

Open Archive Toulouse Archive Ouverte

Thic	ic an	author's	version	nublished in	http://oatao	univ-toul	ouse.fr/20786
11115	is an	aumors	version	bublished in.	niib.//oatao).univ-touid	JUSE.II/ZU/ ob

To cite this version:

Bailly, France and Touzé, Solène and Bourgeois, Florent and Julcour-Lebigue, Carine and Cassayre, Laurent and Cyr, Martin and Leclaire, Julien Valorisation du CO2 par carbonatation minérale avec le procédé d'attrition lixiviante. (2018) In: Journée ACV pour la valorisation du CO2 - ADEME / ClubCO2, 30 March 2018 (Paris, France). (Unpublished)

Journée ACV pour la valorisation du CO₂ 30 mars 2018, EMP, Paris

Valorisation du CO₂ par carbonatation minérale avec le procédé d'attrition lixiviante

Worldwide potential of MC (GIS) Examination of MC mechanisms Proof of concept of selected MC route Environmental assessment (LCA)

CARBOSCORIES I

(ANR CO₂ 2009-2012)

Potential of Ni slags for MC hybrid process Balance analysis for two metallurgy plants

LABORATOIRE DE GÉNIE

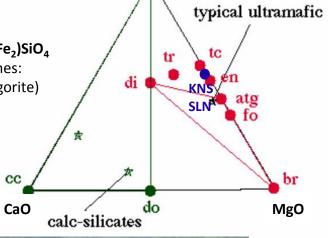
CO₂EMR

Collaborative work

CARBOSCORIES II

Caledonian Energy Agency (2018-2021)

Continuous pilot Valorisation route for MC products



Classification des roches ultramafiques dans le système CaO-MgO-SiO₂

SiO₂ qz **⋒** qz

- Forsterite Mg₂SiO₄
- Enstatite MgSiO₃
- Forsterite Olivine (Mg₂, Fe₂)SiO₄
- Serpentine (3 polymorphes: chrysotile, lizardite, antigorite)
 (Mg, Fe)SiO(OH)
- Talc Mg₆Si₈O₂₀(OH)₂

qz: quartz tc: talc

tr: tremolite

en: enstatite

di: diopside

atg: antigorite

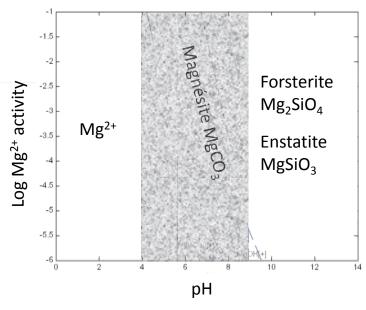
fo: forsterite

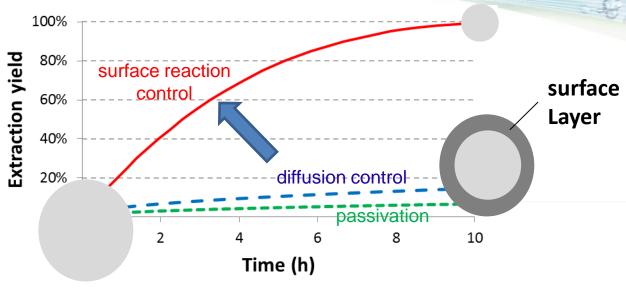
cc: calcite

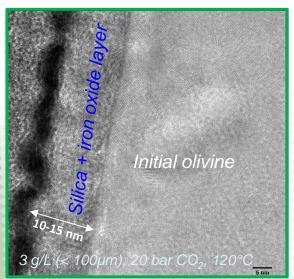
do: dolomite

br. brucite

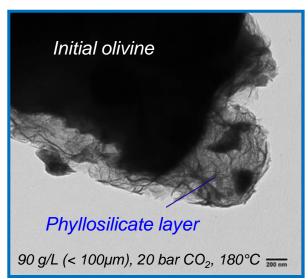
Ni slags


- KNS slowly cooled under ambient conditions
- SLN quenched by seawater


Une fenêtre de tir pour la minéralisation aqueuse en 1 étape



Surface leach layer & mechanisms

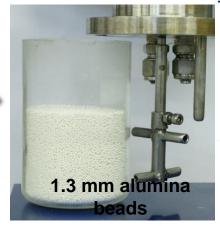


Passivation

→ No carbonate

Diffusion control

Carbonation yield < 10% (90 g/L, 95 h)


Proof of concept

Grinding media: 90 mL of 1-2 mm beads

+ 80 mL of slurry (90-250 g/L) $-\omega$ = 800 rpm

Reactor: 300 mL 120-180°C, 20bar CO₂

Also, 1.25-1.6 mm sand particles (99% SiO₂)

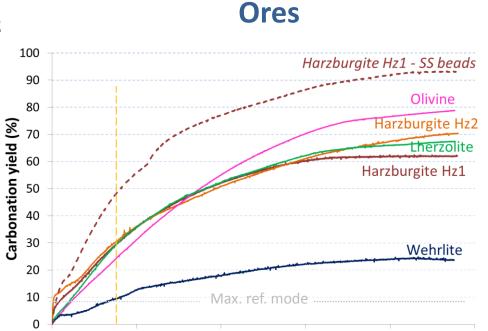
Carbonation tests

Reference case

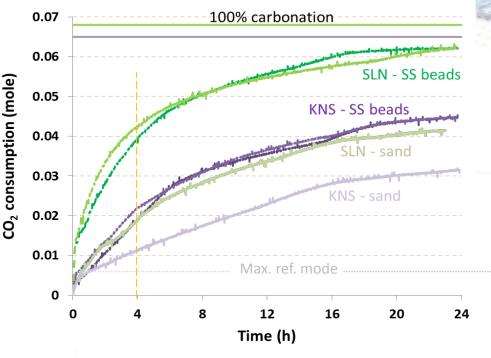
Carbonation only

Two-step process

Attrition, followed by carbonation


Hybrid process

Coupled attritioncarbonation process



Proof of concept

Slags

Extent of carbonation for different ores $(180^{\circ}\text{C}, 20 \text{ bar CO}_2, \text{ ore conc.: } 90 \text{ g/L}, \\ 1-2 \text{ mm Al}_2\text{O}_3 \text{ or SS grinding media })$

Time (h)

Extent of carbonation for different slags (180°C, 20 bar CO₂, ore conc.: 90 g/L, 1-2 mm sand or SS grinding media)

Significant extent of carbonation (8% to +60% in 24 hrs)

25

Synergy between attrition and reaction (dissolution)

20

- Nearly insensitive to ore type
- Influence of grinding medium

PARE INSTRUMENT OF THE PARENT OF THE PARENT

Stirred mill (self-built): 300 mL, batch, 120-180°C, 20bar CO₂

Modified stirred mill (commercial): 4L, continuous

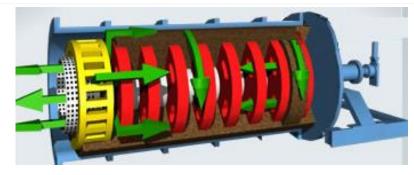
Low TRL → → High TRL

Operating conditions?

? T°, CO₂ partial pressure

? Slurry solid concentration

? Dilute flue gas, sea water


? Feed PSD

? Grinding medium

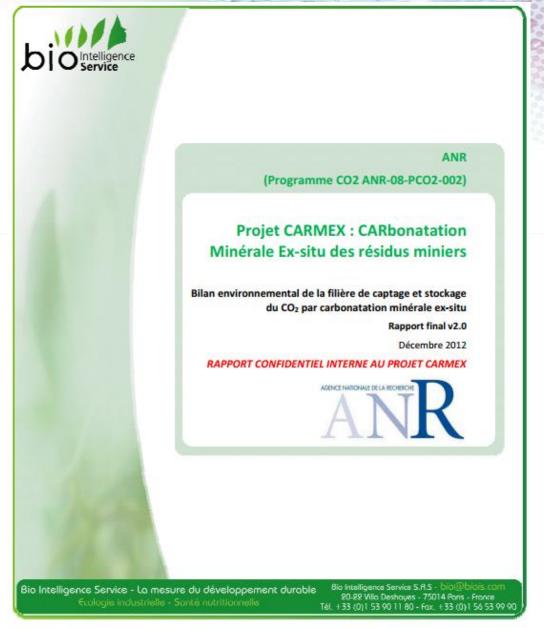
? Product valorisation

Can LCA help? When? How?

Full-scale stirred mill

Advantages:

- ✓ proven technology at large scale
- ✓ slurry conc.: up to 40wt% solids
- ✓ feed PSD: from µm to mm size range
- ✓ operability under high T & high P
- ✓ scalability from 4 L to 50 m³

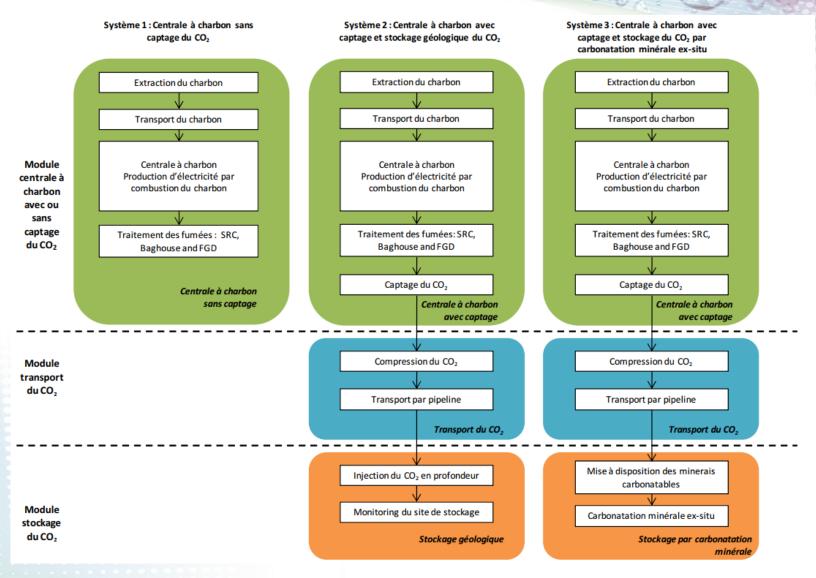

Étude ACV originale (2012) du procédé de carbonatation minérale ex-situ, dont le développement a été initié dans le cadre du projet ANR CARMEX.

Hier, le procédé de carbonatation minérale ex-situ était envisagé comme une solution de stockage de CO₂, en aval de la capture du CO₂.

Unité fonctionnelle: "Produire 1 MWhe avec une centrale à charbon"

Aujourd'hui, la carbonatation minérale ex-situ s'envisage comme une voie de valorisation du CO₂ à part entière qui produit des matériaux valorisables (matériaux de construction, métaux) et utilise des fumées diluées (c.à.d. sans capture).

Quelle unité fonctionnelle?



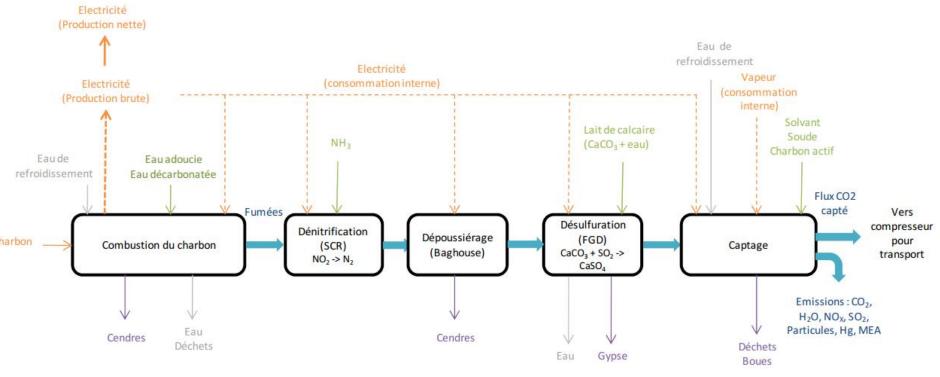
Unité fonctionnelle: "Produire 1 MWhe avec une centrale à charbon"

3 systèmes:

- Centrale à charbon sans captage du CO₂
- Centrale à charbon avec captage et stockage géologique du CO₂.
- 3. Centrale à charbon avec captage et stockage du CO₂ par minéralisation.

3 modules: Centrale à charbon, transport, stockage (pas de module valorisation du CO₂)

Unité fonctionnelle: "Produire 1 MWhe avec une centrale à charbon"


Des modules avec des étapes matures, ex. la centrale à charbon.

Des modules avec des étapes à haut TRL, ex. le captage postcombustion par absorption à la MEA.

Des modules avec des étapes incertaines (bas TRL), en particulier le procédé de carbonatation minérale en cours de développement.

Consommables

Flux exclus du système

Unité fonctionnelle: "Produire 1 MWhe avec une centrale à charbon"

Choix des indicateurs
environnementaux parmi
ceux recommandés par le
International Reference Life
Cycle Data System (ILCD)
Handbook.

Expérience et expertise des évaluateurs ACV

Thèmes	Indicateurs d'impact potentiel	Indice qualitatif de robustesse	
Componentian de	Epuisement des ressources naturelles	II	
Consommation de	Consommation d'eau	III	
ressources	Occupation des sols	III	
Effet de serre	Potentiel de réchauffement climatique	I	
	Acidification	II	
Pollution de l'air	Oxydation photochimique	II	
	Déplétion de la couche d'ozone	I	
Pollution de l'eau	Eutrophisation	II	
Toxicité et éco-	Toxicité humaine	III	
toxicité	Eco-toxicité aquatique, marine et terrestre	III	
Comté	Emissions de particules	I	
Santé	Radiations ionisantes	II	

Indicateurs retenus pour l'étude, avec l'ajout d'un indicateur de flux reflétant la consommation primaire non renouvelable du système.

Thèmes	Indicateurs d'impact potentiel et indicateurs de flux	Unités	Méthode	Indice qualitatif de robustesse
Compoundian	Epuisement des ressources naturelles	kg éq. Sb	[CML02]	II
Consommation de ressources	Consommation d'énergie primaire non renouvelable	MJ	Calcul basé sur les PCI	I
Effet de serre	Potentiel de réchauffement climatique	kg éq. CO₂	[IPCC07] PRG à 100 ans	I
Pollution de	Acidification	kg éq. SO₂	[ReCiPe09]	II
l'air	Oxydation photochimique	kg COV	[ReCiPe09]	II

Unité fonctionnelle: "Produire 1 MWhe avec une centrale à charbon"

- Un travail d'inventaire systématique et minutieux: matières premières et eau, transport, énergie, déchets, émissions dans l'air, infrastructures.
- Sources de données nombreuses et référencées
- Hypothèses nombreuses et clairement indiquées
- Inégalité des sources en lien avec la maturité des étapes prises en compte: ex. BdD Ecolnventv2.2, articles de recherche, résultats expérimentaux préliminaires (non aboutis/optimisés).
- Incertitude associée aux données non communiquée et non prise en compte

	elle : « Produire 1 MWh une centrale à charbon »	Unité	Système 1 : Centrale à charbon sans captage	Système 2 : Centrale à charbon avec captage – Stockage géologique	Système 3 : Centrale à charbon avec captage – Stockage carbonatation
DONNEES GENERALE	ES .				
(Consommation de charbon	t/an	1,50E+06	1,50E+06	1,50E+06
	Rendement brut	%	41,3%	33,2%	33,2%
Ca	apacité de fonctionnement	%	85,0%	85,0%	85,0%
Pro	duction brute d'électricité	MWhe / an	4,67E+06	3,76E+06	3,76E+06
Pro	duction nette d'électricité	MWhe / an	4,42E+06	3,05E+06	3,06E+06
	Rendement net	%	39,1%	27,0%	27,1%
DONNEES POUR LE N	MODULE 1, RAPPORTEES A	L'UNITE FONCTI	ONNELLE		
Combustion du char	bon				
Matières premières	Charbon	kg	3,39E+02	4,92E+02	4,90E+02
et eau	Eau adoucle	kg	5,52E+01	8,01E+01	7,98E+01
C. Cou	Eau décarbonatée	kg	1,38E+03	2,00E+03	1,99E+03
Transport	Charbon	tkm	1,02E+02	1,48E+02	1,47E+02
Energie	Electricité interne	MWhe	4,90E-02	8,61E-02	8,57E-02
Déchets	Cendres	kg	6,58E+00	9,55E+00	9,50E+00
	CO ₂	kg	8,04E+02	1,17E+02	1,16E+02
	H ₂ O	kg	4,14E+02	1,06E+02	1,05E+02
	NO _x	kg	2,77E-01	4,02E-01	4,00E-01
Emissions dans l'air	SO ₂	kg	8,54E-01	4,97E-02	4,95E-02
	Particules	kg	5,15E-02	7,48E-02	7,44E-02
	Hg	kg	4,52E-06	6,38E-06	6,35E-06
	MEA	kg	0,00E+00	1,36E-02	1,35E-02
Infrastructures	Centrale à charbon	unité	7,54E-09	1,09E-08	1,09E-08
Traitement des fume	ées de combustion				
	Ammoniac (NH3)	kg	5,92E-01	8,68E-01	8,64E-01
Consommables	Eau (lait de calcaire)	kg	1,68E+02	2,69E+02	2,67E+02
	Calcaire (lait de calcaire)	kg	3,37E+01	5,37E+01	5,35E+01
	Electricité SCR	MWhe	9,09E-05	1,32E-04	1,31E-04
Energie	Electricité Baghouse	MWhe	1,82E-04	2,64E-04	2,63E-04
	Electricité FGD	MWhe	5,42E-03	7,86E-03	7,83E-03
Déchets	Cendres	kg	2,63E+01	3,82E+01	3,80E+01
Decireta	Gypse	kg	6,90E+01	1,10E+02	1,10E+02
Captage du CO ₂					
	MEA	kg	0,00E+00	1,62E+00	1,61E+00
Consommables	Soude	kg	0,00E+00	1,78E-01	1,77E-01
	Charbon actif	kg	0,00E+00	9,68E-02	9,63E-02
	Electricité	MWhe	0,00E+00	4,01E-02	3,99E-02
Energie	Consommation vapeur - perte de production d'électricité équivalente	MWhe	0,00E+00	2,98E-01	2,97E-01
Déchets	Déchets de solvant	kg	0,00E+00	3,24E+00	3,22E+00
	Acier (absorbeur + stripper)	kg	0,00E+00	2,57E-03	2,56E-03
Infrastructures	Acier (petits éléments)	kg	0,00E+00	8,97E-04	8,93E-04
	Ciment	kg	0,00E+00	2,52E-05	2,50E-05
	Transport	tkm	0.00E+00	1.04E-04	1.03E-04

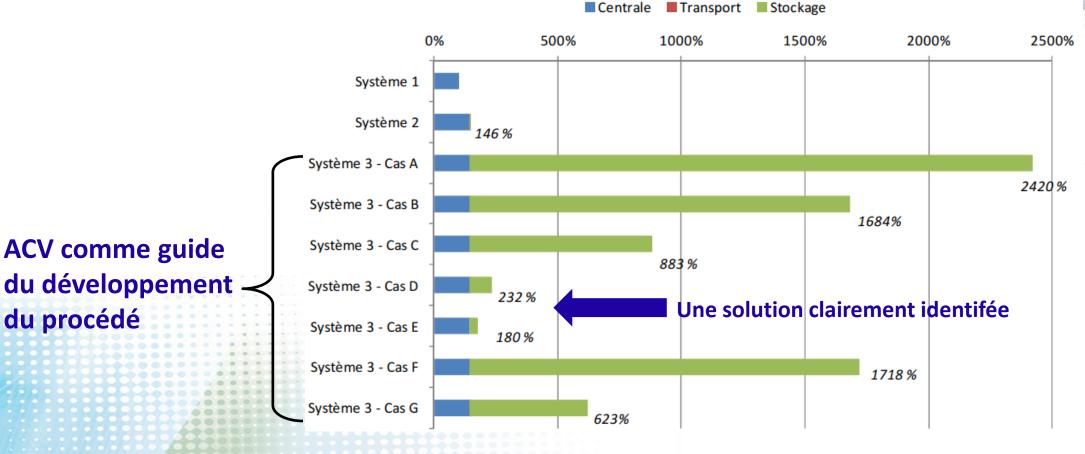
Bilan des données rapportées à l'unité fonctionnelle pour le module centrale à charbon avec et sans captage

Unité fonctionnelle: "Produire 1 MWhe avec une centrale à charbon"

ACV comme guide du développement – du procédé

Système 1	Centrale à charbon sans captage de CO ₂		
Système 2	Centrale à charbon avec captage et stockage géologique du CO ₂		
Système 3	Centrale à charbon avec captage et stockage par carbonatation minérale exsitu du CO_2		
Cas A	Sans additif – 24 h / 90 g/l – taux de conversion du Mg de 3,2%		
Cas B	Sans additif – 45 h / 90 g/l – taux de conversion du Mg de 4,7%		
Cas C	Sans additif – 95 h / 90 g/l – taux de conversion du Mg de 9,6%		
Cas D	Sans additif + attrition – 24 h / 90 g/l – taux de conversion du Mg de 79,3%		
Cas E	Sans additif + attrition – 24 h / 250 g/l – taux de conversion du Mg de 79,3%		
Cas F	Avec additif – 24 h / 90 g/l – taux de conversion du Mg de 4,6%		
Cas G	Avec additif – 75 h / 90 g/l – taux de conversion du Mg de 14,5%		

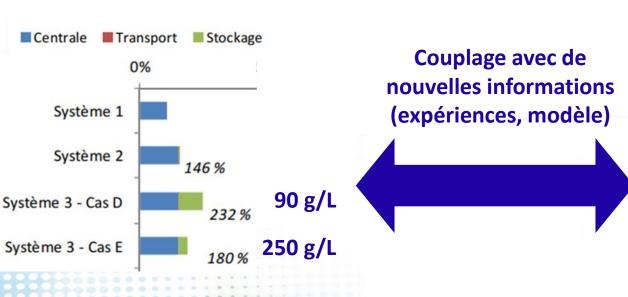
Possibilité d'utilisation de résultats en cours d'acquisition (ACV dynamique)

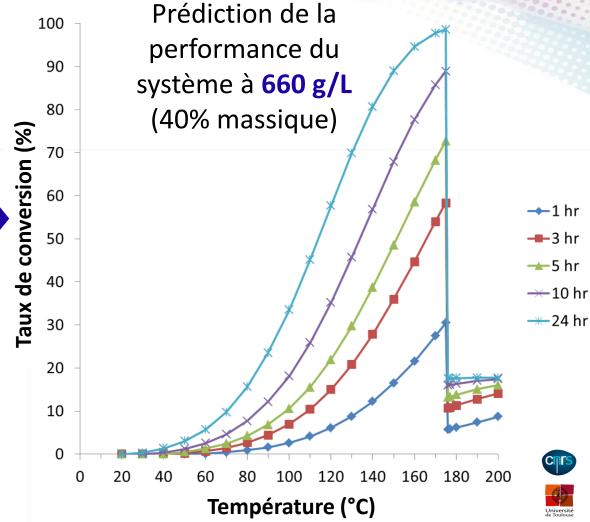


ACV comme guide

du procédé

Unité fonctionnelle: "Produire 1 MWhe avec une centrale à charbon"

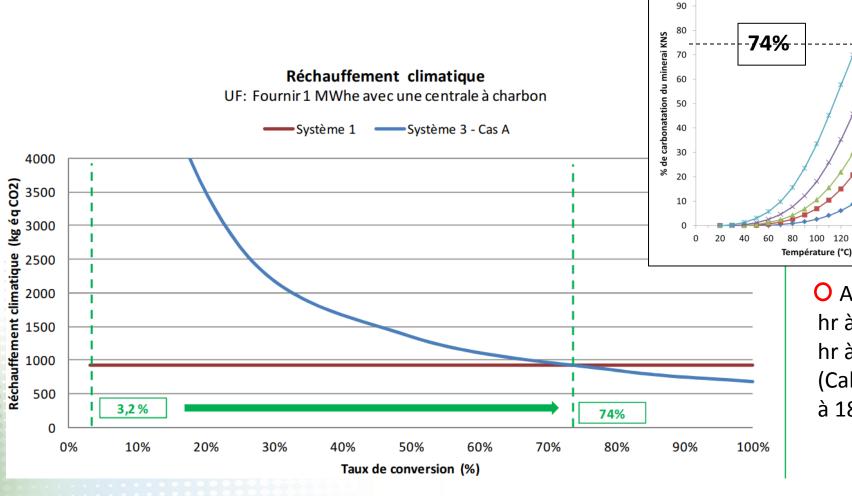

ACV – Épuisement des ressources naturelles (kg éq Sb)


Unité fonctionnelle: "Produire 1 MWhe avec une centrale à charbon"

Hyp.: 79% de carbonatation du minerai

Quelle valeur du critère d'épuisement des ressources naturelles (kg éq Sb) à 660 g/L?

Analyse multicritère pour la recherche de points de fonctionnement



Unité fonctionnelle: "Produire 1 MWhe avec une centrale à charbon"

ACV comme guide du développement du procédé Ici, l'ACV permet de $\widehat{\S}^{3500}$ fixer la limite basse du taux de carbonatation à atteindre avec le procédé en développement (Sous les hypothèses retenues pour le

calcul ACV)

O Atteignable en 5 hr à 180°C, en 10 hr à 150°C, etc. (Calcul ACV réalisé à 180°C, 24hr)

→1 hr

---3 hr ----5 hr

——10 hr ——24 hr

CONCLUSIONS

Avis sur l'ACV et le développement de nouveaux procédés (bas TRL)

- Offre une vision intégratrice très pertinente des impacts environnementaux
- Aide à choisir entre plusieurs solutions technologiques (N'accorder toutefois aux résultats de l'ACV qu'une valeur relative) et à définir des cibles de performance du procédé
- Réactualisable au fil des résultats expérimentaux (Accès au calcul ACV à faciliter pour les développeurs de procédés)
- Coupler l'ACV à une optimisation multicritère pour le développement de procédés et la recherche de points de fonctionnement
- Hypothèses calculatoires à ne pas oublier dans l'interprétation des résultats (tester la sensibilité aux hypothèses)
- Intégrer les incertitudes relatives aux données d'entrée de l'ACV (elles se propagent!)
- L'ACV n'inclut ni les impacts économiques ni les impacts sociétaux (ex. modification d'une filière industrielle)

L'ACV et la valorisation du CO₂ par attrition-lixiviante

- Dans sa configuration de 2012, sous les hypothèses utilisées, l'ACV n'invalidait pas la viabilité environnementale du procédé d'attrition lixiviante pour le stockage du CO₂
- Les évolutions 2012-2018 (valorisation des produits, fumées diluées, etc.) auront tous des effets positifs sur l'ACV du procédé Réactualisation de l'ACV À suivre!

