

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: http://oatao.univ-toulouse.fr/20845

To cite this version:

Julcour-Lebigue, Carine[®] and Bourgeois, Florent[®] and Cassayre, Laurent[®] and Leclaire, Julien and Touzé, Solène and Cyr, Martin and Bailly, France *Design of a hybrid leaching process for mineral carbonation of magnesium silicates: learnings and issues raised from combined experimental and geochemical modelling approaches.* (2018) In: International Conference on Accelerated Carbonation for Environmental and Material Engineering (ACEME), 11 March 2018 - 14 March 2018 (Newcastle, Australia). (Unpublished)

Any correspondence concerning this service should be sent to the repository administrator: <u>tech-oatao@listes-diff.inp-toulouse.fr</u>

Design of a hybrid leaching process for mineral carbonation of magnesium silicates: learnings and issues raised from combined experimental and geochemical modelling approaches

-mdc

vironneme

Carine Julcour¹, Florent Bourgeois¹, Laurent Cassayre¹, Julien Leclaire², Solène Touzé³, Martin Cyr⁴, France Bailly⁵

¹LGC, Toulouse, France ; ²ICBMS, Villeurbanne, France ; ³BRGM, Orléans, France ; ⁴LMDC, Toulouse, France ; ⁵CNRT, Nouméa, France

6th Accelerated Carbonation for Environmental and Material Engineering Conference, March 11-14, 2018, Newcastle, New South Wales, Australia

Metal Recovery

ICD UMR 5246

LABORATOIRE DE GÉNIE CHIMIQUE

ACEME 2018, March 11-14, 2018, Newcastle, Australia

Ex-situ Mineral Carbonation pathways

*based on < 2010 literature routes for 154 MWe coal-fired power plant producing 1Mt-CO₂/yr

Studied MC pathways

Surface leach layer & mechanisms

Diffusion controlling Carbonation yield

< 10% (90 g/L, 95 h)

5

FIB cross-sections of olivine particle after leaching (TEM) (Bodenan et al., 2014)

ACEME 2018, March 11-14, 2018, Newcastle, Australia

Studied MC pathways

II. EXPERIMENTAL METHODOLOGY

Ores

Bodenan et al. (2014)

Serpentinisation degree up to 90%

Name	Origin	Dominating phases								
Harzburgite (Hz1)	New Caledonia	Serpentine (~ 90%) >> olivine								
		> orthopyroxene								
Harzburgito (Hz2)	Now Caladania	Serpentine (~ 90%) >> olivine								
That zourgite (1122)		> orthopyroxene								
Mborlita (Ma)	Now Caladania	Serpentine (~ 50%) > olivine >								
vilenite (vve)		clinopyroxene								
l horzolito (1 z)	France	Serpentine (~ 50%) > olivine >								
	(Pyrenees)	clino/ortho-pyroxene								
Olivino	Austria	Synthetic olivine (from high T								
Unvine	(Magnolithe)	dunite processing)								

30.8 < MgO < 47.4%, $39.3 < SiO_2 < 46.3\%$, $7.3 < Fe_2O_{3tot} < 9.8\%$, 0.2 < CaO < 5.0%, $0.2 < Al_2O_3 < 4.0\%$

II. EXPERIMENTAL METHODOLOGY

From Ni pyrometallurgy plant (Koniambo) KNS slowly cooled under ambient conditions, SLN quenched by seawater

Name	Origin	Dominating phases									
KNS	New Caledonia	Pyroxene: proto-enstatite, clinoenstatite, forsterite									
SLN	New Caledonia	Vitreous fraction >> olivine									

$$\label{eq:MgO} \begin{split} \text{MgO} &\sim 30\%, \, \text{SiO}_2 \sim 52\%, \, \text{Fe}_2\text{O}_{3\text{tot}} \sim 13\%, \\ \text{CaO} &< 0.5\%, \, \text{Al}_2\text{O}_3 \sim 2\% \end{split}$$

II. EXPERIMENTAL METHODOLOGY

Solid preparation

> Grinding (4h in ball mill) & sieving < 100 μ m

> Initial particle size distribution

Carbonation set-up & procedure

- Identification of solids formed: SEM(TEM)/EDX and elemental mapping (Mg, Si, O), X-Ray Diffraction, Raman and IR (DRIFT) Spectroscopy, ICP/AES (after acid dissolution)
- Quantification of carbonated products: elemental analysis (C content), ThermoGravimetry Analysis coupled with IR

Quantification of dissolved elements: ICP/AES (Mg, Si, Fe), inorganic carbon

Studied MC pathway

III. CHELATING AGENT APPROACH

State of the art

Mechanism

Olsen & Rimstidt (2008)

≈ 7 at 0.1 M oxalate (olivine, pH 5, 120°C)
Prigiobbe & Mazzotti (2011)

roulouse 12

Effect of organic polyacids on dissolution rate

III. CHELATING AGENT APPROACH

Oxalate-enhanced dissolution of olivine: leaching yield & Mg speciation

> Any compromise between glushinskite precipitation & Mg carbonation?

ACEME 2018, March 11-14, 2018, Newcastle, Australia

III. CHELATING AGENT APPROACH

(70% of oxalate as glushinskite)

- Carbonation yield $< 1\% \rightarrow$ not a viable option in these conditions
- Could geochemical modeling predict such competing effects?

14

Solution

Oxalate-enhanced dissolution of olivine: kinetic modeling

Rate-limiting step: ore dissolution (instant. gas absorption & solid precipitation)

~20 size classes (SSA_{0i}, m_{0i}) generated from Rosin Rammler PSD model

Oxalate-enhanced dissolution of olivine: geochemical modeling (with CHESS)

Issues: • Mg-oxalate species missing in used thermodynamic database (CTDP)

- Glushinskite equilibrium data only available at 25°C
- \rightarrow dedicated precipitation experiments at 120°C & database updating

Bonfils et al. (2012)

Good agreement with experimental data at 3 g/L

 chemical controlled reaction

120°C, 20 bar CO₂, 3 g/L olivine < 100 μm

Simulation with CHESS code (van der Lee, 2007) after estimation of precipitation rate constants for silica & talc

Oxalate-enhanced dissolution of olivine: geochemical modeling (with CHESS)

Issues: • Mg-oxalate species missing in used thermodynamic database (CTDP)

- Glushinskite equilibrium data only available at 25°C
- \rightarrow dedicated precipitation experiments at 120°C & database updating

16

➢ Good agreement with experimental data at 3 g/L
 → chemical controlled reaction

Learnings & issues

- Organic polyacid salts (oxalate, citrate, EDTA): too strong Mg binders for MC at moderate P_{co2}
- Alternative option: silica(te) layer modulation / impeding by ligands

Catechol

Carbonation yield increased from 9.6% after 95 h (water) to 14.5% after 75 h (0.5 M catechol)

Si-catechol complex

(Barnum, 1970; Russo-Mascioli, 2001)

but might be ore-sensitive (complexation with Fe, Al ...)

Exhaustive analysis of both liquid & solid products = MANDATORY

Geochemical modeling as a valuable tool to predict effect of all inputs, but
 * careful selection & analysis of thermodynamic database required
 * going from & to experimental data needed

Studied MC pathways

Studied MC pathways

State of the art

High power ultrasound

Fluidized bed with grinding medium

Stirred tank with abrasive particles

Santos et al., 2011-2013; McKelvy et al., 2004; Park & Fan, 2004

Can be operated at moderate P (< 10 bar), but dampened under high T (> 50 °C) \rightarrow mainly in a sequential process

Mixed results

Park & Fan, 2004

Might be difficult to control (density and/or size differences between reactive & inert particles), limited amount of grinding medium (20 wt.%)

Some improvement of ore dissolution

Chizmeshya et al., 2007

Enhanced carbonation yield (with quartz particles up to 60 wt.%)

Proposed technical solution: stirred ball mill

IsaMill™ (Netzsch)

Advantages:

- ✓ proven technology at large scale
- ✓ slurry conc.: up to 40%
- \checkmark feed PSD: from μm to mm size range
- ✓ operability under high T & high P
- \checkmark scalability from 4 L to 50 m³

Issues:

- (long-term) exfoliation efficiency?
 - significant carbonation yield?
 - within a reasonable solid residence time?
- passivation layer attrition vs. breakage of ore particles?

energy efficiency: matching attrition process with passivation process?

1.25-1.6 mm sand particles (99% SiO₂)

> Université de Toulouse

> > 21

ACEME 2018, March 11-14, 2018, Newcastle, Australia

Extent of carbonation for different ore types (180°C, 20 bar CO_2 , ore conc.: 90 g/L, 1-2 mm Al_2O_3 — or SS grinding media ---)

 Significant extent of carbonation (vs. < 8% in 24 h without attrition)
 Almost insensitive to ore type
 Noticeable influence of grinding medium

Extent of carbonation for different slag types (180°C, 20 bar CO₂, ore conc.: 90 g/L, 1-2 mm sand — or SS grinding media ---)

Université de Toulouse

Proof of concept

Size effect only?

Proof of synergy between attrition and leaching

ACEME 2018, March 11-14, 2018, Newcastle, Australia

Universite

Life Cycle Assessment (LCA)

Functional unit: 1 MWhe with a coal-fired power station

Main hypotheses: - yield of ~ 80% in 24 h at 20 bar $CO_2 \& 180^{\circ}C$

- CO₂ pipeline transport over a 300 km distance
- no recycling of process solution; no valorization of products

Impacts accounted for:

- CO₂ capture & compression
- crushing & milling of ore from 1 cm down to 100 μm
- mechanical energy expended for attrition
- reactants pre-heating & cooling (after heat integration)

- Promising results regarding CO₂ avoided, without any process optimization
- Beneficiation of products & water recycling will also improve other LCA criteria (natural resource depletion +110% for case D)

IV. COUPLED ATTRITION-CARBONATION APPROACH

ACEME 2018, March 11-14, 2018, Newcastle, Australia

CITS

Université

Geochemical modeling as a process design tool

Geochemical code: PHREEQC v.3 (Parkhurst & Appelo, 1999, 2013)

Available databases: LLNL, Thermoddem

Selection based on existing exp. data for main system components

Geochemical modeling as a process design tool

Geochemical code: PHREEQC v.3 (Parkhurst & Appelo, 1999, 2013)

Available databases: LLNL, Thermoddem

Selection based on existing exp. data for main system components

Discrepancies for talc, but no solubility data available (in similar conditions) \rightarrow assessment on carbonation results

Liquid: extended Debye-Hückel activity coefficient model (low salinity) **Gas: Peng-Robinson** equation of state (non-ideal behavior of CO₂ - H₂O mixture at investigated P) **Solid:** description of several **solid solutions** (e.g. (Mg,Fe)CO₃)

Case study 1: KNS / "inert" grinding medium

"KNS" (90 g/L) described as an assemblage of MgO, SiO_2 and FeO All minerals including Mg, Si or Fe are allowed to precipitate, except quartz

Mineral speciation of KNS-H₂O-CO₂

Thermoddem 2017 database

Threshold T for quantitative carbonation at 20 bar CO₂ depends on the database!
At T = 180°C and P_{CO2} = 20 bar:

LLNL > theoretical max carbonation yield: 25%

Thermoddem 2017 \rightarrow conditions close to the drop in carbonation yield

Case study 1: KNS / "inert" grinding medium

"KNS" (90 g/L) described as an assemblage of MgO, SiO_2 and FeO All minerals including Mg, Si or Fe are allowed to precipitate, except quartz

Mineral speciation of KNS-H₂O-CO₂

Thermoddem 2017

Case study 1: KNS / "inert" grinding medium

"KNS" (90 g/L) described as an assemblage of MgO, SiO₂, FeO, CaO, Al_2O_3 and MnO All minerals including Mg, Si, Fe, Ca, Al or Mn allowed to precipitate (except quartz)

Mineral speciation of KNS-H₂O-CO₂

Thermoddem 2017

The model predicts a noticeable effect of slag "impurities" (Al₂O₃ ~ 2%) due to the existence of various stable aluminosilicate phases

Case study 2: KNS / effect of grinding medium

Experimental data

- Carbonation yield ~ 50% with sand (180°C, 20 bar, 90 g/L KNS)
- Crystallized phases = initial mineral phases (enstatite, ferrosilite, augite),
 quartz (sand) & mixed carbonates (dominated by MgCO₃ pole)
- TEM/EDX

Case study 2: KNS / effect of grinding medium

Experimental data

- Carbonation yield ~ 50% with sand (180°C, 20 bar, 90 g/L KNS)
- **Crystallized phases** = initial mineral phases (enstatite, ferrosilite, augite), quartz (sand) & mixed carbonates (dominated by $MgCO_3$ pole)
- TEM/EDX

\rightarrow Precipitation of various (amorphous) silicates

Higher yield achieved with stainless steel beads
 but increase of Fe content in solid product &
 a few discrepancies between carbonate amounts
 calculated from TGA and carbon content

ACEME 2018, March 11-14, 2018, Newcastle, Australia

Case study 2: KNS / effect of grinding medium

"KNS" described as an assemblage of MgO, SiO₂, FeO, CaO, Al_2O_3 and MnO **Steel beads** modeled as a (Fe_{0.87}Cr_{0.13}) solid solution

Mineral speciation of KNS-H₂O-CO₂

Stainless steel beads are corroded during attrition-leaching under CO₂

Case study 3: Batch simulation for olivine ore

"Synthetic olivine" described as an assemblage of MgO, SiO₂, FeO, CaO, Al₂O₃ and MnO Initial PSD accounted for, dissolution kinetic parameters from Prigiobbe et al. (2009) Alumina beads modeled as corundum, kinetic parameters from Palandri & Kharata (2004)

Time-evolution of carbonation yield

"Inert" grinding medium

Effect of alumina grinding beads

Very slow dissolution kinetics \rightarrow Negligible effect on system speciation

Good agreement between experimental data and modeling
 Process dynamics driven by the dissolution rate of fresh ore surface

Learnings & issues

- Proof of concept of the attrition-carbonation process with a stirred bead mill; Synergy between attrition & carbonation
- Favorable LCA; several optimization levers to improve process efficiency, cost & environmental impact
- > Grinding medium to be carefully selected (autogenous mode?)

➢ Geochemical modeling is a powerful tool for designing the attrition-carbonation process:

 equilibrium calculations → suitable operating window (to be verified experimentally) & material selection for the process equipment (grinding media)

- coupling of thermodynamics with chemical kinetics \rightarrow process sizing & optimization

SO WHAT'S NEXT ?

A continuous scalable demonstrator

Beneficiation of carbonation products

V. CONCLUSIONS: ONGOING & FUTURE WORK

Attrition reactor~4 L operating under T (max 200°C) & P (max 30 bar)

http://www.isamill.com

Bench-scale pilot reactor to be built in the coming months

V. CONCLUSIONS: ONGOING & FUTURE WORK

Utilization of MC products as construction or filling materials

 \succ could in theory absorb Gt of CO₂ (approximately 33 billion tons of concrete produced / year)

Goal: valorization without solid separation & with minimum dewatering

✓ Reduction of heat demand $(T_{calcination} \downarrow)$

(no need for limestone)

✓ Local production of construction materials

Overall scheme for CO₂ mineralization

"Historically", CO₂ mineralization was compared to geological storage, in terms of storage cost and avoided CO₂: Limited development ...

Mission Innovation, CCUS^{*} Workshop, Houston, Sept. 2017; <u>http://mission-innovation.net/our-work/innovation-challenges</u>

In recent years, the mineralization of CO₂ systematically combines CO₂ storage and production of commercial goods, coupling environment and economy:

Booming development!

ACEME 2018, March 11-14, 2018, Newcastle, Australia

00

V

^

Acknowledgements

Total Oil & Gas company,

Caledonian Energy Agency

TOTAL EXPECTATION A son environmement A son environmement

Center for technological research on Nickel of New Caledonia,

for funding these research works

Our PhD & post-doc students: B. Bonfils, I. Benhamed, J. Diouani

Our technical staff: J.L. Labat, I. Coghe, L. Farhi, C. Rey-Rouch (LGC), A. Moreau (LCC Toulouse), C. Charvillat (CIRIMAT Toulouse) for their support on the reactor pilot and the solid analyses

Our project partners: S. Touzé, T. Augé, F. Bodenan (BRGM Orléans) F. Guyot, F. Ploquin, F. Juillot (IMPMC Paris) C. Petiot, L. Cassowitz, A. Boukary (BiolS) J. Leclaire & J. Septavaux (ICBMS Villeurbanne) for their valuable contribution

Thank you for your kind attention!

39

ACEME 2018, March 11-14, 2018, Newcastle, Australia

The actual team

LABORATOIRE

DE GÉNIE CHIMIQUE

TOULOUSE - UMR 5503

France Bailly, Director

Pr. Florent Bourgeois

Dr. Carine Julcour

Dr. Laurent Cassayre

Pr. Julien Leclaire

Dr. Solène Touzé

													-													
													-													
													-													
											-		 													
											-	-														
										1																
											-	1														
											-	8														
					-	÷				0	0															
											.0															
			1																							
		1																								

