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Abstract 88 

This paper presents the French Critical Zone initiative, called OZCAR (Observatoires de la 89 

Zone Critique –Application et Recherche – Critical Zone Observatories – Application and 90 

Research), a National Research Infrastructure (RI). OZCAR-RI is a network of instrumented 91 

sites, organized in 21 pre-existing research observatories, or observation services, and 92 

monitoring over the long term, different compartments of the zone situated between “the rock 93 

and the sky”, the Earth’s skin or Critical Zone (CZ). These observatories are regionally-based 94 

and all have their individual initial scientific questions, monitoring strategies, databases and 95 

modeling activities. The diversity of OZCAR-RI observatories and sites is well representative 96 

of the heterogeneity of the Critical Zone and of the scientific communities studying it.  97 

Despite this diversity, all OZCAR-RI sites share a main overarching scientific question, 98 

which is: how to monitor, understand and predict (“earthcast”) the fluxes of water, solutes, 99 

gases and sediments of the Earth’s near surface and how they will change in response to the 100 

“new climatic regime” (climate change, land use and land cover changes).  101 

We describe in this paper a vision for OZCAR strategic development in the next decade, 102 

aiming at designing an open infrastructure, building a national CZ community able to share a 103 

common and systemic representation of CZ dynamics, and educating a new generation of 104 

scientists more apt to tackle the wicked problem of the Anthropocene. We propose to 105 

articulate OZCAR around the following main points: i) a set of common scientific questions 106 

and cross-cutting scientific activities using the wealth of OZCAR-RI observatories along 107 

gradients and the diverse disciplines, ii) an ambitious instrumental development program, iii) 108 

a better interaction between data and models as a way of integrating the different time and 109 

spatial scales as well as fostering dialogue between communities. 110 

At the international level, OZCAR-RI aimed at strengthening the CZ community by providing 111 
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a model of organization for pre-existing observatories and by widening the range of CZ 112 

instrumented sites. Embedded into the international CZ initiative, OZCAR is one of the 113 

French mirrors of the European eLTER-ESFRI (European Strategy Forum on Research 114 

Infrastructure) project. 115 

 116 

Keywords: Critical Zone, Observatories, long-term observation, Earthcast, modeling, eLTER 117 

 118 

1. Introduction 119 

 120 

We have entered the Anthropocene (Crutzen, 2002), a new period in which human activities 121 

have become a geological force. Anthropogenic forcing affects many components of the Earth 122 

system (Steffen et al., 2015) at a particularly high rate compared to the last million years since 123 

Homo Sapiens have lived on the planet. This “great acceleration” (Lewis and Maslin, 2015) 124 

has global manifestations, the more evident of which is the shifts in atmospheric greenhouse 125 

gas concentrations and associated climate change, as well as accelerated land uses and land 126 

cover changes due to urbanization and increased human pressure on the environment. This 127 

“new climatic regime” is anticipated to have important implications at the regional scale, in 128 

the “territories”, as defined by Latour (2018), where resources such as water, soil, and 129 

biodiversity may dangerously be impacted, potentially leading to an unprecedented 130 

degradation of human habitats, dramatic migrations or economic disasters. The terrestrial 131 

surface, i.e. the zone located between the bedrock and the lower atmosphere, sustains basic 132 

human needs such as water, food, energy (Banwart et al., 2013), and is critical for the 133 

sustainability of the economical and recreational services they provide (Easterling, 2007; 134 

Millenium Ecosystem Assessment Board, 2005). Achieving the Sustainable Development 135 
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Goals (UN, 2015) requires better understanding and prediction of the functions of this 136 

“critical zone”. 137 

The term “Critical Zone” (CZ) was defined by the U.S. National Research Council (NRC), as 138 

the zone extending from the top of the canopy down to the base of the groundwater zone. 139 

NRC listed the study of this “CZ” as one of the Basic Research Opportunities in the Earth 140 

Sciences (U.S. National Research Council Committee on Basic Research Opportunities in the 141 

Earth Sciences, 2001). The term “critical” emphasizes two notions. First is that the CZ is one 142 

of the main planetary interfaces of Earth, i.e. the lithosphere-atmosphere boundary layer. It is 143 

the layer where life has developed, where nutrients are released from rocks, and on which 144 

ecosystems and food production rely. Almost by definition, the CZ is a planetary boundary, 145 

shaped by both solar energy and internally-driven plate tectonics (mantle convection). This 146 

geological vision of Earth’s surface is close to that developed one century ago by Vladimir 147 

Vernadsky (1998), re-defining the term “biosphere” to denote the part of our planet that is 148 

transformed by biogeochemical cycles triggered by the input of solar energy and by life 149 

processes. The second notion implied by the term “critical” is that we need to take care of it. 150 

The CZ is the human habitat in which we build our cities, from which we extract our food and 151 

our water and where we release most of our wastes (Guo and Lin, 2016). As quoted by Latour 152 

(2014), “under stress, it may break down entirely or shift to another state”.  153 

The concept of the CZ offers a geological perspective on environmental questions, by 154 

considering all transformation time scales from the million year to the second, and by 155 

relocalizing environmental questions at the local/regional level, thus taking into account not 156 

only global forcing but also local geological, ecosystemic, economic and societal constraints 157 

(Arènes et al., 2018). The CZ initiative aims at fostering different scientific disciplines of 158 

geosciences and biosciences (climatology, meteorology, glaciology, snow sciences, 159 

hydrometeorology, hydrology, hydrogeology, geochemistry, geomorphology, geophysics, 160 
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land surface interactions, pedology, agronomy, ecology, microbiology, Fig. 1) to work on the 161 

same questions, and at developing an integrated system-oriented understanding of the 162 

habitable part of the planet (Brantley et al., 2017).  163 

The Critical Zone Exploration Network (CZEN) initiative (http://www.czen.org/) was 164 

proposed in 2003 under the leadership of the US National Science Foundation (Anderson et 165 

al., 2004). CZEN aims to create a worldwide community of researchers and educators who 166 

study the physical, chemical and biological processes shaping and transforming Earth’s CZ 167 

through the development of Critical Zone Observatories (CZOs), i.e. well-instrumented and 168 

well-characterized field sites in which the different scientific communities can collaborate to 169 

better understand the transformations affecting this thin veneer coveringx Earth’s surface. 170 

This integrated scientific approach must take into account short and long time scales, the 171 

interaction between deep subsurface processes and their coupling with above ground 172 

dynamics. 173 

So far there is no “official” definition for how a CZO should be designed. Multidisciplinary 174 

and systemic approaches (“the CZ as an entity”, Brantley et al., 2017) seem to be common 175 

denominators of all the so-called CZOs. In the US, CZOs were first established in 2007 176 

(Anderson et al., 2008; White et al., 2015) and presently feature nine instrumented sites, 177 

generally river catchments or a whole landscape of limited size (Brantley et al., 2017). 178 

Following the US CZO initiative, several countries successfully launched CZO programs. 179 

This paper presents the French Critical Zone initiative, called OZCAR (Observatoires de la 180 

Zone Critique –Application et Recherche – Critical Zone Observatories – Application and 181 

Research), a National Research Infrastructure (RI). The aim of this paper is to provide an 182 

overview of the OZCAR network, its objectives, components, scientific questions and data 183 

management (section 2); the current status of instrumentation (section 3) along with that of 184 

databases and metadatabases (section 4), and existing initiatives for linking data and models 185 
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based on OZCAR data (section 5). The discussion (section 6) builds on the current 186 

achievements to take a step forward and describe the ambitions of OZCAR and how this 187 

initiative can be related to others worldwide. Most of the ideas in this paper were discussed 188 

during the kickoff meeting of OZCAR held in Paris, Feb 7, 2017. 189 

2. Presentation of the OZCAR network 190 

 191 

2.1. OZCAR, a network of networks 192 

OZCAR is a Research Infrastructure launched in December 2015 with the support from the 193 

French Ministry of Education and Research. OZCAR gathers and organizes more than 60 194 

research observation sites in 21 pre-existing observatories that are operated by diverse 195 

research institutions and initially created for a specific environmental question of societal 196 

relevance, some of them, more than 50 years ago. The details of OZCAR constitutive 197 

observatories and sites are in Table S1. All these observatories share however the same 198 

characteristic of being highly instrumented areas designed to answer a particular scientific and 199 

societal question of local importance, generating continuous standardized series of 200 

observations on water quality, discharge, ice and snow, soil erosion, piezometric levels, soil 201 

moisture, gas and energy exchange between ground and atmosphere, and ecosystem 202 

parameters (Table S1). They cover different compartments of the CZ (Fig. 2). 203 

Over the last decade, considerable efforts have been made in France to encourage the various 204 

research institutions to join together to monitor Earth’s surface. This was enabled through the 205 

creation of the Alliance for Environmental studies “AllEnvi” (www.allenvi.fr) in 2010, 206 

formally gathering all the research institutions in charge of studying Earth’s terrestrial surface. 207 

 208 

2.2. The “building blocks” of OZCAR 209 

Page 7 of 103 Vadose Zone J. Accepted Paper, posted 08/30/2018. doi:10.2136/vzj2018.04.0067



8 

 

Below, we present a short description of the architecture, aims and significant results of the 210 

different blocks composing the OZCAR infrastructure that is organized according to seven 211 

thematic networks. A detailed description of the existing observatories and their most 212 

significant scientific achievements are given in Appendix 1. 213 

 214 

2.2.1. The RBV network (Réseau des Bassins Versants) is constituted of catchments ranging 215 

from zero order basins to the whole Amazon River system (see Table S1 in supplementary 216 

material for the details about site location, climate, geology, land use, main scientific 217 

questions and measured variables). A number of them are shared with research institutions 218 

from Southern Hemisphere countries. The common denominator is the use of catchments as 219 

integrators of hydrological, biogeochemical or solid transport processes at different scales. 220 

They constitute sentinels of land use/land cover and climate change at the regional level, some 221 

of them for more than 40 years. They have all been designed to address a specific basic or 222 

applied scientific question, span climate gradients ranging from the tropics to the temperate 223 

zone, and cover a range of bedrock types (Fig. 3). While some of them can be considered as 224 

“pristine”, most of the RBV catchments are intensively cultivated or managed for forestry, the 225 

extreme case being a peri-urban catchment draining into the Rhône River in Lyon. Well 226 

represented in RBV are monitored karst systems as complex hydro-geol-ogic entities that are 227 

characterized by strong surface/subsurface interactions and significant water, mass, energy, 228 

and geochemical transport within the CZ. RBV also addresses larger scale (typically 229 

continental issues such as the concurrent role of climate and land-use changes on the water 230 

and energy budgets on the terrestrial surface in western Africa, continental hydrology and the 231 

biogeochemistry of the Amazon, Orinoco and Congo basins, or the genesis of extreme 232 

precipitation events and flash floods in southern France.  The long term monitoring reveals 233 

fast-changing environments, as illustrated for instance by the decrease of sulfate recorded in 234 
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the Strengbach stream since 1986 (Fig. 4; OHGE, Vosges, France). This decrease of sulfate in 235 

the stream is an iconic case showing the virtue of continuous long term river monitoring and 236 

the reduction of anthropogenic acidic emission by European and North American industries 237 

since the 1980’s.  238 

 239 

2.2.2. The H+ observation service (hplus.ore.fr), created in 2002, is a network of 240 

hydrogeological sites located in France and India, aimed at characterizing and modeling 241 

flows, transport and reactivity in heterogeneous aquifers. The aim of H+ is the development 242 

of characterization and modeling methods adapted to describe the strong heterogeneity (i.e. in 243 

terms of permeability and thus residence times) that characterizes the deep CZ. Within this 244 

framework, H+ scientists investigate the hydrological functioning and the reactive transport 245 

aspects in heterogeneous reservoirs, including karstic aquifers (Larzac, HES Poitiers, LSBB, 246 

Mallorca), altered fractured systems (Choutuppal, India, Ploemeur), and alluvial systems 247 

(Auverwatch). H+ observatories have particularly developed a specific hydrogeophysical and 248 

hydrochemical instrumentation approach for imaging and characterizing the hydrodynamics 249 

and transport processes, for measuring residence time distributions but also for taking into 250 

account heterogeneity within appropriate predictive models. 251 

 252 

2.2.3. The CRYOBS-CLIM observatory focuses on the cryosphere. It aims to answer the 253 

following scientific questions: i) How will climate changes impact surface energy and mass 254 

budgets of snow / ice-covered surfaces and permafrost ground temperature at different spatial 255 

(local to regional) and temporal (seasonal to multidecadal) scales? ii) How will snow/climate 256 

feedback mechanisms enhance or attenuate glacier, ice sheet and permafrost changes in the 257 

near future? How can observations help to identify climate models weaknesses and to 258 

improve the simulations of cryosphere components? iii) What is the future snow and ice-cover 259 
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retreat and wastage and what will be the impact on water resources and sea level rise? iv) 260 

How do glaciers, rock glaciers and ice sheet dynamics respond to changes in temperature, 261 

surface mass balance and hydrological processes, and what are the impacts in terms of natural 262 

hazards? In order to address these questions, the CRYOBS-CLIM network collects, archives 263 

and disseminates a comprehensive and consistent set of observations on the main components 264 

of the terrestrial cryosphere (glaciers, snow, permafrost) in a series of instrumented sites 265 

located at high altitudes and high latitudes (European Alps, tropical Andes, Himalayas, 266 

Antarctica, Svalbard). The monitored variables and research topics are described in Table S1.   267 

 268 

2.2.4. The Tourbières (Peatland) observatory is a network of four French instrumented sites 269 

and one Siberian mire aimed at studying the effect of global change on the carbon sink 270 

function and the hydrological budget of temperate and sub-boreal peatlands which are 271 

ecosystems containing a third of the global surface carbon stock in an area accounting for 272 

only 3-5% of the land surface. The French sites were set up in 2008-2010, according to a 273 

climatic gradient (lowland to mountain climate), to ensure long-term monitoring of 274 

greenhouse gases (GHG: CO2, CH4, H2O, N2O), dissolved and particulate organic carbon 275 

(DOC, POC) fluxes as well as environmental variables that impact GHG, DOC and POC 276 

fluxes, and to generate interoperable databases.  277 

 278 

2.2.5. The OSR (Regional Spatial Observatory) is documenting the long term effects of 279 

climate change and increasing anthropogenic pressures on the hydrologic and agro-ecologic 280 

evolution of agricultural regions, at various spatial and temporal scales, in a perspective for 281 

sustainable management of water and soil resources. The OSR concept is implemented in two 282 

sites located in south-west France and in Morocco (Tensift Basin). The specific OSR 283 

approach is the extensive use of remote sensing for surface characterization (land use, 284 
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vegetation cover, evapotranspiration, soil moisture, snow cover, etc.) combined with a multi-285 

scale monitoring network of (1) continuous long-term monitoring of experimental plots (crop 286 

and snow sites), (2) hundreds of plots annually monitored for surface state, land cover, etc., 287 

and (3) experiments conducted at catchment scale with reinforced observations for water and 288 

energy budget evaluation.  289 

 290 

2.2.6. The ROSES (Observatory network for groundwater systems at French national level) 291 

was initially set up to answer water management issues and was strengthened in the 292 

framework of the implementation of the European Water Directive. It gathers more than 293 

77 000 stations, with 74 000 groundwater quality-moniroring stations and 4400 monitoring 294 

wells. All types of aquifers are monitored in Metropolitan territories as well as French 295 

overseas territories. All data are stored within the ADES database 296 

(http://www.ades.eaufrance.fr) managed by several governmental agencies.  297 

 298 

2.2.7. OPE (Long-lasting Observatory of the Environment) focuses on a landscape in the 299 

eastern part of the Paris Basin (a few hundred km²) around the site pre-selected as the French 300 

deep geological repository of high-level and intermediate-level long-lived radioactive wastes. 301 

OPE is currently constituted of a monitoring network, covering forest and agricultural areas 302 

and measuring atmospheric, meteorological, soil, surface and ground water, land use and 303 

biodiversity indicators, providing a unique opportunity to document the interactions between 304 

human activities and the CZ around an industrial project scheduled to run over 100 years (if 305 

accepted). 306 

 307 
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2.3.  Exploring the CZ with OZCAR observatories 308 

As demonstrated in the above brief overview, OZCAR is a network of networks consisting of 309 

highly instrumented sites: individual, nested or paired catchments, hydrogeological sites, 310 

plots, glaciers, and lakes that are each monitored for a given set of parameters according to 311 

the specific disciplinary question under which they have been designed. Table S1 shows that 312 

the current situation is quite diverse in terms of monitored CZ compartments and scales, and 313 

measured variables. This diversity not only reflects the heterogeneity of the CZ but also the 314 

span of scientific questions and communities and in turn, the diversity of institutional 315 

environmental research. The disciplines represented in the OZCAR are hydrology, 316 

hydrogeology, biogeochemistry, agronomy, pedology, glaciology, meteorology, climatology, 317 

and snow sciences.  318 

As shown in Fig. 5 and Table S1, the OZCAR sites are located all around the world. In 319 

France, they include sites in overseas territories like the tropical Caribbeans and Reunion 320 

Island. OZCAR sites also exist in 18 other countries through partnerships between the French 321 

Research Institute for sustainable Development (IRD) and national research institutions from 322 

other countries (north Africa, west Africa, south-east Asia, India, and Amazonia, Andean, 323 

Arctic, Antarctica, and Himalayan nations). The sites then cover a large range of climates 324 

(oceanic, continental, mountainous, Mediterranean, tropical, polar), lithology (granites, 325 

schists, volcanic rocks, limestone and sedimentary basins) and land use/land cover (tropical, 326 

Mediterranean, mountainous forest; more or less intensive agriculture, peatland, urbanized 327 

areas, snow- and ice-covered areas). All sites have experienced several centuries, if not 328 

millennia, of land management for agricultural practices, especially in the continental part of 329 

France and in North Africa, Although focused on diverse scientific questions and variables, 330 

all OZCAR observatories and sites can be considered as sharing the main overarching goal 331 

which is how to monitor, describe and simulate the CZ evolution of a changing planet 332 
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(climate change, land use changes, changes in practices). 333 

3. Instrumentation in OZCAR 334 

 335 

All observatories integrated into OZCAR are highly instrumented. They have in common 336 

standard field meteorological stations recording precipitation (liquid or solid), radiation, air 337 

temperature and humidity, wind velocity and direction, atmospheric pressure. 338 

Hydrometeorological observatories use radars, rain gauge networks and disdrometers to 339 

provide accurate estimates of rainfall fields (e.g. Boudevillain et al., 2016). In the case of 340 

glaciers and snow observatories, conventional meteorological observations are complemented 341 

by field and remote monitoring of snow and ice related variables such as snow water 342 

equivalent (SWE), surface specific area, runoff and albedo, or ground temperature, etc. The 343 

height and extent of the snow surface are measured by various means (ultrasonic snow depth 344 

sensors, photogrammetry, LiDar, RADAR, UAV and satellite) for all sites. Specific 345 

measurements of the cryosphere also include cosmic ray counts for SWE measurements 346 

(Morin et al.,2012), Snow Particle counter for drifting snow flux measurements (Trouvilliez et 347 

al., 2014), high spatial and temporal resolution spectroradiometer for monitoring surface 348 

albedo, or radar and seismic method for mapping bedrock. Observatories focusing on the 349 

exchange of energy and matter between the ground and the lower atmosphere (including those 350 

on glaciers) are equipped with eddy covariance towers or manual and automatic accumulation 351 

chambers producing high resolution measurements.  352 

Water discharge is measured at standardized gauging stations with high resolution recording 353 

by water level sensors of different types (floats, pressure sensors, radar sensors or ultrasound, 354 

Nilometer digital scales). For gauging flood discharge, non-contact methods have been 355 

developed and evaluated: surface radar, LS-PIV (Large Scale Particle Image Velocimetry) 356 
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based on images from fixed cameras or videos on YouTube (Dramais et al., 2014; Welber et 357 

al., 2016; Le Boursicaud et al., 2016). For large rivers, satellite data or ADCP surveys are 358 

used (e.g. Mangiarotti et al., 2013; Paris et al., 2016).  359 

Ground water levels are monitored using pressure transducers. Depending on the process of 360 

interest (hydrological cycle, tides, barometric effect, earthquakes) the frequency of 361 

measurements varies from one per day to 1 Hz or even greater. These conventional 362 

measurements are complemented using multiparameter probes and sampling to analyze major 363 

chemical elements and isotopic ratios using a wide range of natural and anthropogenic tracers 364 

for water residence time (Leray et al., 2012; Celle-Jeanton et al., 2014). The use of heat as a 365 

groundwater tracer is currently tested on several H+ sites (Chatelier et al., 2011; Klepikova et 366 

al., 2014). Precise borehole sampling and monitoring is achieved through multipacker 367 

systems, well nests or well clusters.  368 

The unsaturated zone is less frequently instrumented, usually by soil moisture probes (TDR 369 

sensors) and lysimeters allowing soil solution sampling (i.e. one RBV site (OHGE) or OPE). 370 

Chemical analyses of river water and suspended matter are usually performed on discrete 371 

samples collected in the field manually or by automatic remotely-controlled samplers or 372 

triggered to water level or turbidity thresholds, therefore allowing for capture of extreme 373 

flood events. Only a limited number of chemical variables in OZCAR are measured at a high 374 

frequency, using commercial probes (conductivity, water temperature, dissolved organic 375 

matter with fluorimeter and nutrients). Suspended matter concentration is also indirectly 376 

recorded continuously at a number of sites using turbidimeters. At the OPE, significant efforts 377 

have been made to develop in-situ chemical probes to expand our present ability of high-378 

frequency chemical monitoring. 379 

This brief overview of the in-situ instrumentation in OZCAR shows a large variety of 380 

measurements, sensor types and frequencies of analysis, as well as the absence of 381 
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standardization. Different sub-networks inside OZCAR have however established common 382 

measurement protocols. This is possible when relatively similar (homogeneous) 383 

environmental settings are studied (like peatlands, hydrogeological sites, glaciers, permafrost 384 

sites), but remains challenging for catchments of very different sizes or at sites studied from 385 

the perspective of different disciplines each having different scientific conceptual views. As a 386 

community effort, the RBV network (catchment approach) agreed upon a set of common 387 

variables that should be measured in all observatories, meant to describe the CZ at the 388 

catchment scale. The main difficulty of this exercise lies in the fact that all the required 389 

disciplinary skills rarely exist in individual observatories. However, the advantage of 390 

networking is that these disciplinary skills can be shared at the network level. Table 1 shows 391 

the list of the 24 common parameters agreed upon and measured in small order catchments of 392 

OZCAR. The variables cover all the measurable compartments of the CZ and are thought to 393 

be the best compromise among the cost of measurements, the ease of implementation and 394 

their scientific relevance. 395 

In 2011, the two networks RBV and H+ launched CRITEX, a program funded (2012-396 

2020) by the French Government (Equipex program) for developing innovative instruments to 397 

monitor the CZ. The overall goal of CRITEX (Challenging equipments for the temporal and 398 

spatial exploration of the Critical Zone at the catchment scale) was to build a shared and 399 

centralized instrumental facility for the long-term monitoring and exploration of the CZ 400 

complementing and over-performing the existing site-specific equipments of RBV and H+ 401 

networks. The instruments proposed in CRITEX (Fig. 6) can be grouped into three categories: 402 

“state-of-the-practice”, “state-of-the-research” and “state-of-the-science” (Robinson et al. 403 

(2008). The “state-of-the-practice” instruments in CRITEX are well-established techniques 404 

that are classically used to characterize the CZ (seismic, electric resistivity techniques, flux 405 

towers, groundwater well equipements). They are typically used to characterize the OZCAR 406 
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CZOs. The “state-of-the-science” instruments are innovative and emergent (scintillometry, 407 

hydrogravimetry, hydrogeodesy, optical fiber sensors, UAV exploration, self-potential and 408 

spectral-induced polarization electrical methods, isotopic tracing, reactive and inert gas tracer 409 

experiments). Examples of such intrumental developments by the CRITEX community are 410 

given by Read et al. (2014) on the use of fiber optic distributed temperature sensing down 411 

boreholes, Pasquet et al. (2015) for the coupling between P and S wave velocities, Schuite et 412 

al. (2015) for the use of ground surface deformation for deducing properties of fractured 413 

aquifers, Chatton et al. (2017) for the use of CF-MIMS (Continuous Flow Membrane Inlet 414 

Mass Spectrometer) to monitor in-situ N2, O2, CO2, CH4, N2O, H2, He, Ne, Ar, Kr, Xe) at 415 

high frequency (1 measure every 1.5 seconds) for exploring the CZ, and Mazzilli et al. (2016) 416 

for the use of Magnetic Resonance Sounding (MRS) in karst aquifers to identify the presence 417 

of water and to reconstruct seasonal variations of water within the unsaturated zone. Finally, 418 

the “state-of-the-research” instruments are not commercially available yet and have been 419 

developed as prototypes or instrumental platforms (marked by a star in Fig. 6) through 420 

academic and industrial collaborations. Such instruments include a µ-wave scintillometer for 421 

determining latent heat fluxes in catchments over 1 km distances; the development of a soil 422 

moisture sensor determing soil permittivity and bulk soil conductivity based on the soil 423 

dielectric properties (Chavanne and Frangi, 2014); integrative sensors based on DGT 424 

(Diffusive Gradient in Thin film) properties to measure U, Sr, Nd and Ni isotopes; the passive 425 

“DIAPASON” system deployed in groundwater for isotope tracing (Gal et al., 2017) and the 426 

development of a new MRS system for the unsaturated zone (Legchenko et al., 2016). 427 

Different platforms were also developped in CRITEX. For example, the hydrosedimentary 428 

platform RIPLE is specifically designed for extreme flood monitoring of mountainous rivers 429 

measuring every 10 minutes water, fine and coarse sediment fluxes (Michielin et al., 2017). 430 

The “River Lab” is a CRITEX prototype set up upon a “lab-in-the-field” concept, measuring 431 
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the chemical composition (major elements) of the river every 30 minutes (Floury et al., 2017). 432 

Finally, the “River Truck” is a mobile laboratory containing instruments for continous 433 

measurement of the concentration of dissolved gas (CF-MIMS) and major elements, to be 434 

deployed during hot moments in the field. More information on CRITEX is available at 435 

http://www.critex.fr. 436 

Significant instrumentation efforts have also been achieved by the French cryosphere 437 

community. POSSSUM (Profile Of Snow Specific Surface Area Measurement Using SWIR 438 

reflectance) is an instrument that measures the specific surface area (SSA, a measure for the 439 

grain-size) profile in snow boreholes with a vertical resolution of one centimeter and down to 440 

20 m depth (Arnaud et al., 2011). RLS (Rugged Laser Scan ) is an automatic laserscan 441 

designed to work in Antarctica that scans an area of 150 m
2
 every day and allows for 442 

monitoring snow accumulation, roughness change, sastrugi dynamics and more (Picard et al., 443 

2016a). Solexs is an optical instrument for the measurent of irradiance profiles in snow which 444 

can be related to snow microstructure and ice absorption (Picard et al. 2016b).  445 

4. Databases and metadatabases in OZCAR 446 

 447 

In order to comply with the public data policy, a mandatory condition for recurrent funding, 448 

most of the OZCAR observatories developed data and/or metadata portals where data can be 449 

accessed and sometimes downloaded. All portals in OZCAR provide research data with the 450 

exception of the ADES1 portal that provides monitoring information about groundwater level 451 

and quality for the whole French territory and was primarily designed for operational use. 452 

A critical analysis of the portals reveals a large heterogeneity in practices in OZCAR: i) free 453 

access vs. access through login/password, or no access; ii) type of data that are provided: 454 

                                                
1 http://www.ades.eaufrance.fr/ConsultationPEBSSLocalisation.aspx 
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metadata only vs. possible downloading of the data; raw data vs. corrected data or more 455 

elaborated products including simulation results; iii) access through information system and 456 

GIS interfaces, including sometimes visualization tools, vs. access to files or to ftp files; iv) 457 

data formats and storage: relational databases vs. files repositories; v) granularity of a dataset 458 

(e.g. one rain gauge or all the data collected within one catchment); vi) level of information 459 

provided in the metadata. More specific information on the diversity of current practices in 460 

OZCAR is given in Appendix 2 (Table S2). 461 

In terms of metadata provision, the RBV metadata catalog2 (André et al., 2015) is a common 462 

initiative for providing visibility to the data collected within RBV. It follows the INSPIRE3 463 

(INfrastructure for SPatial InfoRmation in Europe) norms and can harvest existing sites, when 464 

the latter are compliant. For the other portals, a manual system was proposed to feed the 465 

metadata. The usefulness of the data portal remains however limited because currently the 466 

definition of the granularity of datasets is heterogeneous; metadata which are not 467 

automatically harvested are quickly obsolete; metadata documentation is incomplete implying 468 

that access to the data portals is not granted. One particular ambition of OZCAR is to improve 469 

data accessibility and interoperability, building on the experience of the scientific teams 470 

involved in the network. (see section 6.2). 471 

5. Linking data and CZ models within OZCAR 472 

 473 

In this section different modeling initiatives developed by the various scientific communities 474 

gathered in OZCAR are reviewed. Surprisingly, despite the wide disciplinary spectrum found 475 

in OZCAR, common trends can be depicted and observed at the international scale. 476 

                                                
2 http://portailrbv.sedoo.fr/#WelcomePlace:  
3 http://inspire.ec.europa.eu/  
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Classically, models in OZCAR can be classified into process understanding, system 477 

understanding and management/prediction purposes (Baatz et al., 2018). 478 

All scientific communities in OZCAR have developed or used simple models for identifying 479 

and understanding CZ processes at different scales in their observatories. Models are built 480 

in order to interpret the collected data, but data can also question existing representations, in 481 

particular when new sensors or increased resolution are available. Process identification is 482 

performed by each discipline using mechanistic/physically-based models deployed usually at 483 

small scales (plot to small catchment scale) that intend to represent processes complexity 484 

using (partial) differential equations and describing the medium heterogeneity. Examples of 485 

studies linking data and models conducted in the different OZCAR observatories are shown in 486 

Appendix (Table S3). In-situ, long-term data as well as experimentation or laboratory 487 

experiments are used to test these mechanistic models. For instance in H+, Klepikova et al. 488 

(2016) showed how a series of thermal push-pull tests efficiently complement solute tracers to 489 

infer fracture aperture and geometry by inverse modeling and better describe aquifer 490 

heterogeneity.  491 

Once elementary processes are identified, they can be combined in more or less integrated 492 

models to provide a representation of system functioning. Several disciplines and/or 493 

compartments of the CZ are involved at larger spatial scales (e.g. small to medium catchment) 494 

and are generally addressed. Process representations are often simplified (i.e. process-based 495 

models with approaches such as reservoir models) as compared to models deployed for 496 

process understanding, because they must cope with a larger degree of heterogeneity. A 497 

model calibrated with in-situ data is thus a powerful tool to extend the knowledge acquired at 498 

local sites both in space and time (see examples in Table S3). Sensitivity analysis can also 499 

help to identify functioning hypotheses that are the most consistent with observations, by 500 

varying model parameters or comparing different processes representations. The AMMA-501 
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CATCH observatory, in collaboration with African researchers, gives a good example of this 502 

effort. In the Ara catchment (10 km
2
), observations of surface fluxes, soil moisture and 503 

groundwater monitoring as well as geochemical, geophysical data and gravimetric 504 

measurements (Fig. 7) showed that water uptake by deep rooted trees is the main driver of 505 

groundwater discharge in dry season (Richard et al., 2013; Hector et al., 2015). The 506 

mechanistic ParFlow-CLM model (Maxwell and Miller, 2005) incorporating the identified 507 

processes, was chosen to reproduce the observed functioning (Hector et al., 2018).   508 

Finally, a significant number of approaches developed in the OZCAR observatories are 509 

motivated by societal challenges such as a better estimation of sea level rise, the prediction of 510 

natural risks (floods, droughts, erosion, snow and ice avalanches, contamination, etc..), water 511 

resources management, carbon storage, and other ecosystemic functions. The models used for 512 

management and prediction purposes are usually inspired from those developed for system 513 

understanding and are generally simplified to represent the main active processes and to be 514 

used operationally and/or in real-time, due to computational time constraints, and to lower 515 

data availability. For instance, Crocus (Brun et al., 1992), a numerical model used to simulate 516 

snow cover stratigraphy and the blowing snow scheme SYTRON (Vionnet et al., 2018) were 517 

initially tested using field experiments (Col de Porte and Col du Lac Blanc, CRYOBS-CLIM 518 

observatory). They are implemented into the French operational chain for avalanche hazard 519 

forecasting. Other examples are provided in Table S3. 520 

Model integration and coupling between compartments of the CZ requires the development of 521 

dedicated tools. Modeling platforms allowing for building models from available components, 522 

and for managing exchanges of variables and fluxes between components have been 523 

successfully developed in OZCAR, mainly by the hydrological community. KARSTMOD4 524 

was specifically designed to represent karstic aquifers and provides flexibility to build 525 

                                                
4 http://www.sokarst.org/index.asp?menu=karstmod 
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reservoir-based models of various complexity (Mazzili et al., 2017). LIQUID (Branger et al., 526 

2010) was designed to represent the heterogeneity of land surfaces using an object-oriented 527 

approach (representing explicitly landscape objects). It was used to address different scientific 528 

questions related to the impact of urbanization on water flow (Jankowfsky et al., 2014, 529 

OTHU/Yzeron observatory) or flash flood understanding (Vannier et al., 2016, OHM-CV 530 

observatory). OpenFLUID (Fabre et al., 2013) was developed in OZCAR to improve the 531 

spatial modelling of landscapes dynamics and was successfully used to combine the 532 

MHYDAS (Moussa et al., 2002) distributed hydrological model, along with an extension to 533 

couple runoff and erosion (Gumières et al., 2011). Other initiatives addressed the automation 534 

of time-consuming activities such as pre and post-processing (Lagacherie et al., 2010 for 535 

agricultural catchments or Sanzana et al., 2017 for periurban catchments) or visualization and 536 

analysis of the simulation results (Anquetin et al., 2014). 537 

6. Discussion 538 

 539 

OZCAR organizes pre-existing observatories and well-established communities, supported by 540 

diverse funding institutions that have their own vocabularies and representations of the CZ 541 

and are working at different timescales. This diversity mimics the physical and biological 542 

heterogeneity of the CZ inherited from the geological and climatic histories at the local scale.  543 

OZCAR was designed in order to allow the defragmentation of the CZ community at the 544 

national scale. In this section, ambitious actions promoted by OZCAR, which should enable 545 

the CZ community to progress towards a better integration of scientific questions, data, 546 

instruments and models are presented. Visions of the internal organization of the network and 547 

its involvements in international initiatives are also discussed. 548 
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6.1 Challenging scientific questions that can be addressed in OZCAR 549 

Underlying the broad diversity of the disciplines, measured parameters and models 550 

encountered throughout OZCAR sites are common, overarching scientific questions that serve 551 

to provide fundamental insight into the inner dynamics of the CZ. These grand scientific 552 

questions can be separated into three principal topics: 1) the “dynamical architecture” of the 553 

CZ; 2) processes and fluxes that shape the CZ; and 3) CZ feedbacks and responses to 554 

perturbations (Fig. 8).  555 

6.1.1. Dynamical architecture of the Critical Zone. 556 

The architecture of the CZ refers to its structural, physical, chemical and biological 557 

organization. The spatial extent of the CZ is still poorly defined, which emphasizes the need 558 

to better investigate its lateral and vertical organization, 1) to identify the role of the different 559 

interfaces; 2) to quantify the impact of spatial heterogeneity and temporal intermittence on 560 

fluxes, connectivity, concentrations and micro-organisms; and 3) to determine residence and 561 

exposure times of material in the CZ. Here, the architecture of the CZ is defined in a 562 

dynamical rather than in a static view. The dynamical architecture of the CZ can be translated 563 

into a series of questions detailed in the following. 564 

(i) What is the upper, lower and lateral extent of the Critical Zone? 565 

The upper limit of the CZ is classically defined as the top of the atmospheric boundary layer. 566 

The portion of the atmosphere involved in the CZ as characterized by the location of this 567 

upper limit is variable and site specific, depending on local topography and wind patterns. On 568 

the catchment scale only the lower portion of the atmosphere is relevant, but when continental 569 

scale energy couplings are considered the whole atmosphere plays a role. As an example, a 570 

critical question in the assessment of geochemical mass budget studies in CZOs is in 571 

determining how to incorporate atmospheric inputs of dust or of Volatile Organic 572 
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Compounds. These compounds can be produced locally (in which case they are part of the 573 

“soil” system) or can be produced at great distance (like Saharan dust in the Lesser Antilles or 574 

the Amazon) in the form of marine aerosols that can serve as significant external input 575 

sources to a given CZ site of interest. 576 

The lower limit of the CZ is also often poorly defined and this question is complicated by the 577 

fact that in many cases the CZ can be composed of multi-layered aquifers in which water 578 

infiltrating from the surface can percolate very deeply with very long residence times 579 

(Goderniaux et al., 2013; Flipo et al., 2014; Aquilina et al., 2015). 580 

Since the CZ is not a 1D system, its lateral extent is equally as important as its vertical extent. 581 

Lateral compartments such as floodplains, peatlands, glaciers, or colluvium are important 582 

biogeochemical reactors on the continents that should be considered to fully address CZ 583 

functions. Describing the dynamical architecture of the CZ is thus a composition exercise, that 584 

requires not only the spatial, geomorphologic heterogeneity to be taken into account, but also 585 

the connectivity, i.e. the way hydrological patches are connected in space and time.  586 

 (ii) What are the residence and exposure times of water and matter in the different CZ 587 

compartments?  588 

Determining the duration of time that matter spends in the CZ (residence time), as well as the 589 

time that the matter is in favorable biogeochemical conditions to react (exposure time), is a 590 

primary step in defining CZ architecture, as it is a direct indicator of its dynamical structure. 591 

The residence time concept is typically associated with waters, but it can also be applied to 592 

surface (glaciers) or ground (permafrost) ice, sediments and soils. For example, the residence 593 

time of soil material results from a subtle balance between weathering and erosion and, 594 

therefore, can provide insightful information into the rates at which soil material is formed or 595 

transported out of the catchment as part of the CZ architecture characterization. Ecosystem 596 

characteristic times are shown to change significantly with spatial scale and thus these diverse 597 
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scales must be investigated, taking advantage of the nested structure of observatories (Billings 598 

and Sullivan, in press).  599 

(iii) What are the Critical zone interfaces? 600 

To overcome the inherent difficulty of describing a “dynamical architecture” of the CZ, one 601 

can describe the CZ as a series of critical interfaces. At these interfaces between reservoirs or 602 

compartments, energy, water and matter are transformed because of biological, physical and 603 

chemical gradients (such as redox gradients). These interfaces may be permanent or transient, 604 

depending on the hydrological cycle or on the succession of dry and wet seasons. Examples of 605 

CZ interfaces are the topography, the atmosphere/ice-snow interface, the unsaturated-606 

saturated zone interface, hyporheic zones, riparian zones, or more generally the groundwater – 607 

river interface, or the topography of the bedrock-saprolite interface (weathering front).  608 

(iv) What is the role of biota in the CZ architecture? 609 

Biota plays a crucial role in most of the chemical and physical reactions in the CZ by 610 

regulating hydrological and matter budgets through the control of evapotranspiration, the 611 

production of physical stresses on the CZ, and through facilitating chemical reactions. Life is 612 

not an explicit variable in all OZCAR sites, but a number of biological variables are measured 613 

(particularly, through remote sensing). A challenge of CZ science and observatories is to 614 

incorporate measurements that assess more explicitly the role of living organisms (and 615 

humans) in the CZ. For example, the role of the “microbiome” is particularly unknown in the 616 

world and is thought to be a significant contributor to the major geochemical and hydrological 617 

processes governing the CZ (Sullivan et al., 2017). 618 

6.1.2. Processes and budgets: biogeochemical cycles, sediment and contaminant propagation 619 

through the CZ from highlands to sea.  620 

The CZ, essentially fueled by solar energy, is controlled by a large number of chemical, 621 
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physical and biological processes that are tightly coupled at the plot, watershed and 622 

continental scales. The concept of terrestrial biogeochemical cycles is probably the best 623 

adapted to describe the loops in which water, matter, elements and contaminants occur at 624 

Earth’s surface. These loops act at different spatial and temporal scales and are not necessarily 625 

closed at the size of a CZO. An overarching question is therefore: how to identify and 626 

quantify the hierarchy of CZ processes that govern terrestrial biochemical cycles across 627 

space and time? The search for these coupled processes shaping the CZ and their 628 

quantification in terms of kinetics (i.e. of fluxes involved) is therefore central to the OZCAR 629 

network. The different processes may be identified and quantified over small spatial scales 630 

(grain, plot, hillslope) or may be described over very large scale in the case of large 631 

watersheds (Billings and Sullivan, in press). Typical associated timescales may range from 632 

seconds to millions of years (Anderson et al., 2004; Robinson et al., 2008; Sullivan et al., 633 

2016). Moving up through scales, new processes emerge that are not necessarily the sum of 634 

the processes described at a smaller scale. Through a suite of observatories and nested 635 

catchments, covering a mountain-to-sea continuum, combined with modeling, OZCAR aims 636 

to address the following major questions related to the processes and fluxes through the CZ. 637 

(i) Can we better quantify budgets of mass and energy across CZ observatories?  638 

This includes constraining the different processes at play in the hydrological budget and their 639 

spatial and temporal variabilities: precipitation, evapotranspiration or more generally 640 

atmosphere-surface exchanges, wind erosion, infiltration or groundwater recharge, and 641 

groundwater-river exchanges. These budgets, first applied to water, must also be applied to 642 

other components (sediments, nutrients, contaminants or total mass) and thus to any particular 643 

element regardless of its phase (gas, solute, particulate), including trace elements and 644 

micronutrients, and should be established on timescales relevant to the systems considered. 645 

OZCAR aims to combine different techniques, models, and tracers to achieve such a goal 646 
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(e.g. Sullivan et al., 2016). 647 

(ii) How can high-frequency sampling help decipher CZ functioning? 648 

Solving this question requires time series with sampling frequencies adapted to the different 649 

processes and to the scale of investigation. The couplings between processes at the plot or 650 

catchment scale can only be disentangled if high frequency measurements (from 1/hr to 651 

1/min, depending on the process dynamics) are available. At larger scales, as inter-annual 652 

variability is large in the CZ, typically decadal observation series are necessary. Such long-653 

time series have rarely been collected at the global scale so far and require a focused effort by 654 

the international CZ community. 655 

(iii) What are the functions of biota in the CZ? 656 

The role of biological processes and their quantification remains difficult in the CZ, partly 657 

because measurable proxies of life-related processes are lacking. So-called “abiotic” and 658 

“biotic” processes are so intertwined that deciphering the causalities is a “chicken and egg” 659 

problem. An important question, beyond species diversity, is to identify the functions of 660 

macro and microorganisms in the CZ. “Biolifting” is a particularly interesting mechanism that 661 

consists of nutrient withdrawal at depth by roots and release by organic matter decomposition 662 

or throughfall inputs in the top soil. Spatially, the dynamics of organic carbon and nutrients 663 

through the mountain to sea continuum also deserves more attention. 664 

 665 

6.1.3. Responses and feedbacks to biological, climatic and geological perturbations and global 666 

change: Earth’s dynamic surface system. 667 

The ultimate scientific question that OZCAR wants to tackle is “what is the response of the 668 

CZ to perturbations and forcings that can be either “natural” (such as geologic or 669 

meteorological forcing) or anthropogenic (such as climate change, shifts in land use, increase 670 
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of resources exploitation)? Human activities are now considered as one particular and now 671 

prominent forcing factor of Earth’s surface, and most of the OZCAR sites have been strongly 672 

impacted by human practices over time. As the CZ holds resources and offers goods and 673 

services to humanity, understanding how this dynamical system as a whole responds to events 674 

that can be, exceptional, periodic or continuous, is important in terms of better informing 675 

society and stakeholders (predicting flood events and associated risks, chemical or radioactive 676 

dispersion) and propose a scientific basis for an alternative management of these resources.  677 

(i) How can we use Critical Zone Observatories to Earthcast? 678 

Humanity faces unprecedented changes in climate, water and food security issues, and 679 

population growth, so the main question is, how can we use different CZOs and their design 680 

along gradients to quantitatively predict the response of Earth’s surface to changes in global 681 

or local forcing parameters, or in short, “Earthcast” (Godderis and Brantley, 2013; Sullivan et 682 

al., 2018)? This question is associated with that of the representativeness of observatories. Is 683 

heterogeneity the overriding controlling factor or can we, beyond the local diversity in 684 

geology, rock texture, climate, soil and vegetation, land use and human practices define 685 

general properties (such as state variable) characterizing the systems? Through their large 686 

diversity of location, climatic and geological contexts, OZCAR observatories offer an 687 

unprecedented opportunity to test the relevance of this hypothesis. Monitoring Earth’s surface 688 

through a series of observatories (Banwart et al., 2013, Kulmala et al., 2018) poses the 689 

question of how these observatories should be chosen, designed and monitored and also 690 

highlights the necessity of defining common metrics for CZOs (Brantley et al., 2016, Sullivan 691 

et al., 2017). 692 

(ii) How do processes with small characteristic times and limited spatial imprint 693 

influence the longer timescales and larger spatial scales?  694 

The perturbations induced by human activities on the CZ are a typical case of coupling 695 
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between timescales, where human actions may be short-lived, but could have lasting 696 

consequences over long timescales. A typical example is that of Laos where a change of land-697 

use from rice crop to teak forest resulted in spectacular and irreversible acceleration of 698 

erosion rates (Valentin et al., 2008; Ribolzi et al., 2017). The idea that biota in the CZ 699 

responds quickly to climate change and that the structure, function and dynamics of the CZ 700 

can change on timescales much faster than currently considered is particularly important 701 

(Sullivan et al., 2018). 702 

The knowledge acquired from observatories can be incorporated into integrated models, able 703 

to model and couple the various components of the CZ at different space and time scales, in 704 

order to better quantify fluxes and storages in the CZ and simulate its response to global 705 

change. These models should also have a predictive power to address questions raised by 706 

societies and stakeholders, such as risk assessment related to floods, droughts, landslides, 707 

contamination or water resources shortage. By increasing the common use of models and 708 

data, well-instrumented CZOs offer a unique opportunity to understand small-scale processes 709 

and to hierarchize their importance according to different environmental and climatic 710 

conditions. The development of nested instrumentation, as already done in some OZCAR 711 

observatories, provides tools to assess the validity of simplifying assumptions and to address 712 

the change of scale problem and how dominant processes may change when moving from 713 

small to larger scales. Another challenge, also highlighted in the first scientific question, is the 714 

proper integration of the biotic components as well as representations of human 715 

infrastructures and activities in CZ integrated models (Billings and Sullivan, in press). 716 

(iii) Can we predict CZ trajectories?  717 

All parameters being constant, is the evolution of the CZ at a CZO reproducible? In other 718 

words, if the same initial conditions are met, would two similar CZOs follow the same 719 

evolutionary trend under the same forcing? Could it also be possible that bifurcations in the 720 

Page 28 of 103Vadose Zone J. Accepted Paper, posted 08/30/2018. doi:10.2136/vzj2018.04.0067



29 

 

evolution of the CZ caused by heterogeneities or sudden changes would result in different 721 

evolutionary patterns? Human actions, fires, sudden erosional events, the importance of 722 

extreme events on system evolution are factors that could act as tipping events in the 723 

evolution of the CZ which clearly need to be better appreciated and incorporated into CZ 724 

models. This is why working with socio-ecology is essential. 725 

 726 

6.2. Challenges in instrumental development 727 

A main challenge of future CZ instrumentation is to define tools and methods to image how 728 

water flows, and how the heterogeneous structure of the geological, soil and biospheric media 729 

generates reactivity hotspots at moving interfaces. Adapted spatial and temporal resolution 730 

over a wide range of scales is therefore required to capture emerging patterns driven by water 731 

flow in the subsurface, with the main challenge being how to define the right scale of 732 

heterogeneity and adapt the instrumentation accordingly. A number of techniques currently 733 

available for exploring and probing the CZ may not be adapted to the necessary scale of 734 

investigation. This is particularly true at the smallest spatial scales (such as the catchment or 735 

plot scale) where geophysical imaging is usually at insufficient resolution, where geochemical 736 

signals are not recorded at a sufficiently high temporal frequency, and where spatial 737 

techniques are still irrelevant.  738 

(i) Addressing the challenges in instrumentation in order to significantly move forward 739 

in our understanding of the CZ functioning 740 

First, high time- and space-frequency of measurements is clearly a frontier in CZ 741 

instrumentation. High-frequency acquisition already exists for parts of the CZ like those for 742 

atmospheric-ground exchanges of matter and energy (using flux tower or accumulation 743 

chambers), or for water levels in piezometers and river gauging stations, but significant 744 
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progress still needs to be accomplished particularly for spatialization. Better spatial resolution 745 

of ground sensors will improve the link with remote sensing data. Cosmic ray investigation or 746 

scintillometry are promising techniques that link local to larger scale observations but still 747 

require important technological and theoretical development to be adapted to observatories 748 

with marked topography. Compared to water and gas, chemical parameters and solids (in 749 

suspension or as bedload) are rarely measured at a high temporal frequency in rivers and 750 

aquifers, which should be considered as a priority at the catchment or watershed scale. 751 

Commercially-available lab instruments could be beneficially deployed in the field to 752 

decrease required manpower and allow for cost-effective sample manipulation, provided that 753 

the issue of water filtration can be solved. This concept has been developed in oceanography 754 

(“lab on ship”) but is still in its infancy in terms of CZ research. The “River Lab” concept 755 

described above (Floury et al. 2017) is an example of such a promising approach. A “snow 756 

lab” to probe the surface and the snowpack would also provide a major step forward in the 757 

observing capabilities of snow. Industrial solutions exist including in-situ sampling, pumping, 758 

filtration and on-line analysis, which should be adapted to field requirements to be sufficiently 759 

resistant to extreme field conditions (cyclones, extreme cold events). If, in principle, all lab 760 

instruments can be deployed in the field, the “lab-in-the-field” concept would strongly benefit 761 

from the development of low-cost sensors, which have the advantage of being miniaturized, 762 

less sensitive to fouling than most commercial probes, deployable at a high spatial resolution 763 

and eventually able to provide real-time data. The development of low-cost chemical sensors 764 

for major solutes, for water in the unsaturated zone and for monitoring solid fluxes in rivers 765 

and glaciers is an instrumental challenge that needs a significant investment. Biological data 766 

(smart tracers, DNA) acquired at high frequency is also an area of instrumentation requiring 767 

considerable development.  768 

The second promising direction of instrumental development, requiring a significant 769 
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experimental and theoretical effort, is the improvement of the time resolution of geophysical 770 

imaging of the CZ (“time-lapse” geophysics) in order to move from snapshot views of the 771 

inaccessible CZ to the imaging of preferential water pathways. In addition, down-hole 772 

exploration and associated experimentation for time-lapse imaging need to be developed as a 773 

complement to the ground-based time-lapse exploration. The sensitivity of some geophysical 774 

properties to biogeochemical reactions is transforming “hydrogeophysics” into 775 

“biogeophysics” (Binley et al., 2015), a promising field at the frontier of ecological and earth 776 

sciences.  777 

Finally, data transmission and synchronization are prerequisites for developing high 778 

frequency observation strategies. Autonomy is also particularly important for reducing the 779 

costs of human resources as well as for studying inaccessible CZ components (anoxic 780 

groundwaters, caves) or moments (extreme events). It is necessary to develop low-cost/low-781 

energy tele-transmission strategies and systems for harsh and remote environments in order to 782 

minimize time-series discontinuity and obtain a large spatial coverage. It is also essential to 783 

explore new energy sources and to consolidate existing solutions, in particular within cold 784 

environments.  785 

(ii) How can OZCAR help achieve significant instrumentation advances in the 786 

exploration of the CZ? 787 

Given the instrumental challenges listed above, a significant effort in the upstream 788 

development of sensors is required, necessitating the collaboration of users (CZ scientists) 789 

with sensor developers. Regardless of the need for higher space- and time-frequency, many 790 

variables of interest in CZ science are still challenging to measure (e.g. most snow internal 791 

properties, precipitation amount and phase; Grazioli et al., 2017) and require innovative 792 

developments. Overall, there is a real challenge in encouraging the CZ community to meet 793 

with fundamental chemists, physicists, computer scientists or biologists to develop new 794 
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sensors. A good example is the extraordinary development of microfluidic techniques 795 

supporting unprecedented miniaturization of sensors as exemplified by numerous medical 796 

applications. The role of OZCAR will therefore be to develop a network-level technology 797 

survey on emerging technologies and technological forums associating sensor developers and 798 

CZ scientists on network-level questions like sensor autonomy, data transmission, and 799 

assessment of the ability and reliability of automatic sensors to accurately measure CZ 800 

parameters (Trouvilliez et al., 2015, Cucchi et al., 2017). Ocean and atmospheric scientists 801 

have also made significant progress over the last decades on the real-time acquisition of 802 

chemical and physical data that should be of high impact for CZ communities. Existing 803 

structures exist like ENVRIplus (an inter ESFRI initiative addressing instrumental challenges) 804 

or SPICE (Snow Precipitation Intercomparison Experiment) that should also help create 805 

favorable conditions for sensor development. An assessment of the ability and reliability of 806 

automatic sensors to accurately measure CZ parameters is still required.  This is even more 807 

true when low-cost sensors are considered (Trouvilliez et al., 2015). This can be done through 808 

specific campaigns organized in the framework of OZCAR, similar to what has been done 809 

globally by WMO during the SPICE project in which CRYOBSCLIM participated. 810 

OZCAR finally aims to be a community space for dissemination of sensors and skills and for 811 

sharing instruments among the field sites along varying environmental conditions. Sharing 812 

instruments within the OZCAR network will follow the model of the CRITEX instrumental 813 

facility. Instruments are purchased and managed by individual teams but are accessible to any 814 

OZCAR community member. This organization requires training workshops for field-based 815 

teams to learn how to use instruments and treat data.  816 

 817 
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6.3 Challenges in data management 818 

The large amount and variety of data produced in the OZCAR is expected to increase in the 819 

near future due to the increase of high-frequency acquisition systems and the development of 820 

new sensors. Simultaneously Open Data is pushed in Europe by the INSPIRE directive for 821 

spatial data and the Aarhus agreement5  for environmental data. This requires data to be 822 

permanently and freely accessible on-line, allowing data discovery, visualization and 823 

downloading. Open data is expected to enhance new connections between datasets, data 824 

mining, and easier use in models. Scientists are aware of these possibilities, but may remain 825 

reluctant to openly provide their datasets. Reasons put forward are: lack of technical skills or 826 

human resources, legal constraints, data quality and validation, priority for their personal use 827 

through embargo on their datasets, lack of traceability of open data and lack of 828 

acknowledgement of their work. Open data also raises practical questions about the definition 829 

of a dataset, its granularity, its documentation, the juridical status of data (Becard et al., 2016) 830 

and technical issues about interoperability between systems often developed independently, 831 

the availability of the required expertise for web sites design and maintenance, and of course 832 

of associated costs. 833 

(i) The challenges in CZ data and metadata access 834 

Identifying, cataloging, and sharing data within OZCAR is a great challenge, starting from a 835 

very heterogeneous situation (see section 3), that is common in environmental observation 836 

(Horsburgh et al., 2009). Visibility within the scientific community is also a great challenge, 837 

pleading for a common metadata/data portal. Given the investment of observatories in data 838 

portals and the preference that data remain as close as possible to their producer (Zaslavsky et 839 

al., 2011), it seems unrealistic to begin anew and propose the same technical solution for all 840 

observatories. The most efficient approach is to work on interoperability between existing 841 

                                                
5 http://ec.europa.eu/environment/aarhus/  
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sites, so that metadata first, and data soon after, can be harvested and accessed transparently 842 

by users (e.g. Ames et al., 2012). This challenge of data sharing and interoperability is 843 

common to the environmental science community and has lead to initiatives such as the 844 

Hydrologic Information System by the CUAHSI6 consortium (Horsburgh et al., 2009, 2011) 845 

for hydrological observatories, EarthChem system (Lehnert et al., 2010) for geochemical data 846 

or CZOData (Zaslavsky et al., 2011) for the CZO Data Management System. All these 847 

initiatives had to address semantic and syntactic heterogeneity and proposed shared controlled 848 

vocabulary for data and variable indexation (e.g. Horsburgh et al., 2014) and common 849 

standards for a data model (e.g. Horsburgh et al., 2008; Zaslavsky et al., 2011). Although 850 

individually successful, these initiatives showed limitations in incorporating new data types or 851 

sharing data between communities. This led to the development of a second generation of 852 

Observation Data Model (Horsburgh et al., 2016; Hsu et al., 2017) handling different kinds of 853 

data. Concepts such as the O&M (Observation & Measurement 7 ) and SOS (Sensor 854 

Observation Service 8 ) for data harvesting must also be explored and the cost of their 855 

deployment evaluated before designing the OZCAR portal. 856 

(ii) How can OZCAR help achieve progress in CZ data management? 857 

OZCAR aims at building a common metadata/data portal gathering metadata first, thus 858 

ensuring data discovery, and going very soon to data access, taking advantage of the expertise 859 

present in the various observatories and of existing international initiatives. First exchanges 860 

with the OZCAR community showed that, to be useful, the data portal must provide 861 

information down to the level of available variables with their associated location and detailed 862 

time windows. This task will require working on the following points: i) agreement on the 863 

fields and file format for providing the metadata so that they can be exposed following 864 

                                                
6 Consortium of Universities for the Advancement of Hydrological Sciences, https://www.cuahsi.org/  
7 http://www.opengeospatial.org/standards/om 
8 http://www.opengeospatial.org/standards/sos  
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standards (e.g. INSPIRE) and can be used for other purposes such as DOI declaration; ii) 865 

agreement on the various entries to find data in the portal (location, dates, variables, climate, 866 

geology, observatory, programs, funding institutions (Ames et al., 2012) and iii) definition of 867 

a common ontology and controlled vocabulary for naming the variables. Mapping of existing 868 

variables towards a commonly shared vocabulary based on the GCMD9  (Global Change 869 

Master Directory) keywords is in progress; iv) define fluxes of information between the 870 

OZCAR portal and existing portals so that the information is always up to date; and v) 871 

document the data lifecycle and propose archiving solutions for long term preservation 872 

(Massol and Rouchon, 2010; Diaconnu et al., 2014). 873 

The metadata portal should enable users to download data even if the latter are located in 874 

distributed data centers. The downloaded data will be supplied to the users in an identical 875 

format. The portal will be considered as a success if researchers use it to retrieve the latest 876 

versions of their own data. 877 

The recognition of scientists acquiring data is also a major point to which attention must be 878 

paid. Initiatives such as DOI (Digital Object Identifier), data papers (e.g. Nord et al., 2017; 879 

Guyomarc’h et al., 2018) and licensing of the datasets (e.g. Creative Common licenses10) will 880 

be encouraged within OZCAR by providing guidelines on the definition of the corresponding 881 

datasets, their granularity, and on filling the associated metadata. It is also planned to propose 882 

a minimum Information System kit for observatories that lack the required expertise.  883 

6.4 Linking data and models, ambitions and objectives 884 

OZCAR aims to provide a seamless holistic understanding of the terrestrial compartments of 885 

the Earth System and an integrated representation of the coupled water, energy and matter 886 

                                                
9 https://earthdata.nasa.gov/about/gcmd/global-change-master-directory-gcmd-keywords 

 
10 https://creativecommons.org/share-your-work/licensing-types-examples/  
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cycles, including biogeochemical cycles (e.g. Filser et al., 2016), covering various spatial and 887 

temporal scales and incorporating the heterogeneity of the critical zone. Such integrated 888 

approaches are required to “earthcast”, i.e. assess the effect of future global change or socio-889 

economic scenarios on all the compartments of the CZ (Godderis and Brantley, 2013). To 890 

address these scientific challenges, stronger interactions between data science and modeling 891 

approaches are necessary (e.g. Kirchner, 2006; Braud et al., 2014; Brantley et al., 2016), 892 

raising key cognitive and technical challenges.  893 

(i) Scientific and technical challenges in linking CZ data and models? 894 

A first challenge is related to the process representation at different scales. At small scale, the 895 

identification of elementary processes can benefit from instrumental progresses listed in 896 

section 6.2. One example is the development of geochemical reactive transport models (i.e. 897 

Steefel et al., 2015) at the catchment scale exploiting in particular high frequency datasets of 898 

stream chemistry, constraints from new isotopic systems (Sullivan et al. 2016), and the new 899 

representation of heterogeneities at the grain-size (Le Borgne et al., 2013). Another challenge 900 

is the proper representation of vegetation and biological activity on chemical and physical 901 

reactions that determine hydrological and matter budgets. When moving to larger scales, 902 

unstructured heterogeneity, non-linearity and thresholds at all scales (Blöschl and Zehe, 903 

2005), and the scarcity of integrated data at the scale of interest (Cook, 2015), preclude the 904 

use of the same approach. It also becomes necessary to include human interactions within the 905 

system (water uses, infrastructures, agricultural and forested land management, etc..), to 906 

create socio-hydrological models (Sivapalan et al., 2012). Equations and representations 907 

derived at small scales are often used for larger scales, but this approach is questioned as data 908 

reveal behaviors such as “emergent properties” (Sivapalan, 2003; McDonnell et al., 2007) that 909 

cannot be represented by aggregation of small scale processes to larger scales, calling for new 910 

theories (e.g. Kirchner, 2009, Braun et al., 2016) as well as new concepts for non-explicitly 911 
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resolved processes (i.e. “parameterization” as defined by the atmospheric science 912 

community).  913 

A second challenge is to progress towards integrated modeling of the CZ, requiring the 914 

deployment of coupling strategies. Direct coupling is relevant for exchanges such as water 915 

and energy fluxes across the surface that are represented in land – surface models and now 916 

incorporate many processes of the continental surface and sub-surface (e.g. SURFEX 917 

(Masson et al., 2013) or ORCHIDEE11 (Ducoudre et al.,1993;  Krinner  et  al., 2005). Other 918 

examples such as PARFLOW-CLM (Kollet and Maxwell, 2006), DHSVM (Wigmosta et al., 919 

2002), PIHM suite (Duffy et al., 2014) as well as the Dhara modeling framework (Le and 920 

Kumar, 2017), are built around an initial model that can be enriched with different coupled 921 

modules. They all require specific data transfer and the integration of new modules to fit the 922 

model requirements (language; mesh and grid resolution; name of variables; etc). Another 923 

option is to use couplers such as OPEN-MI12, OpenPALM13 (Piacentini, 2003) that generally 924 

preserve model legacies and provides interfaces for their coupling, but also robust coupling 925 

methods and complementary tools such as data interpolation. A third option is to design 926 

platforms that allow coupling various modules and model representations, keeping the 927 

specificity of each component in terms of model mesh, time steps, and that provide interfaces 928 

to couple models but also a framework for the runtime environment such as LIQUID (Branger 929 

et al., 2010), CSDMS
14  

(Peckham et al., 2013), OpenFLUID
15  

(Fabre et al., 2013), and 930 

JAMS
16

 (Kralisch and Krause, 2006).  Process coupling may also call for the definition of 931 

more adapted variables and/or standardized interfaces to favor the coupling between modules 932 

                                                
11 http://forge.ipsl.jussieu.fr/Orchidee 

12 https://sites.google.com/a/openmi.org/home/dashboard2 
13 http://www.cerfacs.fr/globc/PALM_WEB/ 
14 http://csdms.colorado.edu/wiki/Main_Page  
15 http://www.openfluid-project.org/  
16 http://jams.uni-jena.de/  
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describing various processes. Choosing or designing technical solutions adapted to the 933 

complexity and heterogeneity of the CZ remains challenging and is an active area of research. 934 

In some cases, the dynamics of interfaces should be considered in itself as a research issue 935 

requiring adapted characterization and modeling methods. Interactions between vegetation 936 

and sediment transport in rivers benefit from the development of accurate topographical 937 

devices like LiDAR and require new models for sediment transport and river evolution 938 

(Brodu and Lague, 2012; Jourdain et al., 2017). New data can also reveal the spatiotemporal 939 

dynamics of exchange variables and fluxes (McDonnell, 2017), questioning current 940 

representations. For example, aquifer-river fluxes revealed by fiber-optic temperature data 941 

potentially modify the status of the exchange fluxes from boundary conditions to forcing 942 

terms (Anderson, 2005; Klepikova et al., 2014). In hydrogeo-eco-logy, coupled nutrient 943 

transfer and characterization of microorganisms requires recasting classical residence time 944 

concepts in the framework of exposure time concepts where hotspot organization can be 945 

integrated (Pinay et al., 2015).  946 

Common issues shared at each step of modeling, either when identifying processes or when 947 

coupling them, are related to the ability to manage uncertainties coming from observations, 948 

process understanding and model parameterizations. This requires the design of calibration 949 

and model evaluation criteria and data assimilation systems that are able to account for this 950 

uncertainty. Numerical uncertainty must also be quantified when models are used for 951 

predictive purposes.  952 

From a more technical point of view, important challenges are related to our ability to 953 

perform coupling between process modules running at different space and time scales; and to 954 

link databases, GIS layers and models (Bhatt et al., 2014). Facilitating data – model 955 

interactions to build integrated modeling requires novel technical developments allowing both 956 

data interoperability and model sharing (e.g., OLES project; Anquetin et al. (2014); CSMDS 957 
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project, Peckham et al. (2013), CUAHSI community model
17

 and web services based on the 958 

Basic Model Interface (Jiang et al., 2017)) and needs to be extended to a larger scientific 959 

community (Kumar, 2015; Yu et al., 2016). Such platforms may also benefit from distributed 960 

computing facilities that help to keep model development closer to the developers. Moreover, 961 

improved visualization capacities are also necessary to represent modeling results and provide 962 

more accessible pathways to environmental processes for the broader scientific community 963 

(Leonard and Duffy, 2014). Implementing such tools (e.g. Paraview 18 ) in the modeling 964 

platform will benefit both observational data and modeling data exploration.  965 

In addition, the availability of new data, at unprecedented space and time resolutions, related 966 

to the rapid development of new sensors, high resolution satellite data and data obtained by 967 

experimentations that provide information on more diverse variables, sometimes indirectly 968 

related to the variables of interest. Big data challenge current modeling practices that were 969 

developed in a data scarce context. This will transform relations between data and models 970 

with critical improvements needed in computation, calibration and assimilation capacities 971 

(Liu et al., 2012). The availability of a large amount of data also opens new perspectives for 972 

the derivation of data-driven models (e.g., Kirchner, 2009), that can benefit from data mining 973 

and big data analysis (e.g., Bui, 2016) and allow for reduction in uncertainties. Data mining 974 

can also be used to infer the geometry and model parameters for large systems (Bodin et al., 975 

2012), and provide complementary calibration strategies for high-dimensional models (Bui, 976 

2016; Hsu et al., 1995; Shortridge et al., 2016). 977 

(ii) How can the OZCAR community contribute to these challenges? 978 

Linking data and models will be one of the pillars of OZCAR. In terms of process 979 

representations, the large climatic/ecological/pedological/biological gradients covered by 980 

                                                
17 https://www.cuahsi.org/data-models/community-models/  
18 https://www.paraview.org/  
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OZCAR, including sites highly impacted by human activity, offer opportunities for providing 981 

data at small scales (grain, macropore and catchment scale) and identifying the elementary 982 

processes to be implemented into models. Nested instrumented catchments provide data to 983 

tackle the change of scale problem and identify and model “emergent” behaviors. 984 

To cope with the diversity of models used within the OZCAR community (see Table S3), not 985 

a single CZ model will be considered (Duffy et al., 2014) and coupling between existing 986 

models or modular modeling platforms will be used, in order to build dedicated models, 987 

adapted to the scientific questions and data availability. Such platforms have already started to 988 

be used for integrated land surface - aquifer modeling (e.g. the AquiFR project in France; 989 

Habets et al., 2015) and other examples were listed in section 5. OZCAR will also explore 990 

complementarity approaches that are often opposed in the literature, like in the use of detailed 991 

mechanistic models (Godderis and Brantley, 2013) versus simplified models able to capture 992 

the main functions within the critical zone (Savenije and Hrachowitz, 2017). With the 993 

development of adapted assimilation techniques approaches, the combination of data and 994 

models will ultimately lead to CZ reanalysis, providing valuable and novel information about 995 

the CZ; as already widely used by the atmospheric science community to produce reanalyses 996 

of the state of the atmosphere and of the components of the water cycle at the global scale 997 

(e.g. ERA-Interim; Berrisford et al., 2011). Implementing all the tools will require that the 998 

OZCAR community expand to applied mathematicians and computing engineers, and train a 999 

new generation of CZ modelers. 1000 

6.5 Structural framework of the OZCAR network: possible topologies for OZCAR 1001 

OZCAR gathers scientists from different disciplines, both from academic and applied 1002 

research, and a large number of monitored sites that share a common set of instruments used 1003 

for probing the near surface of our planet. Organizing the topology of such a network is 1004 
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important not only for helping this heterogeneous community to identify network-level ideas 1005 

and scientific hypotheses to be tested, but also to help promote CZ science and maintain 1006 

recurrent funding by institutions, to improve the visibility of CZ science to society, and to 1007 

improve collaborations with other Earth surface and environmental science networks. 1008 

Several topologic models that optimize the goals pursued by OZCAR are proposed. In all 1009 

cases, site-based observatories are the permanent and pivotal structures, recurrently funded by 1010 

different environmental research institutions. 1011 

A number of existing research infrastructures, developed in particular by climate and 1012 

atmospheric science communities, measure one parameter or a limited set of parameters in a 1013 

series of instrumented sites along gradients. One successful example of such variable-centered 1014 

RI is provided by ICOS, (Integrated Carbon Observation System) a network of flux towers 1015 

measuring CO2, as well as other GHG and energy fluxes along climate gradients then directly 1016 

connected to climate models. By contrast, OZCAR, and more generally worldwide CZ or 1017 

LTER (Long Term Ecological Research) observatories assemble a more complex and diverse 1018 

set of instruments measuring parameters determined by local or regional processes (geology, 1019 

climatology), that are used to target a systemic approach.  1020 

A first possible topology is to define a set of common scientific questions within the 1021 

network and to organize OZCAR in sub-networks targeting these questions. Several common 1022 

questions or scientific themes can be proposed that supersede the heterogeneity of existing 1023 

site-based observatories and foster scientists and disciplines to collaborate. One theme could 1024 

be reactive transport in porous media. It would associate research teams focusing on 1025 

hydrogeological, hydrological and biogeochemical processes to understand and model the 1026 

interaction between water, minerals, life and solids in aquifers using the diversity of OZCAR 1027 

observatories. Another group could be organized on CZ science in headwater catchments, 1028 

targeting the identification of elementary mechanisms or closing mass and energy budgets 1029 
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locally. Another transverse theme common to numerous observatories could be a “CZ-1030 

carbon” theme on the topic of carbon storage in the CZ and its relation to functional 1031 

biodiversity and the 4‰ initiative19. A last thematic cross-site program could address the 1032 

upscaling issue by targeting the large spatial scales, including the remote sensing resources 1033 

from OZCAR and taking advantage of the regional-to-continental scale observatories (e.g. 1034 

Amazon basin).  1035 

A second topology model would be a network organization in clusters of sites. In such a 1036 

model, the different site-based observatories of OZCAR, targeting variable compartments of 1037 

the CZ (glaciers, peatlands, catchments) would ideally be co-located within a territorial entity 1038 

that can be a large river basin or a “geo-climatic” entity. This organizational scheme is not far 1039 

from that of the TERENO (Terrestrial Environmental Observatories) terrestrial infrastructure 1040 

developed by the German Helmoltz Association (Bogena et al., 2006, Zaccharias et al., 2011). 1041 

Each TERENO consists of a series of instrumented atmospheric, hydrological, ecological co-1042 

located sites representing the dominant terrestrial processes, land use, climate and 1043 

demographic gradients. The entities could also be socio-ecological systems in which the long-1044 

term observatories of OZCAR are co-located. Socio-ecosystems are typically the setting of 1045 

the Long Term Socio-Ecological Research (LTSER) observatories (Haase et al., 2018). This 1046 

organization in clusters is also close to the “hub-and-spoke” topology proposed by Brantley et 1047 

al. (2017) in the US. A hub is a highly instrumented CZO (essentially river catchments) in 1048 

which the broader common metrics of measurements have been defined and which is 1049 

connected to “satellite” sites focused on a particular compartment of the CZ and in which 1050 

fewer parameters are monitored. 1051 

Finally, a last topologic model for OZCAR could be based on instrumentation. OZCAR 1052 

could be seen as a network of instruments, some of them mobile (e.g. seismology), some 1053 

                                                
19 https://www.4p1000.org/ 
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others permanent and site-based (i.e. gauging stations, piezometers). The infrastructure could 1054 

then be organized according to the different sub-networks of instruments allowing for 1055 

exchange of good practice, data, and models between scientists and centralization of data at 1056 

the national scale. The instruments and instrumented sites would then be considered as a 1057 

resource community to test hypotheses along gradients or by combining different exploration 1058 

techniques. For example, one could imagine a network of mobile hydro-geochemical stations 1059 

acquiring high-temporal resolution (Floury et al., 2017) data and covering climate, geological, 1060 

and land use gradients. On-site experimentation could also be an added value of such an 1061 

infrastructure. This vision of OZCAR as a national equipment facility for the study of the CZ 1062 

does not preclude a site-based systemic approach, which is important for the societal 1063 

relevance of CZ studies at the local scale (at the scale of “territories”), but it offers structure 1064 

for the RI and is fostering collaboration within disciplines. Such a model of organization has 1065 

been chosen by other RIs in physics and deep Earth science. A good benchmark is the EPOS 1066 

RI monitoring earthquakes, volcanic eruptions, tsunamis and plate tectonics in general with a 1067 

common set of integrated data, models and facilities (https://www.epos-ip.org/). 1068 

Whatever the structure of OZCAR will be in the future, it is essential that the elementary 1069 

components, the long-term observatories, be maintained and funded. Any topology should be 1070 

flexible enough to incorporate new sites or instruments and be interoperable with the other RI 1071 

dedicated to the study of Earth’s surface. 1072 

6.6 Insertion into international networks 1073 

Born under the leadership of the US-NSF, the CZEN initiative has fostered the development 1074 

of CZ networks in various countries either by restructuring existing geoscience-centric 1075 

observatories or by launching competitive calls for encouraging multidisciplinary approaches 1076 

on existing observatories (Sullivan et al., 2017; Feder, 2018). The Biological and 1077 
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Environmental Research Subsurface Biogeochemistry Program of the Department of Energy 1078 

(DEO) in the USA has developed the “Watershed Function Project”, a instrumented 1079 

watershed-based network taking a “system-of-systems” approach (Hubbard et al., 2018) and 1080 

utilizes a scale-adaptive simulation approach to quantify how fine-scale processes occurring 1081 

in different watershed subsystems contribute to the integrated, time-dependent export of 1082 

water, nitrogen, carbon, and metals. In Germany, the TERENO network created in 2008 is 1083 

constituted of 4 distributed observatories exploring the long-term ecological, social, and 1084 

economic impacts of global change at the regional level by measuring above- and below-1085 

ground variables and biosphere parameters, and coupling them to remote sensing techniques 1086 

(Zaccharias et al., 2011). The EU funded between 2009 and 2014 the SoilTrec program 1087 

gathering 4 European CZOs located along a conceptual life cycle of soil. SoilTrec developed 1088 

an integrated model quantifying soil processes that support food and fiber production; 1089 

filtering, buffering and transformation of water, nutrients and contaminants; storage of 1090 

carbon, and biological habitat and gene pool (Banwart et al., 2013). China and UK co-funded 1091 

in 2016, 6 CZOs representing different geology, soil and land use types in China. In Australia, 1092 

CZOs have been established in synergy with existing LTER and the Terrestrial Ecosystem 1093 

Research Network (TERN) (Karan et al., 2016).  1094 

In 2014, the EU started to fund different projects aimed at building a pan-European 1095 

infrastructure, integrating European LTER, Critical Zone and Socio-Ecological Research 1096 

observatories. This led to an ESFRI (European Strategy Forum on Research Infrastructure) 1097 

project (eLTER RI) that has been included on the ESFRI road map in 2018 (http://www.lter-1098 

europe.net/elter-esfri). This initiative echoes the need of initiating a dialog between 1099 

geoscience, bioscience and social science communities, restructuring the existing 1100 

observatories and co-designing Earth Surface models and observation strategies that take into 1101 

account socio-economical constrains (Richter and Billings, 2015; Mirtl et al., 2018). Together 1102 

Page 44 of 103Vadose Zone J. Accepted Paper, posted 08/30/2018. doi:10.2136/vzj2018.04.0067



45 

 

with the French LTSER network of the “Zones Ateliers” (RZA), OZCAR constitutes the 1103 

French mirror of eLTER ESFRI. 1104 

Though the scientific approach and the monitoring strategies are different from the US-NSF-1105 

funded program, we hope OZCAR offers a model of integration of pre-existing observatories 1106 

of the CZ at the national scale motivated by ambitious scientific and educational goals shared 1107 

by the international community (Sullivan et al. 2017).  1108 

7. Conclusions 1109 

In this paper, we described the ambitions and goals of the newly-created national research 1110 

infrastructure OZCAR. OZCAR-RI aims to be the French initiative for the global Critical 1111 

Zone Exploration Network (CZEN). OZCAR is gathering a number of pre-existing 1112 

instrumented sites grouped in 21 observatories and used for conducting long-term 1113 

observations or experimentations and encompassing wide gradients of climate, geology, land 1114 

use and land cover. The OZCAR network is assembling sites initially developed for 1115 

hydrometeorological, hydrological, hydrogeological, biogeochemical questions, as well as 1116 

sites focused on the cryosphere or using remotely sensed observations. The wealth of OZCAR 1117 

observatories is inherited not only from the geologic, pedologic and climatic heterogeneity of 1118 

the CZ along the mountain-to-sea continuum and along depth, but also from the range of 1119 

timescales that characterize its functioning. OZCAR sites and observatories have their own 1120 

initial scientific questions, monitoring strategies, databases, and modeling activities, but all 1121 

share the main overarching goal: to monitor, understand and simulate CZ adaptation to a 1122 

changing planet in the “new climatic regime” (Latour, 2018). 1123 

The challenge of OZCAR is thus to build upon the heterogeneity of sites, scientific cultures, 1124 

data management practices, to define a strategy at the network level enabling scientists to 1125 

share models and data in order to significantly improve our integrated understanding of the 1126 
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CZ as a system and form a new generation of scientists.  1127 

The OZCAR community aims to achieve this goal by defining cross-site activities, through 1128 

the construction of a common data base and metadata base environment, by developing and 1129 

sharing new instruments for exploring the CZ, by defining a set of parameters in some 1130 

representative sites that should be measured at all sites and through facilitating the interaction 1131 

between data and Earth sub-surface models, in particular through a better representation of the 1132 

coupled water, energy and biogeochemical cycles at all times scales.  1133 

To face the unique environmental change that our planet is experiencing in the Anthropocene, 1134 

and to achieve the sustainable development goals as defined by the UN, a significant 1135 

community effort is needed to better model and predict the response of the Earth system. 1136 

Beyond the need to better structure the existing French observatories, OZCAR hopes to serve 1137 

as a benchmark for better organizing the environmental research observatories in other 1138 

countries and to be part of the European and international CZ network, in particular thanks to 1139 

its contribution to the pan-European research infrastructure eLTER.  1140 
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List of figures 1644 

Fig. 1: The Critical Zone, shown here in particular at the catchment scale, is the thin porous 1645 

layer at the surface of the Earth formed by the actions of water and acids on rocks. It is 1646 

located between the lower atmosphere and unweathered bedrock, and strongly influenced by 1647 

visible and invisible life activities. The integrated study of Critical Zone relies on the 1648 

collaboration of different scientific communities, listed non-exhaustively in italic. 1649 

 1650 

Fig. 2: Location of the different OZCAR-RI observatories on a land-to-sea continuum. Each 1651 

acronym corresponds to a long-term observatory (primarily defined by a scientific question), 1652 

and may be constituted of several instrumented sites. The numbers in parentheses correspond 1653 

to the list of different observatories described in Table S1. 1654 

 1655 

Fig. 3: River catchment sites (the cubes) from OZCAR plotted according to the climatic and 1656 

lithological gradients, noted with land use types. This diagram shows the range of 1657 

environmental conditions covered by OZCAR and illustrates the theoretical idea that spatial 1658 

gradients can be used to predict the temporal evolution of the Critical Zone (e.g. predicting 1659 

the effect of climate change at constant rock type). Heterogeneity and sensitivity to initial 1660 

conditions are limitations to this approach. Site names refer to Table S1: AC: AmmaCatch, 1661 

ACd: Auzon-Claduène, Aq: karst from Aquitaine, Av: Avène, Ba: Baget, Br: Brusquet, Ca: 1662 

Dong Cao, Cp: Capesterre, Cr: Craie, Do: Donga, FN: Fontaine de Nîmes, Fo: Fontaine de 1663 

Vaucluse, Ju: Jurassic karst, Ka: Kamech, Ke: Kerien, La: Laval, Lo: Lozère, M: Madiri, Ma: 1664 

Huay Ma Nai, Me: Medycyss, Mo: Montoussé, MH: Mule Hole, Na: Naizin, NS: Nsimi, Or: 1665 

Orgeval, Pa: Houay Pano, PM: Port Miou, RC: Real-Collobrier, Re: Réunion Island, Ro: 1666 

Roujan, St: Strengbach, To: Tourgueille, Va: Valescure, VO: Val d’Orléans, Yz: Yzeron. 1667 
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 1668 

Fig. 4: The 32-years evolution of the sulfate ion concentration in the stream of the Strengbach 1669 

catchment (OHGE observatory) showing the wealth of information provided by long-term 1670 

data series. The overall trend shows a decrease of sulfate concentration due to the decrease of 1671 

industrial emissions in Western Europe over the period. Superimposed are seasonal variations 1672 

and abrupt short-term changes. 1673 

 1674 

Fig. 5: World map of OZCAR instrumented sites. More than 60 instrumented sites (with 1675 

scales ranging from the plot to the whole river catchment) are included in 21 observatories or 1676 

observation services (not represented) funded and evaluated by diverse research agencies. All 1677 

are monitoring parts of the CZ. 1678 

 1679 

Fig. 6: Overview of the CRITEX program (2012-2020) with the list of the work packages and 1680 

associated instrumentation. The red stars correspond to “state-of-the-science” instruments 1681 

developed as prototypes in CRITEX. CRITEX instruments are organized for tackling two 1682 

scientific objectives: i) high-frequency monitoring in in the CZ (at the interface with the 1683 

atmosphere, in the subsurface and at the outlet of catchments) and ii) multi-disciplinary 1684 

monitoring of “hot spots” and during “hot moments” of the CZ. 1685 

 1686 

Fig. 7: Simulation of the hydrological cycle components in the Nalohou catchment (AMMA-1687 

CATCH Benin observatory) using the ParFlow-CLM Critical Zone model. The model was set 1688 

up based on observations and previous understanding of the processes, and is run without any 1689 

calibration. (a) Constructing the model from observations: geophysical exploration using 1690 

Electrical Resistivity Tomography (ERT, top) contributes to define the conceptual subsurface 1691 

architecture, which is implemented in ParFlow (middle) (adpated from Hector et al., 2015). 1692 
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(Bottom): simulated saturation along profile A shown in part (b). (b) Map of the Nalohou 1693 

catchment (0.16 km²) with topographic elevation, instrumentation and ERT profile locations 1694 

(adapted from Hector et al., (2015). (c) Simulated and observed Critical Zone variables: 1695 

evapotranspiration (ET) at point 1 in (b); surface soil moisture at 5 cm at point 2 in (b); 1696 

saturation, permanent and perched water table in the inland valley (“bas-fond”) (red) at point 1697 

3 in (b) (adapted from Hector et al., 2018). 1698 

 1699 

Fig. 8: The main scientific questions defined by the OZCAR community and discussed in the 1700 

text. 1701 

List of tables 1702 

 1703 

Table 1. List of the 24 variables measured in common in the catchments of the RBV network 1704 

grouped by the different considered compartments. The frequency of the measurement is not 1705 

fixed but depends on the characteristic timescales. 1706 

 1707 

 1708 
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Table 1. List of the 24 variables measured in common in the catchments of the RBV network grouped 

by the different considered compartments. The frequency of the measurement is not fixed but 

depends on the characteristic timescales.  

 

n°    ATMOSPHERIC    n°    RIVER    

1 Rainfall amount 10 Discharge 

2 Air temperature 11 Electrical conductivity 

3 Wind velocity 12 Water temperature 

4 Wind direction 13 Turbidity 

5 Air pressure 14 

Suspended sediment 

concentration 

6 Humidity 15 Chemical composition of water 

7 Radiation 16 

Isotopic composition of water O 

and H 

8 Chemical composition of rain 

  

9 

Isotopic composition of rain O and 

H 

  

    n°    GROUNDWATER    n°    SURFACES    

17 Soil moisture content 23 land use/land cover 

18 Groundwater level 24 

Chemical composition of 

agricultural inputs 

19 

Electrical conductivity of 

groundwater 

  20 Temperature of groundwater 

  

21 

Chemical composition of 

groundwater 

  

22 

Isotopic composition of 

groundwater O and H 
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Supplementary material of the paper by Gaillardet et al. « OZCAR, the French network 

of Critical Zone Observatories ». 

 

Appendix 1: Description of OZCAR observatories (Table S1) 

 

A.1.1. The RBV network (Réseau des Bassins Versants) is constituted of catchments ranging 

from zero order basins to the Amazon river system. The different RBV observatories can be 

grouped into several categories according to their initial scientific questions.  

- Group I. The AMMA-CATCH and OHMCV observation systems can be defined as 

“hydrometerological observatories”, aimed to understand the complex interactions between 

meteorological events and land surfaces. AMMA-CATCH is an observatory located in West 

Africa studying the concurrent role of climate and land use changes on the water and energy 

partitioning over terrestrial surfaces, and the impacts on ecosystem dynamics and water 

resource along a South-North transect (Lebel et al., 2009; Galle et al., 2018). Long-term 

observations in AMMA-CATCH have in particular allowed for an interpretation of the “Sahel 

paradox”, consisting in a continuous rise of aquifer’s level and river runoff (Leduc et al.; 

2001; Gal et al. 2017; Descroix et al. 2012) despite the observed decrease of precipitation 

since the 1970’s (Lebel and Ali, 2009). The role of land cover modifications on the increase 

of superficial runoff, and in particular by the vegetation degradation due to drought and/or 

land use changes (Favreau et al., 2009; Descroix et al., 2012; Gal et al., 2017) and through 

rainfall intensification (Panthou et al., 2014) is still under investigation. These processes have 

been introduced in integrated modelling approaches (Massuel et al., 2011; Boucher et al., 

2012; Velluet et al., 2014; Gal et al., 2017) to better explore future changes in the continental 

water cycle (Leauthaud et al., 2015). Data from AMMA-CATCH have also been used in a 

study highlighting changes in global circulation and frequency of extreme rainfall in the Sahel 
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(Taylor et al., 2017). The OHMCV observatory (Delrieu et al., 2005; Boudevillain et al., 

2011) and Real Collobrier observatory are working towards an accurate evaluation and 

prediction of the hydro-meteorological risk associated to extreme precipitation events that 

characterize the southern border of the Massif Central (Cévennes and Vivarais) and 

Mediterranean regions. To capture and to document the dispersed risk at the regional scale, 

the OHMCV observation strategy relies on three main approaches: i) in-situ “classical” 

monitoring of surface hydrology and hydro-sedimentary variables (precipitation, runoff, 

infiltration, suspended solids), ii) post-flood socio-hydrometeorological experiments (Ruin et 

al., 2014) in order to retrieve both hydrometeorological and social observations after a major 

event, iii) historical archives dating from the XVI
th
 century to better characterize rain and 

discharge probabilistic distributions. The OHMCV observatory seeks to develop a continuous 

social observation strategy and collaborates with the co-located socio-ecological sites on 

issues related to environmental quality and low water levels. 

- Group II consists of low-order catchments conducting hydrological and biogeochemical 

observations, often using nested sites, in particular in order to balance water or geochemical 

budgets in variable environmental conditions. The ObsErA and part of the M-TROPICS 

observatories are established in pristine tropical conditions. The Mule Hole Catchment in 

India is one of the first watersheds in which geophysical techniques coupled with 

geochemical mass budgets were applied to map the regolith depth and establish weathering 

mass balances (Braun et al., 2009). It is also the first in which, by coupling observations and 

modeling in hydrology and ecology, the importance of vertical water niche separation on tree 

demography was demonstrated for a diverse forest (Chitra-Tarak et al., 2018). The OHGE 

observatory in the Vosges Mountains was set up in 1985 in order to understand the response 

of temperate mountain forest ecosystems to acid rain (Probst et al., 1990; Dambrine et al., 

1998). The decrease of sulfate concentrations in the Strengbach stream observed since 1986 is 
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an iconic case showing the virtue of continuous long term river monitoring (Probst et al., 

1995, Pierret et al., submitted; see also Fig. 3 in the main text). Also in group II, the Auradé, 

AgrHys, OMERE, Orgeval observatories and the other part of the M-TROPICS observatory 

are characterized by intense and long-standing agricultural practices and are focus on the 

impact of agricultural practices on water, nutrient (i.e. nitrate), pesticides, and element cycles 

in general (Perrin et al., 2008; Ferrant et al., 2013; Molénat et al., 2008; Aubert et al., 2013; 

Garnier et al. 2016; Buvaneshwari et al., 2017). The OTHU/Yzeron basin is established in 

urban and perirurban conditions and addresses the impact of urbanization on hydrology 

(Braud et al., 2013). Group II also includes small catchments of AMMA-CATCH (Galle et 

al., 2018) and OHMCV observatories (Braud et al., 2014). The HYBAM observatory is 

thematically related to this group, but as much larger catchments, they are monitored either at 

ground (Abril et al., 2014) or by satellite (Martinez et al., 2009) for hydrology and 

hydrogeochemistry. Hybam focus on the Amazon, Orinoco and Congo River systems. 

- Group III is constituted of hydrological sites developed for monitoring soil erosion, either in 

natural conditions (ObsErA, Allemand et al., 2014) or in strongly human-impacted conditions 

(OMERE sites, OHMCV-Claduègne site, M-TROPICS-Huay Ma Nai site). The Draix-Bléone 

observatory was set up in 1983 for understanding the influence of reforestation onto erosion 

fluxes in mountain Mediterranean climate (i.e. Mathys et al., 2003), similar to the Dong Cao 

catchment (M-TROPICS) since 2002 in Vietnam (Valentin et al., 2008). The OMERE 

observatories (in Tunisia and Southern France) were designed to study the impact of 

agricultural practices on water and sediment budgets at the catchment scale (Raclot et al., 

2009; Inoubli et al., 2017). For example, research at the Houay Pano catchment (M-TROPICS 

observatory), aiming at understanding the impact of agricultural or forestry practices on soil 

erosion has shown that the the conversion of rice-based shifting cultivation to teak plantation-

based systems raised sediment yields from 98 to 610 Mg/km
2
/yr (Ribolzi et al., 2017). 
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- Group IV (SNO Karst) is dedicated to the study of karst systems that are complex and 

heterogeneous hydro(geo)logic entities, characterized by strong surface/subsurface 

interactions and a high sensitivity to erosion and weathering, making karstic water resource 

systems highly vulnerable to contamination and climate change. By linking data and models, 

SNO Karst aims to better understand and model water, mass, energy, and geochemical 

transport in karstic systems and to enhance the modeling capacity to reproduce variations of 

water and matter fluxes. Nine sites located in different climatic conditions (see Table S1) are 

instrumented and measure rainfall, discharge, water levels and isotopic and hydro-geo-

chemical properties in rainfall, springs, rivers, karstic cavities and drilling. 

 

All the catchment sites from RBV can be placed on a lithology versus climate diagram (see 

Fig. 4 in the main text). Their degrees of disturbance are variable and range from “natural” 

catchments to highly-managed sites.  

Although most of the observatories were set up independently, major scientific questions 

shared by several observatories can be defined: what is the carbon cycle at the catchment 

scale and how is it perturbed by local and global forcing factors? What are the erosion rates 

and their controls? What is the influence of extreme events on the cycling of nutrient at the 

catchment scale? What are the residence time of matters in catchments? 

 

A.1.2. The H+ network of hydrogeological sites, created in 2002, provides in-situ 

observations and experimental data to address current open questions regarding coupled flow, 

transport and biogeochemical reactions in heterogeneous aquifers, i.e. the deep critical zone. 

H+ sites are instrumented to quantify the consequences of subsurface heterogeneity on 

groundwater residence times, flow path structures, solute transport and biogeochemical 

reactions. This requires the development of specific site instrumentation as well as the 
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development of innovative methods for imaging, characterizing and modelling hydrodynamic, 

transport and processes. Methodological challenge addressed by H+ scientists include i) the 

development of hydrogeophysical methods to image the dynamics hydrological processes 

(recharge, flow, transport, reactivity…), ii) the integration of experiments and observations 

carried out on the H+ sites into models to quantify and predict the dynamics of heterogeneous 

hydrogeological systems. The latter step is essential to transfer the knowledge obtained on H+ 

sites to generic modeling tools that can be used in other contexts. 

The H+ scientists address three main scientific questions.  

- Understanding the hydrological functioning of heterogeneous reservoirs, such as 

karstic aquifers (Larzac, SHE Poitiers, LSBB, Mallorca), fractured systems 

(Choutuppal, Ploemeur) and alluvial systems (Auverwatch). One of the main objective 

of H+ sites is to provide field data to understand the role of heterogeneities 

(permeability distribution, preferential flow paths, fractures, karst conduits, 

anisotropy, double porosity...) on the recharge of underground reservoirs, their flow 

dynamics, storage properties and their exchanges and interactions with hydrological 

systems of surface. This is a particularly critical issue for assessing the resilience of 

hydrological systems to anthropogenic disturbances and global changes.  

- Characterizing and modelling the transport dynamics of dissolved chemical 

elements, such as contaminants and chemical elements that play a key role in critical 

zone processes (e.g. transport of carbon, nitrogen, and elements originating from rock 

erosion). The existence of heterogeneity at multiple scales leads to transport 

phenomena (dispersion, retention, distribution of residence times) that cannot be 

treated within the framework of conventional models. Modeling of transport 

phenomena in heterogeneous hydrogeological systems is also an important issue for 

assessing geothermal and heat storage capabilities of subterranean environments.  
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- Elucidating the role of hydrogeological systems as biogeochemical reactors. 

During its journey in the soil and the subsurface, the chemical composition of water 

evolves by interaction with minerals and bacteria. This process plays a major role in 

the evolution of the quality of water resources, the transport of contaminants, and the 

geochemical functioning of watersheds. The H + teams thus explore the links between 

the distribution of flow velocities and residence times, kinetics of reactions and 

microbial biodiversity in hydrogeological systems. 

 

A.1.3. The CRYOBS-CLIM observatory aims is to answer the following scientific 

questions: i) How will climate changes impact surface energy and mass budgets of snow / ice-

covered surfaces and on permafrost ground temperature at different spatial (local to regional) 

and temporal (seasonal to multidecadal) scales? ii) How will snow/climate feedback 

mechanisms enhance or attenuate glaciers, ice sheets and permafrost changes in the near 

future? How can observations help to identify climate models weaknesses and to improve the 

simulations of cryosphere components? iii) What is the future snow and ice-covered retreat 

and wastage and what will be the impact on water resources and sea level rise? iv) How do 

glaciers, rock glaciers and ice sheet dynamics respond to changes in temperature, surface 

mass balance and hydrological processes, and what are the impacts in terms of natural 

hazards? 

The overarching goal of CRYOBS-CLIM network is to collect, archive and disseminate a 

comprehensive and consistent set of observations on the main components of the terrestrial 

cryosphere (glaciers, snow, permafrost) in a series of well-chosen sites ranging from high 

altitudes to high latitudes (European Alps, tropical Andes, Himalayas, Antarctica, Svalbard). 

The monitored variables and research topics are described in Table S1. A recent paper by 

Brun et al. (2017) illustrates the value of the observation strategy. The authors used more than 
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50,000 ASTER satellite images to derive digital elevation models and to track glacier 

thickness changes for the period 2000-2016 over High Mountain Asia. They provided the first 

estimate of glacier volume change in this under-studied region of the world showing that 

approximately 90 000 km² of glaciers had melted between 2000 and 2016. These data will 

help to constrain glacio-hydrological models and to better understand the contribution of 

glaciers to stream flow and sea level rise in the context of climate change. 

 

A.1.4. The Tourbières (Peatland) observatory is a network of four French instrumented 

sites and one Siberian mire aimed at studying the effect of global change on carbon sink 

function and hydrological budget of temperate and sub-boreal peatlands, wetland ecosystems 

that contain a third of Earth’s carbon stock in an area accounting for only 3-5% of the land 

surface. The French sites were set up in 2008-2010, according to a climatic gradient (lowland 

to mountain climate, D’Angelo et al., 2016), to ensure long-term monitoring of greenhouse 

gas (GHG: CO2, CH4, H2O, N2O), dissolved and particulate organic carbon (DOC, POC) 

fluxes as well as environmental variables that impact GHG, DOC and POC fluxes, and to 

generate interoperable databases. The instrumentation of the sites was carried out according to 

standardized protocols to monitor GHG, DOC and POC concentrations, meteorological 

parameters, surface and soil temperature and moisture, water table depth and groundwater 

chemistry at high resolution. Vegetation cover and net primary production are estimated 

during the growing season. CO2 (Net Ecosystem Exchange and Respiration) and CH4 fluxes 

are monitored at different spatial scales: at ecosystem scale (1000 m
2
 high frequency 

measurements by flux towers) and at plot scale (1 m
2
, seasonal resolution by static chambers 

measurements). So far, instrumented sites are used to deploy experiments on two types of 

forcing variables: (i) temperature with artificial air warming by using open-top chambers 
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(OTCs) (Delarue et al., 2011; Delarue et al., 2015); (ii) water table depth with 

ecohydrological restoration operation (Bernard-Jannin et al., 2017; Gogo et al., 2017) 

 

A.1.5. The OSR (Regional Spatial Observatory). OSR is documenting the long term effects 

of climate change and increasing anthropogenic pressures on the hydrologic and agro-

ecologic evolutions of agricultural regions, at various spatial and temporal scales, in a 

perspective for sustainable management of water and soil resources. The specificity of the 

OSR approach is the extensive use of remote sensing for surface characterization (land use, 

vegetation cover, evapotranspiration, soil moisture, snow cover, etc.) combined with a multi-

scale monitoring network of (1) continuous long-term monitoring of experimental plots (crop 

and snow sites), (2) hundreds of plots annually monitored for surface state, land cover, etc., 

and (3) experiments conducted at catchment scale with reinforced observations for water and 

energy budget evaluation.  

The OSR concept has been yet implemented in two sites located in the South West of France 

and in Morocco (Tensift basin). In SW France, OSR monitors land use to understand effects 

of agricultural practices and climate variability on crop functioning from plot to regional 

scales, in terms of greenhouse/water budgets and production (Battude et al., 2017; Marais 

Sicre et al., 2016; Tallec et al. 2013). Marti et al. (2016) used high-resolution remote sensing 

data to monitor snow cover in the Pyrenean Mountain to quantify available water resource. 

The Tensift OSR is typical of Mediterranean semi-arid watersheds, with an upstream 

mountainous part receiving most of the precipitations and providing water to a downstream 

plain occupied by both rain-fed and irrigated agriculture. The measured variables allow the 

simulation of the impact of climate and anthropogenic changes on water resources in the 

upstream producing areas (Marchane et al., 2017) and on the downstream aquifer solicited by 

irrigation and domestic use (Le Page et al., 2012).  
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A.1.6. The ROSES (Observatory network of groundwater systems at national France 

level) has been set up to address water management issues reinforced in the framework of the 

implementation of the European Water Directive. It also answers scientific questions such as 

(i) the impact of climate change on the behavior of aquifers at national and regional scale, 

performing assimilation of groundwater level data and modeling (e.g. Vergnes et al., 2012; El 

Janyani et al., 2012); (ii) the link between the geochemical signature of groundwater and the 

geological settings in the saturated zone at national scale (e.g. Wendland et al., 2008); (iii) the 

transfer time and contaminants behavior of agriculture origin as well as emergent 

contaminants within aquifers of large catchments in France (e.g. Lopez et al., 2015); and (iv) 

the development of database tools (interoperability) and data treatment (statistical tools). It 

gathers more than 77 000 stations, with 74 000 groundwater quality stations and 4400 

monitoring wells. All types of aquifers are monitored in Metropolitan territories as well as 

French overseas territories. All data are stored within the ADES database 

(http://www.ades.eaufrance.fr), a collective work involving several governmental agencies.  

 

A.1.7. The OPE (Long-lasting Observatory of the Environment). OPE focuses on a 

territory in the eastern part of Paris Basin (up to a few hundred km²) around the project site 

pre-selected as a French deep geological repository of high level and intermediate level long 

lived radioactive waste. OPE is currently constituted of a monitoring network, covering forest 

and agricultural areas and measuring atmospheric, meteorological, soil, surface and ground 

water, land uses and biodiversity indicators, providing a unique opportunity to document the 

interactions between human activities and the critical zone around an industrial project 

scheduled to run over 100 years (if accepted).  
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Appendix 2: Diversity of current practices in the OZCAR network for databases and metadatabases (Table S2) 

                                                        

1 https://www6.inra.fr/ore_agrhys_eng/Data  
2 https://mtropics.obs-mip.fr/data-access/ 
3 http://www.ore-hybam.org/index.php/eng/Data  
4 https://bdoh.irstea.fr/  
5 http://bd.amma-catch.org/main.jsf  
6 http://ohmcv.osug.fr/spip.php?article30  
7 http://bdd-ohge.u-strasbg.fr/index.php/bdd  
8 https://morpho.ipgp.fr/Obsera/Home  
9 http://www.obs-omere.org/index.php?page=geonetwork&lang=fr  

Thematic 

network 

Observatory/sites Database type Database 

portal 

Data access Remarks 

RBV AgrHys1 Relational  yes Public Basis of the relational data base shared with 

OMERE 

M-TROPICS2 Relational  yes Public Basis of the relational data base shared with 

Auradé 

HYBAM3 Relational  yes Login/password  

BDOH4 Relational  yes Login/password Branger et al. (2014). Shared by several 

observatories (Draix-Bléone, Oracle, Real 

Collobrier, OTHU/Yzeron.  Not conceived to 

easily provide metadata 

AMMA-CATCH5 Relational yes Public with 

login/password 

Fully interoperable and fulfills the INSPIRE 

requirements 

OHMCV6 OHGE7 

ObseRA8 
Simple file repository 

arborescence 

yes Ask contact person or 

login/password 

Part of the OHMCV observatory data available 

in the BDOH data base 

OMERE9 Relational no Only metadata Same initial relational data base as AgrHys 

Auradé Under construction no Only metadata Same initial relational data base as M-TROPICS 

SNO Karst Under construction    
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10 http://hplus.ore.fr/base-de-donnees-fr  
11 Global Change Master Directory, https://gcmd.nasa.gov/  
12 http://data.cryobsclim.fr/main.jsf  
13 http://www.ades.eaufrance.fr/LienLocalisation.aspx  

H+10 All sites Relational  yes Login/password Normalized variable names based on the GCMD 

keywords11 

CRYOBS-

CLIM12 

All sites Relational yes Login/password Based on the same information system as 

AMMA-CATCH.  Fully interoperable and 

fulfills the INSPIRE requirements 

Tourbières - Under construction    

OSR - Relational and file 

repository arborescence 

yes Relational and file 

repository 

arborescence 

Information system including in-situ data and 

satellite images 

ROSES13 ADES Relational yes  Operational data base used for the Water 

Framework Directive reports about groundwater 

OPE - No - Public  
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Appendix 3: Examples of scientific papers published within OZCAR community combining data and models (Table S3) 

Scientific/operational question References Main approach and findings CZ compartment 

Use of data and models for process understanding 

How to represent snow-pack evolution? Lafaysse et al. (2017) A 18-year time series of climatological variables and snow 

characterization from the Col de Porte site (CRYOBS-CLIM 

observatory) was used to compare various snow-pack evolution 

models, that were included as a modeling toolbox in the SURFEX land 

surface model (Masson et al., 2013). 

Cryosphere 

How does fractured media heterogeneity 

impact transport processes and 

biogeochemical reactions in groundwater? 

 

Kang et al. (2015) ;  

Guihéneuf et al., 

(2017) 

A combination of convergent and push-pull tracer tests can be 

effectively used  to decipher the role of transit time distribution and 

velocity correlation for modeling transport processes. 

Fractured aquifers 

Dorn et al. (2012); 

Read et al. (2013); 

Klepikova et al. 

(2016) 

Shakas et al. (2017) 

Repeated measurements combining electrical, electromagnetic, 

thermal, hydraulic and geochemical data have provided key in-situ 

experimental data sets to understand transport processes in fractured 

media. 

Fractured aquifers 

Arfib and Charlier 

(2016) 

Data and models were used to understand salt intrusion in a karstic 

aquifer. 

Karstic aquifers 

Roques et al. (2014) 

Ben Maamar et al. 

(2015) 

Boisson et al. (2013) 

Chemical and microbiological sampling, and field hydraulic and tracer 

tests were used to infer biogeochemical reaction processes in 

fractured aquifers 

Fractured aquifers 

What are the main hydrological controls of 

dissolved organic carbon in a restored 

peatland? 

Binet et al. (2013); 

Bernard-Jannin et al. 

(2017) 

A hydrological model, calibrated on water table levels, and coupled 

with a biogeochemical module was shown to correctly reproduced 

pore water dissolved organic carbon (DOC) concentration time series 

in a restored peatland. Water table drawdown severity has been 

identified as the major factor controlling DOC dynamics. 

Peatland 

What are the water and solute pathways in 

karst and fractured aquifers? 

Maréchal et al. 

(2004); Le Borgne et 

al. (2006); Audoin et 

al. (2008); 

Data and models of various complexities helped to identify water and 

solutes pathways. 

Fractured aquifers 

Binet et al. (2017); 

Cholet et al. (2017); 

Charlier et al. (2012); 

Mazzilli et al. (2017) 

Labat and Mangin 

Data and models were used to discriminate between rapid flow via 

conduits networks and slower flow via matrix or fractured systems 

Karstic aquifers 
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(2015) 

Labat et al. (2016) 

What is the level of complexity required to 

model erosion at the hillslope scale? 

Cea et al. (2014); 

Cea et al.  (2016) 

The 2D surface runoff model of Cea et al. (2014) was coupled with an 

erosion module and plot data from the OHMCV observatory to assess 

the model complexity required to correctly reproduce the observed 

sediment yields. 

Surface water and 

sediment transport 

Gumière et al. (2014) Connectivity of sediment transport was taken into account in the 

modeling of erosion, with evaluation with data from the OMERE 

Observatory to properly represent erosion yields. 

Surface water and 

sediment transport 

    

Use of data and models for system understanding 

Can we explain long-term trends in nitrate 

concentration in rivers in Britanny? 

Fovet et al. (2015) A process-based model, calibrated using a 40-year time series of 

discharge and nitrogen concentrations, was used to estimate nitrogen 

transit times and was able to simulate the constant increase of nitrate 

linked to the increased of fertilization since the 1960s. 

Surface water and 

nitrate 

What are the appropriate representations 

of subsurface water and solute pathways 

and what are the relevant data and inverse 

modeling strategies to constrain them? 

Leray et al. (2012) The paper demonstrates the interest of combining hydraulic and age 

information for the prediction of residence time distributions within 

hydrogeological models, and showed the possibility of identifying 

global hydrogeological structures from point-like data. 

Fractured aquifer 

What are the interactions between 

hydrological and vegetation cycles in SW 

Niger? 

Velluet et al. (2014);  

Leauthaud et al, 

(2017) 

A calibrated mechanistic SVAT (Soil Vegetation Atmosphere Transfer) 

model was first used to retrieve a climatology of water and energy 

budgets in Niger at the plot scale. Then the model was coupled with 

the STEP ecological model and the SARAH agronomic model to study 

interactions between hydrological and vegetation cycles in SW Niger. 

Soil – vegetation – 

atmosphere 

interface 

What are the controlling factors of 

weathering in the Strengbach catchment 

and the Mule Hole catchment? 

Godderis et al. 

(2006); 

Violette et al. (2010) 

The WITCH model, coupling kinetics of silicate weathering reactions 

to the water and carbon cycle in forest ecosystems, initially designed 

and applied to the granitic Strengbach catchment (OHGE 

observatory), was coupled with a lumped hydrological model to 

successfully reproduce the stream chemistry of the Mule Hole 

catchment. 

Catchment 

hydrology, 

geochemistry 

Can we improve the knowledge of the 

water balance of the Amazon? 

Getirana et al. (2010; 

2011) 

In large catchments where data are scarce, such as the Amazon, 

satellite altimetry data were combined with in-situ data from gauging 

stations to assess and strengthen the water balance computed using a 

distributed hydrological model. Such datasets were also used for the 

evaluation of large-scale land surface models. 

Continental scale 

catchment 

hydrology 

Can we predict nitrates and pesticides 

behavior and transfer in agricultural 

catchments using agro-hydrological 

Ferrant et al. (2011) ; 

Boithias et al. (2011) 

A comparison of a distributed (TNT2) and a semi-distributed model 

(SWAT) allowed the authors to better understand nitrogen transfer 

dynamics in a small agricultural catchment. Using the SWAT model, 

Soil- Water, 

Catchment scale 
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modelling? the introduction of the partition coefficient Kd to predict pesticides 

behavior in stream waters improved pesticide transfer modelling.. 

What are the main hydrological controls of 

bacteria in a tropical mountain watershed? Kim et al. (2017) 
The SWAT model was improved by implementing in-stream 

resuspension of sediments and transient storage in the hyporheic 

zone (Houay Pano catchment) 

 

What is the role played by geology on the 

hydrological processes during flash-flood 

events? 

Vannier et al. (2016) 
A regional distributed hydrological model was used to perform long-

term and flash-flood event simulations at the regional scale. Discharge 

simulation was  improved when the weathered bedrock layer was 

included into the model. 

Surface and ground 

water 

Use of model and data for management/prediction purposes 

Can we design a flash flood forecasting 

system in a karstic environment? 

Maréchal et al. 

(2008) 

Hydrological and geochemical data (SNO Karst) were used to design a 

flash flood warning model for the city of Nîmes (SE France) 

Surface water 

What is the sustainability of water 

resources under climate change in the 

Andes region? 

Chevallier et al. 

(2010) ; Rabatel et al. 

(2013) 

Time series of discharge and glacier mass balance data (CRYOBS-

CLIM) were used to provide a synthesis of glacier mass balance 

evolution for the whole Andean region. 

Cryosphere 

What are water and irrigation needs in 

different contexts , and what is the impact 

of irrigation on water table levels? 

Battude et al. (2017);  

Le Page et al. (2012) 

Once calibrated using local information, remote sensing data 

combined with a water balance model (SAMIR) provided suitable 

tools for simulating water needs and irrigation. In-situ and remote 

sensing data were used to model water resources in the area of 

Marrakech (Morocco), using a coupling between the WEAP (Water 

Evaluation And Planning System) hydrological model and the 

MODFLOW groundwater model. 

Surface water, 

aquifers, biosphere 

What would be the impact of small ponds 

rehabilitation on nitrate contamination in 

the Seine catchment? 

Passy et al. (2012) Observations at small scale (Orgeval observatory) were used to 

calibrate the Riverstrahler model (Ruelland et al., 2007) that was then 

applied to the whole Seine river basin. 

Catchment 

hydrology, river 

geochemistry, 

nitrate cycle 

What is the level of contamination of 

French aquifers with respect to 

contaminants from agriculture and 

emergent pollutants? 

Lopez et al. (2015) The ROSES data base was used to model transfer time and the 

behavior of agricultural and emergent contaminants within aquifers 

of large catchments in France. 

Groundwater 

Can we predict the risk of nitrates and 

pesticides transfer to surface waters and 

propose best environmental practices to 

reduce contaminant fluxes? 

Macary et al. (2013 a, 

b) 

 

Ferrant et al. (2013) 

A multi-scale method and a multi-criteria modelling coupled with a 

GIS was applied to assess pesticide contamination risks in agricultural 

watersheds. The effect of best environmental practices on reducing 

pesticide and nitrates pollution towards surface water, was assessed. 

The long term impact of nitrate mitigation scenarios was simulated in 

a pilot study basin using an agrohydrological modelling. 

Soil and Catchment 

scales 

What is motorists’ exposure to flash floods 

and what are their behaviors and mobility Shabou et al. (2017) A distributed hydrological model was used to assess exposure of road 
Surface water ; 

Human exposure to 
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adaptations with respect to roads flooding? users to extreme hydrometeorological events. This model requires 

the combination of social and hydrometeorological data as well as 

road flooding impact data. 

flash flood events 
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Table	  S1.

Observarory	  (nb	  
reported	  Fig.	  2)

Country Name Latitude Longitude Catchment/si
te	  scales	  
(km2)

Climate Lithology Land	  use Individual	  research	  questions Measured	  variables	  (all	  the	  variables	  are	  not	  measured	  
over	  the	  whole	  period)

Oldest	  measured	  
variables

Web	  site Data	  portal

AMMA-‐CATCH	  (1) Mali Gourma 16°N 1.5°W 1-‐30000 Semi-‐arid Sandstone	  
and	  schist

Sparse	  
herbaceaous	  
vegetation

Ecohydrological	  monitoring	  in	  a	  
pastoral	  environment

Rainfall,	  meteo,	  water	  level	  in	  ponds,	  groundwater	  level,	  
soil	  moisture,	  surface	  energy	  balance,	  CO2	  flux,	  sapflow,	  
LAI,	  PAI,	  vegetation	  fraction,	  phenology,	  herbaceous	  
biomass

1984 http://www.amma-‐catch.org/	   http://www.amma-‐catch.org/spip.php?rubrique63	  

Senegal Ferlo 15.5°N 15.5°W idem idem Sandstone	   idem idem Rainfall,	  soil	  moisture,	  soil	  biogeochemistry 2013 Idem Idem

Niger Niamey	  square	  degree 13.5ºN 2.5ºE 0.35-‐16000 Semi-‐arid Gneiss,	  schist	  
and	  granite

Fallow	  savanna,	  
tiger	  bush	  and	  
pearl	  millet

hydrology	  of	  endoric	  basins	  -‐	  
rainfall/vegetation	  interaction

Rainfall,	  meteo,	  water	  level	  in	  ponds,	  gullies	  and	  plots,	  
groundwater	  level	  in	  piezometers	  and	  wells,	  soil	  
moisture,	  surface	  energy	  balance,	  CO2	  flux,	  	  LAI,	  
vegetation	  height,	  herbaceous	  biomass	  and	  species

1990 Idem Idem

Benin Ouémé 	  9º5N	   2ºE 0.16-‐14000 Soudanian Migmatite woodland,	  
shrubland,	  crops	  
and	  herbaceous	  
fallow

hydrological	  cycle	  -‐	  water	  
budget	  and	  hydrological	  
processes

Rainfall,	  meteo,	  water	  level	  in	  rivers	  and	  gullies,	  
groundwater	  level	  in	  piezometers	  and	  wells,	  water	  
chemical	  analysis,	  soil	  moisture,	  surface	  energy	  balance,	  
CO2	  flux,	  sapflow,	  LAI

1997 Idem Idem

OHMCV	  (2) France Auzon-‐Claduègne 44.58°N 4.50E 3.4-‐116 Mediterranean Basalt,	  
limestones	  
and	  marls

Pasture,	  vineyard	  
and	  forest

Biogeochemical	  cycles,	  climate	  
chang,	  hydrometeorological	  
extremes	  in	  the	  Mediterranean:	  
intense	  rain	  events	  and	  
subsequent	  flash-‐floods,	  
erosion

Rainfall,	  meteo,	  water	  level	  and	  discharge	  in	  rivers,	  
suspended	  sediment	  and	  physico-‐chemical	  properties	  of	  
surface	  water,	  soil	  moisture,	  

2005 http://ohmcv.osug.fr/ http://ohmcv.osug.fr/spip.php?article30	  

Valescure 44.09N 3.83E 0.3-‐3.9 Mediterranean Granite Decidious	  forest Idem Rainfall,	  meteo,	  water	  level	  and	  discharge,	  physico-‐
chemincal	  properties	  of	  surface	  water	  and	  soil	  (pH,	  
temperature,	  conductivity,	  anions,	  cations),	  soil	  moisture

2003 Idem Idem

Tourgueille 44.13N 3.67°E 1-‐10 Mediterranean Schist Idem Rainfall,	  water	  level	  and	  discharge	  in	  rivers,	  physico-‐
chemical	  properties	  in	  surface	  water	  (temperature,	  pH,	  
conductivity)

2008 Idem Idem

Mont	  Lozère 44.7°N 3.82°E 0.19-‐0.81 Sub-‐
Mediterranean

Granite Mixed	  forest	  and	  
grassland

Idem Rainfall,	  meteo,	  water	  level	  and	  discharge,	  physico-‐
chemincal	  properties	  of	  surface	  water	  and	  soil	  (pH,	  
temperature,	  conductivity,	  anions,	  cations),	  soil	  moisture

1986 Idem Idem

AgrHys	  (3) France Kervidy-‐Naizin 	  47.99°N 	  -‐2.83ºW 4,9 Oceanic Schist Intensive	  
agriculture

Response	  time	  of	  hydro-‐
geochemical	  fluxes	  to	  climate	  
and	  anthropogenic	  forcing

Rainfall,	  meteo,	  discharge,	  groundwater	  level;	  physico-‐
chemical	  and	  chemical	  concentration	  in	  rainfall,	  soil,	  
surface	  water	  and	  groundwater;	  land	  use	  and	  
agricultural	  practices

1990 https://www6.inra.fr/ore_agrhys/	   https://www6.inra.fr/ore_agrhys/Donnees/Le-‐grapheur-‐
VIDAE	  

Kerbernez 48.12º	  N -‐4.03ºW 0.095-‐1.28 Oceanic Granite Intensive	  
agriculture

Idem Idem 1992 Idem Idem

Auradé	  (4) France Montoussé 43,56	  °N 1.06°	  E 3,2 Temperate	  
oceanic

Marls-‐
limestone

Crops	  (wheat,	  
sunflower)

Impact	  of	  agricultural	  activities	  
on	  water,	  matter	  (nitrate,	  
carbon)	  balance	  and	  fluxes	  in	  
watr,	  soils,	  ecosystems

Water	  level	  in	  rivers,	  nitrates,	  pesticides	  concentration,	  
physico-‐chemical	  properties;	  13C,	  water	  isotopes	  in	  river

1983 http://www.ecolab.omp.eu/bvea/	   http://www.ecolab.omp.eu/bvea/donneesdisponibles/don
nesdisponibles	  

ORACLE	  (5) France Orgeval 	  48.89°N 	  3.19°E 1	  to	  1800 Temperate	  
oceanic

Limestones,	  
gypsum	  and	  
clays

Agriculture Impact	  of	  climate	  variability	  on	  
the	  hydrological	  cycle	  (focus	  on	  
floods	  and	  drought)	  and	  of	  
agriculture	  practices	  on	  hydro-‐
biogeochemical	  fluxes	  and	  
water	  quality

Rainfall,	  meteo,	  water	  level	  and	  discharge	  in	  rivers	  and	  
ditches,	  groundwater	  level,	  soil	  moisture,	  suspended	  
sediments,	  surface	  and	  groundwater	  physico-‐chemical	  
properties	  (temperature,	  pH,	  conducitvity,	  DOC,	  anions),	  
surface	  energy	  budget.

1962 https://gisoracle.irstea.fr/ https://bdoh.irstea.fr/ORACLE/

OMERE	  (6) France Roujan 43.50ºN 3.31	  ºE 0.0012-‐0.91 Mediterranean Limestones	  
and	  marls

Mediterranean	  
agriculture

Impact	  of	  land	  use	  change	  and	  
anthropogeneic	  practices	  on	  
the	  hydrological	  and	  
sedimentological	  regime,	  
impact	  of	  pesticides	  on	  water	  
quality

Rainfall,	  meteo,	  water	  level	  and	  discharge	  in	  rivers	  and	  
ditches,	  suspended	  sediment,	  groundwater	  levels,	  
pesticides	  concentration,	  physico-‐chemical	  properties	  of	  
surface	  water	  (cations,	  anions,	  isotopes,	  metals	  ),	  surface	  
energy	  budget	  and	  CO2	  fluxes,	  soil	  moisture

1992 http://www.obs-‐omere.org/	   http://www.obs-‐
omere.org/index.php?page=geonetwork&lang=fr	  

Tunisia Kamech 36.88ºN 10.88ºE 0.013-‐2.63 Mediterranean Sandstone	  
and	  marls

Idem Idem Idem 1994 Idem Idem

Network	  RBV	  (Réseau	  de	  Bassins	  Versants):	  catchment	  hydrology,	  geochemistry,	  erosion,	  soil-‐plant-‐atmosphere	  interactions
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OTHU	  (7) France Yzeron 47.74°N 4.69°E 2.1-‐129 Continental	  
with	  
mediterranean	  
influence

Gneiss Forest,	  
agriculture,	  urban

Impact	  of	  urbanization	  on	  
hydrology,	  geomorphology	  and	  
water	  quality,	  ecohydrology

Rainfall,	  meteo,	  water	  level,	  temperature	  and	  discharge	  
in	  rivers	  and	  sewers,	  physico-‐chemical	  properties	  of	  
water	  in	  rivers	  and	  sewers

1997 http://www.graie.org/othu/index.ht
m

https://bdoh.irstea.fr/YZERON/

M-‐TROPICS	  (8) Cameroon Nyong	  (Nsimi) 2.9°N 11.4°E 0.6-‐18500 Tropical Granite humid	  tropical	  
forest

Chemical	  weathering	  of	  
silicated	  rocks

Rainfall,	  meteo,	  discharge,	  groundwater	  level,	  tensio-‐
neutronic	  soil	  monitoring,	  hydrochemical	  parameters	  
(anions,	  cations,	  PH,	  DOC,	  total	  suspended	  sediments

1994 https://mtropics.obs-‐mip.fr/ https://mtropics.obs-‐mip.fr/data-‐access/

India Kabini	  (Mule	  Hole,	  
Berambadi)

12.2°N 76.9°E 4.3-‐590 Tropical Gneiss Dry	  forest,	  
agriculture

Impact	  of	  agriculture	  and	  forest	  
on	  water	  and	  biogeochemical	  
cycles

idem 2003 idem Idem

Thailand Huay	  Ma	  Nai 18°13'20"N 100°23'40"E 0,93 Tropical Sandstone Intensive	  
agriculture

Land	  use	  changes	  and	  
consequence	  on	  soil	  and	  water	  
processes	  in	  tropical	  mountains	  
environments

Rainfall,	  meteo,	  water	  level	  and	  discharge,	  suspended	  
sediments,	  bedload,	  land-‐use,	  water	  chemistry

2001 idem Idem

Laos Houay	  Pano 19°51'10"E 102°10'45"E 0,6 Tropical Schist Tree	  plantation Idem Rainfall,	  meteo,	  water	  level	  and	  discharge,	  suspended	  
sediments,	  bedload,	  land-‐use

2001 Idem Idem

Vietnam Dong	  Cao 20°57'40"N 105°29'10"E 0,5 Tropical Schist Reforested Idem Rainfall,	  meteo,	  water	  level	  and	  discharge,	  suspended	  
sediments,	  bedload,	  land-‐use

2002 Idem Idem

ObserRA	  (9) France Bras	  David	  et	  Capesterre	  
(Guadeloupe)

16.18ºN -‐61.69°E 0.08-‐16.4 Tropical Andesite Tropical	  forest Weathering	  and	  erosion,	  
sediment	  and	  organic	  carbon	  
fluxes

Rainfall,	  meteo,	  discharge,	  suspended	  sediment,	  
geochemical	  species,	  physico-‐chemistry	  of	  rivers	  and	  soil	  
solution,	  groundwater	  level

2011 	  http://www.ipgp.fr/fr/obsera/obser
vatoire-‐de-‐leau-‐de-‐lerosion-‐aux-‐
antilles

http://webobsera.ipgp.fr/

EroRun	  (10) France Rivière	  des	  pluies,	  la	  
Réunion

-‐20.9°N 	  55.5°E 45 Tropical	  (with	  
cyclones)

basalt Tropical	  forest Water,	  sediment	  and	  
geochemical	  fluxes

Rainfall,	  discharge,	  suspended	  sediment,	  geochemical	  
species

2015 http://osur.univ-‐
reunion.fr/observations/soere/rbv/	  

OHGE	  (11) France Strengbach 48.21°N 7.20°E 0,8 temperate	  
oceanic	  
mountainous

Granite,	  
gneiss

Forest Response	  of	  ecosystems	  to	  
climate	  and	  anthropogenic	  
perturbations	  (forest	  
exploitation,	  atmospheric	  
pollution)	  -‐	  element	  and	  water	  
transfert	  at	  the	  
atmosphere/soil/plant	  interface

Rainfall,	  meteo,	  water	  level	  and	  discharge	  in	  rivers,	  
groundwater	  levels	  in	  piezometers	  and	  wells,	  suspended	  
sediments	  in	  rivers,	  physico-‐chemical	  properties	  (pH,	  
temperature,	  conductivity,	  anions,	  cations,	  DOC,	  trace	  
elements)	  in	  rivers,	  springs,	  soil	  solutions,	  rainfall	  

1986 http://ohge.unistra.fr/	   http://bdd-‐ohge.u-‐strasbg.fr/index.php/bdd	  

Real	  Collobrier	  (12) France Real	  Collobrier 43.25°N 6.36°E 0.7	  to	  70 Mediterranean Gneiss	  and	  
schist	  

Mediterranean	  
forest	  

Flash	  floods	   Rainfall,	  water	  level	  and	  discharge,	  suspended	  matter	  
and	  bedload	  transport

1966 https://bdoh.irstea.fr/REAL-‐
COLLOBRIER/	  

https://bdoh.irstea.fr/REAL-‐COLLOBRIER/	  

Draix-‐Bléone	  (13) France Draix-‐Bléone 44.1°N 6.3°E 0.0013	  to	  22	   Mediterranean Marls badlands	  or	  
mediterranean	  
forest

Floods	  and	  erosion	  in	  
mountainous	  catchments,	  rock	  
weathering	  and	  vegetation	  
impact	  on	  erosion

Rainfall,	  meteo,	  discharge,	  groundwater	  level,	  soil	  
moisture,	  rainfall	  stable	  isotope	  content;	  suspended	  
sediment	  concentration,	  total	  solid	  transport	  during	  
events,	  LiDar	  DTM,	  vegetation	  cover,	  landslides

1983 https://oredraixbleone.irstea.fr/ https://bdoh.irstea.fr/DRAIX/	  

SNO	  Karst	  (14) France Baget 42.95	  N 1.03	  E 13.25 Oceanic Limestone Forest	  and	  
grasslands

Hydro-‐geo-‐chemistry	  of	  the	  
karst	  (quantity	  and	  quality	  of	  
the	  water	  resource,	  floods)

Water	  level	  and	  discharge,	  physico-‐chemical	  properties	  
of	  water	  (pH,	  temperature,	  conductivity,	  anions,	  cations,	  
stable	  isotopes,	  doc)

1978 http://www.sokarst.org/index.asp?l
ang=fr	  

Medycyss 47.9ºN 4.6ºE 1200 Mediterranean Limestone Mediterranean	  
agriculture

Idem Rainfall,	  meteo,	  water	  level	  and	  discharge	  in	  rivers,	  
groundwater	  levels,	  soil	  moisture,	  physico-‐chemistry	  	  
(temperature,	  conductivity,	  major	  and	  trace	  elements,	  
stable	  isotopes,	  MON,	  TOC	  )

2005 http://www.medycyss.org/	  

Fontaine	  de	  Vaucluse	  -‐	  LSBB 43.92°N 5.13°E 1130 Mediterranean Limestone Forest	  and	  
grasslands

Idem Rainfall,	  meteo,	  water	  level,	  pressure	  and	  discharge	  in	  
springs,	  physico-‐chemical	  properties	  of	  water	  (anions,	  
cations,	  DOC,	  stable	  isotopes),	  gravimetry,	  inclinometry

1995 https://www6.paca.inra.fr/emmah/L
es-‐moyens/Sites-‐
experimentaux/Fontaine-‐de-‐
Vaucluse-‐LSBB/Fontaine-‐de-‐
Vaucluse

Jurassic	  Karst 47.1ºN 6.3ºE 1-‐50 Mountainous	   Limestone Forest Idem Rainfall,	  meteo,	  water	  level,	  physico-‐chemistry	  
(temperature,	  pH,	  conductivity,	  chlorures,	  nitrates,	  COT,	  
COD,	  turbidity)

2009 https://zaaj.univ-‐
fcomte.fr/spip.php?article13&lang=
en	  

Karst-‐Craie 49.43°N 0.19°E 10-‐230 Oceanic Limestone agricultural	  lands Idem Rainfall,	  water	  level,	  physico-‐chemistry	  (temperature,	  
pH,	  conductivity,	  chlorures,	  nitrates,	  COT,	  COD,	  turbidity)

1997 http://www.sokarst.org/index.asp?l
ang=fr	  

Karst	  Val	  d'Orléans 47.85°N 1.937°E 20 Oceanic Limestone Forest	  and	  
grasslands

Idem Water	  level,	  physico-‐chemistry	  (temperature,	  pH,	  
conductivity,	  chlorures,	  nitrates,	  COT,	  COD,	  turbidity)

1970 http://www.sokarst.org/index.asp?l
ang=fr	  

HYBAM	  (15) Bolivia,	  Peru,	  
Ecuador,	  
Brazil

Amazon 3,3122°	  S 60,6303°	  W 6400000 Humid	  Tropical Mixed	  
(sedimentary
,	  volcanic	  and	  
metamorphic
)

Tropical	  forest Geodynamical,	  hydrological	  and	  
biogeochemical	  control	  of	  
erosion/alteration	  and	  material	  
transport	  in	  the	  Amazon,	  
Orinoco	  and	  Congo	  basin

Rainfall,	  water	  level	  and	  discharge	  in	  rivers,	  suspended	  
sediment	  concentration,	  physico-‐chemical	  properties	  of	  
rivers	  (temperature,	  pH,	  conductivity),	  geochemistry	  
(anions,	  cations,	  organic	  carbon)

2003 http://www.ore-‐
hybam.org/index.php/eng	  

http://www.ore-‐hybam.org/index.php/eng/Data	  

H+	  (16) France Ploemeur 47.74°N -‐3.43°W 5	  to	  20	   Oceanic Micaschists	  
and	  Granites

grasslands	  and	  
agriculture

Groundwater	  flow	  and	  
transport	  modeling	  in	  a	  
fractured	  aquifer	  used	  for	  
water	  supply

Groundwater	  levels	  and	  discharge,	  physico-‐chemical	  
fluid	  properties	  (temperature,	  conductivity,	  chemistry),	  
unsaturated	  zone,	  geophysical	  	  montoring	  (GPS,	  sismic,	  
tiltmeter	  ..)

1991 http://hplus.ore.fr/	   http://hplus.ore.fr/base-‐de-‐donnees-‐fr	  	  

H+	  (16) France Poitiers 46.56°N 0.40°E 0,12 Oceanic Limestones grasslands Adapated	  well	  nest	  for	  
groundwater	  flow	  and	  
transport	  experiments	  and	  
models	  in	  a	  karstic	  aquifer

Meteo	  data,	  groundwater	  levels,	  physico-‐chemical	  
properties	  (temperature,	  conductivity,	  chemistry)

2002 Idem Idem

H+	  +	  RBV	  (SNO	  
KARST)	  (14,	  16)

France	   Fontaine	  de	  Vaucluse	  -‐	  LSBB 43.92°N 5.13°E 1130 Mediterranean Karst mediterranean	  
forest	  +	  
agriculture

Hydrogeological	  functionning	  of	  
a	  large	  unsaturated	  zone	  in	  
karst

Rainfall,	  meteo,	  water	  level,	  pressure	  and	  discharge	  in	  
springs,	  physico-‐chemical	  properties	  of	  water	  (anions,	  
cations,	  DOC,	  stable	  isotopes),	  gravimetry,	  inclinometry

1995 Idem	  and	  
http://www.sokarst.org/index.asp?l
ang=fr	  	  

Idem

Network	  H+:	  hydrogeological	  observatories	  and	  sites,	  the	  deep	  CZ.
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H+	  (16) France Larzac 43.97°N 3.82°E 100 Mediterranean Karst grasslands	  and	  
forests

Processes	  that	  control	  the	  
spatio-‐temporal	  variability	  of	  
water	  storage	  and	  fluxes	  in	  a	  
karstic	  aquifer

Rainfall,	  groundwater	  level,	  water	  pressure	  and	  
discharge,	  surface	  energy	  balance,	  inclinometry,	  gravity,	  
GPS,	  electric	  resistivity

2006 Idem Idem

H+	  (16) France AuverWatch 45.74°N 3.21°E 320 Continental Alluvial	  sands Grassland Hydro-‐geo-‐chemistry	  of	  an	  
alluvial	  system.	  Focus	  on	  
river/groundwater	  interactions,	  
transport	  of	  emergent	  
pollutants

Rainfall,	  water	  level,	  river	  discharge,	  physico-‐chemistry	  
(temperature,	  pH,	  conductivity,major	  and	  traces	  ions,	  
phytosanitaries,	  pharmaceuticals,	  stable	  isotopes	  of	  the	  
water	  molecule)

2010 Idem	  +	  http://wwwobs.univ-‐
bpclermont.fr/SO/auverwatch/index
.php	  	  

Idem

H+	  (16) India Hyderabad	  (Maheswaram	  
and	  Choutuppal)

17.29°N 78.92°E 04-‐55 Tropical Granites Intensive	  
agriculture

Water	  and	  matter	  fluxes,	  
chemical	  reactivity,,	  residence	  
times	  in	  a	  fractured	  aquifer

Rainfall,	  meteo,	  groundwater	  levels,	  physico-‐chemical	  
properties	  (temperature,	  conductivity,	  chemistry,	  
isotopes)

2000 Idem Idem

H+	  (16) Spain Majorque 39.41°N 2.95°E 0,12 Mediterranean Limestones Water	  fluxes	  in	  a	  coastal	  
aquifer	  with	  saline	  intrusion

Groundwater	  levels,	  ions	  concentration 2003 Idem Idem

GlacioClim	  (17) France Alpes-‐Sarennes 45°07’	  N 06°07’	  E 0,5 Mica	  
Schistes,	  
Gneiss

Glacier Impact	  of	  climate	  change	  on	  
glaciers	  and	  associated	  water	  
resources

Glacier	  mass	  balance,	  rainfall,	  meteo,	  raidation	  budget,	  
surface	  energy	  balance,	  glacier	  temperature	  profile	  

1949 https://cryobsclim.osug.fr/	  and	  
http://devdata.glacioclim.fr/portal/
main.jsf	  

http://devdata.glacioclim.fr/portal/main.jsf

France Alpes-‐Saint	  Sorlin 45°09’	  N 06°10’	  E 3 Mica	  
Schistes,	  
Gneiss

Glacier Idem Idem 1957 Idem Idem

France Alpes-‐Mer	  de	  Glace 45°55’	  N 06°57’	  E 28 Granite/Gnei
ss

Glacier Idem Idem 1983 Idem Idem

France Alpes-‐Argentière 45°55’	  N 06°57’	  E 19 Granite/Gnei
ss

Glacier Idem Idem 1975 Idem Idem

France Alpes-‐Gébroulaz 45°19’	  N 06°07’	  E 3 Gneiss Glacier Idem Idem 1983 Idem Idem
France Alpes-‐Col	  du	  Dome Granite/Gnei

ss
Glacier Idem Idem 1997 Idem Idem

France Pyrénées-‐Ossoue 42°46’	  N 00°08’	  W 0,45 Cristaline	  
rocks

Glacier Idem Idem 2001 Idem Idem

Svalbard Svalbard-‐Austre	  Loven 77.87497 20.97518 5 Cristaline	  
rocks

Glacier Idem Idem 2007 Idem Idem

Bolivia,	  Peru,	  
Ecuador,	  
Brazil

Andes-‐Zongo 16°16’	  S 68°09’	  W 1,8 Granites Glacier Idem Idem 1973 Idem Idem

Ecuador Andes-‐Antizana 00°28’	  S 78°09’	  W 1 Basaltes Glacier Idem Idem 1995 Idem Idem
Nepal Himalaya-‐Mera 27,7°N 86,9°E 5,1 Cristaline	  

rocks
Glacier Idem Idem 2007 Idem Idem

Antarctic Antarctique-‐Cap	  
Prud'homme

-‐66,69194 139,89667 8000 Gneiss/Migm
atites

Polar	  cap Idem Air	  temperature,	  humidity,	  wind	  speed,	  snow	  
temperature

2004 Idem Idem

Antarctic Antarctique-‐Dome	  C 75°S 123°E Unknown Polar	  cap Idem Air	  temperature,	  humidity,	  wind	  speed,	  snow	  
temperature

2004 Idem Idem

Snow	  (17) France Alpes-‐Col	  de	  Porte 45.30°	  N 5.77°	  E 0,006253 Mountainous Limestones snow	  field Interactions	  snow	  climate	  and	  
impact	  of	  climate	  change

Meteo,	  snow	  depth,	  water	  equivalent,	  temperature 1959 Idem Idem

France Alpes-‐	  Col	  du	  Lac	  Blanc 45°	  
7'40.38"N

6°	  6'41.38"E 0,25 Mountainous Gneiss snow	  field Idem Air	  temperature,	  humidity,	  wind,	  rainfall	  and	  snowfall,	  
transported	  snow,	  radiation	  budget,	  sensible	  heat	  flux

1990 Idem Idem

Permafrost	  (17) France Alpes-‐Laurichard 45.018°N 6.40°E 0,08 Mountainous Granite/gneis
s

Rocks	  permafrost Observation	  of	  permafrost	  in	  
mountains	  in	  relation	  with	  
climate	  change	  and	  
modifications	  of	  associated	  
risks	  

Drillings	  and	  monitoring	  of	  the	  evolution	  of	  the	  
permafrost

1982 Idem Idem

France Alpes-‐Deux	  Alpes 45.0°N 6.19°E 6 High	  
mountains

Gneiss Idem Idem Idem 2007 Idem Idem

France Alpes-‐Aiguille	  du	  Midi 45.878°N 6.887°E 0,05 High	  
mountains

Granites Idem Idem Idem 2005 Idem Idem

France Alpes-‐	  Dérochoir 45.866°N 6.809°E 0,05 High	  
mountains

	  Gneiss	  
Schistes

Idem Idem Idem Idem Idem

OSR	  (18) France South-‐West 43.50°N 1.24°E 0.001-‐2500 Oceanic	  
mountainous

Marls-‐
limestone

Agriculture	  and	  
moutains

Understand,	  model	  and	  
forecast	  the	  continental	  surface	  
functionning	  and	  evolution	  
from	  the	  ecosystem	  to	  the	  
regional	  scale	  using	  remote	  
sensing	  data	  

Rainfall,	  air	  temperature,	  air	  humidity,	  soil	  temperature,	  
soil	  water	  content,	  wind	  direction	  and	  speed,	  snowfall,	  
surface	  energy	  budget,	  water	  vapor,	  N2O	  and	  CO2	  
fluxes,	  vegetation,	  land	  use	  and	  practices

2004 http://www.cesbio.ups-‐
tlse.fr/fr/sud_ouest.html	  

http://www.cesbio.ups-‐
tlse.fr/fr/donnees_sudouest.html#sites	  

Morrocco Tensift 31.5°N -‐8°W 20000 Mediterranean mixed	  
(eruptive	  and	  
sedimentary)

Mediterranean	  
agriculture	  	  and	  
moutains

Idem Idem 2002 http://www.cesbio.ups-‐
tlse.fr/fr/sud_med.html	  

http://www.cesbio.ups-‐
tlse.fr/fr/donnees_cesbio_sudmed.html	  

SNO	  Tourbières	  (19) France Bernadouze 42.80°N 1.42°E 0,08 Oceanic	  
mountainous

mixed	  
(granite	  and	  
limestone)

Peatland Impact	  of	  global	  change	  on	  the	  
peatland	  carbon	  sink,	  green	  
house	  gases	  (H2O,	  CO2,	  CH4)	  
cyles,	  dynamics	  of	  organic	  
matter	  in	  soils

CO2	  fluxes,	  groundwater	  level,	  dissolved	  organic	  carbon	  
in	  the	  peatland	  and	  at	  the	  output,	  physico-‐chemical	  
properties	  (pH,	  conductivity,	  temperature),	  meteo

2013 http://www.sno-‐tourbieres.cnrs.fr/	  

Network	  CRYOBS-‐CLIM:	  glaciers,snow	  and	  permafrost	  studies

Network	  OSR:	  Regional	  spatial	  observatory

Network	  "Tourbières":	  peatland	  observatories
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France Frasne 46.83°N 6.17°E 3 Mountainous limestone Peatland Idem Meteo,	  water	  level	  at	  the	  outlet,	  groundwater	  level,	  
physico-‐chemical	  properties	  (pH,	  conductivity,	  
temperature),	  soil	  temperature,	  CO2,	  CH4,	  H2O	  and	  
energy	  fluxes

2008 Idem

France La	  Guette 47.32°N 2.28°E 0,25 Oceanic sands Peatland Idem Meteo,	  water	  level	  at	  the	  outlet,	  groundwater	  level,	  
dissolved	  organic	  carbon	  in	  the	  peatland	  and	  at	  the	  
output,	  physico-‐chemical	  properties	  (pH,	  conductivity,	  
temperature),	  soil	  properties,	  CO2,	  CH4,	  H2O	  and	  energy	  
fluxes

2008 Idem

France Landemarais 48.44°N 1.18°O 0,16 Oceanic granite Peatland Idem Meteo,	  water	  level	  at	  the	  outlet,	  groundwater	  level,	  
physico-‐chemical	  properties	  (pH,	  conductivity,	  
temperature),	  soil	  properties,	  CO2,	  CH4,	  H2O	  and	  energy	  
fluxes

2014 Idem

OPE	  (20) France Perennial	  Observatory	  of	  
the	  Environnement

48.56°N 5.34°E 240-‐900 Continental Limestones Agriculture	  and	  
small	  forests

Environnemental	  monitoring	  of	  
a	  industrial	  territory	  in	  
mutation

Atmospheric	  parameters,	  Greenhouse	  gases	  and	  aerosol	  
physico-‐chemical	  properties,	  ,	  surface	  and	  groundwater	  
physico-‐chemical	  properties,	  physico-‐chemistry	  of	  soils,	  
biodiversity

2007 http://www.andra.fr/ope/index.php
?lang=fr	  

http://www.andra.fr/ope/index.php?option=com_datareq
uest&Itemid=331&lang=fr	  

ROSES	  (21) France All	  France na na na na na na Groundwater	  water	  level	  and	  
quality	  monitoring	  over	  whole	  
France	  and	  overseas	  territories

Groundwater	  level	  and	  quality 1892	  :	  
groundwater	  
level,	  strenghen	  
since	  2000	  	  	  	  	  	  	  	  	  	  	  	  
1900:	  
groundwater	  
quality

http://www.ades.eaufrance.fr/Spip.
aspx?page=spip.php?rubrique141	  

http://www.ades.eaufrance.fr/LienLocalisation.aspx	  

Other	  networks	  (operational)
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Fig. 5
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High frequency exploration Hot-spot and hot-moments

WP1 : soil-atmosphere exchanges

WP2 : pulsation of water in the ZC

1.1 : microwave scintillometry

2.1 : hydrogravimetry
2.2 : hydrogeodesy
2.3 : water sensors

WP3 : temperature monitoring
 Fiber optic for temperature and gas

WP4 : high temporal monitoring
4.1 : extreme event monitoring
4.2 : the River Lab
4.3 : innovative chemical sensors

WP5 : scanning the surface

WP6 : geophysical tools of exploration

image drone exploration

6.1 : seismic methods
6.2 : MSR
6.3 : electrical methods
6.4 : polarization
6.5 : CS-AMT

7.1 : well equipement
7.2 : well monitoring
7.3 : reactive and inert tracer test experiments

WP7 : inacessible groundwaters

WP8 : chemical and isotopic
     �ngerprinting

8.1 : gas tracing
8.2 : water isotopes
8.3 : integrative sensors

Fig.  6
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Fig. 7

Dynamical architecture of the Critical Zone: (i) what are the vertical and horizontal extents of 
the CZ? (ii) what are the residence and exposure times of water and matter in the di�erent com-
partments of the CZ? (iii) what are the CZ interfaces? (iv) what is the role of biota in structuring 
the CZ?

Biogeochemical cycles, sediment and-or contaminant propagation through the CZ , from 
highlands to sea: (i) can we better quantify budgets of mass and energy across our CZ observa-
tories? (ii) how can high frequency sampling help deciphering CZ functionning? (iii) what is the 
functionnal role of biota at all scales?

Responses and feedbacks to biological, climatic and geological perturbations and to 
global environmental changes: the Earth's surface dynamical system: (i) how can we use 
our observatories to predict (earthcast) the future of the CZ? (ii) how do processes with short 
timescales and limited spatial imprint in�uence the evolution of the CZ on longer timescales? 
(iii) can we predict CZ trajectories?
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