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Recent research is showing growing interest in low-power electromechanical de-icing systems and, in 

particular, de-icing systems based on piezoelectric actuators. These systems use the vibrations generated by 

piezoelectric actuators at resonance frequencies to produce shear stress at the interface between the ice and 

the support or to produce tensile stress in the ice. This paper provides analytical and numerical models 

enabling a better understanding of the main de-icing mechanisms of resonant actuation systems. Different 

possible ice shedding mechanisms involving cohesive and adhesive fractures are analyzed with an approach 

combining modal, stress and crack propagation analyses. Simple analytical models are proposed to better 

understand the effects on ice shedding of the type of mode, ice thickness, or frequency with respect to 

cohesive and adhesive fractures. 
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Nomenclature 

a = length of the beam, m 

b = depth of plate, m 

calu = Young’s modulus of the aluminum, Pa 

cice = Young’s modulus of the ice Pa 

fr = resonance frequency, Hz 

G = strain energy release rate, J.m-2 

�� = Critical energy release rate, J.m-2 

halu  = thickness of the support, m  

hice = thickness of the ice, m 

hn = position of the neutral line for the flexural mode, m 

K  = modal stiffness, N/m 

lf = length of the fracture, m 

M = modal mass, kg 

n = number of anti-nodes for the considered mode, - 

Ui = stored elastic energy, J 

U(x) = in-plane displacements (for extensional modes), m 

U0 = anti-node magnitude of in-plane displacements (for extensional modes), m 

W(x) = out-of-plane displacements (for flexural modes), m 

W0 = anti-node magnitude of out-of-plane displacements (for flexural modes), m 

v = speed of sound, m/s 

x = transverse position over the beam of length a, m 

� = stress, Pa 

� = strain, - 

� = rotation of a cross section, rad 

�� = dimensionless number, - 

ω = angular frequency of the considered mode, rad.s-1 

ρalu = density of the aluminum, kg.m-3 

ρice = density of the ice, kg.m-3 



I. Introduction 

CE accretion on aircraft or rotorcraft can affect control and cause mechanical failures. Icing occurs when an 

aircraft flies through clouds in which super cooled droplets are suspended in an atmosphere with an ambient 

air temperature below the freezing point. The droplets impinge on the aircraft surfaces and freeze, leading to ice 

accretion. The resulting change in the aircraft geometry can modify wing aerodynamic characteristics (loss of lift, 

increase in drag) or even damage the engine by ice ingestion. Regarding electrical de-icing systems, electro-

thermal and electro-impulse technologies are already implemented on aircraft but studies are currently in progress 

to propose new solutions that consume less energy or have less bulky power supplies. Among these studies, de-

icing systems based on piezoelectric systems are a subject of growing interest. The principle is to apply vibrations 

to the structure that create high-level stresses greater than those required to bring about delamination or cracking 

of the ice accumulated on the structure [1]. Extensional or flexural modes can be excited and different frequency 

ranges have been investigated: low frequencies (Hz) [2]..[5], high frequencies (kHz) [6]..[15] and waves (MHz) 

[16][17]. Paper [18] proposes a computational method for estimating amplitude of vibrations to initiate fractures 

according to the type of mode (extensional or flexural) and to the frequency range. To go further than the prediction 

of the initiation of de-icing, more work is required to model and understand what happens after the initial cracks 

or delamination are generated, and how the cracks or delamination can propagate. The fracture propagation 

mechanisms in the ice or at the ice/support interface involve cohesive failure (which induces cracks) and adhesive 

failure (which induces delamination). There are currently no studies that model these mechanisms for 

electromechanical resonant ice protection systems.  

In this article, this problem is studied through numerical simulations, analytical modeling and experimental 

tests on elementary geometries. The supports chosen for modeling and tests are simple plates in order to promote 

deeper understanding of the phenomena through analytical models. The objective is to obtain models to guide the 

design or analyze experimental tests. The article focuses on de-icing mechanisms related to resonance modes and 

does not address electromechanical coupling.  

Section II of this article sums up the state of the art concerning the data and models necessary for further 

developments. Section III develops the computations, based on stress formulas, for estimating the vibration 

amplitudes leading to the initiation of de-icing. The computations are made for two criteria based on the tensile 

strength in the ice and on the shear strength at the ice/support interface. Section IV explains general assumptions 

and introduces the models used in this paper for estimating fracture propagation once de-icing is initiated. It 
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highlights two different possible fracture propagation mechanisms, the first initiated by tensile stresses and the 

second by shear stresses. Sections V and VI study fracture propagation for the two mechanisms introduced 

previously and for flexural resonance modes only. The last section extends the study to extensional modes and 

compares flexural and extensional modes for fracture propagation.   

II. Modeling of Piezoelectric De-icing Systems: State of the Art  

This state of the art is limited to the phenomena, data or modeling methods useful for designing and analyzing 

de-icing systems activated by modal vibrations. Piezoelectric anti-icing systems [19] or ice accretion 

characterization systems [20][21] are not considered in this paper. 

In order to develop models for the design and analysis of piezoelectric systems, it is interesting to determine 

the main physical effects involved in de-icing. Many authors have set up video recordings [12][14][22] during 

their tests. The speed of the fracture phenomena, with time constants lower than milliseconds, is emphasized by 

the use of fast video cameras. The analyses of the videos highlight two types of phenomena: cracks within the ice 

(cohesive fracture) and delamination at the ice/support interface (adhesive fracture). The order of appearance of 

these two phenomena is not always the same [22]: cohesive fracture then adhesive fracture or adhesive fracture 

then cohesive fracture. The two phenomena can be consecutive without interruption or can require an increase in 

voltage magnitude or change of frequency to occur after a first fracture. In the tests reported in the literature, the 

activation of the support is generally carried out by a sweep over the frequency ranges that can excite extensional 

[6]..[12] or flexural [13]..[15][22] modes. For all of these modes, it is possible to note a change in the resonance 

frequency with the thickness of the ice and a significant amplification of the vibrations at resonance. The absorbed 

current and the quality factor may differ depending on the type of mode [23], extensional or flexural. 

First of all, modeling requires the characteristics of the ice to be known. Many publications [24]..[31] and 

research projects [32] deal with this research area. For high strain rate (higher than 10-4 s-1), ice exhibits 

macroscopically brittle behavior [29]. The main characteristics useful for our case of applications are thus Young's 

modulus, density, shear and tensile strengths, and critical energy release rate. These characteristics vary 

considerably [20][21][24]..[31] depending on the type of ice (glaze or rime), the means used to obtain this ice 

(freezer or wind tunnel), the type of degradation (cohesive or adhesive), and the interface material. As glaze ice is 

best known, Tables 1 and 2 summarize the values of the quantities that are used to carry out the numerical 



applications or simulations for this ice type, in this article. These values should only be taken as mean values 

because the literature presents a great variability of results concerning ice properties. 

A number of papers put forward analytical or numerical modeling elements. They consist mostly of numerical 

modal analyses correlated with experimental identification [15]. They can also take the form of frequency analyses 

which allow the piezoelectric coupling and the damping levels to be taken into account in order to estimate the 

stress levels at the ice/support interface [7]. Other papers couple modal analysis and model reduction to obtain 

these constraints [18][37].  The phenomenon of fracture propagation is rarely discussed in piezoelectric de-icing 

papers. It is necessary to turn to the modeling of electro-impulse [33] or electro-thermal [34][35][36] de-icing 

systems to find models taking cohesive or adhesive fractures into account. To study fracture mechanics, different 

methods can be chosen and are known to give similar results for linear elastic fracture mechanisms: the stress 

intensity factor approach [34], the cohesive zone model [33] and the energy balance approach [35][36]. The energy 

balance approach is used in this paper because of its similarity with energy approaches to determine resonance 

modes. This approach compares the strain energy release rate called � to a critical value ��: a value of � greater 

than �� indicates that a crack can grow. Table 2 gives the critical energy release rates  ��  (J/m²) commonly used 

to predict the ability of glaze ice to resist to cohesive or adhesive fractures. 

Table 1 – Ice properties of glaze ice 

 Glaze ice 

Young’s modulus, cice  9.3 109 Pa 

Poisson’s ratio, γice  0.325 

Density, ρice 900 kg/m3 

 

Table 2 – Strength and critical energy release rate for glaze ice 

 Cohesive (glaze ice) Adhesive (ice/aluminum) 

Strength, cice 3 MPa,  for freezer ice  1 MPa, for freezer ice  

Critical energy release rate, �� 1 J/m² 0.5 J/m² 

 



III. Initiation of De-icing 

The target of this section is to recall the conditions that lead to an initiation of de-icing [18][37][38]. The 

support is assumed to be covered by an ice layer of constant thickness made in a freezer. The numerical applications 

are made for a support thickness of 1.5 mm and an ice layer thickness of 2 mm. 

A. Beam Analytical Model 

The resonance modes used in the literature for de-icing are essentially in-plane extensional modes and out-of-

plane flexural modes. To simplify the analysis, several assumptions are made: support and ice are considered as a 

thin multilayer beam (1D model). This section summarizes the equations already presented by the authors. For 

more details on their assumptions and developments, the reader is invited to refer to the corresponding papers 

[18][37]. Mode shapes are assumed to be identical to that of a uniform beam and boundary conditions are simply 

supported as in papers [18][37]. Fig. 1 shows the beam under study. 

  

Fig. 1 –Element of the beam under study [18][37] 

For flexural modes, the position of the neutral line 	
 can be obtained by assuming that the tensile force in a 

section is zero [39]. This results in:  

	
 � 12 ����	���� � ����	����
����	��� � ����	���  (1) 

Table 3 synthetizes the analytical formulas derived from previous assumptions to compute strains and stresses 

in the ice, in the aluminum substrate and at the ice/support interface. The formulas of the peak out-of-plane shear 

stress were obtained by isolating an element of ice of thickness dx subjected to elastic forces, inertial forces and 

shear forces at the ice/support interface (Fig. 1). The resonance frequencies were obtained by Rayleigh’s method 

using the expression of the strains to estimate the kinetic and potential energies. 



Table 3 – 1D modes formulas 

 Extensional modes Flexural modes 

Displacement ���, �� � ���� ���  �
�  �! ��� ���" ���  � 

#��, �� � $������  � � $! ��� ���" ���  � 

���, �� � �% &#&� � �������  �  
Peak tensile 

strain 

�' � &����&� � �! ��" �(� ���"  �' � &����&� � $!% )��" *� ��� ���"  

Peak ice tensile 

stress in ice 

�' � �����' � �����! ��" �(� ���"  �' � �����	��� � 	
� )��" *� $! ��� ���"  

Peak tensile 

stress in 

aluminum 

�' � �����' � �����! ��" �(� ���"  �' � �����	��� � 	
� )��" *� $! ��� ���"  

Peak shear 

stress at  the 

ice/support 

interface 

+',
� -.��� � � ���� )��" *�/ 	����! ��� ���"  

+',
� ���� )��" *0 �	��� � 	
�� � 	
�2 $! �(� ���"  

Angular 

frequency 
 � � �" 1����	��� � ����	���.���	��� � .���	���   � �� )�"*� 1 23.���	��� � .���	��� 

with 

23 � ����3 �	
0 � �	��� � 	
�0�
� ����3 ��	
 � 	����0 � 	
0 � 

 

  



B. Beam Analytical Models Analysis  

These analytical formulas show that, for extensional modes, the maximum tensile stress in the substrate or in 

the ice is located on the displacement nodes and the maximum shear stress at the ice/support interface is on the 

displacement antinodes. For flexural modes, the maximum shear stress is located on the nodes and the maximum 

tensile stress on the antinodes.  

The extensional and flexural modes are compared in [18], in particular for their ability to generate stress. For 

a given frequency and a given displacement, the shear stress level at the ice/support interface and the tensile stress 

at the top surface of the ice layer are smaller for extensional than for flexural modes. Extensional modes generally 

appear at higher frequencies (over 15 kHz) and require higher displacements and consequently generally higher 

power.  Thus, to initiate ice delamination or ice fractures while minimizing the displacements (and potentially the 

consumed power) of the piezoelectric actuators, it is more efficient to excite flexural modes. The set of diagrams 

in Fig. 2 focuses on the flexural modes and shows, as a function of resonance frequencies: 

a) The vibratory magnitude necessary to reach the tensile criterion at the top surface of the ice layer or the 

shear criterion at the ice/support interface. As higher resonance frequencies entail smaller distances between nodes, 

higher bending radius and thus higher stresses, the requested magnitudes decrease with frequency. For low 

frequencies, initiation by crack preferably occurs on the top surface of the ice layer. Initiation by delamination 

only occurs at higher frequencies. The two phenomena take place simultaneously and cross here at about 40 kHz 

for an ice layer thickness of 2 mm. For a thickness of 4 mm, the crossing between these two phenomena occurs at 

approximately 25 kHz.  

b) The power per m² necessary to create these vibrations; this power depends on the mechanical losses to be 

compensated. They are here estimated by assuming a mechanical quality factor equal to 30. This conservative 

value is observed in practice in the worst cases for structures in aluminum alloy [23]. It can be observed that the 

initiation by tensile criterion can be satisfied with low power, a few tens of W per square meter, at low frequency. 

However, this power increases with increasing resonance frequencies and varies with the ice layer thickness. A 

parametric variation on this thickness shows an optimum thickness of approximately 1 mm for the initiation by 

surface fracture and 4 mm for the initiation of de-icing by delamination at the ice/support interface. 

c) The stress in the support, here in the aluminum alloy, should also be taken into account because it can 

cause a reduction in the lifetime if it is excessive. It is also an image of the constraints that can be found in the 

piezoelectric actuators. For the tensile criterion, the stress in the support is directly connected to the ice strength 



and is thus constant with frequency. For the shear criterion, an increase of the frequency has a positive effect by 

reducing the stress in the support. 

Note: a change in the nature of the ice, e.g. to rime ice with a lower Young's modulus, requires larger vibratory 

amplitudes in order to initiate the de-icing process and thus higher consumptions and stresses in the support. 

 

(a) Vibratory magnitude for tensile and shear criteria for different resonant frequencies 

 

(b) Power per m² for tensile and shear criteria for different resonant frequencies 



 

(c) Maximum stress in support for tensile and shear criteria for different resonant frequencies 

Fig. 2 – Main values for initiation of de-icing according to tensile and shear criteria  

C. Comparison with 3D FEM Models and Experimental Tests 

The models of the preceding paragraphs revealed two types of fracture during the initiation of de-icing: cracks 

on the top surface of the ice layer for low frequencies (caused by tensile stress), and delamination at the ice/support 

interface for high frequencies (caused by shear stress). These results, established with Bernoulli beam assumptions, 

are compared here with 3D FEM (Finite Element Method) simulations. The use of particular boundary conditions, 

symmetry on the antinode and anti-symmetry on the node, allows flexural modes to be simulated on a quarter of a 

wave-length with a form factor allowing fine meshing. A DoE (Design of Experiments) plan varying the overall 

dimensions and also the shape factor of the mode (ratio of wavelength in one direction over wavelength in the 

other direction) resulted in Fig. 4. It can be seen that, despite its great simplicity, the beam model makes it possible 

to represent the tendency of the amplitude necessary for de-icing initiation according to mechanisms n°1 (tensile 

criterion) and n°2 (shear criterion). 

Finally, different experimental tests were performed to compare simulation results with experimental 

measurements. The test specimen was an aluminum alloy plate 154 x 52 x 1.5 mm3 with two piezoelectric ceramics 

(PIC 151 from Physik Instrumente (PI) GmbH– size: 50 x 25 x 0.5mm3) bonded in the middle of the plate (Fig. 

3). One ceramic was used as the actuator, the other as the sensor. The plate was tested in free conditions with a 

uniform ice layer (2 mm-thick). This simple structure allows simulation and experimental results to be compared 



accurately while limiting uncertainties in the boundary conditions and in the ice profile. The test specimen was 

tested in a freezer for 3 resonance frequencies (10, 15 and 26 kHz) and 2 types of modes (flexural and extensional). 

For each resonance mode, sweeps were made around the resonance frequencies while increasing the voltage until 

the first fractures appeared. The fractures obtained for the three modes are shown in Fig. 3. 

The initiation of de-icing for this bare structure and flexural frequencies around 10 kHz and 26 kHz was caused 

by tensile stresses. Fig. 3(c) represents the mode shape of the corresponding modes where red colors indicate anti-

nodes and blue colors indicate nodes. Positions of cracks initiation (red lines of Fig. 3(c)) correspond to positions 

of anti-nodes. The vibratory magnitudes needed to obtain initiation of the de-icing for these modes are given in 

Fig. 4 and confirm the orders of magnitude of previous calculations. For the mode at 15 kHz, the initiation of de-

icing was also possible with the same order of magnitude because the resonance mode was not purely extensional: 

as illustrated in Fig. 3(c) for the “extensional mode” at 15 kHz, in addition to in-plane displacements, out-of-plane 

displacements are also present because of non-uniformity in the thickness of the aluminum-ice composite beam. 

These tests and other tests for other boundary conditions (clamped) and other forms (leading edge) in an icing 

wind tunnel are described in greater detail in Pommier-Budinger [38]. They confirm that: 

• for flexural modes, the tensile criterion dominates at low frequencies for de-icing, 

• extensional modes, which are mainly high frequency, show better properties for delamination, 

• the order of magnitude of the vibratory amplitudes that initiate de-icing can be determined from the 

evaluation of linear stresses. 

 

 

 

 

 

(a) Test specimen (b) Geometry 

  

 

y 

 x 

154mm 

51mm 51mm 
52mm 



   

Flexural 10 kHz Flexural 26 kHz “Extensional” 15 kHz 

(c) Modes tested (blue = node, red = anti-node) 

Fig. 3 – Experimental tests  

 

Fig. 4 – Comparison of 1D models (for flexural modes) with numerical (3D FEM) and experimental 

tests  

 

IV. Fracture Propagation: Assumptions, Methods and Configuration Studied  

A. Method and Assumptions for Analysis of Fracture Propagation 

In order to study the propagation of fractures, the classical Griffith energy balance approach [40] is used. In 

the energy balance approach, it is assumed that a certain amount of energy is absorbed by the structure during the 

formation of an area of fracture surface. When the fracture propagates, a certain amount of stored elastic energy is 

released. The fracture grows in an unstable way if the released energy is equal to or greater than the absorbed 

energy. 

The strain energy release rate is evaluated by the formula: 



� � � 15 67��789 :
;�<=

 (2) 

with b the depth of the plate, Ui the stored elastic energy, and lf the length of the fracture (Fig. 5). The strain 

energy release rate is compared with fracture toughness values given in Table 2 to conclude on the rapid 

propagation of cracks or delamination. 

The fracture propagation direction is assumed to be known so that the propagation can be studied. It is also 

assumed here that the fractures take place for vibrations of constant amplitude (disp in equation (2) meaning 

constant displacement) and that the influence of the kinetic energy can be neglected in the energy balance. In order 

to verify that the modeling can be placed in a quasi-static framework, the execution time of these fracture phases 

has to be estimated and compared to the vibration period. This evaluation can be made using the speed of fracture 

propagation at the fracture tip. In ice, the literature [40] estimates this speed at between 20% and 40% of the speed 

of sound (defined by > � ?�/.), thus about s = 1000 m/s. At the ice/support interface, it is assumed that the speed 

is of the same order of magnitude. The order of magnitude of the time (in μs) necessary to create a crack through 

the thickness of the ice layer or to delaminate a part of the ice/support interface is negligible up to about 40 kHz 

(less than 1/10 of a half-period) if the delamination of the surface is limited to 25%. Finally, it is assumed that the 

variation in compliance of the structure necessary for the energy approach can be evaluated via a modal analysis. 

B. Configurations Studied 

Fig. 5 describes the four configurations that are studied in the next sections. They enable comparisons to be 

made for: 

• the type of excited mode: flexion or extension. 

• the mechanism of initiation of fracture: tensile stress on the surface of the ice (mechanism n°1) or shear 

stress at the ice/support interface (mechanism n°2). 

The objective of this work is to obtain analytical models of the fracture propagation in order to evaluate the 

potential of each case for de-icing. The phases of cohesive fracture and adhesive fracture in mechanism n°1 are 

modeled independently, without analyzing either the switch from cohesive fracture to adhesive fracture or the end 

of delamination. 



 

Fig. 5 – Configurations studied 

C. Numerical Study of Fracture with Modal Analysis 

As an example of the approach followed to study fracture propagation, the propagation of a cohesive fracture 

(or crack) according to crack length lfy in the ice thickness is investigated for flexural modes of a beam (Fig. 5(a)). 

The computations are run for a quarter of wavelength configuration thanks to symmetric and anti-symmetric 

boundary conditions. The crack is located on an anti-node, starting from the top surface of the ice layer, and the 

simulations are run for different crack lengths lfy assuming free boundary conditions for the crack. The number of 

elements along thickness is selected (30-50) in order to ensure a good representation of shear stress. The stored 

energy is calculated at the resonance frequencies with FEM modal analysis. The FEM modal analysis also allows 

the stresses and deformations to be computed (Fig. 6). 

Fig. 7 summarizes the simulation results for a half wavelength of 30 mm. The initial resonance frequency 

before crack propagation (lfy = 0 mm) is 6.45 kHz. At the end of the cohesive fracture propagation (lfy = 2 mm), the 

resonance frequency falls to 5.3 kHz. Fig. 7(a) shows the evolution of the elastic energy as a function of the crack 

length and for a vibratory amplitude, W0 = 11 μm (computed with formulas of section III), enabling the fracture to 

initiate in the ice. The derivation of this energy gives the energy release rate (Fig. 7(b)) and can be compared to 

the fracture toughness of the ice (1 J/m², value introduced in Table 2 and represented by the red line on Fig. 7(b)). 

It can be seen that the length of the crack started by the initial vibratory amplitude must be over a certain critical 



length to enable unstable propagation of the cohesive fracture. Furthermore, the cracking can also stop if the energy 

release rate is not sufficient. The complete fracture process may therefore require an increase of the initial vibratory 

amplitudes calculated in the preceding section on the sole criterion of tensile strength. For this case, a vibratory 

magnitude W0 = 15.5 µm initiates a crack length that generates an unstable crack growth through the whole 

thickness.   

 

Fig. 6 –2D geometry studied and displacements obtained for a quarter wavelength by modal analysis  

Note: the analysis is performed for a cohesive fracture in the ice here but the same type of analysis can be 

conducted for an adhesive fracture at the ice/support interface. 

(a) Elastic energy per unit length computed for W0 

= 11 μm and W0 = 15.5 µm 

(b) Energy release rate computed for W0 = 11 μm 

and W0 = 15.5 µm 

Fig. 7 – Elastic energy and energy release rate during cohesive fracture  



The next developments in the paper aim to approximate the mean energy release rate (green line of Fig. 7(b)) 

for different de-icing configurations. 

V. Analysis of Fracture Propagation with Mechanism n°1, Corresponding to Flexural Modes and Tensile 

Criterion 

A. Study Case and Objective of the Study 

An analysis of the de-icing tests for flexural modes (Endres [22]) revealed two kinds of fracture propagation, 

either cohesive and then adhesive, or adhesive and then cohesive. Here, we study the case corresponding to flexural 

modes represented in Fig. 5(a) and illustrated by the photograph of Fig. 8: 

• firstly, cohesive in the ice, just after the initiation of the fracture at the top surface of the ice layer and on 

the antinode of vibrations.  

• secondly, adhesive at the ice/support interface, starting from the base of the fracture initiated just before. 

It is often necessary to increase the voltage level to make this appear. 

 

Fig. 8 – Example of cohesive and adhesive fractures for a flexural resonance mode 

The first objective here is to determine simplified analytical models describing the cohesive fracture in the ice 

layer and the adhesive fracture at the ice/support interface, and allowing the elastic energy of the structures to be 

computed for different configurations of fracture propagation. These models are then used to compute the energy 

release rate according to the frequency, which can help to analyze the efficiency of de-icing systems using flexural 

modes and tensile stress. 

Zone of adhesive 

fracture 

Cohesive fractures 



A simplification is made to obtain these models. The elastic energy is evaluated for only 3 states (Fig. 5(a)): 

• state 1: before the cohesive fracture (no fracture in the ice), 

• state 2: at the end of the cohesive fracture (crack of the ice through the entire ice layer), 

• state 3: at the end of the adhesive fracture (25% of delamination).  

We can find a mean value of the mean energy release rate between these states using the relation: 

� � � 15 7��789 ≈ � 15 ∆��∆89  (3) 

The two mean energy release rates computed between these three states make it possible to evaluate the 

cohesive and adhesive fracture potentials. As an example, in Fig. 7(a), the cohesive fracture between states 1 and 

2 is characterized by a mean value of G of 0.875 J/m² (value computed for  ∆89 � 2mm and ∆�� � �� � �D �
�1.75 HJ/m� . This value is a simple but interesting indicator of the fracture potential of the configuration: with 

a value of 0.875 J/m² - lower than but close to 1 J/m² - some cohesive fractures can occur but cannot propagate 

through the entire ice layer. 

B. Analytical Computations of the Elastic Energy and Mean Energy Release Rate 

The analytical expression of the elastic energy of state 1, i.e. of the structure without fracture, is obtained using 

the equations of deformation (Table 3): 

�� � J 12 ��7> � K 12 �L� -&�&� /� 57�7L (4) 

with � the stress, � the strain, and � the rotation of a cross section. 

��,D � 12 6����3 �	
0 � �	��� � 	
�0� � ����3 ��	
 � 	����0 � 	
0 �: )��" *M "2� 5$!� (5) 

The analytical expressions for states 2 and 3 are obtained using a substitution model based on the VPLM (for 

Variable Power Law Meta-model) method proposed by Sanchez [41]. The approach uses response surface models 

in logarithmic space combined with dimensional analysis. For the problem considered here, the physical variables 

involved are: 



��,� NO 0/$!² � Q�	��� , 	��� , "
 � "� , ���� , ����� (6) 

with hice, halu the thicknesses of the ice and the support, respectively, an the length between 2 nodes, and cice, 

calu the elasticity of the ice and the support, respectively. 

With 5 dimensional variables involving 2 physical dimensions, the application of the Buckingham theorem 

results in 3 dimensionless variables to express the problem. Moreover, the evolution of the resonance frequency is 

related to the variation in stiffness and therefore to the elastic energy of the structure. If it is assumed that the 

modal mass and the vibratory amplitude vary little during fracturing, there is a similarity of evolution between 

resonance frequency and elastic energy: 

�� � 12 R$!� ∝ QO� (7) 

where 

QO � 12� 1RT (8) 

with K the modal stiffness and M the modal mass of the resonance mode. 

Thus the problem can be rewritten in the following form: 

�! � ��,� NO 0 ��,D � QO,� NO 0�  QO,D�  � Q -�D � 	���	��� , �� � 	���"
 , �0 � ��������/ (9) 

Obtaining �! only requires the resonance frequencies to be calculated for the three states of the configuration: 

fr,1 for the initial state without fracture, fr,2 after cracking on the entire thickness, fr,3 after delamination of 25% of 

the surface. The VPLM method [41] and its associated computer DoE plans [42] are used to obtain the approximate 

analytical expressions of �!  for states 2 and 3. The experimental plan to be generated involves the dimensional 

physical variables 	��� , 	��� , "
 , ���� , ����  and the dimensionless numbers  �D, ��, �0. It contains 4 levels for each 

dimensionless number, which makes 64 points for this experimental plan. The variation ranges of the variables of 

the problem are given in Table 4. 

 

 



Table 4 – Variation range for the DoE 

Variables Units Variation range 

	���  HH 0.5 � 5 
	���  HH 0.3 � 3 
"
 HH 15 � 120 
����  �V" 3 � 10 
����  �V" 10 � 210 

�D � 	���/	��� - 1.67 10XD � 1.67 10D 
�� � 	</"
 - 2.50 10X0 � 2 10XD 

�0 � ����/���� - 1.43 10X� � 1 
 

The variation domains defined above can lead to certain unrealistic configurations such as resonance 

frequencies of the support that are too low and structures that are too fine. An additional constraint, resulting from 

the calculation of flexural resonance frequency is then added to the problem under study: 

	���"
� > 2120� (10) 

The expression of the energy after cohesive fracture  

�!,� �  ��,�/��,D (11) 

obtained by the regression method is given by: 

�!,� � ⋯ 

… ]. �D�^_`^a �Nb�ca�_`^^ �Nb�c^�_`^d �Nb�cd�_�^a^ �Nb�ca� �Nb�c^�_�^^^ �Nb�c^� �Nb�c^�_�^d^ �Nb�cd� �Nb�c^� 
… ���a_�ad^�Nb�cd��Nb�c^�_`ad�Nb�cd��0�d  

(12) 

with 

 k = 0.21669, a1 = -1.7066, a2 = -0.31725, a3 = -0.33617, b12 = -0.68082, b11 = -1.4732, b13 = -0.63382, c121 = -

0.36705, c111 = -0.43055, c231 = -0.21696, c131 = -0.25796 and b23 = -0.15783. 



The expression of the energy after adhesive fracture  

�!,0 �  ��,0/��,D (13) 

obtained by the regression method is given by: 

�!,0 � ]. �De^_f^dghi�jd�_f^^ghi�j^���ea�0ed_fddghi�jd�_kdd^ghi�jd�ghi�j^�
 (14) 

with 

 k = 0.16234, a1 = -1.385, a2 = -0.064263, a3 = -0.52435, b13 = -0.30152, b11 = -0.79995, b33 = -0.092924, c331 = 

0.12912. 

These functions have less than 5% average error over the range of study when they are compared to the 

simulation data. The use of these functions makes it possible to evaluate the evolution of the mean energy release 

rate, G, as a function of frequency for the cohesive fracture (Fig. 9) and the adhesive fracture (Fig. 10). These 

evaluations were made for vibratory amplitudes leading to the initiation of de-icing under tensile stress with 

freezer-type ice (tensile strength of 3 MPa). The evolution of the curves for other strength or amplitude values can 

be performed by square scaling.  

 

Fig. 9 – Estimated mean energy release rate, G, between state 1 and state 2 for cohesive fracture and 

flexural modes regarding tensile criterion (aluminum 1.5 mm, glaze ice of different thicknesses) 

Ice thickness 



 

Fig. 10 – Estimated mean energy release rate, G, between state 2 and state 3 for adhesive fracture and 

flexural modes regarding tensile criterion (aluminum 1.5 mm, glaze ice of different thicknesses) 

 

C. Analysis of Results 

The analysis of the curves of Fig. 9 and Fig. 10 leads to the following remarks for the de-icing with flexural 

modes and tensile stress: 

• The evolution of these curves as a function of frequency shows that the increase in frequency makes 

cohesive or adhesive fracturing more difficult; 

• A comparison of the values of G with the values of �� of the state of the art (Table 2) shows that, using 

the amplitude computed to initiate the fracture, it is possible to make a cohesive fracture grow on the 

entire ice layer for low frequencies (on Fig. 9, the values of G are greater than 1 J/m² only for low 

frequencies) but that it is unlikely to make an adhesive fracture grow at the ice/support interface whatever 

the frequency (on Fig. 10, the values of G are always smaller than 0.5 J/m²). This point corroborates the 

experimental results, which showed that the propagation of adhesive fractures required higher supply 

voltage and thus higher power supply in comparison with the voltage or power required for initiating 

cohesive fractures. 

• The variation of ice thickness affects cohesive fractures more strongly: a thick ice layer strongly facilitates 

a cohesive fracture but has little effect on an adhesive fracture. 

 

Ice thickness 



VI. Analysis of Fracture Propagation with Mechanism n°2 Corresponding to Flexural Modes and Shear 

Criterion 

Section III of this paper introduces the possibility of a second de-icing mechanism, illustrated on Fig. 5(b), 

which should appear for higher frequencies than mechanism n° 1: at a vibration node, shear stresses induce a 

beginning of delamination. Here, we study the propagation of this adhesive fracture at the ice/support interface, 

using the methodology introduced in sections IV and V where the elastic energy is now evaluated for only 2 states: 

• state 1: before the adhesive fracture (no fracture in the ice), 

• state 2: at the end of the adhesive fracture on 25% of the ice/support interface surface. 

The first point is identical to that of the previous section and the evaluation of the second point using a 

substitution model leads to the expression for the energy after adhesive fracture according to the substitution 

model: 

�!,� �  ��,�/��,D � ]. �De^��ea�0ed   (15) 

with k = 0.92072, a1 = -0.024018, a2 = -0.0048137 and a3 = -0.010926. 

Fig. 11 also compares the energy release rate, G, for adhesive fractures of mechanisms n°1 and n°2, for the 

same vibratory amplitude levels. It can be seen that mechanism n°2 has a lower fracture potential and unstable 

delamination growth is even more unlikely when only the vibration amplitude that initiates the fracture is used. 

Higher vibratory amplitude is required to lead to delamination. 

The set of pictures from FEM simulations (Fig. 12) makes it possible to understand the difference in energy 

release rate, G, between the mechanisms n°1 and n°2. These FEM results show the distribution of tensile stresses, 

shear stresses and stored elastic energy for a bending mode. The spatial zones with high tensile stresses correspond 

to zones with high stored energy, while zones with high shear stresses correspond to low stored energy. From an 

analysis of Fig. 11 and Fig. 12, one can understand that fractures of ice occur more easily in zones with high elastic 

energy. In conclusion, unstable delamination growth through mechanism n° 2 has a low probability.  

 



 

Fig. 11 – Estimated energy release rate, G, for adhesive fracture and flexural modes (between state 2 

and state 3 for mechanism n°1 (tensile criterion) and between state 1 and state 2 for mechanism n°2 (shear 

criterion) 

 

 

 

 

 

Fig. 12 – Tensile stress, shear stress and elastic energy distribution for a flexural mode  

 

VII. Analysis of Fracture Propagation for Coupled Modes with Extension and Flexion and for Tensile and 

Shear Criterion 

As illustrated in Fig. 3(c), the experiment shows greater delamination for modes having a mixture of 

displacements in the in-plane (extension) and out-of-plane (flexion) directions. The calculations of section III show 

that the initiation of delamination is mainly due to the out-of-plane components of these coupled modes. This 

Ice thickness 



section thus focuses on the effect of in-plane deformations on fracture propagation for the two types of mechanisms 

presented previously. 

For the FEM simulations, in order to quantify only the effect of the vibratory components in the plane, boundary 

conditions are forced on the faces so as to have only extension movements. In order to quantify the maximum 

effect that can be achieved by these components, the de-icing initiation point is placed at the most favorable 

position in terms of elastic energy, i.e. at the node of the extensional mode. By taking the approach of sections IV 

and V, the elastic energy is computed at several points: 

• For mechanism n°1 (Fig. 5(c), tensile criterion), with 3 states: initial energy without fracture (state 1), 

after cohesive fracture in the entire ice layer thickness (state 2), after adhesive fracture on 25% of the 

ice/support interface (state 3). 

• For mechanism n°2 (Fig. 5(c), shear criterion), with 2 states: initial energy without fracture (state 1), after 

adhesive fracture on 25% of the ice/support interface (state 2). 

The cohesive fracture is thus studied between states 1 and 2 of mechanism n°1, and the adhesive fracture 

between state 2 and state 3 for mechanism n°1 (after a first cohesive fracture) and between state 1 and state 2 for 

mechanism n° 2 (without initial cohesive fracture). 

 

As previously, the analytical expression for the elastic energy of state 1 (structure without fracture), 

is obtained using the equations of deformation (Table 3): 

��,D � J 12 ��7> � 12 �����	��� � ����	���� )��" *� "2� 5�!� (16) 

The analytical expressions for the other states are obtained, as in Sections IV and V, using substitution models 

of FEM simulations. To generate the DoE, the ranges of the ice layer thickness and of the ice and support Young’s 

moduli are the same as previously. To have a similar frequency range, however, it is necessary to adapt the range 

of the wavelength. The parameter an (distance between 2 nodes) considered here varies between 50 and 300 mm.  

The simulation and meta-modeling results are as follows: 

• For cohesive fracture through mechanism n° 1 (Fig. 5(c)): state 2 is very close in energy to the initial state 

1. This means that extensional modes cannot be used as an enabler of cohesive fracture. If a crack appears 



before delamination in a de-icing process, it is more likely caused by out-of-plane displacements (and 

thus flexural modes). 

• For adhesive fracture through mechanism n° 1 (Fig. 5(c)): the energy release rate for extensional modes 

(Fig. 13) is higher than for pure flexural modes (Fig. 10). The two diagrams are drawn with the assumption 

of an equal vibratory magnitude. The beneficial effect increases with the ice layer thickness. The elastic 

energy stored at the ice/support interface around extensional modes certainly explains the difference of 

fracture propagation between the purely flexural and combined extensional-flexural modes.  

• For adhesive fracture through mechanism n°2 (Fig. 5(d)): as illustrated in Fig. 13, the energy release rate 

for extensional modes is low in this configuration. Considering this and previous results, de-icing due to 

mechanism n° 2 and resulting in fast delamination is less likely to occur than delamination due to 

mechanism n°1. 

• Unlike the energy release rate for flexural modes, that for extensional modes is independent of frequency 

and thus can be helpful for high frequency de-icing.  

 

 

Fig. 13 –Estimated energy release rate, G, for adhesive fracture and extensional modes between state 2 

and state 3 for mechanism n°1 (tensile criterion) and between state 1 and state 2 for mechanism n°2 (shear 

criterion) 

 



VIII. Conclusion  

The objective of this paper was to set up simplified models for a better understanding of fracture propagation 

in electromechanical vibratory de-icing systems. To achieve this, various simplifying hypotheses have been used: 

geometries assimilated to composite beams (support/ice), decoupling of resonance modes (flexion/extension), etc. 

A first study concerned the initiation of fractures for de-icing. Models and experimental results show that the 

initiation of fractures can occur at low frequency using tensile stress or at high frequency using shear stress. The 

study highlights that the flexural modes are the most suitable to initiate fractures. 

Using the vibratory amplitude to initiate de-icing as a starting point, a second study concerned fracture 

propagation. An examination of experimental tests highlighted two possible mechanisms for the propagation: one 

mechanism initiated by tensile stresses and the other by shear stresses. Several proposals have been made for 

developing models of fracture propagation: energy balance analysis with modal analysis, simplification of the 

approach by studying the frequency of resonance on some characteristic states, establishing analytical formulations 

using substitution models. These analytical models made it possible to carry out trend studies, which revealed: the 

easier propagation of cohesive fractures for low frequency flexural modes, the low probability of de-icing by shear 

stress, the importance of the presence of elastic energy at the ice/support interface to generate delamination, and 

the interest of extensional modes to achieve such delamination. These results can be used as design guidelines for 

new de-icing architectures. They could be extended by further numerical studies not requiring the fracture 

propagation direction and by studies on more complex geometries, such as plates or leading edges. 
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