100429.
- Rabatel, A., B. Francou, A. Soruco, J. Gomez, B. Cáceres, J.L. Ceballos, et al. 2013. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere 7: 81-102. doi:10.5194/tc-7-81-2013.
- Raclot, D., Y. Le Bissonnais, X. Louchart, P. Andrieux, R. Moussa and M. Voltz. 2009. Soil tillage and scale effects on erosion from fields to catchment in a Mediterranean vineyard area. Agriculture, Ecosystems & Environment 134: 201-210. doi:https://doi.org/10.1016/j.agee.2009.06.019.
- Read, T., O. Bour, V. Bense, T. Le Borgne, P. Goderniaux, M.V. Klepikova, et al. 2013.
 Characterizing groundwater flow and heat transport in fractured rock using fiber optic distributed temperature sensing. Geophysical Research Letters 40: 2055-2059. doi:10.1002/grl.50397.
- Ribolzi, O., O. Evrard, S. Huon, A. De Rouw, N. Silvera, K.O. Latsachack, et al. 2017. From shifting cultivation to teak plantation: effect on overland flow and sediment yield in a montane tropical catchment. Scientific Reports 7. doi:10.1038/s41598-017-04385-2.
- Roques, C., L. Aquilina, O. Bour, J.-C. Maréchal, B. Dewandel, H. Pauwels, et al. 2014. Groundwater sources and geochemical processes in a crystalline fault aquifer. Journal of Hydrology 519: 3110-3128. doi:10.1016/j.jhydrol.2014.10.052.

- Ruelland, D., G. Billen, D. Brunstein and J. Garnier. 2007. SENEQUE: A multi-scaling GIS interface to the Riverstrahler model of the biogeochemical functioning of river systems. Science of The Total Environment 375: 257-273. doi:https://doi.org/10.1016/j.scitotenv.2006.12.014.
- Ruin, I., C. Lutoff, B. Boudevillain, J.D. Creutin, S. Anquetin, M.B. Rojo, et al. 2014. Social and Hydrological Responses to Extreme Precipitations: An Interdisciplinary Strategy for Postflood Investigation. Weather Climate and Society 6: 135-153. doi:10.1175/wcas-d-13-00009.1.
- Shabou, S., I. Ruin, C. Lutoff, S. Debionne, S. Anquetin, J.D. Creutin, et al. 2017. MobRISK: a model for assessing the exposure of road users to flash flood events. Nat. Hazards Earth Syst. Sci. 17: 1631-1651. doi:10.5194/nhess-17-1631-2017.
- Shakas, A., N. Linde, L. Baron, J. Selker, M.F. Gerard, N. Lavenant, et al. 2017. Neutrally buoyant tracers in hydrogeophysics: Field demonstration in fractured rock. Geophysical Research Letters 44: 3663-3671. doi:doi:10.1002/2017GL073368.
- Tallec, T., P. Beziat, N. Jarosz, V. Rivalland and E. Ceschia. 2013. Crops' water use efficiencies in temperate climate: Comparison of stand, ecosystem and agronomical approaches. Agricultural and Forest Meteorology 168: 69-81. doi:10.1016/j.agrformet.2012.07.008.
- Taylor, C.M., D. Belušić, F. Guichard, D.J. Parker, T. Vischel, O. Bock, et al. 2017. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 544: 475. doi:10.1038/nature22069.
- Valentin, C., F. Agus, R. Alamban, A. Boosaner, J.P. Bricquet, V. Chaplot, et al. 2008. Runoff and sediment losses from 27 upland catchments in Southeast Asia: Impact of rapid land use changes and conservation practices. Agriculture, Ecosystems & Environment 128: 225-238. doi:10.1016/j.agee.2008.06.004.
- Vannier, O., S. Anquetin and I. Braud. 2016. Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: Regional modelling study and process understanding. Journal of Hydrology. doi:10.1016/j.jhydrol.2016.04.001.
- Velluet, C., J. Demarty, B. Cappelaere, I. Braud, H.B.A. Issoufou, N. Boulain, et al. 2014.Building a field- and model-based climatology of surface energy and water cycles for dominant land cover types in the cultivated Sahel. Annual budgets and seasonality.

Hydrology and Earth System Sciences 18: 5001-5024. doi:10.5194/hess-18-5001-2014.

- Vergnes, J.P. and B. Decharme. 2012. A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges. Hydrol. Earth Syst. Sci. 16: 3889-3908. doi:10.5194/hess-16-3889-2012.
- Violette, A., Y. Goddéris, J.-C. Maréchal, J. Riotte, P. Oliva, M.S.M. Kumar, et al. 2010.
 Modelling the chemical weathering fluxes at the watershed scale in the Tropics (Mule Hole, South India): Relative contribution of the smectite/kaolinite assemblage versus primary minerals. Chemical Geology 277: 42-60. doi:10.1016/j.chemgeo.2010.07.009.
- Wendland, F., A. Blum, M. Coetsiers, R. Gorova, J. Griffioen, J. Grima, et al. 2008. European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environmental Geology 55: 77-85. doi:10.1007/s00254-007-0966-5.

Table S1.

Observarory (nb	Country	Name	Latitude	Longitude	Catchment/s	i Climate	Lithology	Land use	Individual research questions	Measured variables (all the variables are not measured	Oldest measured	Web site	Data portal
reported Fig. 2)	,				te scales					over the whole period)	variables		
					(km2)								
Network RBV (Résea	u de Bassins \	/ersants): catchment hydrolo	gy, geochemis	try, erosion, s	oil-plant-atmo	sphere interaction	ons						
AMMA-CATCH (1)	Mali	Gourma	16°N	1.5°W	1-30000	Semi-arid	Sandstone	Sparse	Ecohydrological monitoring in a	Rainfall, meteo, water level in ponds, groundwater level,	1984	http://www.amma-catch.org/	http://www.amma-catch.org/spip.php?rubrique63
							and schist	herbaceaous	pastoral environment	soil moisture, surface energy balance, CO2 flux, sapflow,			
								vegetation		LAI, PAI, vegetation fraction, phenology, herbaceous			
										biomass			
	Senegal	Ferlo	15.5°N	15.5°W	idem	idem	Sandstone	idem	idem	Rainfall, soil moisture, soil biogeochemistry	201	Idem	Idem
	Niger	Niamey square degree	13.5ºN	2.5ºE	0.35-16000	Semi-arid	Gneiss, schist	Fallow savanna,	hydrology of endoric basins -	Rainfall, meteo, water level in ponds, gullies and plots,	1990	Idem	Idem
	-						and granite	tiger bush and	rainfall/vegetation interaction	groundwater level in piezometers and wells, soil			
							-	pearl millet	-	moisture, surface energy balance, CO2 flux, LAI,			
										vegetation height, herbaceous biomass and species			
	Benin	Ouémé	9º5N	2ºE	0.16-14000	Soudanian	Migmatite	woodland,	hydrological cycle - water	Rainfall, meteo, water level in rivers and gullies,	1993	/ Idem	Idem
							-	shrubland, crops	budget and hydrological	groundwater level in piezometers and wells, water			
								and herbaceous	processes	chemical analysis, soil moisture, surface energy balance,			
								fallow	-	CO2 flux, sapflow, LAI			
OHMCV (2)	France	Auzon-Claduègne	44.58°N	4.50E	3.4-116	Mediterranean	Basalt,	Pasture, vineyard	Biogeochemical cycles, climate	Rainfall, meteo, water level and discharge in rivers,	2005	http://ohmcv.osug.fr/	http://ohmcv.osug.fr/spip.php?article30
							limestones	and forest	chang, hydrometeorological	suspended sediment and physico-chemical properties of			
							and marls		extremes in the Mediterranean	surface water, soil moisture,			
									intense rain events and				
									subsequent flash-floods,				
									erosion				
		Valescure	44.09N	3.83E	0.3-3.9	Mediterranean	Granite	Decidious forest	Idem	Rainfall, meteo, water level and discharge, physico-	2003	Idem	Idem
										chemincal properties of surface water and soil (pH,			
										temperature, conductivity, anions, cations), soil moisture	2		
		Tourgueille	44.13N	3.67°E	1-10	Mediterranean	Schist		Idem	Rainfall, water level and discharge in rivers, physico-	2008	Idem	Idem
										chemical properties in surface water (temperature, pH,			
										conductivity)			
		Mont Lozère	44.7°N	3.82°E	0.19-0.81	Sub-	Granite	Mixed forest and	Idem	Rainfall, meteo, water level and discharge, physico-	1986	Idem	Idem
						Mediterranean		grassland		chemincal properties of surface water and soil (pH,			
										temperature, conductivity, anions, cations), soil moisture	2		
AgrHys (3)	France	Kenvidy-Naizin	47.99°N	-2.839\//	10	Oceanic	Schist	Intensive	Response time of hydro-	Rainfall meteo discharge groundwater level: physico-	100	https://www.fipra.fr/ore_agrbys/	https://www.fipra.fr/ore_agrbys/Doppees/Le-grapheur-
Agiriys (5)	France	Kerviuy-ivaiziii	47.55 N	-2.03- W	4,:	oceanic	Schist	agriculturo	response time of flyers to climate	chamical and chamical concentration in rainfall, coil	1950	https://wwwo.inra.in/ore_aginys/	VIDAE
								agriculture	and anthropogonic forcing	curface water and groundwater: land use and			VIDAL
									and antihopogenic forcing	surface water and groundwater, land use and			
										agricultural practices			
		Kerbernez	48.12º N	-4.03ºW	0.095-1.28	Oceanic	Granite	Intensive	Idem	Idem	1992	ldem	Idem
								agriculture					
Auradé (4)	France	Montoussé	43,56 °N	1.06° E	3,2	2 Temperate	Marls-	Crops (wheat,	Impact of agricultural activities	Water level in rivers, nitrates, pesticides concentration,	1983	http://www.ecolab.omp.eu/bvea/	http://www.ecolab.omp.eu/bvea/donneesdisponibles/don
						oceanic	limestone	sunflower)	on water, matter (nitrate,	physico-chemical properties; 13C, water isotopes in river	·		nesdisponibles
									carbon) balance and fluxes in				
									watr, soils, ecosystems				
ORACLE (5)	France	Orgeval	48.89°N	3.19°F	1 to 1800	Temperate	Limestones	Agriculture	Impact of climate variability on	Rainfall, meteo, water level and discharge in rivers and	106	https://gisoracle.irstea.fr/	https://bdob.irstea.fr/ORACLE/
0101022 (0)	lindice	orgetta	10.05 11	5.15 2	1 10 1000	oceanic	gynsum and	, ignearcare	the bydrological cycle (focus on	ditches groundwater level soil moisture suspended	150.	<u>https://gibildeleinstedin/</u>	https://bdomistean/onreacy
						occume	clave		floods and drought) and of	sediments surface and groundwater physico-chemical			
							ciays		agriculture practices on hydro-	properties (temperature pH conducityity DOC anions)			
									biogeochemical fluxes and	surface energy budget			
					1				water quality	Survey energy budget.			
OMERE (6)	France	Rouian	43.50ºN	3.31 ºF	0.0012-0.91	Mediterranean	Limestones	Mediterranean	Impact of land use change and	Rainfall, meteo, water level and discharge in rivers and	1993	http://www.obs-omere.org/	http://www.obs-
			1.5.50	1.01	1.0012 0.01		and marks	agriculture	anthropogeneic practices on	ditches, suspended sediment, groundwater levels		interesting/	omere.org/index.php?page=geonetwork⟨=fr
	1		1			1			the hydrological and	pesticides concentration, physico-chemical properties of			Sector Real Provide Sector Realing II
	1		1			1			sedimentological regime	surface water (cations, anions, isotones, metals) surface			
	1		1			1			impact of pesticides on water	energy budget and CO2 fluxes, soil moisture			
	1				1				quality	,,			
	Tunisia	Kamech	36.88ºN	10.88ºE	0.013-2.63	Mediterranean	Sandstone	Idem	Idem	Idem	1994	Idem	Idem
			1	1			and marls						

OTHU (7)	France	Yzeron	47.74°N	4.69°F	2.1-129	Continental	Gneiss	Forest.	Impact of urbanization on	Rainfall, meteo, water level, temperature and discharge	1997	http://www.graie.org/othu/index.ht	https://bdob.irstea.fr/YZERON/
						with		agriculture urban	hydrology geomorphology and	in rivers and sewers inhysico-chemical properties of		m	
						mediterranean		-8	water quality, ecohydrology	water in rivers and sewers		-	
						influence			water quality, ceonydrology	water in rivers and sewers			
M-TROPICS (8)	Cameroon	Nyong (Nsimi)	2 Q°N	11 /1°E	0.6-18500	Tropical	Granite	humid tropical	Chemical weathering of	Rainfall meteo discharge groundwater level tensio-	100/	https://mtropics.ohs-mip.fr/	https://mtropics.obs-min.fr/data-access/
Wir Hitor ico (b)	Cameroon	ityong (italini)	2.5 1	11.4 0	0.0 10500	Tropical	Granite	foract	cilicated rocks	naimail, meteo, discharge, groundwater level, tensio	155-	https://meropics.obs/hip.h/	https://httopics.obs/hip.it/data/access/
								lorest	silicated locks	(apions, cations, RH, DOC, total suspended adiments			
	India	Kabini (Mule Hole	12.2°N	76 0°F	4 3-590	Tropical	Gneiss	Dry forest	Impact of agriculture and forest	idem	2003	idem	Idem
	India	Rorambadi)	12.2 1	70.5 L	4.5-550	Tropical	Gliciss	agriculturo	on water and biogeochemical		200.	laem	lacin
		beranibauij						agriculture	cuclos				
	Thailand	Huoy Ma Nai	19°12'20"N	100°22'40"5	0.03	Tropical	Sandstone	Intoncivo	Land use shanges and	Painfall, motor, water level and discharge, suspended	2001	idom	Idom
	Inanana		10 15 20 14	100 23 40 1	0,55	Tropical	Sanascone	agriculturo	consequence on soil and water	radimant, meteo, water lever and discharge, suspended	2001	lacin	lacin
								agriculture	processes in tropical mountains	seaments, beaload, land use, water enemistry			
									processes in cropical mountains				
	Laos	Houay Pano	19°51'10"F	102°10'45"F	0.6	Tropical	Schist	Tree plantation	Idem	Rainfall meteo water level and discharge suspended	2001	Idem	Idem
	1005		10 01 10 1	102 10 15 2		riopicui	Senise		actin	sediments bedload land-use	2003	identi	identi
	Vietnam	Dong Cao	20°57'40"N	105°29'10"F	0.5	Tropical	Schist	Reforested	ldem	Rainfall meteo water level and discharge suspended	2002	ldem	Idem
										sediments hedload land-use			
ObserRA (9)	France	Bras David et Capesterre	16.18ºN	-61.69°E	0.08-16.4	Tropical	Andesite	Tropical forest	Weathering and erosion.	Rainfall, meteo, discharge, suspended sediment.	2011	http://www.ipgp.fr/fr/obsera/obser	http://webobsera.ipgp.fr/
		(Guadeloupe)							sediment and organic carbon	geochemical species, physico-chemistry of rivers and soil		vatoire-de-leau-de-lerosion-aux-	
FroBun (10)	France	Rivière des pluies, la	-20.9°N	55.5°E	45	Tropical (with	basalt	Tropical forest	Water, sediment and	Rainfall, discharge, suspended sediment, geochemical	2015	http://osur.univ-	
		Réunion				cyclones)			geochemical fluxes	species		reunion.fr/observations/soere/rbv/	
OHGE (11)	France	Strengbach	48.21°N	7.20°F	0.8	temperate	Granite.	Forest	Response of ecosystems to	Rainfall, meteo, water level and discharge in rivers.	1986	http://obge.unistra.fr/	http://bdd-obge.u-strasbg.fr/index.php/bdd
					-,-	oceanic	gneiss		climate and anthropogenic	groundwater levels in piezometers and wells, suspended			
						mountainous	8		nerturbations (forest	sediments in rivers, physico-chemical properties (nH			
									exploitation atmospheric	temperature conductivity anions cations DOC trace			
	1				1				pollution) - element and water	elements) in rivers springs soil solutions, rainfall			
	1				1				transfert at the	concentration in reverse aprings, soil solutions, rainfall			
	1				1				atmosphore (coll/plant interfeet				
									atmosphere/soli/plant interface				
Real Collobrier (12)	France	Real Collobrier	43.25°N	6 36°E	0 7 to 70	Mediterranean	Gneiss and	Mediterranean	Flash floods	Rainfall water level and discharge suspended matter	1966	https://bdob.irstea.fr/REAL-	https://bdob.irstea.fr/REAL-COLLOBRIER/
neur conobiler (12)	lindice		15.25	0.50 2		linearcentaricari	schist	forest	hash hoods	and bedload transport	1500	COLLOBRIER/	napsy/buomasteam/nene boccobinen/
Draix-Bléone (13)	France	Draix-Bléone	44.1°N	6.3°F	0.0013 to 22	Mediterranean	Marls	hadlands or	Floods and erosion in	Rainfall, meteo, discharge, groundwater level, soil	1983	https://oredraixbleone.irstea.fr/	https://bdob.irstea.fr/DRAIX/
								mediterranean	mountainous catchments rock	moisture rainfall stable isotone content: suspended			
								forest	weathering and vegetation	sediment concentration total solid transport during			
								loresc	impact on erosion	events LiDar DTM vegetation cover landslides			
SNO Karst (14)	France	Baget	42.95 N	1.03 F	13.25	Oceanic	Limestone	Forest and	Hydro-geo-chemistry of the	Water level and discharge, physico-chemical properties	1978	http://www.sokarst.org/index.asp?l	
								grasslands	karst (quantity and quality of	of water (pH, temperature, conductivity, anions, cations,		ang=fr	
								8	the water resource, floods)	stable isotopes, doc)			
		Medvcvss	47.9ºN	4.6ºE	1200	Mediterranean	Limestone	Mediterranean	ldem	Rainfall, meteo, water level and discharge in rivers.	2005	http://www.medvcvss.org/	
			-	-				agriculture		groundwater levels, soil moisture, physico-chemistry			
								Ginearca		(temperature, conductivity, major and trace elements,			
										stable isotopes, MON, TOC.)			
		Fontaine de Vaucluse - LSBB	43.92°N	5.13°E	1130	Mediterranean	Limestone	Forest and	ldem	Rainfall, meteo, water level, pressure and discharge in	1995	https://www6.paca.inra.fr/emmah/L	
								grasslands		springs, physico-chemical properties of water (anions,		es-movens/Sites-	
								ř		cations, DOC, stable isotopes), gravimetry, inclinometry		experimentaux/Fontaine-de-	
												Vaucluse-LSBB/Fontaine-de-	
												Vaucluse	
		Jurassic Karst	47.1ºN	6.3ºE	1-50	Mountainous	Limestone	Forest	Idem	Rainfall, meteo, water level, physico-chemistry	2009	https://zaaj.univ-	
										(temperature, pH, conductivity, chlorures, nitrates, COT,		fcomte.fr/spip.php?article13⟨=	
										COD, turbidity)		<u>en</u>	
		Karst-Craie	49.43°N	0.19°E	10-230	Oceanic	Limestone	agricultural lands	Idem	Rainfall, water level, physico-chemistry (temperature,	1997	http://www.sokarst.org/index.asp?l	
										pH, conductivity, chlorures, nitrates, COT, COD, turbidity)		ang=fr	
		Karst Val d'Orléans	47.85°N	1.937°E	20	Oceanic	Limestone	Forest and	Idem	Water level, physico-chemistry (temperature, pH,	1970	http://www.sokarst.org/index.asp?l	
								grasslands		conductivity, chlorures, nitrates, COT, COD, turbidity)		ang=fr	
HYBAM (15)	Bolivia, Peru,	Amazon	3,3122° S	60,6303° W	6400000	Humid Tropical	Mixed	Tropical forest	Geodynamical, hydrological and	Rainfall, water level and discharge in rivers, suspended	2003	http://www.ore-	http://www.ore-hybam.org/index.php/eng/Data
	Ecuador,						(sedimentary		biogeochemical control of	sediment concentration, physico-chemical properties of		hybam.org/index.php/eng	
	Brazil						, volcanic and		erosion/alteration and material	rivers (temperature, pH, conductivity), geochemistry			
							metamorphic		transport in the Amazon,	(anions, cations, organic carbon)			
)		Orinoco and Congo basin				
		L											
Network H+: hydrog	eological obse	rvatories and sites, the deep	CZ.							1			
H+ (16)	France	Pioemeur	47.74°N	-3.43"W	5 to 20	Uceanic	Micaschists	grasslands and	Groundwater flow and	Groundwater levels and discharge, physico-chemical	1991	nttp://hplus.ore.tr/	nttp://nplus.ore.tr/base-de-donnees-tr
							and Granites	agriculture	transport modeling in a	fluid properties (temperature, conductivity, chemistry),			
									tractured aquiter used for	unsaturated zone, geophysical montoring (GPS, sismic,			
	-	P 111						<u> </u>	water supply	tiltmeter)			
H+ (16)	France	Portiers	46.56"N	U.40"E	0,12	Oceanic	Limestones	grasslands	Adapated well nest for	Meteo data, groundwater levels, physico-chemical	2002	ldem	Idem
									groundwater flow and	properties (temperature, conductivity, chemistry)			
									transport experiments and				
	F	Frankeling de Manueling - 1000	42.0281	5 4395			Maria de la composición de la composicinde la composición de la composición de la composición de la co		models in a karstic aquifer			Ideas and	Leberar
HT + KBV (SNU	France	roncaine de vauciuse - LSBB	43.92 N	5.13 E	1130	iviediterranean	Narst	forest	nyurogeological functionning of	ramian, meteo, water level, pressure and discharge in	1995	http://www.eokort.com/cdov.com	idem
KAKSI) (14, 16)								iorest +	a large unsaturated zone in	springs, physico-chemical properties of water (anions,		Intp://www.sokarst.org/index.asp?l	
L	1	1			L			lagriculture	Kdist	Ications, DOC, stable isotopes), gravimetry, inclinometry		dig=1	

H+ (16)	France	Larzac	43.97°N	3.82°E	100	Mediterranean	Karst	grasslands and	Processes that control the	Rainfall, groundwater level, water pressure and	2006	Idem	Idem
								forests	spatio-temporal variability of	discharge, surface energy balance, inclinometry, gravity,			
									water storage and fluxes in a	GPS. electric resistivity			
									karstic aquifer				
H+ (16)	France	AuverWatch	45.74°N	3.21°F	320	Continental	Alluvial sands	Grassland	Hydro-geo-chemistry of an	Rainfall, water level, river discharge, physico-chemistry	2010	Idem + http://www.obs.univ-	Idem
									alluvial system. Focus on	(temperature, pH, conductivity major and traces jons,		bpclermont.fr/SO/auverwatch/index	
									river/groundwater interactions	nhytosanitaries nharmaceuticals stable isotones of the		nhn	
									transport of amorgant	water molecule)			
									ralisport of energent	water molecule)			
H+ (16)	India	Hydorabad (Maboswaram	17.20°N	78 02%5	04 55	Tropical	Granitor	Intoncivo	Water and matter fluxer	Painfall motoo groundwater lovels, physico chomical	2000	Idom	Idom
11+ (10)	IIIula	and Chouturnel)	17.25 1	/0.52 L	04-33	Topical	Granites	agriculture	shaming reactivity residence	naman, meteo, groundwater revers, physico-chemicar	2000	idem	Idelli
		and choutuppai)						agriculture	chemical reactivity,, residence	properties (temperature, conductivity, chemistry,			
11. (46)	Caralia		20.44851	2.05%5	0.42		1.1		times in a fractured aquifer	isotopes)	2001	tel e se	tele es
H+ (16)	spain	Majorque	39.41'N	2.95°E	0,12	Mediterranean	Limestones		water fluxes in a coastal	Groundwater levels, lons concentration	2003	ldem	laem
Network CDVORC CL									aquiter with sailine intrusion				
Network CRTOBS-CL	ivi: giaciers,sn	ow and permanost studies	45807/ 11	000715	0.5			Charles .	land the following shows a second	Charles were half and a staffell and a staffell and at	40.4	https://www.hardbacker.com/files.d	hater (filmendeter electroller Geferente) (en to tel
GlacioClim (17)	France	Alpes-Sarennes	45'07'N	06'07'E	0,5		IVIICa	Glacier	Impact of climate change on	Glacier mass balance, rainfall, meteo, raidation budget,	1945	nttps://cryobsciim.osug.tr/ and	nttp://devdata.glaciocilm.fr/portal/main.jsr
							Schistes,		glaciers and associated water	surface energy balance, glacier temperature profile		http://devdata.glacioclim.fr/portal/	
	-						Gneiss		resources			main.jst	
	France	Alpes-Saint Sorlin	45°09' N	06°10' E	3		Mica	Glacier	ldem	ldem	1957	ldem	ldem
							Schistes,						
							Gneiss						
	France	Alpes-Mer de Glace	45°55′ N	06°57' E	28		Granite/Gnei	Glacier	Idem	Idem	1983	Idem	Idem
							SS						
	France	Alpes-Argentière	45°55′ N	06°57' E	19		Granite/Gnei	Glacier	Idem	Idem	1975	Idem	Idem
							ss		l				
	France	Alpes-Gébroulaz	45°19' N	06°07' E	3		Gneiss	Glacier	Idem	Idem	1983	Idem	Idem
	France	Alpes-Col du Dome					Granite/Gnei	Glacier	Idem	Idem	1997	Idem	Idem
				1			ss						
	France	Pyrénées-Ossoue	42°46' N	00°08' W	0,45		Cristaline	Glacier	Idem	Idem	2001	Idem	Idem
							rocks						
	Svalbard	Svalbard-Austre Loven	77.87497	20.97518	5		Cristaline	Glacier	Idem	Idem	2007	Idem	Idem
							rocks						
	Bolivia, Peru,	Andes-Zongo	16°16′ S	68°09' W	1,8		Granites	Glacier	Idem	Idem	1973	Idem	Idem
	Ecuador.												
	Brazil												
	Diden												
	Ecuador	Andes-Antizana	00°28' 5	78°00' W	1		Bacalter	Glacier	Idem	Idem	1005	Idem	Idem
	Nopal	Himalaya Mora	27 7°N	96 0°E			Crictalino	Glacier	Idem	Idem	200	Idem	Idem
	мера	initialaya-wera	27,7 1	00,5 L	3,1		cristanne	Giaciei	luelli	ldelli	2007	idem	Idelli
	Antarctic	Antarctique Can	66 60104	120 90667	8000		Coolee /Migm	Bolar can	Idom	Air temperature, humidity, wind speed, speed	200/	Idom	Idom
	Antaretic	Brudhommo	00,05154	155,05007	0000		atitor		lacin	tomporature	200-	lacin	lacin
	Antarctic	Antarctique-Dome C	75°S	123°F			Linknown	Polar can	Idem	Air temperature humidity wind speed snow	200/	Idem	Idem
	Antarctic	Antarctique-Donie C	/33	123 L			UIIKIIUWII		ideni	temperature, numinity, wind speed, snow	200-	idem	Idelli
Cnow (17)	France	Alnos Col do Dosto	45 20° N	F 77° F	0.000252	Mauntainaus	Limestones	en ou field	Interactions enous climate and	Meteo coou donth water equivalent temperature	1050	Idona	Idam
3110W (17)	France	Alpes-col de Folte	43.30 1	5.77 L	0,000233	wountainous	Limestones	show neu	impact of elimete change	weteo, show depth, water equivalent, temperature	195	idem	Idelli
	France	Almos Col du Los Dione	45.0	C ⁰ C'41 20"F	0.35	Mauntainaus	Casies	en ou field	Impact of climate change	Air temperature, humidity, used reinfell and enousfall	1000	Ideas	Idom
	France	Alpes- Col du Lac Bialic	45	0 0 41.30 E	0,25	wountainous	Glielss	show held	luem	Air temperature, numiuity, wind, raimail and snowiall,	1990	luem	luelli
	_		7'40.38"N							transported snow, radiation budget, sensible heat flux			
Permatrost (17)	France	Alpes-Laurichard	45.018°N	6.40°E	0,08	Mountainous	Granite/gneis	Rocks permatrost	Observation of permatrost in	Drillings and monitoring of the evolution of the	1982	ldem	ldem
							s		mountains in relation with	permafrost			
									climate change and				
									modifications of associated				
									risks				
	France	Alpes-Deux Alpes	45.0°N	6.19°E	6	High	Gneiss	Idem	Idem	Idem	2007	Idem	Idem
						mountains							
	France	Alpes-Aiguille du Midi	45.878°N	6.887°E	0,05	High	Granites	Idem	Idem	Idem	2005	Idem	Idem
						mountains							
	France	Alpes- Dérochoir	45.866°N	6.809°E	0,05	High	Gneiss	Idem	Idem	Idem		Idem	Idem
				1		mountains	Schistes						
Network OSR: Regio	nal spatial obs	ervatory											
OSR (18)	France	South-West	43.50°N	1.24°E	0.001-2500	Oceanic	Marls-	Agriculture and	Understand, model and	Rainfall, air temperature, air humidity, soil temperature,	2004	http://www.cesbio.ups-	http://www.cesbio.ups-
, ,						mountainous	limestone	moutains	forecast the continental surface	soil water content, wind direction and speed, snowfall,		tise.fr/fr/sud_ouest.html	tise.fr/fr/donnees_sudouest.html#sites
									functionning and evolution	surface energy budget, water vapor, N2O and CO2			
									from the ecosystem to the	fluxes vegetation land use and practices			
									regional scale using remote	naxes, regetation, and use and practices			
									regional scale using remote				
	Morrocco	Tensift	31.5°N	-8°\//	20000	Mediterrancan	mixed	Mediterranean	Idem	Idem	2007	http://www.ceshio.ups-	http://www.ceshio.ups-
	WIGHTOCCO	i chánc	51.5 14	0.0	20000	wiediterrariean	(oruntivo and	agriculturo and	lacin	literin	2002	tico fr/fr/sud_mod_html	tice fr/fr/depress cochie cudmed html
							(eruptive and	agriculture anu				use.n/n/suu_meu.num	tise.it/it/dointees_cesbio_sudmed.itdiit
				1			seumentary)	moutains					
Notwork "Tourbibe	l ". noatland -								1		I	1	
INCLINIC TOURDIERE	s . peatiand of	Demandeuro	42.00%**	1 42%5	0.00	Ossenic	mailuge of	Deptiond	Impact of clobal charges as 21	CO2 fluxes are undurated laural direction discount of		http://www.eng.to.uk/ang.to.	
SINU TOURDIERES (19)	riance	bernadouze	42.80'N	1.42°E	0,08	oceanic	(mixed	reatiand	impact of global change on the	co2 nuxes, groundwater level, dissolved organic carbon	201:	http://www.sno-tourbieres.chrs.fr/	
				1	1	mountainous	(granite and		peaciano carbon sink, green	in the peatiand and at the output, physico-chemical			
				1	1		iimestone)		nouse gases (H2O, CO2, CH4)	properties (pH, conductivity, temperature), meteo			
									cyles, dynamics of organic				
				1	1				matter in soils				

	France	Frasne	46.83°N	6.17°E		3 Mountainous	limestone	Peatland	Idem	Meteo, water level at the outlet, groundwater level,	200	ldem	
										physico-chemical properties (pH, conductivity,			
										temperature), soil temperature, CO2, CH4, H2O and			
										energy fluxes			
	France	La Guette	47.32°N	2.28°E	0,2	5 Oceanic	sands	Peatland	Idem	Meteo, water level at the outlet, groundwater level,	200	3 Idem	
										dissolved organic carbon in the peatland and at the			
										output, physico-chemical properties (pH, conductivity,			
										temperature), soil properties, CO2, CH4, H2O and energy	/		
										fluxes			
	France	Landemarais	48.44°N	1.18°O	0,1	6 Oceanic	granite	Peatland	Idem	Meteo, water level at the outlet, groundwater level,	2014	1 Idem	
										physico-chemical properties (pH, conductivity,			
										temperature), soil properties, CO2, CH4, H2O and energy	/		
										fluxes			
Other networks (op	erational)												
OPE (20)	France	Perennial Observatory of	48.56°N	5.34°E	240-900	Continental	Limestones	Agriculture and	Environnemental monitoring of	Atmospheric parameters, Greenhouse gases and aerosol	200	http://www.andra.fr/ope/index.php	http://www.andra.fr/ope/index.php?option=com_datareq
		the Environnement						small forests	a industrial territory in	physico-chemical properties, , surface and groundwater		<u>?lang=fr</u>	uest&Itemid=331⟨=fr
									mutation	physico-chemical properties, physico-chemistry of soils,			
										biodiversity			
ROSES (21)	France	All France	na	na	na	na	na	na	Groundwater water level and	Groundwater level and quality	1892 :	http://www.ades.eaufrance.fr/Spip.	http://www.ades.eaufrance.fr/LienLocalisation.aspx
									quality monitoring over whole		groundwater	aspx?page=spip.php?rubrique141	
									France and overseas territories		level, strenghen		
											since 2000		
											1900:		
					1						groundwater		
1						1	1	1	1		quality		

Page 97 of 103

Vadose Zone J. Accepted Paper, posi 008/20/2018. doi:10.2136/vzj2018.04.0067

Page 99 50 1 0 200 2018. doi:10.2136/vzj2018.04.0067

Fig. 6

4.3 : innovative chemical sensors

Hot-spot and hot-moments

WP5 : scanning the surface

image drone exploration

WP6 : geophysical tools of exploration

- 6.1 : seismic methods
- 🖡 6.2 : MSR
 - 6.3 : electrical methods
 - 6.4 : polarization
 - 6.5 : CS-AMT

WP7 : inacessible groundwaters

- 7.1 : well equipement
- 7.2 : well monitoring
- 7.3 : reactive and inert tracer test experiments

WP8 : chemical and isotopic fingerprinting

- 🖊 8.1 : gas tracing
 - 8.2 : water isotopes
- **4** 8.3 : integrative sensors

Fig. 7

OZCAR grand scientific questions

Dynamical architecture of the Critical Zone: (i) what are the vertical and horizontal extents of the CZ? (ii) what are the residence and exposure times of water and matter in the different compartments of the CZ? (iii) what are the CZ interfaces? (iv) what is the role of biota in structuring the CZ?

Biogeochemical cycles, sediment and-or contaminant propagation through the CZ, from highlands to sea: (i) can we better quantify budgets of mass and energy across our CZ observatories? (ii) how can high frequency sampling help deciphering CZ functionning? (iii) what is the functionnal role of biota at all scales?

Responses and feedbacks to biological, climatic and geological perturbations and to global environmental changes: the Earth's surface dynamical system: (i) how can we use our observatories to predict (earthcast) the future of the CZ? (ii) how do processes with short timescales and limited spatial imprint influence the evolution of the CZ on longer timescales? (iii) can we predict CZ trajectories?