
�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/20905

 https://doi.org/10.1007/s11134-014-9404-z

Simatos, Florian and Bouman, Niek and Borst, Sem Lingering issues in distributed scheduling. (2014) Queueing

Systems, 77 (2). 243-273. ISSN 0257-0130

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/163105293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Lingering issues in distributed scheduling

Florian Simatos · Niek Bouman · Sem Borst

Abstract Recent advances have resulted in queue-based algorithms for medium
access control which operate in a distributed fashion, and yet achieve the optimal
throughput performance of centralized scheduling algorithms. However, fundamental
performance bounds reveal that the “cautious” activation rules involved in establish-
ing throughput optimality tend to produce extremely large delays, typically growing
exponentially in 1/(1−ρ), with ρ the load of the system, in contrast to the usual
linear growth. Motivated by that issue, we explore to what extent more “aggressive”
schemes can improve the delay performance. Our main finding is that aggressive acti-
vation rules induce a lingering effect, where individual nodes retain possession of a
shared resource for excessive lengths of time even while a majority of other nodes idle.
Using central limit theorem type arguments, we prove that the idleness induced by the
lingering effect may cause the delays to grow with 1/(1−ρ) at a quadratic rate. To the
best of our knowledge, these are the first mathematical results illuminating the linger-
ing effect and quantifying the performance impact. In addition extensive simulation
experiments are conducted to illustrate and validate the various analytical results.

This work first appeared in [25] in the proceedings of the ACM/SIGMETRICS 2013 conference. The two
papers mainly differ in their organization. The present paper also contains additional technical details,
especially in the proofs of Lemmas 4.2 and 4.5.
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1 Context and illustrative example

1.1 Context

As networks continue to grow in size and complexity, they increasingly rely on schedul-
ing algorithms for efficient allocation of shared resources and arbitration between
users. As a result, the design and analysis of scheduling algorithms for complex net-
work scenarios has attracted significant attention over the last several years. One of
the centerpieces in the scheduling literature is the celebrated MaxWeight algorithm as
proposed in the seminal work [29,30]. The MaxWeight algorithm provides throughput
optimality and maximum queue stability in a variety of scenarios, and has emerged as
a powerful paradigm in cross-layer control and resource allocation problems [8].

While not strictly optimal in terms of delay performance, MaxWeight algorithms
do achieve so-called equivalent workload minimization and offer favorable scaling
characteristics in heavy-traffic conditions [22,26]. As a further key appealing feature,
MaxWeight algorithms only need information on the queue lengths and instantaneous
service rates, and do not rely on any explicit knowledge of the underlying system
parameters. On the downside, solving the maximum-weight problem tends to be chal-
lenging and potentially NP-hard. This is exacerbated in a network setting, where a
centralized control entity may be lacking or require global state information, creating
a substantial communication overhead in addition to the computational burden. This
concern is especially pertinent as the maximum-weight problem needs to be solved at
a high pace, commensurate with the fast time scale on which scheduling algorithms
typically need to operate.

This issue has provided a strong impetus for devising algorithms that entail lower
computational complexity and communication overhead, but retain the maximum sta-
bility and throughput guarantees of the MaxWeight algorithm. Various approaches in
that direction were proposed in [3,15,23,24,28,31]. An exciting breakthrough in this
quest was recently achieved in the design of random back-off schemes for wireless
medium access control that seem to offer the best of both worlds. These schemes
operate in a distributed fashion, requiring no centralized control entity or global state
information, and yet, remarkably, provide the capability of achieving throughput opti-
mality and maximum stability. More specifically, clever algorithms have been devel-
oped for finding the back-off rates that yield any given target throughput vector in the
capacity region [11,14]. In the same spirit, powerful algorithms have been devised
for adapting the back-off rates based on queue length information, and been shown to
guarantee maximum stability [13,17,21].

While the maximum-stability guarantees for the above-mentioned algorithms have
strong appeal, the picture becomes different when we consider performance metrics
such as expected queue lengths or delays. In [20], it is shown that low-complexity
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schemes cannot be expected to achieve low delay in arbitrary topologies (unless P
equals NP), roughly meaning that the required number of calculations prior to any
transmission is super-polynomial in the number of nodes. However, this notion of
delay is a transient one, and it is not exactly clear what the implications are for expected
queue lengths or delays in specific networks, if any.

Performance upper bounds in [10,12] show that for sufficiently low load the delay
only grows polynomially with the number of nodes in bounded-degree interference
graphs. Similar upper bounds are presented in [27] for bounded-degree conflict graphs
with low load.

Performance lower bounds in [2] indicate that the “cautious” back-off functions
involved in establishing maximum stability tend to produce extremely large delays,
typically growing exponentially in 1/(1−ρ), with ρ the load of the system, in contrast
to the usual linear growth. More specifically, the bounds show that the expected
queue lengths grow as ψ−1(1−ρ) as ρ ↑ 1. Here ψ−1 represents the inverse of the
(decreasing) function ψ , specifying the probability of a node entering a back-off as a
function of its current queue length. The bounds may be explained by noting that the
queue lengths govern the fraction of back-off time through the function ψ . Since the
fraction of back-off time cannot exceed the surplus capacity in order for the system
to be stable, however, it is ultimately the amount of surplus 1−ρ that dictates the
queue lengths through the function ψ−1. We note that maximum stability has been
established under the condition that the function ψ(a) decays (no faster than) inverse-
logarithmically as a → ∞, i.e., ψ(a) ∼ 1/ log a. This entails that ψ−1(s) grows (no
slower than) exponentially in 1/s as s ↓ 0, yielding the stated exponential growth of
ψ−1(1−ρ) in 1/(1−ρ) as ρ ↑ 1.

The above lower bounds suggest that the delay performance may be improved
when the function ψ decays faster, e.g., inverse-polynomially: ψ(a) ∼ a−β , with
β > 0, so that ψ−1(s) ∼ s−1/β as s ↓ 0. The larger the value of the exponent β,
the slower the growth of ψ−1(1−ρ) ∼ (1−ρ)−1/β as ρ ↑ 1. In particular, it might
seem plausible that for β ≥ 1, the expected queue lengths will only exhibit the usual
linear growth in 1/(1−ρ) as ρ ↑ 1. Note that a larger value of β means that a node
is more “aggressive”, in the sense that it is less likely to enter a back-off and more
inclined to hold on to the medium, and hence the coefficient β will be referred to as
the aggressiveness parameter. It is worth mentioning that maximum stability for the
above back-off functions is not guaranteed by existing results, which do not apply for
any β > 0. In fact, for β > 1, maximum stability has been shown not to hold in certain
topologies [9].

In the present paper we aim to gain fundamental insight into the extent that a larger
aggressiveness parameter can improve the delay performance. Our main finding is that,
for large values of β, a lingering effect can cause the mean stationary delay to increase
in heavy traffic as 1/(1−ρ)2. In the infinitely persistent case, β = +∞, we present a
complete analysis and prove that the heavy-traffic stationary delay scales as 1/(1−ρ)2.
In the strongly persistent case, β ∈ (1,∞), we show that the system’s behavior is
roughly similar to the behavior in the infinitely persistent case, supporting our claim
that the delay scales as 1/(1−ρ)2 in this case as well. In the weakly persistent case,
β < 1, fundamentally different behavior may emerge, requiring significant additional
developments which go beyond the scope of the present paper.
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For transparency, we focus on the simplest topology where the lingering effect
occurs. This topology, described in later sections, may at first sight seem restrictive
in view of recent results [13,17,21] which apply to general topologies. We believe,
however, that our results give insight into more general situations as will be discussed
in Sect. 6.

1.2 Illustrative example

Consider a network consisting of four queues which are split into two groups, in such
a way that if any queue of one group is transmitting a packet, no queue of the other
group may transmit, and vice versa. A group is said to be active if one of its queues is
transmitting a packet, and a queue is said to be active if it belongs to the active group.
The other group and queues are said to be inactive.

In our model, time is slotted and active queues adhere to the following algorithm:
after each transmission, each active queue flips a coin and advertizes a release with
probability (1+a)−β , with a the number of packets that this queue has to transmit and
β > 0. If the two active queues advertize a release simultaneously, then active queues
become inactive and vice versa: such a time is called a switching time. This simple
distributed algorithm gives rise to dynamics as illustrated in Fig. 1, where the system
is considered over three consecutive switching times t1, t2, and t3. Between switching
times, the packet buffers at the active queues are drained, while packets accumulate
at the inactive queues. The dynamics shown in Fig. 1 are representative of the case
β > 1 where a switch does not occur until both active queues are close to being empty,
see Theorem 4.1 and Corollary 5.5.

Let us now give a flavor of the lingering effect. Imagine that the two active queues
start with initial queue lengths of the same order, say Q. As just mentioned, queues
retain the shared resource until the time T ∗ at which both queues are close to being
empty, thus preventing other queues from activating until this time. The law of large
numbers suggests that T ∗ is of order Q (i.e., active queues are drained linearly as in

Fig. 1 A sample path on the normal time scale with β = 2, representative of the case β > 1. The three
boxes zoom in to show the lingering effect. One queue hovers around zero while the other queue is yet to
empty, resulting in an inefficient use of the resource
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Fig. 1), but the central limit theorem suggests that up to time T ∗, the first active queue
to have been completely drained will be empty of the order of

√
Q units of time, while

waiting for the other queue to empty. This lingering effect is illustrated in Fig. 1, which
will be explained in greater detail in Sect. 3.

This leads to a fraction of the slots of the order of (1/
√

Q)where the shared resource
is used inefficiently. This may at first sight seem negligible when Q is large, and indeed
queues seem to empty at the same time on the coarse time scale of Fig. 1. However,
we will actually establish in Sects. 4 and 5 that it has a significant impact in heavy
traffic, causing queue lengths to grow at a rate 1/(1 − ρ)2 as ρ ↑ 1, instead of the
optimal 1/(1 − ρ).

1.3 Organization

The remainder of the paper is organized as follows. In Sect. 2 we present a detailed
model description. In Sect. 3 we provide an informal discussion of the lingering effect
and explain how it leads to a growth rate 1/(1−ρ)2 as ρ ↑ 1 of the mean stationary
delay. Sect. 4 is devoted to the proof of Theorem 4.1, which is the main theoretical
result of the paper, and proves this quadratic growth rate in the infinitely persistent
case β = +∞. In Sect. 5 we present arguments supporting the conjecture that this
quadratic growth occurs for every β ∈ (1,∞), and not just for β = +∞. Finally, we
conclude in Sect. 6 with some remarks and suggestions for further research.

2 Model description

2.1 Informal description

Let us now give a more precise definition of our model. As mentioned in the introduc-
tion, in order to analyze the lingering effect in the simplest possible setting, we focus
on a symmetric system consisting of two groups of R ≥ 2 queues. At any given point
in time, one of the groups is active while the other is inactive.

Time is slotted, and inactive queues have simple dynamics, driven by independent
and identically distributed numbers of packet arrivals in each slot, so that they each
simply grow according to random walks with step size distribution denoted by ξ .
During each time slot, active queues increase by independent amounts distributed as ξ
as well, but, if at least one packet is present at the start of the slot, then an active queue
also flushes exactly one packet.

Moreover, at the end of each time slot, each active queue tosses a coin and advertizes
a momentary release with probability ψ(a), with a the number of packets in the
queue at the end of the time slot. This (momentary) release gives inactive queues
an opportunity to become active: if all the active queues simultaneously advertize a
release, then inactive queues become active, and active queues become inactive. Such a
time is called a switching time. We will assume in the sequel thatψ(a) = (1+a)−β for
some parameter β > 0, called the aggressiveness parameter. In particular, ψ(a) → 0
as a → +∞, and so active queues are less likely to advertize a release when they
are highly loaded; this mechanism thus gives priority to highly loaded queues in a
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distributed fashion. Finally, there is a cost associated with advertizing a release: each
time an active queue advertizes a release and is not empty, it incurs an additional
increase distributed according to some random variable ζ .

This model qualitatively resembles the canonical models for queue-based medium
access control mechanisms [2,16,17,19,21]. The main difference with these models
is that in our model, back-off periods are infinitesimally short (hence, the releases
are qualified as momentary), and the jump size ζ represents the number of packets
that would have arrived during a non-zero back-off period. In contrast to the discrete-
time model in [16,19], our back-off model shares the common feature of continuous-
time models that there are no collisions. This back-off model simplifies the analysis
and is possible because of the simple topology considered in our paper. The key
advantage of using a discrete-time model with synchronized queues is that it avoids
the complication of requiring back-off periods to overlap in order to define a switching
time. Moreover, simulation experiments show that our main results extend to models
with non-infinitesimal back-off periods and also behave qualitatively similarly as a
continuous-time model.

2.2 Parameters and heavy-traffic regime

The model described in the previous subsection is defined through four parame-
ters: the number R ≥ 2 of queues in each group, two integer-valued random vari-
ables ξ, ζ ∈ N = {0, 1, . . .} and a real number β ∈ (0,∞], which defines the [0, 1]-
valued sequence (ψ(a), a ≥ 0) via ψ(a) = (1 + a)−β for a ≥ 0, to be understood
for β = +∞ as ψ(0) = 1 and ψ(a) = 0 for a > 0. Note that only the asymp-
totic behavior of ψ matters, and our results could easily be extended to any ψ with
aβψ(a) → � ∈ (0,∞) as a → +∞ (when β is finite).

We assume that ξ and ζ have finite means, respectively Eξ = ρ/2 and Eζ = z,
and that ξ has finite variance denoted by v = E[(ξ − ρ/2)2]. It will be argued that
the system is stable if and only if ρ < 1, and so we will refer to ρ as the load of the
system. Note that by symmetry, each queue is active half the time, which explains the
factor 2 in the definition ρ = 2Eξ of ρ.

In the sequel we will be interested in a heavy-traffic regime where the load ρ of the
system increases to the critical value 1. Although we will not make this dependency
explicit, we think of the random variable ξ as depending on ρ, i.e., we have a family
of random variables {ξρ, ρ > 0} with Eξρ = ρ/2. With this in mind, we make a final
assumption on the ξ ’s: we assume that their second moment is uniformly bounded in
ρ, i.e., supρ Eξ2

ρ < +∞.

2.3 Formal description

Because of the symmetry of the system, we do not need to label the queues individually,
but only need to keep track of the state of active and inactive queues. We will consider
the system embedded at switching times, and define Qa

r (k) and Qi
r (k) as the numbers

of packets in the r th active and inactive queue, respectively, just after the kth switch
occurred. We will be interested in the Markov chain (Q(k), k ≥ 0)which we also write
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as Q = (Qa,Qi ) with Qa = (Qa
r , r ∈ R), Qi = (Qi

r , r ∈ R), R = {1, . . . , R}, and
we reserve in the sequel bold notation for vectors (of functions or numbers).

As informally described in Sect. 2.1, the dynamics of Q in between two switching
times are governed by two R-dimensional processes S = (Sr , r ∈ R) and A =
(Ar , r ∈ R): S gives the increments of the inactive queues, while A gives the state of
the active queues. The dynamics are as follows:

• The 2R processes Ar , Sr are independent;
• For each r ∈ R, (Sr (k), k ≥ 0) is a random walk with step size distribution ξ

started at 0;
• For each r ∈ R, (Ar (k), k ≥ 0) is a space-inhomogeneous random walk with the

following dynamics: for any a ∈ N and any function f : N → [0,∞), we have

E [ f (Ar (1)) | Ar (0) = a] = E
[

f
(
Y (a)+ ζ1{Y (a)>0,U<ψ(Y (a))}

)]
, (1)

where Y (a) = a + ξ − 1{a>0} is the number of packets at the end of the time slot,
U is uniformly distributed in [0, 1], and U , ξ , and ζ are independent.

Equation (1) describes the dynamics of an active queue and can be interpreted
as follows. At each time slot, an active queue increases by ξ , and if not empty at the
beginning of the time slot, flushes a packet, which brings the queue from state a to state
Y (a). If U < ψ(Y (a)), then we say that the active queue advertizes a release, which
thus happens with the (conditional) probabilityψ(Y (a)) as described in Sect. 2.1. If at
the end of the time slot the queue is not empty and it advertizes a release, i.e., Y (a) > 0
and U < ψ(Y (a)), then the active queue also incurs an additional increase by ζ .

To define the 2R-dimensional process Q = (Qa,Qi ) from S and A, it remains to
adopt notation for the switching time, which we denote by T ∗. Thus T ∗ is the first
time at which all active queues advertize a release at the same time. Note that T ∗ and
S are independent. With these definitions, the dynamics of Q as informally described
in Sect. 2.1 obey the following equation: for any q = (qa,qi ) ∈ N

R × N
R and any

function f : N
2R → [0,∞),

E
[

f (Q(1)) | Q(0) = q
] = E

[
f (qi + S(T ∗),A(T ∗)) | A(0) = qa

]
. (2)

The special case β = +∞ will be of particular importance. Indeed, it can be
analyzed exhaustively and we will show in Sect. 5 that it is representative of the
system’s behavior in the range β > 1. The fluid limits of the system for a fixed value
of ρ and β = +∞ have been studied in [5], where the algorithm is referred to as
the random capture algorithm. Also, when β = +∞, active queues only advertize a
release when they are empty (in which case there is no additional term ζ ), and so in
this case we have A(T ∗) = 0 and T ∗ = inf {k ≥ 0 : A(k) = 0}.

2.4 Notation for probabilities and expectations

Similarly as we have just done in (2), we will use in the remainder of the paper the
common symbol E to denote expectation with respect to the laws of Q and (A,S).
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Initial conditions will be denoted by a subscript, and it should always be clear from
the context whether we consider initial conditions of Q, A, or some Ar (remem-
ber that S(0) is always equal to 0). For instance, (1) and (2) can be rewritten as
follows:

Ea [ f (Ar (1))] = E
[

f
(
Y (a)+ ζ1{Y (a)>0,U<ψ(Y (a))}

)]

and

Eq [ f (Q(1))] = Eqa

[
f (qi + S(T ∗),A(T ∗))

]
.

The probability distributions corresponding to these various expectations are writ-
ten as Pa , P, Pq, and Pqa . We also define P∞ with corresponding expectation E∞
as the laws of Q and (A,S) started in the stationary distribution of Q, provided Q is
positive recurrent.

When β = +∞, we see based on (2) and the fact that A(T ∗) = 0 that Qi (k) = 0
for k ≥ 1. In particular, when Q is positive recurrent, Qi (0) is P∞-almost surely equal
to 0 and (2) therefore becomes

E∞
[

f (Qa(0))
] = E∞

[
f (S(T ∗))

]
(β = +∞). (3)

2.5 Additional notation τr , τmax, τ(r), |·|, and ‖·‖

In the remainder of the paper we define τr = inf{k ≥ 0 : Ar (k) = 0} as the time at
which the r th active queue hits 0, τmax = maxr∈R τr as the largest time at which an
active queue hits 0 for the first time, and we let the τ(r)’s be the order statistics of the
τr ’s, i.e., τ(1) ≤ · · · ≤ τ(R) and {τ(r)} = {τr } (in particular τmax = τ(R)).

Let |·| be the L∞ norm and ‖·‖ be the L1 norm, i.e., if J ≥ 1 and x ∈ R
J then

|x| = max j |x j | (which is just the absolute value for J = 1) and ‖x‖ = |x1| + · · · +
|xJ |.

2.6 Connection with polling systems

It is worth emphasizing that we restrict the investigation in the next sections to the
case of R ≥ 2 queues in each group, and exclude the case R = 1 from the analysis.
Indeed, the lingering effect that we intend to investigate only occurs when there are
R ≥ 2 queues in the same group.

The case R = 1 may be interpreted as a single-server two-class queueing system,
where the server may switch from one class to the other after each service completion
with a probability that depends on the queue length of the class that is currently being
served. As a somewhat unusual feature, the queue length of the latter class increases
by the random variable ζ when a switch occurs. This bears some resemblance with a
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polling system, when ζ is viewed as the number of arrivals during a switch-over time.
It is worth observing that this switching rule does not belong to the class of branching-
type service disciplines which yield tractable joint queue length distributions in polling
models. The only exception is the special case β = +∞, which corresponds to the
exhaustive service discipline in polling models (with a process-level heavy-traffic
analysis in [4]) and the so-called random capture algorithm in [5]. In general, however,
the analysis of the joint queue length process appears far from trivial, even when ζ = 0,
although the aggregate queue length distribution is then fairly easy to obtain. This
connection with polling systems is actually at the heart of the proof of forthcoming
Lemma 4.5.

In case R ≥ 2, the system may in the same vein be interpreted as a set of R single-
server two-queue polling systems, where servers are only allowed to switch between
queues in a synchronized fashion. Such models with simultaneous service of several
queues and synchronized switches are natural in applications, and indeed our model
has already been studied in Boon et al. [1] to model traffic lights at intersections.
The results in [1] are in some sense complementary to ours, since the authors per-
form a heavy-traffic analysis when the system’s parameters are such that the lingering
effect does not play a role. In particular, they study cases where the delay scales as
1/(1−ρ).

These models show similarity with multiple-server polling systems, which did
receive some attention, but have largely defied analysis. This offers testimony of the
mathematical complexity of an exact queueing analysis of the model under consider-
ation, and provides justification for an asymptotic investigation.

3 Informal discussion of the lingering effect

In Sect. 5.1 we will prove that, when β > 1, an active queue only advertizes releases
when it is close to being empty. In particular, once a queue gains possession of the
resource, it holds onto it, even when some or all of the other queues in the same group
are empty, and it would be more efficient for the queues in the other group to receive
the resource. This causes a lingering effect as discussed in Sect. 1.2 and illustrated in
Fig. 1 for a scenario with R = 2, β = 2.

It may appear that the two queues in the same group drain around the same time (as
can indeed be shown to be the case on a “fluid scale”). When we zoom in, however, we
see that there is actually a time period where one of the queues is already empty, while
the other one clings to the resource and prevents the two queues in the other group from
activating. In this section we give a heuristic explanation of how this inefficient use of
the resource leads to a quadratic growth of the mean stationary delay in heavy traffic.
This explanation is also aimed at developing intuition and introducing the structure of
the proofs in the next section.

Now consider a regime in which active queues only advertize a release when they
are close to empty, i.e., A(T ∗) ≈ 0. Applying (2) with f (q) = ‖qa‖, we obtain

Eq(‖Qa(1)‖) = ‖qi‖ + Eq(‖S(T ∗)‖).



Queueing Syst

Thus in stationarity, we have

E∞(‖Qa(0)‖) = E∞(‖Qa(1)‖) = E∞(‖Qi (0)‖)+ E∞(‖S(T ∗)‖)
= E∞(‖A(T ∗)‖)+ E∞(‖S(T ∗)‖)

the last equality following by applying (2) in stationarity and with f (q) = ‖qi‖. In
particular, since A(T ∗) ≈ 0, it follows that E∞(‖Qa(0)‖) ≈ E∞(‖S(T ∗)‖).

Since by definition Qa(0) = A(0) and ‖S(·)‖ is a random walk with drift REξ

independent of T ∗, we obtain E∞ (‖A(0)‖) ≈ RE(ξ)E∞ (T ∗) and so by symmetry,

E∞ (A1(0)) ≈ E(ξ)E∞
(
T ∗) . (4)

The goal is now to relate T ∗ to A1(0). Remember that active queues only advertize
a release when they are close to empty; moreover, active queues are stable and so
once all active queues are close to 0, it is only a matter of constant time for them
to simultaneously advertize a release. This suggests that the switching time should
occur around the largest time at which an active queue empties, i.e., this suggests
the approximation T ∗ ≈ τmax (recall that τmax and the τr ’s have been defined in
Sect. 2.5). The law of large numbers combined with the central limit theorem show
that τr ≈ Ar (0)/(1 − Eξ) + Ar (0)1/2 (where we neglect multiplicative constants,
possibly random, appearing in front of first- or second-order terms and that do not
influence the order of magnitude of the final result), which leads to the approximation
τmax ≈ |A(0)|/(1 −Eξ)+|A(0)|1/2. Since under P∞ queues are symmetric, we have
|A(0)| ≈ A1(0)+ A1(0)1/2 which finally leads to T ∗ ≈ A1(0)/(1 − Eξ)+ A1(0)1/2,
i.e., going back to (4),

E∞ (A1(0)) ≈ Eξ

1 − Eξ
E∞ (A1(0))+ E∞

[
A1(0)

1/2
]
.

Thus upon a concentration-like result of the kind E∞[A1(0)1/2] ≈ [E∞(A1(0))]1/2

it is reasonable to expect

(
1 − Eξ

1 − Eξ

)
E∞ (A1(0)) ≈ [E∞(A1(0))]

1/2 .

Since 1 − E(ξ)/(1 − Eξ) ≈ 1 − ρ this shows that E∞(A1(0)), and hence
E∞(‖Q(0)‖), should grow as 1/(1−ρ)2. While admittedly crude, the above heuristic
arguments provide the correct estimates, and serve as a useful guide for a rigorous
proof in Sect. 4.

As reflected in the above computations, the square factor really stems from the
relation T ∗ ≈ τ(1) + |A(0)|1/2, i.e., T ∗ occurs somehow long after τ(1), the time at
which it would be optimal to switch in order to avoid inefficient use of the resource.
But it is difficult to make the system switch exactly at τ(1) in a distributed fashion,
and here the penalty incurred is a square root. Interestingly, the penalty may seem
negligible but this small inefficiency has a significant impact in heavy traffic.
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Whenβ = +∞ the above heuristic arguments can be made rigorous, and a complete
proof is provided in the next section. When β ∈ (1,∞), we will prove in Sect. 5.1 that
active queues indeed advertize a release only when they are close to being empty, thus
justifying the above intuition. More formally, we will show in Proposition 5.1 and its
Corollary 5.5 that the random variable A(T ∗) converges weakly to a finite random
variable as the initial state blows up. We therefore conjecture that the lingering effect
will make the mean stationary delay scale like 1/(1−ρ)2 when β > 1, but a proof of
that result may involve significantly more work than in the case β = +∞. We leave
this issue open for future research, and present in Sect. 5.2 extensive simulation results
which support this conjecture.

4 Full investigation of the infinitely persistent case

In the infinitely persistent case β = +∞, the system’s performance and in particular
the impact of the lingering effect can be analyzed rigorously. The main result of this
section is given by the following theorem, which shows that the mean stationary delay
grows quadratically in 1/(1−ρ) as ρ ↑ 1.

Theorem 4.1 If β = +∞, then Q is positive recurrent for ρ < 1 and

0 < lim inf
ρ↑1

[
(1 − ρ)2E∞ (‖Q(0)‖)

]
≤ lim sup

ρ↑1

[
(1 − ρ)2E∞ (‖Q(0)‖)

]
< +∞.

(5)

The rest of this section is devoted to the proof of Theorem 4.1, and so from now
on we assume that β = +∞. Remember that in this case we have T ∗ = inf{k ≥
0 : A(k) = 0} and A(T ∗) = 0. Moreover, in this case active queues only advertize a
release when they are empty, in which case they do not incur the additional arrivals
given by ζ . In particular, active queues are independent random walks with step size
distribution ξ − 1 and reflected at the origin. Since ξ ≥ 0, these random walks belong
to the class of skip-free random walks, i.e., random walks that only decrease by −1.
In particular, it is well-known and not difficult to show that Ea(τ1) = a/(1 − Eξ) for
any a ∈ N, a fact that will be used several times in this section.

We prove Theorem 4.1 via a series of intermediate results that justify the various
approximations of the previous section. We first prove that T ∗ ≈ τmax, i.e., the time
at which the R independent random walks Ar simultaneously hit 0 is close to the first
time at which each process has visited 0 at least once.

Lemma 4.2 Let ρ0 < 2: then supa,ρ Ea (T ∗ − τmax) is finite, where the supremum is
taken over a ∈ N

R and ρ ≤ ρ0.

Proof Fix any ρ < 2, so that the active queues are stable, and T ∗ is almost surely
finite. Define the sequences (τr,k, k ≥ 0) and (σmax,k, k ≥ 0) by induction on k as
follows: for k = 0 set τr,0 = σmax,0 = 0 and for k ≥ 0,

τr,k+1 = min{i ≥ σmax,k : Ar (i) = 0} and σmax,k+1 = max
r∈R

τr,k+1.
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Remember that (since β = +∞) T ∗ is the first time at which all the queues
are simultaneously empty, thus T ∗ ≥ τmax = σmax,1. If T ∗ > σmax,1, this means
that at time σmax,1 at least one queue was not empty, and so T ∗ will be at least
as large as the first time after time σmax,1 at which every queue will have visited
0 at least once, which is by definition σmax,2. Iterating this argument, we see that
the sequence (σmax,k, k ≥ 1) is stationary (in the sense that σmax,k = σmax,k∗ for
some finite k∗ and all k ≥ k∗), and that T ∗ = σmax,k∗ . This can be rewritten as
T ∗ =∑k≥1 τmax,k with τmax,k = σmax,k −σmax,k−1 for k ≥ 1 or, since τmax,1 = τmax,
as T ∗ − τmax =∑k≥2 τmax,k . We now proceed to derive a stochastic upper bound on∑

k≥2 τmax,k by using a coupling argument.
Let (X ′

r,k, k ≥ 1, r ∈ R) and (Yr,k, k ≥ 1, r ∈ R) be two sequences of i.i.d.
random variables with common distribution the stationary distribution, say X , of the
Ar ’s; we assume moreover that these two sequences are independent from one another
and also independent from the active queues A. For each k ≥ 1 let A′

r,k be a stationary
version of Ar such that A′

r,k(0) = X ′
r,k and A′

r,k(i) ≥ Ar (i + τr,k) for every i ≥ 0.
This can be done with, e.g., the usual coupling between two processes with different
initial states and the same stochastic primitives; in this case, the ordering between the
two processes comes from the fact that Ar (τr,k) = 0 by definition of τr,k .

Consider now, for r ∈ R and k ≥ 1, the random variables X ′′
r,k defined by:

X ′′
r,k =

{
A′

r,k(σmax,k − τr,k) if σmax,k > τr,k,

Yr,k otherwise.

A moment’s thought reveals that for each k ≥ 1 the random variables (X ′′
r,k, r ∈ R)

are i.i.d. with common distribution X . Indeed, consider the process A′
r,k at the random

time σmax,k − τr,k .
If σmax,k > τr,k , the r th active queue Ar has hit 0 somewhere in the past at time

τr,k : at this time we forgot about its state by using X ′
r,k to build A′

r,k , and the remaining
time to go σmax,k − τr,k depends only on the behavior of the other queues and is thus
independent from A′

r,k . Thus in this case, considering A′
r,k(σmax,k − τr,k) amounts

to consider a stationary process sampled at an independent random time, and so this
random variable is indeed distributed according to X and is independent from the other
queues.

If on the other hand σmax,k = τr,k , this means that the r th active queue is one of the
last queue to hit 0, and again at this time we forget about this by using Yr,k which is
distributed according to X independently from everything else.

We now use again the same coupling as before, between processes sharing the same
stochastic primitives, to build for each r ∈ R and k ≥ 1 a process A′′

r,k starting at
X ′′

r,k and sharing the same stochastic primitives as A′
r,k . This leads to a collection of

processes (A′′
r,k, r ∈ R, k ≥ 1) such that: (1) for each k ≥ 1, A′′

k = (A′′
r,k, r ∈ R)

is a stationary version of A and (2) for every k ≥ 1, i ≥ 0, and r ∈ R, it holds that
Ar,k(σmax,k + i) ≤ A′′

r,k(i). In particular, τmax,k ≤ τ ′′
max,k where τ ′′

max,k = inf{i ≥ 0 :
A′′

k (i) = 0}, and so T ∗ − τmax ≤ ∑G−1
k=2 τ

′′
max,k , with the convention

∑1
2 = 0 and
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where G = inf{k ≥ 2 : τ ′′
max,k = 0}, which provides the desired stochastic upper

bound.
To conclude the proof, it remains to show that Ea(

∑G−1
k=2 τ

′′
max,k) is bounded away

from +∞ uniformly in ρ ≤ ρ0 and a ∈ N
R . Let X = (X ′

1,r , r ∈ R): then by
construction of the τ ′′

max,k’s and by definition of G, G − 2 is a geometric random
variable with parameter P(X �= 0) and conditionally on G, (τ ′′

max,k, 2 ≤ k ≤ G − 1)
are i.i.d. with common distribution τmax under PX( · | X �= 0). In particular,

Ea

(
G−1∑

k=2

τ ′′
max,k

)

= E(G − 2)EX(τmax | X �= 0) = EX(τmax)

P(X = 0)
.

Since τmax ≤ τ1 + · · · + τR , Ea(τ1) = a/(1 − Eξ) and X is a vector of R i.i.d.
random variables with common distribution X , we finally obtain the bound

Ea

(
G−1∑

k=2

τ ′′
max,k

)

≤ R

1 − Eξ

E(X)

P(X = 0)R
.

This upper bound does not depend on a, and so it remains to show that its supremum
over ρ ≤ ρ0 < 2 is finite. Since X is the stationary distribution of A1, X is equal in
distribution to X + ξ − 1{X>0}. In particular, taking the mean we obtain P(X = 0) =
1 − Eξ and so it remains to show that supρ≤ρ0

EX < +∞. To compute EX , we can
start from the equality

E

(
e−λX

)
= E

(
e−λ(X+ξ−1{X>0})

)
,

which leads to

φ(λ) = ϕ(λ)(1 − e−λ)ϕ′(0)
ϕ(λ)− 1

,

whereφ(λ) = E(e−λX ) and ϕ(λ) = E(e−λ(ξ−1)), and we have used ϕ′(0) = 1−Eξ =
P(X = 0). Using EX = −φ′(0), we can compute after some algebra

EX = ϕ′′(0)− ϕ′(0)
2ϕ′(0)

= Eξ2 + 2 − 3Eξ

2(1 − Eξ)
.

Since supρ≤ρ0
Eξ2 is finite by assumption (see the discussion at the end of Sect. 2.2),

the result is finally proved. ��
The previous lemma justifies the approximation T ∗ ≈ τmax, and to further control

τmax, we will use that (τr , r ∈ R) under Pa is equal in distribution to (Vr (ar ), r ∈ R),
where (Vr , r ∈ R) are i.i.d. random walks started at 0 and with step size distribution δ,
equal in distribution to τ1 under P1 (i.e., δ is the time needed for a random walk with
step size distribution ξ − 1 to go from 1 to 0). Then δ has finite mean 1/(1 − Eξ) and
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also finite variance, which we denote by ν. To control the maximum of random walks,
we will use the following result.

Lemma 4.3 Let (Wr , r ∈ R) be i.i.d. random walks started at 0 with step size distrib-
ution having finite mean m and finite variancew. Then for any x = (xr , r ∈ R) ∈ N

R

it holds that

E

(
max
r∈R

Wr (xr )

)
≤ m|x| + R(w|x|)1/2. (6)

Furthermore, if the step size distribution of the Wr ’s is non-negative, then

E

[(
max
r∈R

Wr (xr )

)1/2
]

≥ (m|x|)1/2 − (w/m3/2)|x|−1/2. (7)

Proof Fix some x ∈ N
R and for r ∈ R let Yr = (Wr (xr ) − mxr )/(wxr )

1/2, so that
EYr = 0 and E(|Yr |) ≤ (E(Y 2

r ))
1/2 = 1. To prove the upper bound, we start from the

equality maxr Wr (xr ) = maxr (mxr + (wxr )
1/2Yr ) which implies

max
r∈R

Wr (xr ) ≤ max
r∈R

(
mxr + (wxr )

1/2|Yr |
)

≤ m|x| + (w|x|)1/2‖Y‖.

Averaging on both sides yields (6), since E(‖Y‖) = ∑
r E(|Yr |) ≤ R. Let us

now prove the lower bound, so assume that the step size distribution of the Wr ’s is
non-negative. Since E(maxr Wr (xr )

1/2) ≥ maxr E(Wr (xr )
1/2) and

max
r∈R

(
(mxr )

1/2 − (w/m3/2)x−1/2
r

)
≥ (m|x|)1/2 − (w/m3/2)|x|−1/2,

it is enough to show that E(Wr (xr )
1/2) ≥ (mxr )

1/2 − (w/m3/2)x−1/2
r for each fixed

r ∈ R. Let

f (y) = 1 + y/2 − (1 + y)1/2

y2 , y ≥ −1,

so that, defining y = (w/(m2xr ))
1/2Yr which satisfies y ≥ −1 since Wr (xr ) ≥ 0, we

obtain

Wr (xr )
1/2 =

(
(wxr )

1/2Yr + mxr

)1/2 = (mxr )
1/2
(

1 + y/2 − y2 f (y)
)
.

Since Ey = 0, taking expectation on both sides leads to

E
(
Wr (xr )

1/2) = (mxr )
1/2 − (mxr )

1/2
E(y2 f (y)).

Since sup f = 1/2 ≤ 1 and E(y2) = w/(m2xr ), we get the result. ��
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We now prove that the process is Q stable for ρ < 1; moreover, we will need the
fact that the mean stationary number of packets is finite.

Proposition 4.4 If ρ < 1, then Q is positive recurrent and E∞(‖Q(0)‖) < +∞.

Proof Because β = +∞, we have Qi (k) = 0 for k ≥ 1: we therefore assume without
loss of generality that Qi (k) = 0 for k ≥ 0, and we only have to show that Qa

is positive recurrent and has finite stationary mean. To prove Proposition 4.4, it is
enough to prove that

lim
K→+∞ sup

qa :|qa |≥K

(
Eq
[|Qa(2)| − |qa |]

|qa |

)

< 0, (8)

where here and in the sequel, q = (qa, 0). Indeed, this shows that |·| is a Lyapunov
function, which implies positive recurrence of Qa using for instance the Foster-
Lyapunov criterion. In the terminology of [7], it also shows that |·| is a geometric
Lyapunov function, and Theorem 5 in [7] states that (8) implies that E∞[|Qa(0)|],
and in particular E∞(‖Q(0)‖), is finite. Thus we only have to prove (8). By (3) and
the fact that A(T ∗) = 0, we obtain Eq

[|Qa(1)|] = Eqa (|S(T ∗)|). Since S and T ∗ are
independent, (6) gives that

Ea(|S(T ∗)|) ≤ E(ξ)Ea(T
∗)+ Rv1/2

Ea((T
∗)1/2),

for any a ∈ N
R (recall that v is the variance of ξ , assumed to be finite). Thus after

rearranging the terms and using Jensen’s inequality, we end up with the bound

Eq
[|Qa(1)| − |qa |] ≤ −(1 − ρ)Eqa (T ∗)+�(qa)+ Rv1/2[Ea(T

∗)]1/2, (9)

where �(a) = Ea ((1 − Eξ)T ∗ − |A(0)|). We now argue that �(a) ≤ c[Ea(T ∗)]1/2

for some finite constant c independent of a. By Lemma 4.2, we have Ea(T ∗) ≤
Ea(τmax)+ c′ for some finite constant c′ independent of a. Further, since τmax is equal
in distribution to maxr Vr (ar ), (6) gives (recall that ν is the variance of the step size
distribution of the Vr ’s, which has mean 1/(1−Eξ))

Ea(T
∗) ≤ |a|

1 − Eξ
+ Rν1/2|a|1/2 + c′,

which can be rewritten as �(a) ≤ R(1 − Eξ)ν1/2|a|1/2 + c′(1 − Eξ). Since T ∗ ≥ τr

and Ear τr = ar/(1 − Eξ), we obtain |a| ≤ (1 − Eξ)Ea(T ∗) which, together with the
previous inequality, implies the existence of the desired constant c such that �(a) ≤
c[Ea(T ∗)]1/2. Defining

�(a) = (1 − ρ)Ea
(
T ∗)− (c + Rv1/2)

[
Ea
(
T ∗)]1/2 , (10)
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we can rewrite (9) as Eq
[|Qa(1)|)− |qa |] ≤ −�(qa). Using the Markov property

and (2), this gives

Eq
[|Qa(2)| − |qa |] ≤ −Eqa

(
�(qa)+ �(S(T ∗))

)
. (11)

When |qa | is large, at least one of the R coordinates of qa must be large. Since
Ea(T ∗) ≥ ar/(1 − Eξ), it is not hard to show that

lim
K→+∞ inf

qa :|qa |≥K

Eqa (�(qa)+ �(S(T ∗)))
|qa | > 0,

which completes the proof of the result. ��
We need a last technical lemma before proving Theorem 4.1.

Lemma 4.5 Let ⇒ denote weak convergence under P∞ asρ ↑ 1. Then for any r ∈ R,
Qa

r (0) ⇒ +∞. In particular, τmax ⇒ +∞ and

lim inf
ρ↑1

E∞
(
|Qa(0)|1/2 − (Qa

1(0))
1/2
)
> 0.

Proof Fix some r ∈ R, and let us first prove that Qa
r (0) ⇒ +∞. The proof relies on

a coupling argument between the system in the normal time scale (i.e., not embedded
at switching epochs) and a polling system. So let Q̃a(t) and Q̃i (t) be the number of
packets in the r th active and inactive queues, respectively, at the beginning of the t th
time slot. Furthermore, assume without loss of generality that Qi (0) = 0.

We build a process (Qa, Qi ) that will be closely related to a polling system and
which will provide a lower bound on (Q̃a, Q̃i ). We explain how to build (Qa, Qi ) on
{0, . . . , T ∗}, the construction can be repeated by induction between any two switching
times:

• At time 0 we have Qa(0) ≤ Q̃a(0) and Qi (0) = 0;
• The two processes (Q̃a, Q̃i ) and (Qa, Qi ) share the same stochastic primitives

until Qa hits 0 at time τ = inf{t ≥ 0 : Qa(t) = 0}. Since Qa(0) ≤ Q̃a(0), we
have in particular τ ≤ T ∗;

• On {τ , . . . , T ∗ − 1}, the two processes Qa and Qi are frozen, i.e., Qa(t) = Qa(τ )

and Qi (t) = Qi (τ ) for τ ≤ t < T ∗;
• At time T ∗ the active and inactive queues are switched for both (Q̃a, Q̃i ) (by

definition of T ∗) and (Qa, Qi ) (by construction).

Since Qi and Q̃i share the same stochastic primitives up to time τ , we have Qi (τ ) =
Q̃i (τ ); since Qi is frozen afterward while Q̃i continues to increase, and the active
and inactive queues are switched at time T ∗, we obtain Qa(T ∗) ≤ Q̃a(T ∗). Since
moreover Qi (1) = 0, it follows by induction that Qa(k) ≤ Q̃a(k) for every k ≥ 0.
Let τ (k) be the kth time at which Qa hits 0 and T ∗(k) be the kth switching time: then

Qa
r (k) = Q̃a(T ∗(k)) ≥ Qa(T ∗(k)) = Qi (τ (k)) (12)



Queueing Syst

(the last equality is only valid if τ(k) < T ∗(k); if τ(k) = T ∗(k) then Qi (τ (k)) is to be
understood as the value of the inactive queue just before the switch occurs). Finally,
we note that by construction, the process (Qi (τ (k)), k ≥ 0) is equal in distribution to
the process (P(γ (k)), k ≥ 0) where:

• P(t) for t ≥ 0 is the total number of packets in the kth time slot of a two-queue
polling system, operating under the exhaustive service discipline, with zero switch-
over time, where time is discrete and arrivals in each time slot in each queue are
distributed according to ξ ;

• γ (k) is the kth time at which a queue empties.

Next, we note that the process (P(γ (k)), k ≥ 0) is a branching process with
immigration at 0, the offspring distribution η of the branching process being equal in
distribution to S1(τ1) under P1, i.e., η is the number of packets arriving in the inactive
queue during the time needed to make the state of the active queue decrease by one.
This property can be seen directly from the system’s dynamics; at a higher level, it
also comes from the fact that the exhaustive service discipline satisfies the well-known
branching property [18]. In any case, we can adapt the proof of [6] to show that the
stationary distribution of (P(γ (k)), k ≥ 0) converges weakly to +∞ as ρ ↑ 1. In
view of (12) this shows that Qa

r (0) ⇒ +∞, which concludes the proof of the first
claim of the lemma. The second claim is then immediate, and so it remains to prove
the third and last claim. Using a1/2 − b1/2 = (a − b)/(a1/2 + b1/2), we can rewrite

|Qa(0)|1/2 − (Qa
1(0))

1/2 = |Qa(0)| − Qa
1(0)

(Qa
1(0)+ 1)1/2

× (Qa
1(0)+ 1)1/2

|Qa(0)|1/2 + (Qa
1(0))

1/2 ,

which by (3), is equal in distribution to

|S(T ∗)| − S1(T ∗)
(S1(T ∗)+ 1)1/2

× (S1(T ∗)+ 1)1/2

|S(T ∗)|1/2 + (S1(T ∗))1/2

= max
r∈R

(
Sr (T ∗)− S1(T ∗)
(S1(T ∗)+ 1)1/2

)
× (S1(T ∗)+ 1)1/2

|S(T ∗)|1/2 + (S1(T ∗))1/2
.

Since S and T ∗ are independent and T ∗ ⇒ +∞ (as a result of the second claim
and T ∗ ≥ τmax), the law of large numbers implies that

(S1(T ∗)+ 1)1/2

|S(T ∗)|1/2 + (S1(T ∗))1/2
⇒ 1

2
,

while the central limit theorem implies that

Sr (T ∗)− S1(T ∗)
(S1(T ∗)+ 1)1/2

=
(

Sr (T ∗)− T ∗
Eξ

(T ∗)1/2
− S1(T ∗)− T ∗

Eξ

(T ∗)1/2

)
×
(

S1(T ∗)+ 1

T ∗

)−1/2

converges weakly to the difference of two independent normal random variables.
Gathering these results, we obtain the weak convergence of |Qa(0)|1/2 − (Qa

1(0))
1/2
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toward a non-negative random variable with strictly positive mean. Invoking Fatou’s
lemma completes the proof. ��

Remark Although the stationary distribution of the process P introduced in the previ-
ous proof scales like 1/(1−ρ) as ρ ↑ 1, using similar techniques as in [6] one can show
that the stationary distribution P(γ (∞)) of the embedded process (P(γ (k)), k ≥ 0)
scales like 1/(1−ρ)U with U a random variable uniformly distributed on (0, 1), in the
sense that log P(γ (∞))/ log(1/(1 − ρ)) converges weakly to U as ρ ↑ 1.

Proof of Theorem 4.1 Since β = +∞, we have E∞(‖Q(0)‖) = E∞(‖A(0)‖) =
RE∞(A1(0)) and so we only need to prove the two inequalities

lim sup
ρ↑1

[
(1 − ρ)2E∞ (A1(0))

]
< +∞ and lim inf

ρ↑1

{
(1 − ρ)E∞

[
A1(0)

1/2]
}
> 0.

(13)

Indeed, the first one directly implies the upper bound in (5) while the second one
implies the corresponding lower bound by Jensen’s inequality.

Proof of the first inequality in (13) Starting from (4), using that Ea(τ1) = a/(1−Eξ),
subtracting on both sides E(ξ)E∞(τ1) (for this precise operation we need the finiteness
of the stationary first moment proved in Proposition 4.4, to avoid an indetermination
of the kind ∞ − ∞) and dividing by Eξ , we end up with

1

Eξ

(
1 − Eξ

1 − Eξ

)
E∞ (A1(0)) = E∞

(
T ∗ − τ1

)
.

Then, adding and subtracting τmax in the right hand side, and using that Eξ = ρ/2,
we obtain

gρ(1 − ρ)E∞ (A1(0)) = E∞ (τmax − τ1)+ E∞
(
T ∗ − τmax

)
,

with gρ = 4/(ρ(2 − ρ)). Thus in view of Lemmas 4.2 and 4.5, to prove the first
inequality in (13) we only have to show that

lim sup
ρ↑1

(
E∞ (τmax − τ1)

[E∞(A1(0))]1/2

)
< +∞. (14)

Applying (6) to τmax under Pa (equal in distribution to maxr Vr (ar )), we obtain the
inequality Ea (τmax − τ1) ≤ (|a| − a1)/(1 − Eξ)+ Rν1/2|a|1/2. Integrating over the
stationary distribution of Q and using Jensen’s inequality, we obtain

E∞ (τmax − τ1) ≤ 1

1 − Eξ
E∞ (|A(0)| − A1(0))+ Rν1/2 [E∞ (A1(0))]

1/2 .
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In particular, to prove (14) it is enough to show that

lim sup
ρ↑1

(
E∞ (|A(0)| − A1(0))

[E∞(A1(0))]1/2

)
< +∞. (15)

We have already shown in the proof of Proposition 4.4 that

E∞ (|A(0)|) = E∞
(|S(T ∗)|) ≤ E(ξ)E∞(T ∗)+ Rv1/2 [

E∞(T ∗)
]1/2

,

and since E∞(A1(0)) = E(ξ)E∞(T ∗) this gives

E∞ (|A(0)| − A1(0)) ≤ Rv1/2 [E∞(A1(0))/Eξ ]1/2 .

This proves (15) which completes the proof of the first inequality in (13).

Proof of the second inequality in (13) We have

E∞
[
(Qa

1(0))
1/2] = E∞

[
(S1(T

∗))1/2
] ≥ E∞

[
(S1(τmax))

1/2].

Applying (7) (with R = 1) to S1(τmax) by using the independence between S1 and
τmax, we obtain

E∞
[
(Qa

1(0))
1/2] ≥ (Eξ)1/2E∞

[
(τmax)

1/2]− c E∞
[
(τmax)

−1/2
]
,

for some finite constant c independent of ρ. Applying again (7) to τmax we obtain

E∞
[
(Qa

1(0))
1/2] ≥

(
Eξ

1 − Eξ

)1/2

E∞(|Qa(0)|1/2)

− c′
E∞(|Qa(0)|−1/2)− c′

E∞
[
(τmax)

−1/2
]

for some constant c′, still independent from ρ. Subtracting (Eξ/(1 − Eξ))1/2E∞
(Qa

1(0)
1/2) on both sides we finally end up with

hρ(1 − ρ)E∞
[
(Qa

1(0))
1/2] ≥

(
Eξ

1 − Eξ

)1/2

E∞
(
|Qa(0)|1/2 − (Qa

1(0))
1/2
)

− c′
E∞

(
|Qa(0)|−1/2

)
− c′

E∞
[
(τmax)

−1/2
]
,

with hρ = (1 − (ρ/(2 − ρ))1/2)/(1 − ρ) → 1 as ρ → 1. We can then invoke the
results of Lemma 4.5 to conclude the proof of the second inequality in (13), which
concludes the proof of the theorem. ��
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5 Extension to the strongly persistent case

In this section we present various arguments supporting the conjecture formulated at
the end of Sect. 3 that Theorem 4.1 should remain valid in the strongly persistent
case β ∈ (1,∞). On the one hand, we prove in Proposition 5.1 that active queues
only advertize a release when they are close to empty, which is the main theoretical
result of this section. We also provide a corollary to Proposition 5.1 (Corollary 5.5
in Sect. 5.1.3) that brings closer the two cases β = +∞ and β > 1. On the other
hand, we present extensive simulation results in Sect. 5.2 that support our conjecture.
Finally, based on these theoretical and simulation results, we elaborate in Sect. 5.3 on
possible interesting heavy-tailed phenomena that may arise for 1 < β < 2.

In the rest of this section we let T1 be the time at which A1 advertizes a release for
the first time.

Proposition 5.1 If ρ < 2 and β > 1, then (A1(T1), T1 − τ1) under Pa1 converges
weakly as a1 → +∞ to a non-degenerate random variable.

By non-degenerate, we mean a random variable (X, Y ) ∈ N × Z such that both
X and Y are non-deterministic and almost surely finite (an explicit expression for the
weak limit of (A1(T1), T1 − τ1) is given in Lemma 5.3).

5.1 Proof of Proposition 5.1

Fix in the rest of this subsection some ρ < 2. The proof of Proposition 5.1 proceeds in
two steps: in the first step we show that the proof of Proposition 5.1 reduces to proving
a simpler property of some particular random walk [see (16)]. In the second step we
prove that this property holds when β > 1.

5.1.1 First step

Since before time T1, the active queue A1 does by definition not advertize any release,
it is enough to prove Proposition 5.1 in the case ζ = 0, which we therefore assume
in this subsubsection and the following one. In particular, A1 is a random walk with
step size distribution ξ −1 reflected at 0. The reduction of the proof of Proposition 5.1
to proving (16) relies on the following coupling of the processes A1 for all possible
initial states a ≥ 0.

Let V and W ↑ be two independent processes with the following distribution. Let
V be a version of A1 under P0, i.e., (V (k), k ≥ 0) is a random walk started at 0, with
step size distribution ξ − 1 and reflected at 0.

Let W ↑ be a random walk started at 0, with step size distribution 1 − ξ and con-
ditioned on never visiting 0 after time 0: since E(1 − ξ) > 0 this conditioning is
well-defined. Let moreover κ(a) = max{k ≥ 0 : W ↑(k) = a} be the time of the last
visit to a ∈ {0, 1, . . . ,∞} (to be understood as κ(a) = +∞ for a = +∞), so that
κ(a) is almost surely finite if a is finite. Let finally W ↑

a be the process W ↑ stopped at
κ(a), i.e., W ↑

a (k) = W ↑(k) if k ≤ κ(a) and W ↑
a (k) = W ↑(κ(a)) = a if k ≥ κ(a).
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Lemma 5.2 Extend A1 on Z by setting A1(k) = A1(0) for k ≤ 0, and define the two
processes A+ = (A1(τ1 + k), k ≥ 0) and A− = (A1(τ1 − k)), k ≥ 0). Then for any
finite a ≥ 0, (A+, A−) under Pa is equal in distribution to (V,W ↑

a ).
In particular, as a → +∞, (A+, A−) under Pa converges weakly to (V,W ↑).

Proof That A+ is equal in distribution to V and is independent from A− follows from
the strong Markov property at time τ1. That A− is equal in distribution to W ↑

a comes
from duality. The weak convergence result then follows from the fact that κ(a) → +∞
almost surely as a → +∞, so that (V,W ↑

a ) → (V,W ↑) almost surely as a → +∞.
��

Essentially, this representation of A1 shifts the origin of time at τ1: A+ looks at
A1 from time τ1 forward in time, while A− looks at A1 from τ1 backward in time.
Moreover, this representation couples all the processes A1 with different initial states
on the same probability space, which yields a simple representation for the law of
(A1(T1), T1 − τ1). Let in the sequel Z = (Z(k), k ∈ Z) be the following process
(indexed by Z): Z(k) = V (k) if k ≥ 0 and Z(k) = W ↑(−k) if k ≤ 0. The previous
coupling immediately implies the following result.

Lemma 5.3 Let (Uk, k ∈ Z) be i.i.d., uniformly distributed in [0, 1], independent
from Z, and for 0 ≤ a ≤ +∞ and k ∈ Z let

Da,k =
{

0 if k < −κ(a),
1{Uk<ψ(Z(k))} else,

and T Z
a = inf

{
k ∈ Z : Da,k = 1

}
. Then for any finite a ≥ 0, (A1(T1), T1 − τ1) under

Pa is equal in distribution to (Z(T Z
a ), T Z

a ) and in particular, it converges weakly as
a → +∞ to (Z(T Z∞), T Z∞) (to be understood as Z(T Z∞) = +∞ if T Z∞ = −∞).

Proof The equality in law between (A1(T1), T1 − τ1) and (Z(T Z
a ), T Z

a ) is clear from
the construction, and not difficult to formalize. Moreover, T Z

a is by construction
decreasing in a and so its limit as a → +∞ exists. It is not hard to show that its
limit is exactly T Z∞ and by continuity we deduce that Z(T Z

a ) → Z(T Z∞) as a → +∞,
which implies the result. ��

Thus to prove Proposition 5.1, we only have to establish that |T Z∞| is (almost
surely) finite. Since V is positive recurrent and starts at 0, it is clear that
min

{
k ≥ 0 : D∞,k = 1

}
is finite and so to prove that |T Z∞| is finite, we only have

to demonstrate that the random variable inf
{
k ≤ 0 : D∞,k = 1

}
is almost surely

finite. Going back to the definition of D∞,k , we see that we have to prove that
sup
{
k ≥ 0 : U−k < ψ(W ↑(k))

}
is finite, which informally means that W ↑ advertizes

a release only finitely many times.
So in the sequel, we consider (Uk, k ≥ 0) i.i.d. random variables, uniformly dis-

tributed in [0, 1] and independent of W ↑, and we define

N =
∑

k≥0

1{Uk<ψ(W↑(k))},
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which can be intuitively interpreted as the number of times W ↑ advertizes a release.
The proof of Proposition 5.1 will thus be complete if we can prove that

P(N < +∞) = 1. (16)

5.1.2 Second step

We now assume that β > 1 (the results of the previous subsubsection indeed hold
for any function ψ) and we prove that P(N ≥ n) → 0 as n → +∞, which will
prove (16). By definition,

P (N = 0) = P

(
Uk > ψ(W ↑(k)), k ≥ 0

)
,

and since W ↑ and the Uk’s are independent this gives

P (N = 0) = E

⎡

⎣
∏

k≥0

(
1 − ψ(W ↑(k))

)
⎤

⎦.

Let a ≥ 0: introducing ϕ(a) = − log(1 − ψ(a)) and L↑(a) = ∑
k≥0 1{W↑(k)=a},

the local time at level a, we obtain

P (N = 0) = E

⎡

⎣exp

⎛

⎝−
∑

a≥0

ϕ(a)L↑(a)

⎞

⎠

⎤

⎦. (17)

Lemma 5.4 The quantity supa≥0 E(L↑(a)) is finite. In particular, P(N = 0) > 0.

Proof Let W − be a random walk with step size distribution ξ − 1, started at 0 and
independent from W ↑, and for k ∈ Z define W ∗(k) = W ↑(k) if k ≥ 0 and W ∗(k) =
W −(−k) if k ≤ 0. Thus, defining L∗(a) = ∑

k∈Z
1{W ∗(k)=a}, we have the obvious

inequality L↑(a) ≤ L∗(a), and so we only have to prove that supa∈Z E(L∗(a)) is
finite.

It is clear that L∗ stays the same if W ∗ is shifted in time, and that shifting L∗
in time amounts to shifting W ∗ in space. Moreover, for any w ∈ Z the process
(W ∗(k)+ w, k ∈ Z) shifted at the time of its last visit to 0 is equal in distribution to
W ∗. Combining these facts, we see that L∗ is a stationary sequence and in particular,
supa∈Z E(L∗(a)) = E(L∗(0)). By the strong Markov property, L∗(0) is a geometric
random variable with parameter the probability that a random walk started at −1 and
with step size distribution ξ−1 never visits 0. Since Eξ < 1, this probability is strictly
positive and so E(L∗(0)) is finite. This proves the finiteness of supa E(L↑(a)).

As for P(N = 0), we have

E

⎛

⎝
∑

a≥0

ϕ(a)L↑(a)

⎞

⎠ ≤ sup
a

E(L↑(a))
∑

a≥0

ϕ(a),
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and since ϕ(a) ∼ a−β as a → +∞ and β > 1, the sum
∑

a ϕ(a) is finite. In view of
the last display, this implies that the random variable

∑
a ϕ(a)L

↑(a) is almost surely
finite. This proves P(N = 0) > 0 because of (17) and concludes the proof of the
lemma. ��

We now prove that P(N ≥ n) → 0 as n → +∞. Let W be a random walk with
step size distribution 1 − ξ and I = infk≥1 W (k). Then, W ↑ is by definition equal in
distribution to W under P0( · | I ≥ 1) (where the subscript refers to the initial state
of W ). Let moreover Bn be the time at which W advertizes a release for the nth time
(which is well defined in the event {I ≥ 1}), so that

P(N = n) = b P0 (Bn < +∞, Bn+1 = +∞, I ≥ 1) ,

with b = 1/P0(I ≥ 1). Writing the event {I ≥ 1} as the union between the two events
{inf1≤k≤Bn W (k) ≥ 1} and {infk>Bn W (k) ≥ 1}, the strong Markov property at time
Bn entails

P(N = n) = b E0

(
p(W (Bn)); Bn < +∞, inf

1≤k≤Bn
W (k) ≥ 1

)
,

with p(w) = Pw(N = 0, I ≥ 1). Coupling W under Pw with a version of W under
P0 that stays below it, we see that p(w) is increasing in w and so

P(N =n)≥bp(0)P0

(
Bn<+∞, inf

1≤k≤Bn
W (k)≥1

)
≥ bp(0)P0 (Bn < +∞, I ≥ 1) .

This last lower bound is equal to p(0)P0(Bn < +∞ | I ≥ 1) which by definition
is equal to p(0)P(N ≥ n). Since p(0) = P(N = 0)/b is> 0 by Lemma 5.4, dividing
by p(0) leads to

P(N ≥ n) ≤ b P(N = n)

P(N = 0)
.

Since P(N = n) → 0, this finally proves (16) and hence Proposition 5.1.

5.1.3 Corollary to Proposition 5.1

From Proposition 5.1, which is concerned with the behavior of one active queue, one
can deduce the behavior of A(T ∗) and T ∗. The intuition behind the following result
is clear: Proposition 5.1 shows that an active queue only advertizes releases when it
is of order 1. Thus when considering several active queues and the initial state of at
least one of them blows up, by the time the last queue to advertize a release does so,
all the other queues are already in their stationary regime. From there on, it thus only
takes an additional (random) time of order 1 for all the queues to advertize a release
simultaneously. We therefore omit the proof of the following result, which consists
of a direct translation of this intuition and can be formalized using similar arguments
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as in the proof of Lemma 4.2 (it is actually easier, since we make no claim about the
mean behavior of the random variables involved).

Corollary 5.5 Assume that ρ < 2 and that β > 1, and consider any sequence of
initial states an = (an,r ) such that maxr an,r → +∞: then (A(T ∗), T ∗ −τmax) under
Pan converges weakly as n → +∞ to a non-degenerate random variable.

5.2 Simulation results

In this subsection we present simulation results which complement the theoretical
result of the previous subsection and support our claim that Theorem 4.1 remains
valid for β > 1. Based on simulation, we discuss stability issues and the asymptotic
behavior of E∞(‖Q(0)‖) in the heavy-traffic regime ρ ↑ 1.

Proposition 4.4 and Theorem 4.1 show that the stability of the system and the
order of magnitude of E∞(‖Q(0)‖) are not affected by the precise value of R or by
the precise distribution of ξ (as long as R ≥ 2 and E(ξ2) < +∞). Proposition 5.1
suggests a similar result, and also that the precise distribution of ζ will not matter
as far as stability, and the order of magnitude of E∞(‖Q(0)‖) are concerned. We
thus performed our simulation with ξ a geometric random variable with parameter
2/(2 + ρ) and P(ζ = 1) = 1. We ran simulations using different distributions for ξ
and ζ as well, including extreme cases such as distributions with infinite third moment
(even infinite second moment for ζ ), that yielded qualitatively similar results.

5.2.1 Simulation results for stability

It is straightforward to prove that Q is transient if ρ > 1, irrespective of the value of
β ∈ (0,∞]. Indeed, if Q̃(t) is the number of packets at the beginning of the t th time
slot, Q̃ is lower bounded by a random walk with drift R(ρ − 1). Thus when ρ > 1,
we have Q̃(t) → +∞ as t → +∞ and since (‖Q(k)‖, k ≥ 0) is a subsequence of
(Q̃(t), t ≥ 0) this proves the transience of Q in this case.

For ρ < 1 we present a heuristic argument which suggests that Q is stable. If the
active queues are in state a = (ar ) with ar > 0 for every r , the variation of the mean
number of packets in the system over the next time slot is equal to

−R

(

1 − ρ − z
R∑

r=1

ψ(ar )

)

(remember that z = Eζ ). Since ψ(a) → 0 as a → +∞, the drift is negative, close to
−R(1 − ρ), when each ar is large enough. The problem in formalizing this argument
is twofold: first, in order to prove stability, one must be able to control every possible
initial configuration, not only those where every ar is large (note however that because
of symmetry, it is natural to expect all ar ’s to be large or small simultaneously); second,
this argument considers the system on the normal time scale, whereas we are interested
in the system embedded at switching times.
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(a) (b)

Fig. 2 Total number of packets at switching times: ‖Q(k)‖ versus k for R = β = 2 and a ρ = 0.99;
b ρ = 1.01

In addition to this heuristic argument, simulation results strongly support stability
of the system for ρ < 1. Indeed, Fig. 2 shows the evolution of ‖Q(k)‖, starting at
Q(0) = 0, in the case R = β = 2 and for two values of ρ: ρ = 0.99 and ρ = 1.01.
When ρ = 0.99, Fig. 2a shows that ‖Q(k)‖ fluctuates between 2,000 and 8,000 for
values of k up to 15,000. In contrast, Fig. 2b shows for ρ = 1.01 that ‖Q(k)‖ increases
until we stop the simulation when 1.5 · 106 packets are present in the system, which
only takes about 300 switching times. Note that for a transient system we would expect
that, when the queues are large, the total queue size grows by a constant amount on
average in every time slot, and that the time between two consecutive switching times
increases. This explains the super-linear growth of ‖Q(k)‖ as we consider the system
at switching times. In fact, the reasoning in Sect. 3 suggests that when ‖Q(k)‖ is large
we have ‖Q(k + 1)‖/‖Q(k)‖ ≈ Eξ/(1 − Eξ). This gives a heuristic explanation for
the exponential growth (at rate ρ/(2 − ρ) > 1) observed in Fig. 2b. All in all, this is
in line with the known transience of Q for ρ = 1.01.

In general, it may be difficult to distinguish between positive recurrent and transient
systems based on simulation results. Here however, Q obeys two clearly distinguish-
able types of behavior: stochastic fluctuations on a long time interval when ρ < 1
(Fig. 2a), and almost deterministic exponential growth when ρ > 1 (Fig. 2b). This
phase transition is a further indication of the stability and instability of the system for
ρ < 1 and ρ > 1, respectively.

5.2.2 Simulation results for the asymptotic behavior of E∞(‖Q(0)‖)

Having discussed the stability of Q when ρ < 1, we now discuss the asymptotic
behavior of E∞(‖Q(0)‖). To quantify its growth, it is convenient to introduce the
notion of scaling exponent.

Definition 5.6 We call scaling exponent the number α such that

lim
ρ↑1

(
log E∞(‖Q(0)‖)
log(1/(1 − ρ))

)
def.= α. (18)
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Our interest in the scaling exponent comes from an expected polynomial growth of
E∞(‖Q(0)‖) in heavy traffic. In general, we expect as ρ ↑ 1 a behavior of the kind

E∞ (‖Q(0)‖) ≈ C

(1 − ρ)α
(19)

for some finite constant C > 0. Note that such a behavior would be stronger than (18),
but that it is consistent with the result of Theorem 4.1. We have proved in the case
β = +∞ that the scaling exponent exists, and is equal to 2. In general we will assume
that it exists and will be interested in discussing its value.

The scaling exponent depends on the four model parameters R, ξ , ζ andβ. However,
as explained in the beginning of Sect. 5.2, we will mostly be interested in its dependence
on β and thus write α(β) when the other three parameters are kept fixed. In fact,
our results suggest that α does not depend on these other parameters. As explained
in Sect. 3, our main claim is that the lingering effect makes E∞(‖Q(0)‖) grow as
1/(1−ρ)2 when β > 1. Formally, this amounts to conjecture that the scaling exponent
(exists and) satisfies α(β) = 2 for β > 1.

In addition to the heuristic arguments presented in Sect. 3, we now present some
simulation results supporting this claim. From the results in Fig. 2 we find by averaging
over time E∞(‖Q(0)‖) ≈ 4.700 for ρ = 0.99, corresponding in view of the defini-
tion (18) of the scaling exponent to the estimate α(2) ≈ log 4.700/ log 100 ≈ 1.84.
To facilitate the discussion we define in the sequel

F(ρ, β) = log E∞(‖Q(0)‖)
log(1/(1 − ρ))

, β ∈ (0,∞], ρ < 1. (20)

Then, the scaling exponent α(β) is defined in (18) via a limiting procedure, namely
α(β) = F(1−, β) = limρ↑1 F(ρ, β). Using the results of Fig. 2a to estimate α(2)
amounts for using the approximation F(1−, 2) ≈ F(0.99, 2). In order to check
whether this approximation is valid, we performed the same simulation for differ-
ent values of ρ. In Fig. 3 the value of F(ρ, 2) is plotted for ρ ∈ (0.87, 0.999). We
plotted F(ρ, 2) against log(1/(1−ρ)) in order to “dilate” time around the value ρ = 1
that we are interested in and also because it is natural to regress F(ρ, 2), as function
of ρ, against log(1/(1 − ρ)) as we discuss now.

Figure 3 shows that the limit F(1−, 2) seems to exist, but that F(ρ, 2) is still
significantly increasing for ρ = 0.999. Thus F(0.999, 2), and in particular F(0.99, 2),
cannot be used as an accurate estimate of α(2). It is numerically difficult to run a
simulation for even higher values of ρ, and so to circumvent this problem, we use the
simulation results displayed in Fig. 3 to find the asymptotic value of F(ρ, 2). To do
so, we use the approximation (19) to infer the form of F(ρ, β), namely

F(ρ, β) ≈ α(β)+ log C

log(1/(1 − ρ))
, (21)

which suggests, as mentioned above, to regress F(ρ, 2) against a + b/x in the scale
x = log(1/(1−ρ)). We performed this regression for the curve displayed in Fig. 3 and
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Fig. 3 Approximating α(2) for
R = 2. The solid line represents
F(ρ, 2) versus log(1/(1−ρ))
obtained by simulation from the
definition (20) of F ; the dashed
line represents the best
regression of F(ρ, 2) against
x �→ a + b/x in the scale
x = log(1/(1−ρ)) [see (21)]

Fig. 4 α(β) (obtained by
simulation) versus β for
R ∈ {2, 3, 5}

found an optimal value a = 1.9984, which gives an estimate for the scaling exponent
α(2) ≈ 1.9984 in very good agreement with our conjecture.

Applying the same approach, we can find an estimate for α(β) for any value of β.
The results for R = 2, 3 and 5 are given in Fig. 4, and confirm that R does not seem
to influence α(β). Further, the approximation α(β) ≈ 2 appears to be very good for
any β > 1.2, namely, the estimated value of α(β) is at most 3 % away from 2 for any
β > 1.2 and any R = 2, 3, 5.

5.3 More on the case β > 1, β ≈ 1

The previous simulation results show a rather fuzzy behavior of α(β) for β close to 1.
Indeed, the curves shown in Fig. 4 seem stable for β > 1.2 but much less so as β gets
closer to 1. We believe that this may be due to interesting heavy-tailed phenomena.
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Fig. 5 Approximating α(1.2)
for R = 2. The solid line
represents F(ρ, 2) versus
log(1/(1−ρ)); the dashed line
represents the best regression
obtained by regressing F(ρ, 2)
past its infimum as in (21)

The shape of the function ρ �→ F(ρ, β) depicted in Fig. 3 is typical for large
values of β, say β > 1.2. In particular, this function is increasing which makes the
regression of F against 1/ log(1/(1 − ρ)), such as in (21), reasonable. However, as
β gets closer to one, the shape of this function changes. For instance, Fig. 5 shows
simulation results for F(ρ, 1.2) which are representative of F(ρ, β) for small β,
say 1 < β < 1.2. Noticeably, the function F(ρ, 1.2) is not monotone in ρ and so the
approximation (21) cannot be valid for every ρ. Rather, we find that F(ρ, β) decreases
and then increases, and that the regression against 1/ log(1/(1 − ρ)) is only accurate
past the minimum.

Regressing the curve obtained in Fig. 5 past the minimum leads to the approximation
α(1.2) ≈ 1.94, which is still very much in line with the conjecture α(1.2) = 2.
However, the point where the minimum of the function ρ �→ F(ρ, β) is attained
shifts to the right when β gets closer to 1, leaving us with less points against which
to regress. In particular, for β < 1.2 one would need to simulate the system at loads
higher than 0.999 to get accurate results.

We suspect that this numerical instability is caused by heavy-tailed phenomena that
seem to appear for β < 2. More precisely, inspecting the proofs of Proposition 4.4
and Theorem 4.1, one sees that Corollary 5.5 is not strong enough for the proofs of
the case β = +∞ to go through directly. Indeed, instead of controlling the behavior
of A(T ∗) and T ∗ in distribution, one needs (at least, with the proposed proof strategy)
to control their mean behavior. Let us do a small computation: let T Z∞ be the random
variable introduced in Lemma 5.3, which is the weak limit of T1 − τ1, and let B↑ be
the first time the process W ↑ advertizes a release. Then

E(|T Z∞|; T Z∞ ≤ 0) = E(B↑; B↑ < +∞) =
∑

k≥0

kP(B↑ = k),

and as before, we have

P(B↑ = k) = E

[

ψ(W ↑(k))
∏

i<k

(1 − ψ(W ↑(i)))
]

.
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The arguments of Sect. 5.1 show that the random variable
∏

i≥0(1 − ψ(W ↑(i)))
is finite. In view of the last expression, it therefore seems that the tail behavior of
B↑ is dictated by ψ(W ↑(k)) as k → +∞ and since W ↑(k) ≈ k(1 − Eξ) by the
law of large numbers, we should obtain P(B↑ = k) ≈ k−β as k → +∞. When
β < 2, this suggests that B↑, and in particular |T Z∞|, has infinite mean, although both
random variables are almost surely finite for β > 1. It is possible to use this result to
show that the (almost surely finite) weak limits (as the initial state grows to +∞) of
A(T ∗) and T ∗ −τmax have infinite first moment. This potentially invalidates the back-
of-the-envelope computations of Sect. 3, and so more care is needed. For instance,
simulation experiments for β = 1.2 and R = 2 suggest that Ea1(A1(T ∗)) grows as
a0.4

1 as a1 → +∞, whereas A1(T ∗) converges weakly to a finite random variable.

6 Concluding remarks and suggestions for further research

Motivated by the poor delay performance of “cautious” activation rules in queue-
based schemes for distributed medium access control, we investigated more aggressive
schemes. Our main contribution lies in highlighting a new effect that we called the
lingering effect and in studying the performance ramifications of this effect for a
special topology. In this section we explain and discuss various directions in which
our framework could possibly be extended, and also relate our results to those of [9].

First of all, it would be straightforward to extend our results to the following asym-
metric case: instead of having R queues in each group with identically distributed
arrival processes across queues, we have two groups of R1 and R2 queues and the
arrivals into the kth queue of group g have distribution ξg,k . We chose to study a
symmetric scenario for technical reasons, since then there is no need to label queues
individually. In this setting, the lingering effect will occur whenever, informally speak-
ing, the two dominant queues of at least one of the two groups have the same arrival rate.
For instance, the delay will scale like 1/(1−ρ)2 withρ = maxk E(ξ1,k)+maxk E(ξ2,k)

if the condition E(ξ1,1) = E(ξ1,2) ≥ maxg,k E(ξg,k) is satisfied.
We believe that the insights provided by the complete bipartite constraint graph

carry over to more general topologies. Note that for a general topology, our model
needs to be amended, since one needs then to specify more precisely how queues
become active. One can for instance think of queues going into back-off, and then
trying to acquire the shared resource at some rate. We conjecture that whenever the
constraint graph is not complete, and thus contains an independent set of several nodes,
the lingering effect can rear its head, provided some algebraic condition between the
arrival rates at the various queues is satisfied. It would be very interesting to be able to
formulate a precise and formal conjecture reflecting this intuition, and most probably
quite challenging to prove it.

To conclude, we would like to put our results in perspective by linking them to
those of [9]. On the one hand, our results show that the delay performance may be
greatly improved by considering more aggressive schemes (compared to maximally
stable algorithms known earlier). On the other hand, Ghaderi et al. [9] have shown
that, by doing so, one may lose a fraction of the stability region. But in the example
analyzed in [9], one only loses a small fraction of the stability region, namely about
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3 %. Thus, our work suggests a potentially interesting trade-off between stability and
delay performance, namely that more aggressive schemes may lead to a small loss of
stability, whereas the delay in this stability region is much better than the delay for a
maximum stable algorithm.
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