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ΦAbstract – In the past, designers develop analytical models 
that are useful to size rapidly surface mounted permanent 
magnet synchronous motor with sinusoidal waves and a high 
specific power. In order to ensure the assumptions of sinusoidal 
waves, a joint design of the stator winding and the rotor is 
presented. First, an Halbach permanent magnet array is 
optimized to obtain the desired airgap magnetic flux density 
wave. Then, in order to obtain a surface current density wave 
consistent with the desired wave, the conductor distribution 
along the stator bore is determined. 

Index Terms-- Surface Mounted Permanent Magnet 
Synchronous Machine, Halbach magnet array, Conductor 
distribution functions.  

I. INTRODUCTION

NCREASING specific power of electric machines 
becomes a crucial issue in the hybrid or electric 
propulsion systems. To rationalize the search of high 

specific power electric motor, it is helpful to use the 
loadability concepts defined by some designers [1]. They can 
characterize intrinsically the performances and the 
technological levels of electric motors [2]. These concepts 
and the works presented in [3] can be used to develop 
analytical models for sizing electrical motors. 

 One of the advantages of these simple analytical models is 
that they need very few data: stator and rotor are not 
described in details. But they need some assumptions. For 
instance, the models developed in [3] are valid specifically 
for surface mounted permanent magnet synchronous motor 
(SM-PMSM) with sinusoidal waves. So the more the motor 
under designed is close to these assumptions the more the 
performances of the motor are assessed.  

The primary objective of this paper is to develop methods 
that help to design motors that are very close to the 
assumptions on which sizing models are based. To reach this 
goal, a joint design of airgap magnetic flux density and 
surface current density waves on the stator bore of SM-
PMSM sized with Slemon’s models is proposed [2][3][4].  

In order to have a radial airgap flux density sinewave, 
segmented Halbach arrays are investigated. Then an 
approach based on the conductor distribution functions [5] 
[6], instead of the classical winding functions [7], is used to 
design the winding. The goal is to produce a surface current 
density wave consistent with the magnetic flux density wave. 
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A first part is devoted to the fundamental waves in 
sinewave synchronous motor. This part explains why the 
joint design can be interesting from the point of view of 
torque productions and justify the use of the conductor 
distribution functions. It presents also the studied motor sized 
for a mechanical power of 0.9MW with a high specific 
power. A second part is devoted to the optimization of a 
multi-segmented Halbach array in order to generate a 
sinewave of an airgap radial magnetic flux density. Some 
works on the optimization of Halbach arrays are recalled in 
order to underline the main contributions of this paper. A 
third focuses on conductor distribution functions for the 
design part of the winding. The last part shows the validation 
of the proposed approach by 2D finite element analysis. 

II. PROPOSED APPROACH

A. Fundamental waves in SM-PMSM

An ideal sinewave synchronous motor is characterized by
two fundamental waves on the stator bore. The first 
fundamental wave is the radial magnetic flux density due to 
the rotor magnetic sources: 

( ) ( )θΩθ ptp2 t BB rms −= cos, (1) 

Where: p is the number of pole pairs, Ω is the rotor speed, 
Brms is the rms value of the wave, t is the time and θ is the 
angular position along the stator bore.  

The second fundamental wave is the axial surface current 
density due to stator currents: 

( ) ( )αθΩθ −−= ptpK2 tK rms cos,            (2) 

 The two waves are in synchronism and the electric 
angular displacement between them is α. Applying Lorentz 
and the action-reaction laws, the torque applied on the rotor 
is given by the surface integral performed on the stator bore 
Sb: 

( ) ( ) ( ) dz dS θ,tKθ,tBrtT
b

2 θ= (3)

From (1) and (2), this integral leads to the well-known 
constant torque of non-salient pole synchronous motor: 

( )απ cosKBlr 2T rmsrms
2= (4) 

Where: r is the stator bore radius, l is the active length. (1) to 
(4) show that the surface current density and the airgap flux
density waves have to be tuned together in order to obtained
the maximal torque (α = 0). Equation (4) defines the well-
known load concept namely the tangential stress [1]:

( )ασ  KB rmsrms costan =           (5) 
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B. The origins of conductor distribution functions

In order to model analytically the magnetic field produced
by the winding in slotless permanent magnet motor, a surface 
current density distribution is defined [8]. This distribution is 
used in boundary condition equations of magnetic scalar 
potential based in a 2D model. A volume current density is 
introduced to model the reaction field in permanent magnet 
motor, in magnetic vector potential 2D model [9][10]. To 
enlighten the role of the winding and the currents, a surface 
current density wave K(θ,t) is defined by the separation of 
space functions and time functions [5][6]: 

( ) ( ) ( )tIC tK k

q

1k
k θθ 

=
=, (6) 

The space functions are the q phase conductor 
distributions along the stator bore Ck(θ).  The time functions 
are the q phase currents Ik(t). If the currents are sinusoidal, to 
have sinewave surface current density, it is sufficient, but not 
easy, to have sinusoidal conductor distribution functions. 

C. Design of the rotor and the stator of the sized motor

TABLE I 
SM-PMSM PARAMETERS  

Parameters Symbol Unit Value 
Mechanical specifications 

Mechanical power Pm kW 900
Mechanical torque  T N.m 430

Electric, Magnetic and thermal loads 
Rms current density jrms A.mm-2 11 
Fill factor  kfill - 0.5
Max airgap flux density Bm T 1
Max linear current density  Km kA/m 76 
Number of poles 2p  - 4
Tooth flux density Bt   T 1.3
Stator yoke flux density Bsy T 1
DC Bus voltage (input Inverter)  UDC kV 1

Main sizes of SM-PMSM 
Stator outer radius Rsout mm 136.22 
Stator inner radius r mm 76.63 
Active length machine  l mm 306.51 
Thickness of airgap eg mm 2.3
Thickness of PM ePM mm 9.63 
Slot height  hs mm 21.28 

Fig. 1.  The main sizes of SM-PMSM. 

From [1] and [3] sizing motor models of sinewave 
synchronous machines can be easily developed. With the 

help of these models, a surface mounted permanent magnet 
synchronous (SM-PMSM) motor, with high specific power 
(5kW/kg) [4], has been sized with the Slemon’s model [3]. 
Table I presents the mechanical specifications, the electric, 
the magnetic and the thermal loads fixed in order to obtain 
the main sizes of SM-PMSM. 

As shown in Fig. 1, the rotor and the stator configurations 
are not detailed yet. Following sections present the 
determination of the rotor and stator configurations.  This 
joint design allows to get a surface current density wave close 
to the sinewave like in an ideal machine. 

III. OPTIMIZATION OF A SEGMENTED HALBACH ARRAY

The optimization of segmented Halbach PM was
investigated in several papers. In [11], the rotor has two 
permanent magnet segments per pole with non-uniform arc 
lengths. The magnets have the same magnetization, but their 
directions are alternately radial and tangential. In [12], an 
Halbach array with two segments per pole magnetized 
radially and tangentially is also studied but with empty space 
between the permanent magnets. A sequential programming 
method is applied to optimize the arc segments in order to 
minimize the mass of the rotor. In a recent paper [13], 
Halbach array with more than two segments is studied. The 
segments have unequal arc lengths and directions of 
magnetization. A multi-objectives genetic algorithm is used 
to maximize the fundamental component of the airgap flux 
density and to minimize the total harmonic distortion. In most 
of these papers an analytical 2D field model based on scalar 
potential is used.  

In this paper, vector potential formulation is used. An 
Halbach array with seven segments per pole is chosen. The 
array has PM-symmetric-axis as explained in [13]. It is 
assumed that there is no gap between two segments. 

A. Analytical 2D model with vector potential formulation

To establish the 2D analytical model, some assumptions
are made in order to simplify the establishment of the 
analytical model, such as:  

1) the slot effect is not taking into account,
2) the permeability of stator and rotor magnetic sheets is

infinite,
3) the relative permeability of permanent magnet is one.

On Fig.2, the zone I is the rotor yoke, the zone II is the
segmented PM Halbach and the zone III is the airgap. 
According to the assumptions, the study domain contains 
only two zones. The vector potentials AII and AIII are 
respectively the potential vectors in zones II and III. In polar 
coordinates we have the well-known equations: 
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  (7) 

Where: Jr and Jt are the radial and tangential components of 
the polarization vector of the permanent magnet. To 
equations (7), the boundary conditions and continuity 



conditions on interface are added. In the analytical model, the 
method of separation of variables is used. The solutions of 
(7) are well-known and have been presented in [5][6].

Fig. 2.  The permanent magnet elementary segments forming the Halbach 
Array.  

B. Linear superposition principle

As equations (7) are linear, the linear superposition
principle can be applied. The zone II is divided in seven 
permanent magnet segments per pole. Fig. 2 shows a segment 
of this array. The kth segment is characterized by its angular 
width θk, a uniform vector polarization with a unit radial 
component Jrk and a unit tangential component Jtk. To apply 
the linear superposition principle, two elementary sources 
have been defined for each segment: one for each component 
of the vector polarization. The distribution of the components 
of the radial magnetic flux density along the stator bore is 
calculated for each elementary source. 

C. Optimization procedure

The sum of the angular width of the seven segments must
be constant and equal to the angular width of a pole. The 
optimization procedure is initialized by taking the same 
angular width for each segment. As shown on Fig. 3, the 
fourteen elementary distributions of radial flux density are 
superposed by using unknown coefficients λk. A Least Square 
Method is then applied in order to find the set of fourteen 
coefficients that make the superposed distribution match the 
distribution defined by equation (1). As the elementary 
distribution is produced by unit source, these coefficients 
defined the value of the corresponding component of the 
vector polarization in each segment. Once the value of 
components of the vector polarization in each segment is 
optimized by least square method, another optimization 
procedure is launched to optimize the angular width of 
segment. This procedure is based on the well-known SQP 
method. The whole procedure is shown on Fig. 3. 

Using the sizes and parameters given in Table I, the 
results of the Halbach polarization is given in Table II. The 
optimization procedure is validated by comparing the results 
of 2D analytical field model with those of Finite Element 
Analysis (FEA) as shown in Fig. 5a. 

Fig. 3.  The Halbach segmented array optimization procedure. 

TABLE II 
SEVEN SEGMENT HALBACH ARRAY PERMANENT MAGNETS  

k 1st  2nd  3rd  4th  5th  6th  7th  
Jrk[T] 0.232 0.676 1.060 1.215 1.060 0.676 0.232 
Jtk[T] 0.914 0.779 0.499 0 0.499 0.779 0.914 
θk(%)* 10.97 12.80 16.66 16.66 16.66 12.80 10.97 

*By comparison to the pole pitch

(a) 

(b) 
Fig. 5. The Comparison of FEA and Analytical model of (a) radial airgap-
flux density (b) harmonic analysis of radial airgap-flux density.  

The harmonic content of the radial magnetic flux density 
on the stator bore is given on Fig. 5b. The results of the 

Elementary radial flux density distributions on stator bore: 
- b2k-1(θ) due to unit radial polarization in segment k
- b2k (θ) due to unit tangential polarization in segment k

Initial segment width θk=π/(7p) 

Least Square Method 
Find λn so that: λnbn(θ)=B(θ,0) 
B(θ,0) is given by (1) 

Polarization of segment k : Jrk=λ2k-1  and Jtk=λ2k  

Optimization of segment angular width θk with Sequential 
Quadratic Programming while the segment polarizations 
are those given by the Least Square Method 

Halbach solution : Jrk, Jtk, θk 

θk 



optimization procedure are good compared to numerical ones 
and the radial flux density is nearly sinusoidal with a THD 
less than 7%. 

IV. CONDUCTOR DISTRIBUTION FUNCTIONS

The design of the winding is done with the help of 
conductor distribution functions. They are useful for 
calculating the surface current density wave that are the 
sources armature reaction field when a 2D analytical is used 
[5][6]. Up to now they are not very employed to design 
winding. The classical winding functions [7] are usually 
preferred. 

As they are not very well known some definitions have to 
be done. The conductor distribution function works as the 
winding function. Formally it operates as the derivative of 
winding function [7]. By analogy to the winding functions, 
numbers like factor of distribution, slot opening factor can be 
defined. This analogy is more detailed in the appendix. For 
integral slot winding, only odd harmonics are taking into 
account. Some of the factors of conductor distribution 
functions are given in Table III. 

TABLE III 
MAIN FACTORS OF CONDUCTOR DISTRIBUTION FUNCTIONS 

Factor Symbol Expression
“Full pitch”  A2k-1 ( )( )

( )χ
χ

π 1k2

p1k250

rn

n4

l

c

−
−.sin  

“Distribution”  D2k-1 ( )
( )γ

γ
p1k250

pm1k250

)(.sin

)(.sin

−
−

“Layers” L2k-1 ( )
( )ξ

ξ

p1k250
l

pn1k250

)(.sin

)(.sin

−

−

In Table III, r is the stator bore radius, p is the number of 
pole pairs, χ is the angular slot opening, γ is the angular step 
between two neighboring coils of the same phase and ξ is the 
angular step between two layers of the same phase. In the 
following examples, γ and ξ are equal to the angular slot step. 
The conductor distribution functions of a winding with q 
phases, nc number of conductors per slot, m number of slots 
per pole and per phase and nl number of layers are given by: 

( ) ( ) 





 −−−= −−

∞

=
− ))((cos

q

2
1ip1k2LDA C 1k21k2

1k
1k2i

πθθ (8) 

This distribution of conductors is a linear distribution 
along the stator bore. For the motor given on Table I, with a 
three phase winding, 12 conductors per slot, one conductor 
per pole and per phase with one layer, the linear distribution 
of conductors along the stator in function of the angular 
position is shown on Fig. 6. 

Multiplying the conductor distribution function by the 
stator bore r and the angular slot opening χ, gives the number 
of conductors per slot (Fig. 7). On Fig. 7 positive number 
means ‘go’ conductors and negative number means ‘return’ 
conductors.  

Fig. 6.  Distribution conductor functions (m=1, nc=12 and nl=1).  

Fig. 7.  Number of conductors per slot, rχCk(θ), (m=1, nc=12 and nl=1) 

Table I gives the magnitudes of the surface current density 
and the magnetic flux density waves, Km and Bm, of the motor 
under study. Knowing the first harmonic of the conductor 
distribution functions from (8), it is possible to calculate the 
magnitude of the current Im from (6): 

LDA3
K22

I
111

rms
m = (9) 

The real surface current density wave can be calculated 
from (6) and (8). Fig. 8 shows the distribution of surface 
current density wave on the stator bore at t = 0 and 
corresponding to the distributions of conductors of Fig. 6. It 
is compared to the fundamental of the surface current density 
wave. The distribution of the magnetic flux density wave 
shows that they are correctly tuned. 

To get acquainted with conductor distribution functions, a 
winding with 12 conductors per slot, two conductors per pole 
and per phase and two layers has been also studied. The 
linear distributions of conductors along the stator in function 
of the angular position are shown on Fig. 9 and the surface 
current density on Fig. 10. 

Each phase of the winding on Fig. 6 has the same number 
of turns than the winding on Fig. 9 (nt=48). This number of 
turns has been calculated to match the voltage inverter 



output. Equation (9) can be used again to calculate the 
magnitude of the current Im. On Fig. 10 the surface current 
density wave on the stator bore is shown. It can be seen that 
the surface current density wave is more close to a sinusoidal 
wave than on Fig. 8. Table IV gives the harmonic content of 
the surface current density wave at t = 0. 

Fig. 8.  Surface current density, its fundamental and magnetic flux density 
(m=1, nc=12 and nl=1). 

Fig. 9.  Distribution conductor functions ( m=2, nc=6 and nl=2). 

Fig. 10.  Surface current density, its fundamental and magnetic flux density 
(m=2, nc=6 and nl=2). 

The results presented show that it can be very useful to 
design winding from conductor distribution functions. It is 
directly linked to the torque by (3) and (6). 

TABLE IV 
HARMONIC CONTENT OF THE SURFACE CURRENT DENSITY  

Winding 
parameters  

THD 
 (%) 

K1

(kA/m) 
K5/K1 

(%) 
K7/K1 

(%) 
K11/ K1 

(%) 
K13/ K1 

(%) 
m=1, nc=12, 

nl=1 
84.16 274 90.7 82.6 59.2 46.7 

m=2, nc=6 
nl=2 

85.23 273.7 6.54 6.33 89.75 86.69 

V. NUMERICAL VALIDATION

To validate the joint validation of the rotor with Halbach 
array and the stator winding, a FEA is used. In order to show 
that the approach is robust, a winding with a worse THD is 
chosen (Table V). One pole of the designed motor is shown 
on Fig. 11. It is a motor with an Halbach array with 7 
segments. The polarization of each a Halbach array segment 
is given on Table II. 

Fig. 11.  Studied motor with a multi-segmented Halbach array 

Fig. 12.  Surface current density, its fundamental and magnetic flux density 
(m=2, nc=6 and nl=1). 

TABLE V 
HARMONIC CONTENT OF THE SURFACE CURRENT DENSITY 

THD  
(%) 

K1

(kA/m) 
K5/K1 
(%) 

K7/K1 

(%) 
K11/ K1 

(%) 
K13/ K1 

(%) 
94.97 74.59 26.9 26.2 98 98.4 

The motor has 2 slots per pole and per phase and one 
layer. Each slot has one conductor. The number of turns nt 
for each phase is 4. For an angular slot step of 15°, the 



angular slot opening χ is 7.66°. The surface current density 
wave is shown on Fig. 12. The harmonic content of the 
surface current density wave at t = 0 is given on Table V. 
Considering a sinewave flux density (1) and the conductor 
distribution function (8) the magnitude of the no-load flux of 
one phase is given by: 

p
LDABlr rms

vm

111
2 2 π=Φ (10) 

where, Bm is the magnitude of the flux density wave given in 
Table I. The back-emf per phase magnitude is: 

Φω vmm  E = (11) 

Fig. 13 compares the back-emf calculated by FEA and the 
one given by considering a sinusoidal back-emf. 

From (9) the magnitude of the currents has been 
calculated. In FEA, the phases of the motor have been 
supplied by sinusoidal currents and the torque on the rotor 
has been calculated. The torque is also calculated analytically 
with (4) by considering flux density (1) and sinusoidal 
surface current density (2) waves. The results of the two 
calculations are shown on Fig. 14.  

Fig. 13.  Back-emf calculated from (10)-(11)  and by FEA. 

Fig. 14.  Torque calculated by (4) and by FEA 

Fig. 13 and Fig. 14 show the electromechanical 
characteristics calculated by the proposed approach fit well 
the ones calculated by FEA. This approach allows to design 
quickly and with a good precision the performances of an 
electric motor considering fundamental waves (1) and (2). 

VI. CONCLUSION

The analytical method presented here is devoted to high 
specific power SM-PMSM. From electric, magnetic and 
thermal loads and a rough definition of the sizes, we can 
calculate the torque, the back-emf of a sinusoidal motor. On 
one side, we define a Halbach array with seven segments per 
pole. An optimization procedure is employed to reach a 
sinusoidal magnetic flux density wave in the airgap. On other 
side, the design of the winding is done using conductor 
distribution functions. With a q phase sinusoidal current 
system, the sine wave surface current density obtained is 
tuned with the magnetic flux density wave in order to obtain 
the maximal tangential stress and then the maximum torque.  

The optimization of the Halbach array is very elaborated 
but very efficient. The design of winding from conductor 
distribution functions is very simple. It is directly linked to 
the torque by equations (3) and (6). The errors from FEA are 
quite acceptable. It may be noted also that the conductor 
distribution functions of the winding chosen for the 
comparison are not really sinusoidal.    

VII. APPENDIX

The conductor distribution and magnetomotive force (m.m.f.) 
functions, C(θ) and MMF(θ), can be expressed by the Fourier 
series decomposition:   

( ) ( )θθθ p1k2Cp1k2CC sn
1n

cn )(sin)(cos)( −+−=
∞

=

( ) ( )θθθ p1k2mmfp1k2mmfMMF sn
1n

cn )(sin)(cos)( −+−=
∞

=

where θ is the angular position. In the following, the 
parameters A2k-1, D2k-1 and L2k-1 are given in Table III. 

A. Elementary full pitch winding

The conductor distribution and the m.m.f. waveforms of an 
elementary full pith winding are shown in Fig.15.   

Fig. 15.  Distribution conductor and magnetomotive force functions  

The distribution conductor and the m.m.f.  functions are 
given by:   

( )( )
( ) ( )θ

χ
χ

π
θ p1k2

1k2

p1k250

1k r
c

n4
C )(cos

.sin
)( −

−
−∞

=
= 

( )θ
χ

χ
π

θ p1k2
1k2

p1k250

1k 1k2p

I
c

n4
MMF )(sin

)(

))(.sin(

)(
)( −

−
−∞

= −
= 

and can be expressed by the following form:  



( )θθ p1k2
1k

1k2
AC )(cos)( −

∞

= −= 

( )θθ p1k2
1k

1k2
A

p1k2

rI
MMF )(sin

)(
)( −

∞

= −−
= 

B. Distributed winding with full pitch

The distribution conductor and m.m.f. waveforms of a full 
pitch distributed winding are shown in Fig.16 

Fig. 16. Distribution conductor and Magnetomotive force functions of 
distributed winding  

Using the C(θ) and MMF(θ) of the elementary coil, the 
distribution conductor and magnetomotive force functions 
can be deduced:    

( )
=

−−−
∞

= −=
m

1j
1jp1k2

1k
1k2

AC ))(()(cos)( γθθ

( )
=

−−−
∞

= −−
=

m

1j
1jp1k2

1k
1k2

A
p1k2

rI
MMF ))(()(sin

)(
)( γθθ

The C(θ) and MMF(θ) of the distributed winding become:   

( )θθ p1k2
1k

1k2
D

1k2
AC )(cos)( −

∞

= −−=   

( )θθ p1k2
1k

1k2
D

1k2
A

p1k2

rI
MMF )(sin

)(
)( −

∞

= −−−
=   

C. Distributed winding with several layers

The distribution conductor and m.m.f. force waveforms of 
distributed winding with layers are shown in Fig.17.  

Fig. 17. Distribution conductor and magnetomotive force functions of 
distributed winding with several layers  

By considering the layers of winding, C(θ) and MMF(θ) are 
expressed by:      

( )
=

=
−−−

∞

=
−−=

lnl

1l
1lp1k2

1k
1k2D1k2AC ))(()(cos)( ζθθ

( )
=

=
−−−

∞

=
−−−

=
lnl

1l
1lp1k2

1k
1k2D1k2A

p1k2

rI
MMF ))(()(sin

)(
)( ζθθ

And can be simplified by:   

( )θθ p1k2
1k

1k2L1k2D1k2AC )(cos)( −
∞

=
−−−= 

( )θθ p1k2
1k

1k2
L

1k2
D

1k2
A

p1k2

rI
MMF )(sin

)(
)( −

∞

= −−−−
= 
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