

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: http://oatao.univ-toulouse.fr/20846

To cite this version:

Julcour-Lebigue, Carine¹⁰ and Blanco, Jean-François¹⁰ and Barthe, Laurie¹⁰ and Delmas, Henri¹⁰ and Poli, Rinaldo and Manoury, Eric and Gayet, Florence and D'Agosto, Franck and Lansalot, Muriel and Deshpande, Raj M. and Kelkar, Ashutosh A. *Mass transfer assessment and kinetic investigation of biphasic catalytic systems*. (2018) In: Congrès national de la Société Chimique de France, 2 July 2018 - 4 July 2018 (Montpellier, France).

Any correspondence concerning this service should be sent to the repository administrator: <u>tech-oatao@listes-diff.inp-toulouse.fr</u>

Chimie, Catalyse, Polymères et Procédés MASS TRANSFER ASSESSMENT AND KINETIC INVESTIGATION OF BIPHASIC CATALYTIC SYSTEMS

<u>Carine JULCOUR</u>,¹ Jean-François BLANCO,¹ Laurie BARTHE,¹ Henri DELMAS,¹ Rinaldo POLI,^{2,3} Eric MANOURY,² Florence GAYET,² Franck D'AGOSTO,⁴ Muriel LANSALOT,⁴ Raj M. DESHPANDE,⁵ Ashutosh A. KELKAR,⁵

¹ LGC, Univ. Toulouse, CNRS, Toulouse, France; ² LCC, Univ. Toulouse, CNRS, Toulouse, France; ³ IUF, Paris, France; ⁴ C2P2, Univ. Lyon, CPE Lyon, CNRS, Villeurbanne, France; ⁵ Chem. Eng. Div., NCL, Pune, India

Homogeneous catalysis:

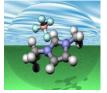
high efficiency and selectivity towards desired product
 separation of the catalyst

Biphasic catalysis: confinement of the molecular catalyst in a solvent immiscible with the products (ex: water)

Industrial process: Ruhrchemie/Rhône Poulenc oxo process for the hydroformylation of propene into n-butanal, using **aqueous phase** and **hydrosoluble ligand** (TPPTS) – 800 000 tons aldehyde/year [Obrecht et al., 2013], Rh loss < 1 ppb

Pb: not applicable to higher olefins (> C4)!

Strategies for biphasic catalysis:


- Water with additives
- * co-solvent in water
- * *ligand modification* \rightarrow interfacial catalysis
- * phase transfer agents
- * thermomorphic systems
- * surfactants or amphiphilic polymers
- → micellar(-like) catalysis

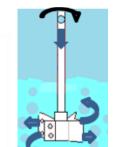
Main limitations: mass transfer, low reaction rate, and/or metal leaching SFC Congress 2-4 July 2018

New solvents

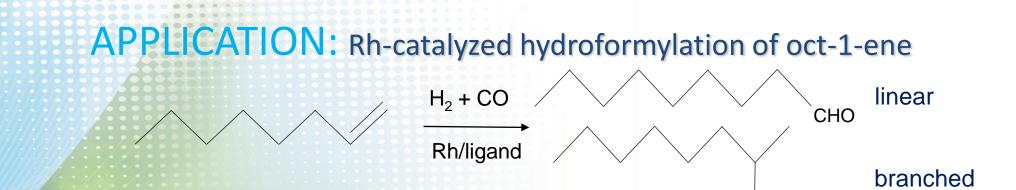
- * fluorous solvents
- * ionic liquids
- * scCO₂

Objectives & strategy

OBJECTIVES: to reach a kinetic formulation including phase equilibria, to characterize interfacial mass transfer effects


HOW: Thermodynamic study

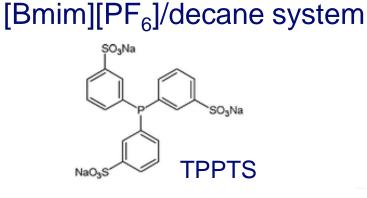
Concentration of the substrates in the vicinity of the catalyst? Effect of products / µenvironment?


Mass transfer & kinetic study

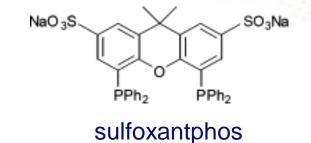
Relevant intrinsic rate laws (derived from reaction mechanism)?

CHO

Mass transfer performance? Coupling of reaction & transfer ?



SFC Congress 2-4 July 2018



Ex.1: Ionic liquid biphasic catalysis

[BuPy][BF₄]/heptane system

PREVIOUS STUDIES (hydroformylation, \leq 2004):

High activity & selectivity: TOF > 1000 h⁻¹ (100°C), I/b ratio > 40, rather low metal (Rh) loss (<0.1 %) [Chauvin et al. (1996), Bronger et al. (2004)]
Most of the studies dedicated to screening of ILs & ligands

QUESTIONS:

- Thermodynamic vs. chemical effects?
- Relevant kinetic model?
- Viscosity effects on gas-liquid mass transfer?
- Coupling of reaction & transfer?

Thermodynamic study

IL biphasic catalysis

Gas solubility in IL

Large discrepancies in the literature (by up to a factor 3)

> Dynamic gas absorption measurements in the reactor (ΔP_{reac})

Solvent	T (°C)	He, bar.r	n ³ .kmol ⁻¹
		H ₂	СО
[Bmim][PF ₆]	20	898	449
· -	50	816	558
	100	869	663
[BuPy][BF ₄]	60	470	419
	80	507	455
	100	724	487

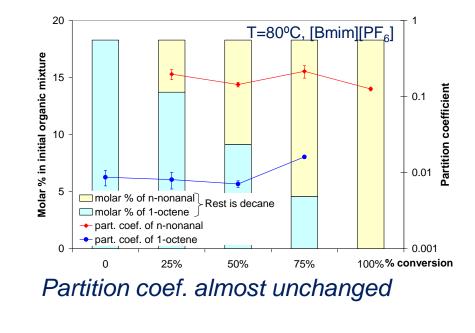
Solubility of H₂ and CO in [Bmim][PF₆]: data within the range of reported values (<20% dev. with Monte Carlo calculations [Urukova et al. (2005)]) (ΔH_{solv,H2} = [-0.6, 3] kJ.mol⁻¹; ΔH_{solv,CO} = -3.8 kJ.mol⁻¹) ~ 3 times lower than in decane, but ~ 2 times higher than in water

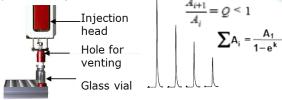
Similar, but slightly higher gas solubility in [BuPy][BF₄]

Thermodynamic study

IL biphasic catalysis

Solubility & partition coef. of olefin (& aldehyde) in IL


Very few values available


Routine chromatography or spectroscopy methods not suitable

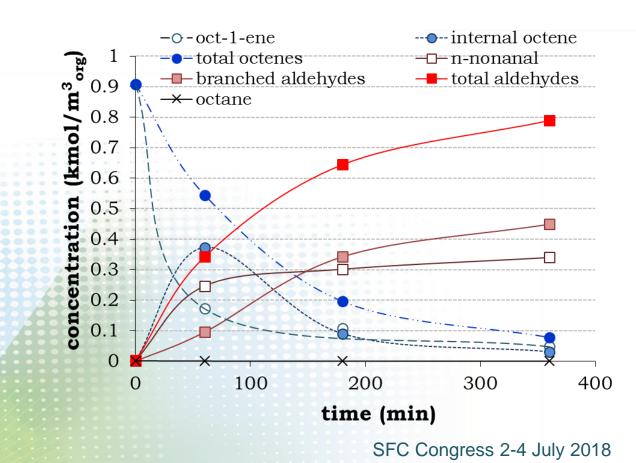
- L-L equilibria measured at reaction T
- > with the help of **Multiple HeadSpace** Gas Chromatography (IL φ)
- > validation of solubility data by **thermogravimetry** (IL ϕ)

System	T (°C)	TGA	MHS-GC/MS
oct-1-ene /[Bmim][PF ₆] /[BuPy][BF ₄]	25 80 80	0.6% ± 0.05% 0.85 ± 0.2 0.36%	0.64% 0.86 ± 0.15
n-nonanal /[Bmim][PF ₆] /[BuPy][BF ₄]	25 80 80	11.6% ± 0.5% 11.3 ± 0.3 4.2%	15.5% ± 0.2% 12.9 ± 0.3%

Solubility of octene in [Bmim][PF₆] (g / g): × 2000 with respect to water (25°C) Much higher solubility of n-nonanal Lower values in [BuPy][BF₄]

6

Kinetic study



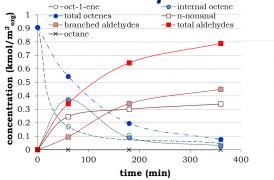
Experimental study

- instantaneous syngas consumption from $P_{\text{ballast}}(R_0)$
- speciation in organic ϕ by GC/FID (M balance, I/b ratio)

Typical time-concentration profile in solution ([Bmim][PF₆]/decane with TPPTS)

High isomerization of oct-1-ene \rightarrow l/b ratio between 0.7 and 3 TOF: 15-75 h⁻¹ after 1h (60-80°C)

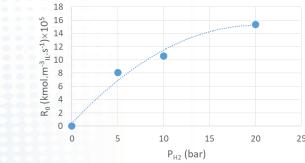
Kinetic study



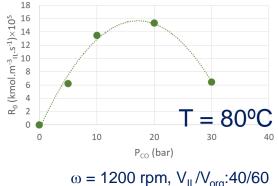
Experimental study

- instantaneous syngas consumption from $P_{\text{ballast}}(R_0)$
- speciation in organic φ by GC/FID (M balance, I/b ratio)

Typical time-concentration profile in solution ([Bmim][PF₆]/decane with TPPTS)



1.2


High isomerization of oct-1-ene \rightarrow l/b ratio between 0.7 and 3 TOF: 15-75 h⁻¹ after 1h (60-80°C)

Parametric study

- Stirring speed & catalyst conc. (at given P/Rh) \rightarrow to check for **chemical regime** Initial conc. of oct-1-ene Partial pressure of H₂

Partial pressure of CO

 $E_a = 25.8 \text{ kcal.mol}^{-1}$

[oct-1-ene]₀ (kmol.m⁻³org)

Ro

SFC Congress 2-4 July 2018

IL biphasic catalysis

Empirical rate models or derived from elementary reaction steps

Rh(CO),(acac) + sulfoxantphos

Kinetic modeling

[BuPy][BF₄]/heptane with sulfoxantphos

« Christiansen matrix » approach [Helfferich, 2004; Murzin and Salmi, 2005]

 $\begin{pmatrix} \omega_{2}\omega_{3}\omega_{4}\omega_{5}\omega_{6}\omega_{7} & \omega_{-1}\omega_{3}\omega_{4}\omega_{5}\omega_{6}\omega_{7} & \omega_{-1}\omega_{-2}\omega_{4}\omega_{5}\omega_{6}\omega_{7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{5}\omega_{6}\omega_{7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{6}\omega_{7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6} & \omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6} & \omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6} & \omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6}\omega_{-7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6} & \omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6} & \omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6} & \omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6}\omega_{-7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6} & \omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6}\omega_{-7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6}\omega_{-7} & \omega_{-1}\omega_{-2}\omega_{-3}\omega_{-4}\omega_{-5}\omega_{-6}\omega_{-7} & \omega_{-1}\omega_{-2}\omega_{-4}\omega_{-5}\omega_{-6}\omega_{-7} & \omega_{-1}\omega_{-2}$

 $R = \frac{\omega_1 \omega_2 \omega_3 \omega_4 \omega_5 \omega_6 \omega_7}{D_{Christiansen} + T_{inhibition}} C_{cat,IL}$

Hypotheses on irreversibility of elementary steps & rate-determining steps

 $\mathsf{R} = \mathsf{f} ([\mathsf{H}_2]_{\mathsf{IL}\,\varphi}, [\mathsf{CO}]_{\mathsf{IL}\,\varphi}, [\mathsf{cat}]_{\mathsf{IL}\,\varphi}, [\mathsf{octene}]_{\mathsf{IL}\,\varphi}, \mathsf{T})$

Selection of best model(s) & optimization of rate parameters based on initial rates (after sensitivity study)

Ex: $R = \frac{kABCD}{(1 + K_aAB + K_bAD + K_cBD + K_dABD + K_eDB^2 + K_fA + K_gAB^2 + K_hB + K_iD)}$

no limiting step, only the release of aldehyde product is an irreversible step

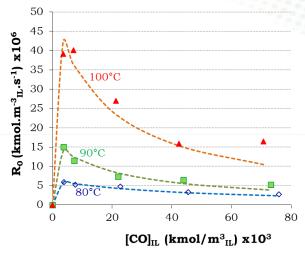
Kinetic study

IL biphasic catalysis

[BuPy][BF₄]/heptane with sulfoxantphos

oct-1-ene $\xrightarrow{R_1}$ n-nonanal oct-1-ene $\xrightarrow{R_2}$ iso-octenes iso-octenes $\xrightarrow{R_3}$ branched aldehydes

Accounting for isomerization


GC

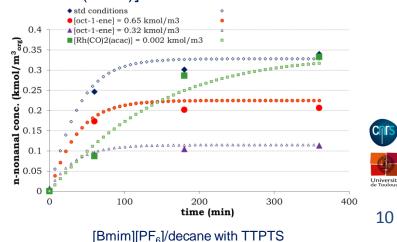
 $R_{1} = \frac{k_{1}C_{H2,IL}C_{CO,IL}C_{cat,IL}C_{1oct,IL}}{(1 + K_{d1}C_{1oct,IL}C_{CO,IL}^{3})}$ addition of H₂ as rate determining step

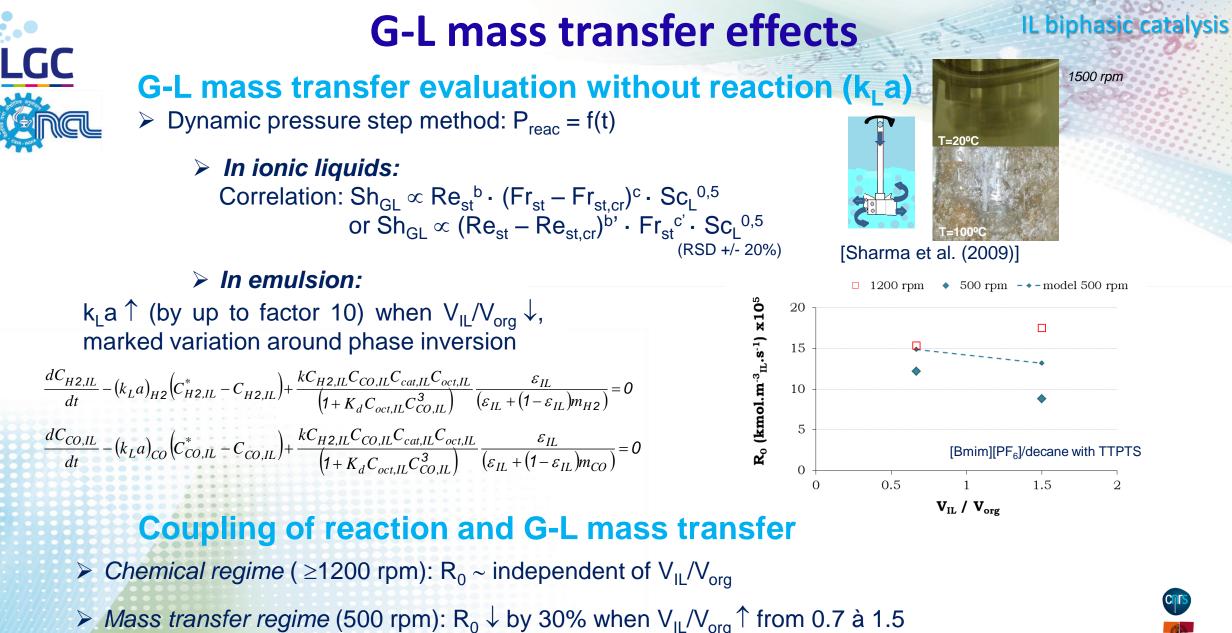
R_0 (kmol.m⁻³ $_{\rm L}.s^{-1}$) x10⁶ 20 100°C 15 10 90°C 5 \cap 20 40 60 80 $[H_2]_{IL}$ (kmol.m⁻³_{IL}) x10³

[Deshpande et al. (2011)]

Time-concentration profiles) 10

$$\left(V_{\text{org}} + V_{\text{IL}} K_{\text{wnon}} \frac{\rho_{\text{IL}}}{\rho_{\text{org}}} \right) \frac{dC_{\text{nnon},\text{org}}}{dt} = R_1 V_{\text{IL}}$$


$$\left(V_{\text{org}} + V_{\text{IL}} K_{\text{woot}} \frac{\rho_{\text{IL}}}{\rho_{\text{org}}} \right) \frac{dC_{\text{loct},\text{org}}}{dt} = -(R_1 + R_2) V_{\text{IL}}$$

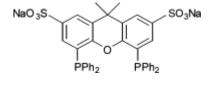

$$\left(V_{\text{org}} + V_{\text{IL}} K_{\text{woot}} \frac{\rho_{\text{IL}}}{\rho_{\text{org}}} \right) \frac{dC_{\text{ioct},\text{org}}}{dt} = (R_2 - R_3) V_{\text{IL}}$$

$$\left(V_{\text{org}} + V_{\text{IL}} K_{\text{wnon}} \frac{\rho_{\text{IL}}}{\rho_{\text{org}}} \right) \frac{dC_{\text{iald}},\text{org}}{dt} = R_3 V_{\text{IL}}$$

SFC Congress 2-4 July 2018

[Sharma et al. (2010)]

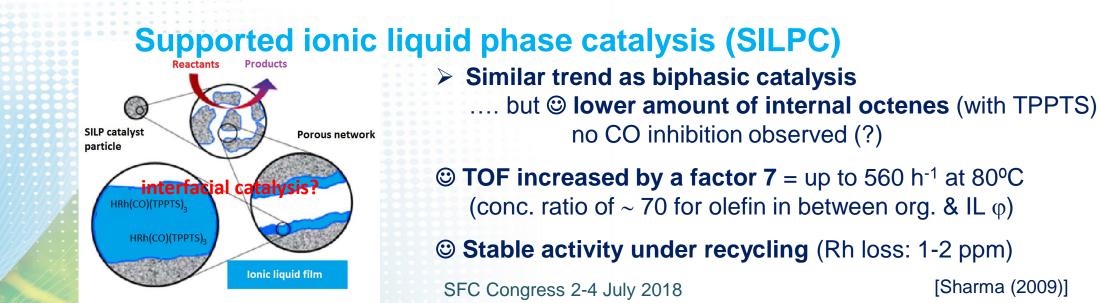
- \rightarrow overestimation of R₀ by the coupling model
 - \rightarrow supplementary resistance from L-L mass transfer?



Improvements of IL system

[Bmim][PF₆]/decane with TPPTS

IL biphasic catalysis

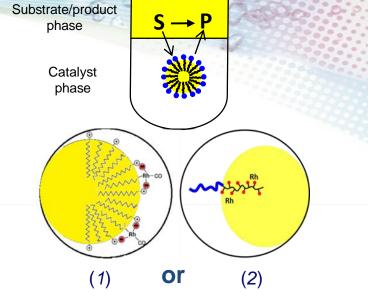

More selective ligand

[©] No isomerization © Only n-nonanal detected as product ⊗ But dramatic reduction of TOF (by a factor 20)

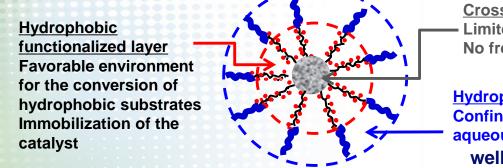
PPh ₂ PPh ₂	Solvent	T (°C)	R ₀ , kmol.m ⁻³ _{IL} .s ⁻¹
sulfoxantphos	[Bmim][PF ₆]	80	13·10 ⁻⁶
		100	46 ·10 ⁻⁶
Conditions: $[Rh(CO)_{2}(acac)] \sim 7.0 \cdot 10^{-3} \text{ kmol.m}^{-3}_{\pi}$, SX:Rh = 5:1,	[BuPy][BF ₄]	80	12·10 ⁻⁶
$[oct-1-ene]_0 \sim 0.9 \text{ kmol.} m^3_{org}, p_{H2} = p_{C0} \# 20 \text{ bar, IL:org} = 40:60 v/v$		100	54·10 ⁻⁶

 \succ similar R₀ in both solvents (lower octene solubility in [BuPy][BF₄], partly offset by higher gas solubility)

12


[Sharma (2009)]

Ex.2: Biphasic catalysis with CCM

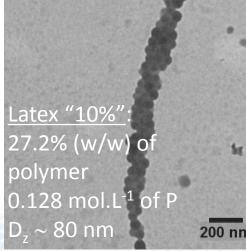

From micellar catalyst ...

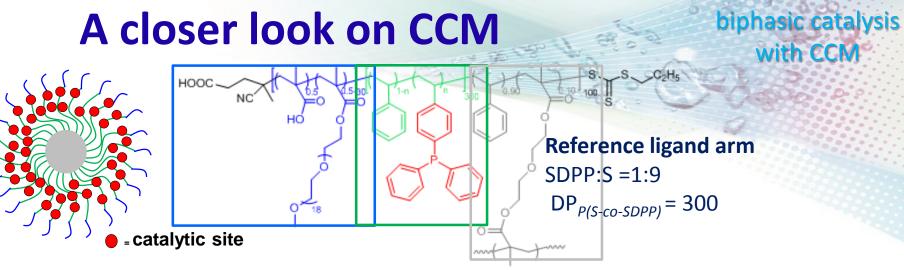
using cationic surfactants (1) or amphiphilic ligands (2)
☺ TOF up to 1000 h⁻¹ (1, 100°C) or 2500 h⁻¹ (2, 100°C)
⊗ stable emulsions by excessive swelling of the micellar core
⊗ Loss of catalytic objects at the interface

. to polymeric core-shell catalyst

by cross-linking the hydrophobic segments of self-assembled amphiphilic block copolymers synthesized by "controlled" radical polymerization

Loss of metal (Rh)

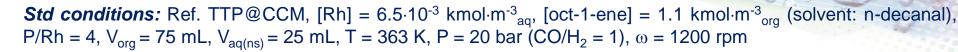

<u>Cross-linked core</u> - Limited swelling of the object No free arms


Hydrophilic layer Confinement in the aqueous phase well-defined size and architecture

- made by convergent synthesis in water (shell \rightarrow core)
- reversible addition-fragmentation chain transfer (RAFT) as controlled polymerization method
- self-assembly of amphiphilic block copolymers
- addition of cross-linker together with additional styrene to form the core
- *in-situ* preparation of Rh-catalyst during heating period under a few bar of syngas (Rh precursor introduced after pre-swelling CCM with n-decanal (reaction solvent))

QUESTIONS:

- Performance of CCM for aqueous biphasic catalysis?
- Driving mechanisms? Any limitation by mass transfer to/in the objects?
- How to optimize the objects?
- Content of the swelled CCM & phase separation dynamics?



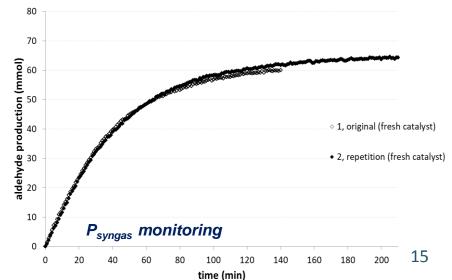
LCC

Proof of concept (1/2)

biphasic catalysis with CCM

Catalytic performance of CCM

- High catalytic activity (TOF ~ 500 h⁻¹ vs. 1000 h⁻¹ for homogeneous reaction with TPP functionalized star polymer), I/b ratio of ~ 5
- No hydrogenation and nearly no isomerization
- Low Rh leaching (~2 ppm measured by ICP/MS) and negligible activity of recovered organic phase
- Excellent catalytic stability under recycling, when kept under syngas or <u>without any caution</u>

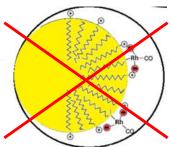

Swelled TPP@CCM in aqueous phase

[Zhang et al. (2014)]

Organic phase (~90% aldehyde yield after 3 h)

SFC Congress 2-4 July 2018

Proof of concept (2/2)


biphasic catalysis with CCM

Driving mechanisms

Interfacial catalysis?

Addition of a stronger water-soluble ligand (sulfoXantphos, sX/Rh = 5) \rightarrow inhibition of the reaction (TOF_{max} = 13 h⁻¹)

No "surfactant effect"

Phosphine-free CCM

 \rightarrow very similar results as the homogeneous reaction without any ligand: aldehyde yield = 13% after 4 h (internal octenes = 35% of the substrate charge)

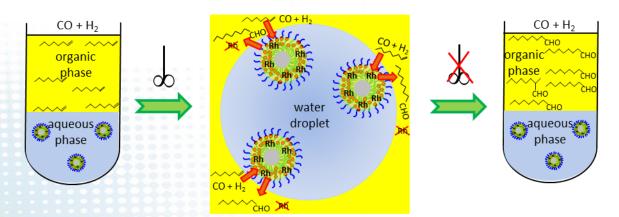
Rh coordination within the objects

Concept of « nano-reactors »

Catalysis within the hydrophobic microenvironment gathering catalyst and substrate

[Zhang et al. (2014)]

Mass transfer effects


biphasic catalysis with CCN

External mass transfer limitation?

- **Variation of** ω [1200-1600 rpm] \rightarrow < 25% variation of R₀
- **Increase of [Rh]** by a **factor 4**

 - * at given [TPP@CCM] \rightarrow threefold increase in R₀
- Variation of [TPP@CCM] at given [Rh]
- \rightarrow no significant effect of P/Rh [4-12] on TOF nor on regioselectivity

Weak external mass transfer resistance, probably at gas-emulsion interface

Mass transfer effects

biphasic catalysis with CCM

External mass transfer limitation?

- Variation of ω [1200-1600 rpm] \rightarrow < 25% variation of R₀
- **Increase of [Rh]** by a **factor 4**

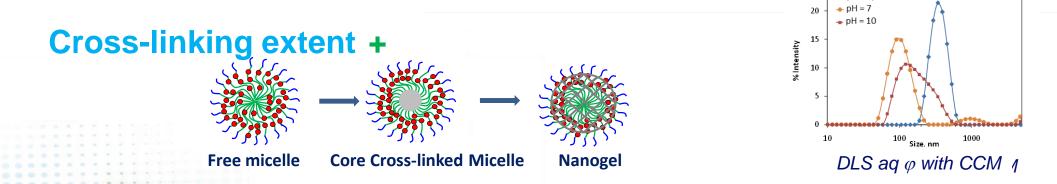
 - * at given P/Rh
 * at given [TPP@CCM]
 → threefold increase in R₀
- Variation of [TPP@CCM] at given [Rh]
- \rightarrow no significant effect of P/Rh [4-12] on TOF nor on regioselectivity

Weak external mass transfer resistance, probably at gas-emulsion interface

Internal mass transfer limitation?

- chemical effect for SDPP/S **Increase of SDPP:S**: from 1:19 to 1:3 (Rh dimeric species?)
- \rightarrow reduction of R₀ by a factor > 3
- **Increase of DP**: from 300 to $500 \rightarrow R_0 \& I/b$ ratio unchanged
- Variation of T [70-90°C] $\rightarrow E_A \sim 22 \text{ kcal.mol}^{-1}$
- \rightarrow value close to those reported in chemical regime in homogeneous / biphasic system with TPP(TS)

Internal diffusion within the objects is not rate-limiting


Optimization of CCM architecture

Length of hydrophobic segment /

 \rightarrow no significant effect of increasing DP on R₀ or regioselectivity, slight reduction of Rh loss

Functionalization degree (SDDP:S) -

→ Significant decrease of activity for higher SDPP:S, low effect on I/b ratio or metal leaching (CCM or nanogel)
²⁵

- → Accessibility to the catalytic complexes not significantly reduced by cross-linking ($R_0 \downarrow$ by 30%), but dramatic reduction of Rh loss from 7.2 to 0.6 ppm
- \rightarrow Rh loss sensible to ω for CCM, but no effect for nanogel

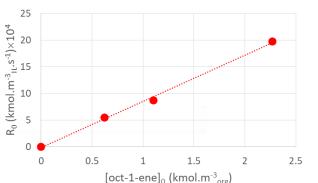
Shell properties

→ stability \uparrow when pH \uparrow from 3.5 to 7 → effect of methacrylic acid moieties → [Rh]_{org} reduced to 0.1 ppm at 60°C → effect of thermosensitive PEG

SFC Congress 2-4 July 2018

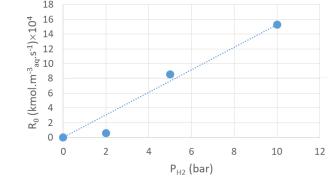
biphasic catalysis

with CCM

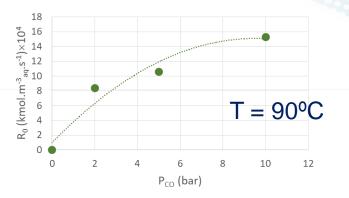

Towards a kinetic model

Selection of nanogel with 5% SDPP (pH=7)

biphasic catalysis with CCM



Parametric study



Initial conc. of oct-1-ene

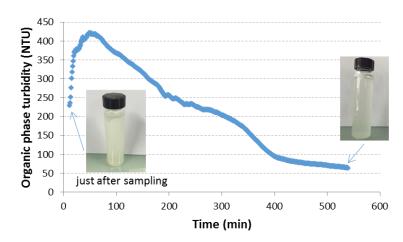
Partial pressure of H₂

Partial pressure of CO

E_a = 20.2 kcal.mol⁻¹

Evaluation of the nanogel composition

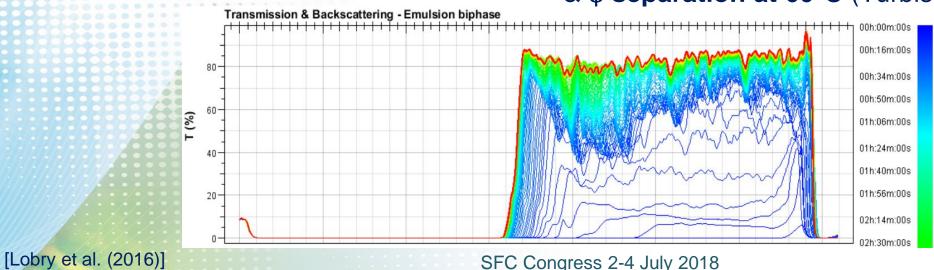
Concentration of the latex by centrifugal ultrafiltration
 Extraction of the object content by MHS & GC-MS analysis
 up to now only qualitative information (difficulty in standardizing the method)



Dynamics of ϕ separation

biphasic catalysis with CCM

Turbidity evolution

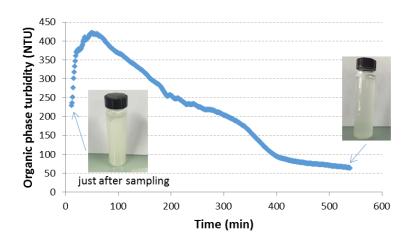


Sampling (30 mL) close to the W/O interface, 10 min after stopping the stirring → translucent organic phase Separation at ambient T

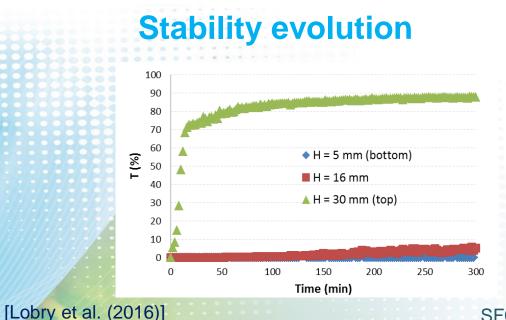
 \rightarrow NTU obtained after 8h ~ value of samples analyzed by ICP / AES for Rh leaching

Stability evolution

Sampling of the whole emulsion (20 mL) & φ **separation at 60°C** (Turbiscan)



Dynamics of φ**separation**


biphasic catalysis with CCM

Turbidity evolution

Sampling (30 mL) close to the W/O interface, 10 min after stopping the stirring → translucent organic phase Separation at ambient T

 \rightarrow NTU obtained after 8h ~ value of samples analyzed by ICP / AES for Rh leaching

Sampling of the whole emulsion (20 mL) & φ **separation at 60°C** (Turbiscan)

showing 2 successive steps:

- \rightarrow a rapid disengagement (formation of two distinct φ) in 20 minutes
- \rightarrow a much slower φ evolution tending towards a plateau after 3 hours
 - $T = 83\% \leftrightarrow 0.02\%$ of solid content

$$\rightarrow$$
 [Rh] \sim 1 ppm (P/Rh = 4) 22

Conclusions & perspectives

- High Turn Over Frequency was obtained for the Rh-catalyzed hydroformylation of oct-1ene in multiphase systems, using either ionic liquids or nanogel-based catalysts in water
- Successful collaboration between chemistry and chemical engineering teams allowed understanding several features of these complex systems, as well as providing clues for their optimization
- Kinetic, mass transfer & separation studies paved the way for the design & scale-up of continuous process with these systems, but still Rh leaching needs to be further reduced
- Further developments would be also required to better describe the coupling between mass transfer & catalytic reaction

Acknowledgements

Indo-French Center For the Promotion of Advanced Research for funding the project 3305-2 "Reaction Engineering in Ionic Liquids"

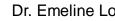
Agence Nationale de la Recherche for funding the Biphasnanocat Project (ANR-11-BS07-025-01),

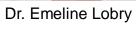
Our PhD & post-doc students: A. Sharma, A. Cardozo, E. Lobry

Our technical staff: J.L. Labat, M. Morere I. Coghe, L. Farhi, M.L. Pern (LGC), for their support on the reactor pilot and the analyses

Our project partners at NCL, LCC & C2P2

Thank you for your kind attention!


Dr. Carine Julcour

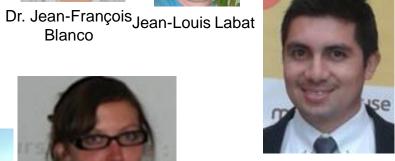

Dr. Laurie Barthe

Marie Morere

Pr. Henri Delmas

Blanco

The teams



Dr. Raj. M. Deshpande

Dr. Raghunath V. Chaudhari

Dr. Andrés Cardozo

Dr. Muriel Lansalot

Dr. Florence Gayet

Pr. Bernadette Charleux

Dr. Franck D'Agosto

Dr. Xuewei Zhang 25

Pr. Rinaldo Poli

Dr. Si Chen

		-																								
											-															
											-	1														
												~	ୀ													
									.0			-														
										.0		8														
									0	0	0															
								0		.0																
									0.0																	
							19																			
		11																								
		/																								
	1																									

