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Performance Analysis of Data Traffic in Small
Cells Networks with User Mobility

Philippe Olivier, Florian Simatos and Alain Simonian

Abstract We analyze the impact of inter-cell mobility on data traffic performance
in dense networks with small cells. To this end, a multi-class queuing system with
impatience is proposed as a generic model that captures mobility through the sojourn
time of users in the cell. We provide mathematical proofs for the stability and the
regularity of this multi-class queuing system. We then show how the performance
of a homogeneous network is amenable to the application of the generic model to
a single representative cell. This model is applied to derive the throughput of both
mobile and static users, along with the handover probability. Numerical evaluation
and simulation results are provided to assess the accuracy of the approach; we show,
in particular, that both classes of users benefit from a throughput gain induced by
the opportunistic displacement of mobile users among cells.

Key words: Cellular Networks; Mobility; Traffic; Performance Evaluation; Markov
Processes; Queue Stability

1 Introduction

To address the permanent increase of mobile traffic, the capacity of networks can be
upgraded by a massive deployment of small cells. This solution is notably envisaged
by network operators for the LTE-A heterogeneous networks [9] or Ultra Dense
Networks scenarios for future 5G networks [15]. In dense networks, however, the
amount of handover generated by users mobility will increase with a notable impact
on signaling overhead, and possibly on the throughput of data transfers.
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Orange Labs, 44 avenue de la République, 92320 Châtillon, France, e-mail:
phil.olivier@orange.com, alain.simonian@orange.com

Florian Simatos
ISAE Supaero, 10 avenue Edouard Belin, 31000 Toulouse, France, e-mail: florian.simatos@isae.fr

1



2 Philippe Olivier, Florian Simatos and Alain Simonian

In this context, the present paper aims at evaluating the impact of inter-cell mo-
bility on the performance of data traffic in dense networks. Specifically, considering
small cells enables us to neglect the possible spatial variations of intra-cell capac-
ities and thus to focus on the impact of inter-cell mobility itself. Furthermore, we
decouple the performance evaluation problem from the modeling of the user dis-
placement in the plane, the latter topic being out of scope of the present paper (see
[13, 17] for current displacement models). Mobility is here supposed to be captured
through the distribution of the users residual sojourn time in a cell, that is, the time
a mobile user is physically present in the cell once its transmission has started.

Given this distribution, we construct a flow-level queuing model that allows us to
derive the essential performance metrics in each cell, namely the mean throughput
and the handover probability. The generic tool of our model is a multi-class Proces-
sor Sharing (PS) queue with “impatient” customers; the impatience here accounts
for the mobility of customers from cell to cell. This generic model can then be ap-
plied to each individual cell to solve the set of flow equations, which characterize
the handover rates between cells, and compute the performance indicators.

To our knowledge, the PS queue with impatience has been mainly addressed in
terms of asymptotic regimes for the reneging probability for one customer class [8]
or for several classes in overload [10]. The analysis of the stable multi-class PS
queue with distinct impatience rates, however, has not received so far a significant
contribution. For this multi-class queuing system, we here provide proofs for the
stability condition and for regularity properties of the empty-system probability.

Throughput gains induced by mobility in cellular networks have been gener-
ally related so far to the spatial variations of capacity inside the cells, which per-
mits an opportunistic use of favorable transmission conditions by mobile users
[1, 4, 5, 7, 11]. These papers base their evaluation on flow-level traffic modeling
and address mobility through a spatial Markov process where users jump between
distinct capacity zones in the cells. Due to the complexity of the latter approach,
performance indicators can be derived through suitable bounds or approximations
only. In the present work, by decoupling the queuing and mobility models, we alter-
natively formulate the problem in terms of an equilibrium regime for the handover
flows, the existence of which is assessed in the case of a homogeneous network.

The paper is organized as follows. A generic one-cell Markovian model is first
constructed in Section 2 and the stability and regularity properties are stated and
proved; Section 3 presents our approach to model networks with mobility; Section
4 presents numerical results, including simulation, and their discussion; finally, Sec-
tion 5 draws conclusions and summarizes our main achievements.

2 Generic Queueing Model

As a first step, we consider a single cell model which is used as the generic tool to
further analyze the impact of inter-cell mobility in a network.
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2.1 A PS Queue with Impatience

The considered cell is supposed to be “small”, i.e., of limited range so that its trans-
mission capacity C can be assumed spatially constant; this capacity is viewed as
an input parameter accounting for radio and interference conditions in the consid-
ered cellular network. We suppose that capacity C is equally shared among all ac-
tive users present in its service area, as implemented by means of a Round-Robin
scheduling. Following this fair sharing policy, the system occupancy at the flow
level can then be modeled by a Processor-Sharing (PS) queue [6].

We consider K classes of users which generate requests for transmission accord-
ing to Poisson processes with respective arrival rate λk, k = 1, ...,K. Class-k users
have i.i.d. transmission requests of data volume Σk with mean σk, hence a service
rate µk =C/σk. Since customers may actually leave the cell during their communi-
cations, we call Tk the remaining sojourn time of a mobile user, i.e., the time duration
he physically stays in the cell after the transmission has started. We finally denote
by θk = 1/E(Tk) the mean cell departure rate of class-k users, called class-k mobil-
ity rate; any class k where θk = 0 will be called static. The cell occupancy can then
be described by the K-dimensional process N(t) = (N1(t), ...,NK(t)), t ≥ 0, where
Nk(t) denotes the number of ongoing class-k data transfers at time t. This process
evolves as the occupancy of a PS queue with impatience, the “impatient” customers
here corresponding to mobile users that may leave the system before their service
completion within the given cell.

We assume that Σk and Tk are exponentially distributed with parameters 1/σk
and θk, respectively. The process (N(t))t≥0 is then Markovian in the state space NK ;
from state n = (n1, ...,nK) and for ek = (0, ...,1, ...0) with 1 at the k-th component,
it can reach state n+ ek with transition rate λk, or state n− ek with transition rate
nkµk/L(n)+ nkθk, denoting by L(n) = ∑1≤ j≤K n j the total number of active users.
Let ρk = λk/µk be the offered load of class k and S (resp. M) denote the set of static
(resp. mobile) classes.

In stationary regime , the equilibrium equations of process (N(t))t≥0 read

K

∑
k=1

[
λk +nk

(
µk

L(n)
+θk

)]
P(N = n) =

K

∑
k=1

λk P(N = n− ek) +

K

∑
k=1

(nk +1)
(

µk

L(n)+1
+θk

)
P(N = n+ ek) (1)

with ∑n∈NK P(N = n) = 1. Process (N(t))t≥0 is not reversible unless all classes
are static; its stationary distribution is thus not amenable to a simple closed form.
Nevertheless, a general conservation law between the average arrival and departure
rates can be stated as follows: for given k, multiplying each equation of (1) by nk
and then summing over all state vectors n ∈ NK provides

λk = µk E
(

Nk 1Nk>0

L(N)

)
+θk E(Nk), 1≤ k ≤ K. (2)
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Proposition 2.1 The Markov process (N(t))t≥0 has a stationary regime if and
only if

ρS = ∑
k∈S

ρk < 1. (3)

Proof. First assume that process (N(t))t≥0 has a stationary distribution; applying
conservation law (2) to each static class k with θk = 0, then summing over all k ∈ S,
gives ρS =∑k∈S ρk =∑k∈SE(Nk 1Nk>0/L(N))< 1, so that condition (3) is necessary.

Conversely, assume that (3) holds. For any test function f : NK → R+, the in-
finitesimal generator Q of the Markov process (N(t))t≥0 is given by

Q f (n) = ∑
1≤k≤K

λk [ f (n+ ek)− f (n)] +

∑
1≤k≤K

(
µknk

L(n)
+θknk

)
1nk>0 [ f (n− ek)− f (n)] , n ∈ NK .

By ([16], Proposition 8.14), the process (N(t))t≥0 is ergodic if there exists a so-
called Lyapunov function Λ : NK → R+ and positive constants η , δ such that

(a) the set {n ∈ NK ,Λ(n)≤ η} is finite,
(b) random variables sup0≤t≤1 Λ(N(t)) and

∫
[0,1] |QΛ(N(t))|dt are integrable,

(c) QΛ(n)≤−δ as soon as Λ(n)> η .

Consider the function Λ : n ∈ NK 7→ Λ(n) defined by Λ(n) = s2 + m2 with
s = ∑i∈S ni/µi, m = ∑ j∈M n j/µ j. We successively verify conditions (a), (b) and (c):
• (a) is clearly fulfilled by Λ and any finite η ;
• if Ak(t) is the number of class-k user arrivals within interval [0, t], we readily

have Nk(t) ≤ Ak(t) ≤ Ak(1) for 0 ≤ t ≤ 1, where variable Ak(1) has finite first and
second moments. The latter inequalities thus ensure the validity of (b) for Λ ;
• denoting by ρM = ∑ j∈M ρ j the mobile load, the above definition of Q yields

QΛ(n) = ∑
1≤k≤K

ρk

µk
+

1
L(n) ∑

1≤k≤K

nk

µk
+2(ρS−1)s +

2(s−m)

L(n) ∑
j∈M

n j +2m

(
ρM− ∑

j∈M
n j

θ j

µ j

)
+ ∑

j∈M
n j

θ j

µ2
j

for n 6= 0. Setting µ∗ = min1≤k≤K µk, µ∗∗ = max1≤k≤K µk and A = min j∈M θ j/µ j,
B = max j∈M θ j/µ2

j , we then derive the upper bound

QΛ(n)≤ ∑
1≤k≤K

ρk

µk
+

1
µ∗

+2(ρS−1)s+m
[

2ρM +2
µ∗∗

µ∗
+Bµ

∗∗
]
−2Aµ∗m2. (4)

As ρS < 1 by condition (3), we deduce from (4) that QΛ(n) is asymptotically
smaller than −2Aµminm2 when m tends to infinity. Thus, for any given δ > 0, there
exists a constant m0 > 0 such that QΛ(n)<−δ as soon as m > m0. Now,
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- if s≤ m, it is sufficient that s+m > 2m0 to ensure that m > m0;
- if s > m and m≤ m0, all terms depending on m in (4) are bounded and QΛ(n)

is then asymptotically smaller than 2(ρS−1)s when s tends to infinity.
There exists thus a constant s0 > 0 such that QΛ(n)<−δ as soon as s > s0. Fixing
the constant η = (max(2s0,2m0))

2 and using (s+m)2 ≥ s2 +m2, we conclude that
QΛ(n)<−δ when Λ(n)> η , thus fulfilling requirement (c).

Conditions (a), (b) and (c) being verified, Λ is therefore a Lyapunov function for
process (N(t))t≥0 and condition (3) is thus also sufficient. ut

Note that condition (3) does not depend on the traffic intensity of mobile users,
since the latter leave the cell after a finite time and thus cannot cause overload.
Now, given (3), we define two performance indicators per user-class, the average
throughput and the handover probability. Considering data (elastic) traffic, the user-
perceived QoS can be measured by the average throughput defined as the ratio of
the mean volume of transferred data to the mean transfer time [6]. We also define
the handover probability for class-k users as the proportion of users that exit the cell
before the completion of their transmission, i.e., the ratio of the mean handover rate
λ Out

k to the mean flow arrival rate λk. The latter definitions read

Γk ,
E(Xk)

E(∆k)
, Hk ,

λ Out
k
λk

, 1≤ k ≤ K, (5)

where Xk denotes the part of the total data volume Σk which is actually transferred
by a class-k user during its transmission time ∆k (≤ Tk) in the cell. The following
proposition is easily derived, which proof has been given in [14].

Proposition 2.2 The throughput Γk and the handover probability Hk are given by

Γk =C
(

ρk

E(Nk)
− θk

µk

)
, Hk =

E(Nk)θk

λk
, 1≤ k ≤ K (6)

which depend on the mean number of class-k users only. They satisfy the remark-
able identity

Hk =
θk σk

Γk +θk σk
, 1≤ k ≤ K.

2.2 Regularity Properties of the Empty-system Probability

Monotonicity and continuity of the empty-system probability as a function of any
arrival rate λk, will prove essential in Section 3 to solve the equilibrium equations
of handover flows in a network. We claim that such regularity properties require a
specific proof in the present queuing system with infinite state space and no closed
form solution for the stationary distribution.

Denote by AK(λK) the PS queuing system with impatience and define
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Q(λK) = P(N = 0), λK ≥ 0, (7)

the empty-queue probability as a function of the rate λK of class-K users, all other
parameters kept constant (distinguishing here class K, be it a static class or not).

Proposition 2.3 Function Q(.) is strictly decreasing over its definition interval.

Proof. The definition domain of function Q corresponds to those values of λK such
that ρS < 1, according to (3). To prove the proposition, we proceed in four steps.

A) We compare the empty queue probabilities Q(λK) and Q(λ ′K) of systems
AK(λK) and AK(λ

′
K) with λ ′K = λK +∆λK , ∆λK > 0. To do this, it proves con-

venient to introduce a supplementary user class by defining a new system A K+1
with K + 1 classes, where the first K classes are identical to that in AK(λK) and
where the (K + 1)th class has input rate λK+1 = ∆λK , service rate µK+1 = µK and
impatience rate θK+1 = θK . The occupancy of system A K+1 is now defined by the
(K +1)-dimensional vector N(t) = (N1(t), ...,NK(t),NK+1(t)), t ≥ 0.

It proves that the K-dimensional Markov occupancy process, deduced from sys-
tem A K+1 by gathering populations of classes K and K+1, has the same transition
rates, and thus the same stationary distribution, as the process (N′(t))t≥0 of system
AK(λ

′
K). This result holds essentially because of the Poisson nature of all the arrival

processes and of the “PS + Impatience” form of the departure processes, for which
the departure rates do not depend on the fact that some classes are gathered or not.

System A K+1 (with occupancy N) can therefore be considered in place of system
AK(λ

′
K) for the evaluation of the stationary empty-system probability, and we have

Q(λ ′K) = P(N = 0). (8)

B) We now make use of a sample path argument to state that, at any time, each
population Nk(t), 1≤ k≤ K, is no greater than the corresponding population Nk(t),
assuming that both systems AK(λK) and A K+1 are empty at t = 0 (for convenience,
we set NK+1(t) = 0 for all t ≥ 0).

This may be thoroughly proved by induction on the sequence of all consecutive
events (arrivals or departures) occurring in either system AK(λK) or A K+1. The
result essentially holds because 1) there are supplementary arrivals in system A K+1
and, 2) the (PS) per-customer service rate is lower between consecutive events in
system A K+1, compared to AK(λK).

C) From the above results, we deduce that event (N(t)= 0) implies event (N(t)=
0) for all t ≥ 0. In the stationary regime, we derive that (N = 0)⊂ (N = 0) and thus
Q(λ ′K)≤ Q(λK). We conclude that λK 7→ Q(λK) is a decreasing function.

D) From the same inclusion argument, we deduce that

P(N = 0) = P(N = 0)+P(N = 0, N 6= 0). (9)

Noting that (NK+1 > 0; ∀ k ∈ {1, ...,K},Nk = 0)⊂ (N 6= 0; ∀ k ∈ {1, ...,K},Nk = 0)
where the inclusion follows by the property derived in B), we deduce that

P(N = 0, N 6= 0)≥ P(NK+1 > 0; ∀ k ∈ {1, ...,K},Nk = 0)> 0, (10)
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since the distribution of N gives positive weight to any subset of its range. After (8),
(9) and (10), we derive the strict decreasing behaviour of Q(.), as claimed. ut

Proposition 2.4 Function Q(.) is continuous over its definition interval.

Proof. The derivation proceeds according to the following steps.
A) Keeping the same notation, the right-continuity of Q(.) at a given point λK

will follow if it is shown that P(N = 0, N 6= 0) tends to 0 when ∆λK tends to 0.
Consider the joint Markov process (N(t),N(t))t≥0, starting with empty queues,

and a cycle of given duration τ starting at t = 0, without loss of generality. First
note, in view of property B) above, that a cycle of this joint process is identical to a
cycle of process (N(t))t≥0. Then the event (N(t) = 0, N(t) 6= 0) for given t ∈ [0,τ]
implies that the date τ0 of the first arrival from class (K+1) is no greater than t, that
is, 1(N(t)=0, N(t)6=0) ≤ 1t≥τ0 . We thus derive that

E
(∫

τ

0
1(N(t)=0, N(t)6=0) dt

)
≤ E

(∫
τ

0
1(t≥τ0) dt

)
≤ E

(
τ ·1(0≤τ0≤τ)

)
.

We now apply the cycle formula ([3], Chap. IV, Theorem 8.4) to the ergodic
process (N(t),N(t))t≥0 and use the Cauchy-Schwarz inequality to get

P(N= 0, N 6= 0)=
1

E(τ)
·E
(∫

τ

0
1(N(t)=0, N(t)6=0) dt

)
≤ E(τ2)1/2

E(τ)
·P(0≤ τ0≤ τ)1/2.

B) Decomposing the cycle duration τ as the sum τ = τB + τ I of a busy period
duration τB and of the following idle period duration τ I , it is shown that the first
and second moments of τ are locally (i. e., around ∆λK = 0) lower- and upper-
bounded, respectively. First, τ I is exponentially distributed with parameter Λ +∆λK
(where Λ = λ1+ ...+λK), so that E(τ)≥E(τI) = 1/(Λ +∆λK). Second, noting that
random variables τB and τ I are independent (due to the Poisson arrival processes),
we have E(τ2) = E(τB

2)+2E(τB)E(τI)+E(τI
2).

To ensure that E(τB) and E(τ2
B) are finite and locally bounded functions of ∆λK ,

we state that they are upper-bounded by the corresponding moments of τ∗B, the busy
period of the same system without impatience. Then, by gathering all K +1 classes
into a single class, τ∗B is also the busy period of a one-class M/G/1 PS queue with
a compound distribution for the data volume B. Since the system without impa-
tience is work-conserving, the distribution of τ∗B is independent of the actual ser-
vice discipline; its first and second moments are continuous functions of the load
and moments of B, as shown by formulas given in ([12], Vol.I, Chap.5, Section
5.8, Equ.(5.141) and Equ.(5.142)). As a consequence, the moments of τB, and thus
E(τ2), are locally upper-bounded.

C) It remains to show that P(0≤ τ0 ≤ τ) tends to 0. For any A > 0, write

P(τ0 ≤ τ) = P(τ0 ≤ τ,τ0 ≤ A)+P(A≤ τ0 ≤ τ)≤ P(τ0 ≤ A)+P(A≤ τ). (11)

By the Markov inequality, we first have P(A≤ τ)≤E(τ2)/A2 so that, since E(τ2) is
locally bounded, we can select A such that P(A≤ τ) is arbitrarily small, say, lower
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than ε for any given ε > 0. For this value of A, let now ∆λK tend to 0. The distribu-
tion of τ0 is independent from the cycle duration and is a compound of an atom at 0
and an exponential distribution, hence P(τ0 ≤ A) = α +(1−α)(1− e−A∆λK ) with
α = ∆λK/(Λ +∆λK). This probability can thus be made lower than ε for small
enough ∆λK , thus making P(τ0 ≤ τ) lower than 2ε after (11). This finally justifies
the right-continuity of function Q at point λK .

D) A similar reasoning shows that function Q is also left-continuous. ut

3 Network with Inter-cell Mobility

We now address the description of a whole network of cells where users move from
one cell to neighboring ones due to possible handovers.

3.1 A Closed Network of Queues

Consider a cellular network of I cells with possibly distinct capacities. Users from
K traffic classes may appear and move during their communications. When leaving
a cell during transmission, users join one of the neighboring cells according to some
routing probabilities. They consequently generate supplementary flows of new ar-
rivals, hereafter called handover arrivals, which are to be added to fresh arrivals in
each cell. Assume that class-k users generate requests for transmission in cell i ac-
cording to a Poisson process with rate λ 0

i,k, i = 1, ..., I, k = 1, ...,K; this corresponds
to the fresh traffic offered to cell i. To account for class-k users that became active
outside cell i and experienced some handovers, the total flow arrival to cell i is

λi,k = λ
0
i,k +λ

In
i,k = λ

0
i,k +∑

j 6=i
pk( j, i) ·λ Out

j,k , (12)

where λ In
i,k denotes the handover arrival rate from neighboring cells, λ Out

j,k is the han-
dover departure rate from cell j, and pk( j, i) are the routing probabilities from cell
j 6= i to cell i. For all i and k, we will assume that the handover arrival process to
cell i from class-k users can be approximated by a Poisson process so that it can be
superposed to the fresh arrivals to build up a total Poisson arrival process with rate
λi,k given in (12). All Poisson processes introduced above are supposed to be mu-
tually independent, an assumption which notably simplifies the global description
of the system by reducing it to a network of queues which is closed regarding the
handover flows. This is, in particular, in contrast to the overall multi-class multi-cell
process considered in other papers [4, 5, 7, 11].

The rate λ Out
j,k can in turn be considered as an output of the generic queuing model

considered in Section 2 for cell j, and be calculated by means of some performance
function F j,k(.), that is,



Performance Analysis of Data Traffic in Small Cells Networks with User Mobility 9

λ
Out
j,k = F j,k

(
λ

In
j,1, ...,λ

In
j,K
)
= θ j,kE(N j,k) (13)

for j = 1, ..., I and k = 1, ...,K, where θ j,k (resp. N j,k) denotes the mobility rate
from cell j emanating from class-k ongoing transfers (resp. the number of class-k
ongoing transfers in cell j). In (13), only handover arrival rates are considered as
variables, all other intrinsic parameters (such as cell capacities, per-class offered
traffic and mobility rates) being kept constant. From (12)-(13), it follows that a
stationary network regime can be characterized by a system of I×K flow equations
with the handover arrival rates λ In

i,k as unknowns, namely

λ
In
i,k = ∑

j 6=i
pk( j, i) ·F j,k

(
λ

In
j,1, ...,λ

In
j,K
)
. (14)

The problem of existence and uniqueness of a solution to the non-linear system (14)
is out of the scope of the present paper. As the performance functions F j,k may not
be explicit in terms of input parameters, the practical determination of a solution to
(14) involves a numerical iterative procedure, e.g. a fixed-point algorithm.

3.2 The case of a homogeneous network

Now assume that the network is homogeneous in the following sense:
(i) all intrinsic parameters (capacities, arrival rates, ...) are the same for all cells,

so that performance functions do not depend on the cell, that is, F j,k(.) = Fk(.);
(ii) the routing of handover flows is symmetric, i.e., for each class k, cell i receives

handover traffic from a set Jk(i) of neighboring cells with identical probability
pk( j, i) = 1/Jk, where Jk is the common cardinal of sets Jk(i).

Clearly, any set of rates λ In
i,k = λ In

k ,∀ i,k, verifying the simpler system

∀k ∈ {1, ...,K}, λ
In
k = λ

Out
k = Fk

(
λ

In
1 , ...,λ In

K
)
, (15)

will provide a particular solution to (14), hence the solution if uniqueness is ensured.
For a homogeneous network, the problem thus reduces to the study of a single rep-
resentative cell, where the ingress and outgoing handover traffics balance exactly.

In this context, we define the total and per-class loads by referring to the fresh
traffic, that is, ρ0

k = λ 0
k σk/C,1≤ k ≤ K, and ρ0 = ∑

K
k=1 ρ0

k . We now claim that the
equilibrium of this system is characterized by ρ0 < 1, a condition which is well
understood since mobile users re-enter the system until their transfer is completed.

Proposition 3.1 A) In the homogeneous network with inter-cell mobility,

ρ
0 < 1 (16)

is a necessary condition for the existence and uniqueness of a fixed-point solution
to equilibrium equations (15), that is, λ In

k = λ Out
k ,1≤ k ≤ K.

B) In the specific case of a single mobile class, this condition is also sufficient.
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Proof. A) Assume that there exists a solution to equilibrium equations (15). For
the system associated with that solution, we apply (2) to any class k; recalling that
λk = λ 0

k + λ In
k by (12) and that λ In

k = λ Out
k = θk E(Nk) by (13), we then obtain

ρ0
k = E

(
Nk 1Nk>0/L(N)

)
, 1 ≤ k ≤ K. The side-by-side summation of these equali-

ties yields the required condition ρ0 < 1, after observing that

K

∑
k=1

E
(

Nk 1Nk>0

L(N)

)
= E(1N6=(0)) = 1−P(N = 0). (17)

B) To address the sufficiency of (16), first note that ρS = ρ0
S < 1 obviously holds,

ensuring that the queue is stable whatever the load of mobile users. Besides, writing
relation (2) for any class k yields λ 0

k +λ In
k = µk E

(
Nk 1Nk>0/L(N)

)
+λ Out

k which,
after dividing each side by µk and summing over all k ∈ {1, ...,K}, gives

ρ
0 =

K

∑
k=1

λ 0
k

µk
= 1−P(N = 0)+

K

∑
k=1

λ Out
k −λ In

k
µk

. (18)

At this stage, we assume that there is only one single class M of mobile users. As
λ In

k = λ Out
k = 0 for all static classes k, it follows from (18) that the left equilibrium

equation in (15), λ In
M = λ Out

M , is equivalent to

P(N = 0) = 1−ρ
0. (19)

We use the notation of Section 2.2 to class M so that P(N = 0) = Q(λM) is a
function of the arrival rate λM = λ 0

M+λ In
M of class-M users. Since ρ0 < 1 is assumed,

the existence of a unique solution λM to (19) is ensured if it is shown that

I. Q(λ 0
M)≥ 1−ρ0;

II. Q(.) is strictly decreasing over R+;
III. Q(.) is continuous over R+;
IV. Q(λ )→ 0 as λ →+∞.

Items I, II, III and IV can be successively proved as follows.
I. For any impatience queuing system, summing the conservation relation (2)

applied to each class and recalling (17), we get the following expression for the
average number of moving users:

E(NM) =
µM

θM
(ρ +P(N = 0)−1) . (20)

By identity (20) for the mean number E(NM), its non-negativity entails that

∀ λM ≥ 0, Q(λM) = P(N = 0)≥ 1−ρ. (21)

Lower bound (21) holds, in particular, for the value λM = λ 0
M for which ρ = ρ0,

hence Q(λ 0
M)≥ 1−ρ0 as required.

II. This is ensured by Proposition 2.3.
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III. This is ensured by Proposition 2.4.
IV. All parameters being kept constant, we denote by N∗M the number of mobile

users in the same queuing system but in the absence of any static users. A straight-
forward sample path argument enables us to show that NM ≥ N∗M almost surely, so
that

Q(λM) = P(N = 0)≤ P(NM = 0)≤ P(N∗M = 0). (22)

Besides, the stationary distribution of N∗M is that of the occupancy process of a PS
queue with a single customer class M [8], with load ρM = λM/µM and impatience
rate θM; the corresponding empty-queue probability is, in particular, given by

P(N∗M = 0) =

1+ ∑
`≥1

ρ
`
M

[
∏

1≤ j≤`
(1+ jθM/µM)

]−1
−1

.

This probability is then upper-bounded by (1+θM/µM)/ρM, which ensures to-
gether with inequality (22), that Q(λM) tends to 0 as λM tends to infinity. ut

4 Numerical results

We report here some numerical experiments, focusing on the important case where
users are gathered into two classes, namely one static and one mobile class. In all
subsequent scenarios, we fix a cell capacity C = 50 Mbit/s, a proportion of 50%
mobile users and a mean flow volume σ = 12.5 MB (100 Mbit) for both classes.

4.1 Impatience Model

Regarding the generic Markovian model analyzed in Section 2, we examined in [14]
the sensitivity of the performance indicators to the distributions of sojourn (impa-
tience) time and flow volumes. It was shown there that the throughput of each class
is only marginally impacted by both distributions, indicating that results derived
from the Markovian framework remain valid for more realistic distributions, while
the handover probability is noticeably more impacted (particularly at low load), in-
creases with the variance of TM and decreases with the variance of ΣM and ΣS.

We now focus on the performance indicators provided by the (numerically
solved) Impatience Model. In Fig. 1 are plotted the average throughputs and han-
dover probability obtained with exponentially distributed TM , ΣM and ΣS, and con-
sidering a series of three normalized mobility rates: θM equals 0.2, 1 or 5 times the
service capacity µM = 0.5 s−1. Large throughput gains for static and mobile users
are observed, compared to a scenario where all users would be static; besides, we
note a significant gain of mobile users throughput over that of static users. We have
further observed that the throughput gain of mobile over static users appears to be
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Fig. 1 (a) mobile throughput,
(b) static throughput and (c)
handover probability obtained
from the Impatience Model,
for 50% mobile users and a
normalized mobility rate of
0.2, 1, or 5.
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the greatest when the mobility rate is large (say, more than twice the service rate for
mobile users) and when the proportion of mobile users is small (say, 20%).

Such throughput gains are expected in this open-loop system, and were already
observed in [2]: they result from the impatient nature of mobile users who may leave
the system without re-entering it (hence the gain w.r.t. the all-static scenario) and
tend to do it especially when local congestion occurs (hence the gain mobile/static).
Very large handover rates, see Fig. 1c), may however counterbalance these gains.

Interpreting the above results helps us to assess the impact of cell size. Assuming
a constant speed v, the mean distance the mobile user travels in the cell is E(D) =
v/θM; this mean distance is typically of the order of the radius R of a circular cell.
Thus if v = 90 km/h for example, the values of θM considered above, namely 5 µM ,
µM and 0.2 µM (with µM = 0.5 s−1) respectively correspond to a radius of 10 m, 50
m and 250 m, typical of a Femto, Pico, and Micro cell. As expected, users in Femto
cells experience the largest throughput since their mobility rate is the highest.

4.2 Mobility Model

We assess the Mobility Model proposed in Section 3, i.e., the Markovian model
where the handover arrival rate λ In

M exactly balances the outgoing handover rate
λ Out

M . We consider the homogeneous four-cell ring network shown in Fig. 2, where
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Fig. 2 A homogeneous ring
network of four identical cells
with symmetric routing.
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all cells have the same capacity and traffic parameters as in Section 4.1, and three
normalized mobility rates: θM is equal to 0.1, 1 or 10 times the service capacity µM .

Event-driven simulations have been performed at the flow level. The accuracy of
results drawn from simulation has been tightly controlled. In every configuration,
ten independent simulation runs have been performed, generating around 1 million
discrete events each. The obtained confidence intervals are very small in most cases
and thus are not shown in the following plots for simplicity.

Fig. 3 depicts the performance indicators for mobile users in each cell. For each
value of θM , the four curves (each corresponding to one cell) are almost indistin-
guishable from each other, thus assessing the robustness of simulations. We observe
that the stability region is characterized by ρ0 < 1, as predicted by Proposition 3.1
and, from Fig. 3(a), that the throughput gains due to mobility increase with the mo-
bility rate. Other complementary results have shown that the mobile/static through-
put gain is all the more important that the proportion of mobile users is weak. The
latter simulation is compared in Fig. 4 to the Mobility Model (applied to the repre-
sentative cell) when θM = µM . We observe that the representative cell model pro-
vides slightly optimistic throughputs compared to those obtained from simulation.

The good match between model and simulation results validates our approach
for reducing a homogeneous network to a single representative cell: the assumption
quoted in Section 3.1, that the handover traffic flow re-enters the representative cell
as a supplementary Poisson flow, appears reasonable. The robustness of the latter
assumption has also been checked in the case of a heterogeneous ring network [14].

Finally, we evaluate the impact of mobile speed for a given cell size (a cell radius
of 50 m corresponding to a Pico cell). Fig. 5 depicts the static and mobile users
throughputs in terms of the speed v for different values of the total offered load (0.2,
0.5, and 0.8). Results are here derived from the Markovian Mobility Model only. As
expected, all performance indicators are increasing functions of the speed; but note
that the impact at very high speed is rather limited.
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Fig. 3 Homogeneous ring network: performance indicators, (a) mobile user throughput and (b)
handover probability, obtained from simulation versus the total offered load in each cell (proportion
of 50% mobile users and θM/µM = 0.1,1,10).
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Fig. 4 Homogeneous ring network: (a) mobile throughput and (b) static throughput obtained from
simulation and the Markovian Mobility Model (θM/µM = 1).

5 Conclusion

We have investigated the impact of inter-cell mobility on the performance of dense
networks with small cells. Our approach relies on two main ideas: a simple perfor-
mance model can be developed to capture mobility on the basis of the multi-class
Processor-Sharing queue with impatience; the performance of a network of small
cells can be handled by applying the generic model to each individual cell. The
present paper extends the former contribution [14], notably by providing mathemat-
ical proofs for the stability of the impatience model and for the existence and unique-
ness of an equilibrium regime for the handover flows in a homogeneous network.
Further practical outcomes can be stated as follows: (i) as a step beyond available
studies, the handover probability has been evaluated to assess the trade-off between
throughput gain and signaling overhead due to mobility; (ii) both classes of users
are shown to benefit from a throughput gain induced by inter-cell mobility; this gain
is created by the opportunistic displacement of mobile users within the network
according to local load variations in individual cells.
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Fig. 5 Impact of the users speed on (a) mobile throughput and (b) static throughput for a proportion
of 50% mobile users, cell radius 50 m, and total offered load 0.2, 0.5 or 0.8.
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