
�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	���
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/20758

http://doi.org/10.1007/978-3-319-95246-8_8

Cardoso, Janette and Siron, Pierre Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework. (2018)

In: Principles of Modeling. Springer International Publishing Switzerland, 122-142. ISBN 978-3-319-95245-1

Ptolemy-HLA: A Cyber-Physical System
Distributed Simulation Framework

Janette Cardoso(B) and Pierre Siron

ISAE-SUPAERO, Université de Toulouse, Toulouse, France
{janette.cardoso,pierre.siron}@isae-supaero.fr

Abstract. The Ptolemy-HLA distributed co-simulation framework
leverages two open source tools, Ptolemy II and HLA/CERTI, for the
simulation of Cyber-Physical Systems (CPS). This framework enables
dealing with three important issues: (1) Distribution of a simulation,
allowing to scale up models and performance; (2) Interoperability of
tools, allowing reusability and interfacing with other simulators or real
devices/systems; (3) Heterogeneous simulations (discrete events, contin-
uous time).

The framework extends Ptolemy both, by coordinating the time
advance of various Ptolemy instances, and by allowing data communica-
tion between them with the help of HLA management services.

These additions enable the creation of HLA federates (i.e., simulators)
in a Federation (i.e., a distributed simulation) in an easy way, since the
user does not need to be an HLA specialist in order to design a Feder-
ate. The paper presents the new components added to Ptolemy, some
semantic issues, an application example and performance analysis.

Keywords: Distributed simulation · HLA · Cyber-physical systems

1 Introduction

There are many advantages to a distributed simulation. A first aspect comes from
the nature of the systems to be simulated, which are nowadays more and more
distributed and complex. It can be more appropriate to build a distributed simu-
lation of a distributed system, as, for example, a fleet of drones, than a monolithic
simulation. The distributed simulation is more representative and it mimics the
real system without simplifications better. The second aspect is the complexity
of the system that is translated in an integration of complex and heterogeneous
models. Distributed simulation is often associated with the notion of simulation
interoperability offering the possibility of integrating different simulators, such
as specific domain simulators. The reuse of a simulator can offer a significant
reduction of design and development time as well as improve quality of the simu-
lation. Distributed simulation is also relevant for non-functional requirements. It
can reduce the simulation time (parallelization speedup) or enable larger simula-
tions (scalability) [1]. Finally, models can be treated as black-boxes or executed
on remote processors, and we can deal with IP issues [2]. For all these reasons,

https://doi.org/10.1007/978-3-319-95246-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95246-8_8&domain=pdf

2 J. Cardoso and P. Siron

distributed simulations are adapted for the challenging study of Cyber-Physical
Systems, that are complex, heterogeneous and distributed. But performing dis-
tributed simulations is difficult, and we propose in this paper a principled and
friendly way to build these simulations.

Ptolemy is an open source modeling and simulation tool for heterogeneous
systems, developed at the University of California Berkeley. This tool is well
suited for modeling CPS [9] by providing different models of computation (MoC),
such as continuous time for describing physical systems or discrete event for
describing software and control.

The IEEE High-Level Architecture (HLA) standard [15] targets distributed
simulation. A CPS can be seen as a federation grouping several federates which
communicate via publish/subscribe patterns. This decomposition into federates
allows to combine different types of components such as simulation models, exe-
cutable code (in C++, Java, etc.), and hardware equipment. The key benefits
of HLA are interoperability and reuse.

PTIDES [26], a framework implemented in Ptolemy, is used to design event-
triggered, distributed, real-time systems. It leverages network time synchroniza-
tion to provide a coherent global meaning for timestamps in distributed systems.
Moreover, it has the nice characteristic that it carefully relates multiple time-
lines (physical time, logical time, oracle time). However, even if it allows the
simulation and execution of a distributed system, the entire system is modeled
in only one model.

The Functional Mock-up Interface (FMI) standard for co-simulation allows
the exchange and interoperation of model components or subsystems designed
with different modeling tools. However, it is up to the user to guarantee a coher-
ent time representation when the simulation is distributed. There are works
proposing an integration of HLA and FMI [13,23,24]. An HLA-FMI wrapper
that turns a FMU into a full featured HLA federate exists [14], but it seems
to deal only with data. FIDE, which stands for FMI Integrated Development
Environment [8], is an IDE for building applications using Functional Mock-up
Units (FMUs) that implement the FMI standard in the Ptolemy framework.
Their work focuses on a master algorithm that deterministically combines dis-
crete and continuous-time dynamics. However, it does not deal with distributed
simulation. A detailed analysis of the time representation in the FMI frame-
work is done in [7]. It proposes the superdense model of time using integers
(implemented by the class Time in Ptolemy) for solving many problems of time
representation. In particular their paper discusses the choice of resolution to be
used when the FMUs (components of a co-simulation) have different resolutions.
The coordination of different notions of time is an issue that also comes up in
cyber-physical systems [29].

FORWARDSIM [10] is a proprietary software toolbox that allows for dis-
tributed simulation using the HLA standard. It provides the HLA Blockset for
Simulink and the HLA Toolbox for Matlab. The user must know the entire stan-
dard well and it is up to the user to call each service by adding the corresponding
block to the model.

Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework 3

In this paper, we will present a framework called Ptolemy-HLA: it brings
together the heterogeneity provided by Ptolemy (i.e. the possibility to mix con-
tinuous, discrete or other MoCs) and interoperability provided by HLA (i.e. the
possibility to mix simulation models, pieces of code and physical equipment).
We consider that, in relation to ForwardSim, our framework provides a friendly,
open-source interface to the user which requires minimal knowledge of the HLA
standard. Similar to PTIDES, we carefully tackle time coordination between
HLA and Ptolemy timelines. Our approach allows the distributed simulation of
models over a network. As of this moment, the Ptolemy-HLA framework does
not allow to build applications using FMUs as per the FMI standard.

HLA users can benefit from already existing Ptolemy models that can be eas-
ily translated into the Ptolemy-HLA framework. For Ptolemy users, the Ptolemy-
HLA framework can be useful if a large model already exists. Splitting the com-
ponents of such a model into distributed models, running on a same computer or
different computers, allows the user to use a good granularity of the model. This
can improve handling and may be more representative, since each (distributed)
model can be more detailed or extended, for example, modeling two aircraft
engines separately and/or using a more complex model for the engine. From a
single model, e.g., a quad-rotor model, a model of a fleet of quad-rotors can be
easily obtained. The interoperability of the HLA standard allows to use models
or code, as well as real devices with an interface compliant with this standard.

This paper is organized as follows. An overview of HLA and Ptolemy is
presented in Sect. 2. Section 3 describes the co-simulation framework: how time
is advanced and how data is exchanged considering the rules of both, Ptolemy
and HLA. Section 4 illustrates the results of our approach applied to a concrete
case-study: a flight control system of a F14 aircraft. Finally, Sect. 5 presents
concluding remarks and our future work.

2 Tools for Distributed Simulation and Heterogenous
Simulation

The simulation of Cyber-Physical systems needs to deal with both, heterogene-
ity and distribution of simulators. We choose two open source tools for taking
advantage of each one of these needs: Ptolemy II and HLA/CERTI.

2.1 Ptolemy

Quoting [26] “Ptolemy II is an open-source simulation and modeling tool
intended for experimenting with system design techniques, particularly those that
involve combinations of different types of models”. Being interested in cyber-
physical system (CPS) modeling and simulation, Ptolemy’s ability to represent
heterogeneous system, offered by its different Models of Computations (MoC), is
a very important feature. A MoC is specified by a component called a Director,
represented by a green block as shown in Fig. 1. In this paper, we will deal with
two directors: Discrete Event (DE) and Continuous (CT). They will be used for

4 J. Cardoso and P. Siron

modeling the cyber and physical part of a CPS. For the sake of simplicity, a
model with a DE director will be called a DE model. The same is done for the
CT director.

Another important feature in Ptolemy is its model time known as superdense
time, which allows two distinct ordered events to occur in the same signal without
time elapsing between them [7]. A superdense time value can be represented as
a pair (t, n), called a timestamp, where t is the model time and n is a microstep
(also called an index). The model time represents the time at which an event
occurs, and the microstep represents the sequencing of events that occur at the
same model time [26]. The initial (default) value for the microstep is 1 when
using a DE director in a model and 0 when using a CT director. In this paper,
for the sake of simplicity, a timestamp (t, 1) for DE and (t, 0) for CT will be
represented only by t. The time t is represented as mr, where m is an integer
and time resolution r is a double-precision floating point number. Therefore,
the (model) time resolution is the same throughout its execution [26] which is
not the case when IEEE-754 double is used. The Ptolemy time representation is
implemented by a Java class called Time.

Time Advance in Ptolemy [4,26]. Every director in Ptolemy has a local
clock. If the director is at the top level of the model, i.e., if there is no enclosing
director, then the advance of the clock is entirely controlled by this director. An
event in the Ptolemy calendar queue is represented as e(v, (t, n), Aj), where Aj

is the jth input port of destination actor A. All events are generated locally, and
the director will always advance time to the smallest timestamp of unprocessed
events. In a DE model, this timestamp is that of a given event and only the
destination actor of this event is executed. In a CT model, the timestamp is
computed by a solver, and all actors are executed. If there is more than one
event with the same timestamp, the destination actors are fired in the order
given by a topological sort of the actors, which is a list of the actors in data-
precedence order. This behavior ensures determinism.

Ptolemy also provides a so-called TimeRegulator interface with a
proposeTime method. This interface is implemented by attributes that wish
to be consulted when a director advances time. The director will call the
proposedTime method, passing it a proposed time to advance to, and the method
will return either the same proposed time or a smaller time. This method has a
key role in the Ptolemy-HLA framework.

Data Exchange in Ptolemy. Actors in Ptolemy have input and/or output
ports. Actors with only input ports are called sink actors (e.g., a TimeDisplay

as in Fig. 4c) and actors with only output ports are called source actors (e.g.,
a DiscreteClock as in Fig. 4c). A token is the unit of data (with a type), such
as the numerical value of an aircraft vertical speed. It is communicated between
two actors via ports: created by one actor A1, sent through an output port i,
and received by (the input port j) of a destination actor A2, as represented in
Fig. 1. This token can be received by several actors.

Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework 5

Link Between Time Advance and Data in Ptolemy. There is a production-
consumption phase related to the time advance (if the models are timed). A sim-
plified view is the following: When a token is produced by A1 (as in Fig. 1) at
output port A1i at current time t, an event e(v, (t′, n′), A2j), t′ ≥ t, n′ ≥ n, is put
in the calendar queue. When this event is the earliest one in the calendar queue,
the DE director will advance its (current) time to (t′, n′), fire (or execute) A2

and consume the token in the input port A2j . Most actors, such as AddSubtract,
CurrentTime, Integrator, have t′ = t and n = n′. Some actors provide mech-
anisms for delaying events, e.g., TimeDelay (t′ > t, n′ = 1) or MicrostepDelay

(t′ = t, n′ = n+1) [26]. A token will be referred to as an event e, e(t), or e(t, n).

2.2 High Level Architecture (HLA) Standard

The High-Level Architecture (HLA) [15,16] is a standard for distributed discrete-
event simulations, generally used to support analysis, engineering and training.
The approach promotes reusability and interoperability. A simulation entity per-
forming a sequence of computations is called a federate, and the set of federates
simulating the entire system is called a federation. Federates are connected via
the Run-Time Infrastructure (RTI), the underlying middleware functioning as
the simulation kernel. The lollipop architecture of an HLA federation is depicted
in Fig. 2.

Fig. 1. Ptolemy model. Fig. 2. HLA architecture.

The HLA standard defines a set of rules describing the responsibilities of
federations and the federates, e.g., all data exchange among federates shall occur
via the RTI. Among the rules, an important one concerns the time advance: A
federate delegates its time advance to the RTI. Another one concerns the sending
of data: A federate cannot send an event earlier than t+lah, where t is its current
logical time and lah its the lookahead [15].

The standard also defines an interface specification for a set of services
required to manage the federates and their interactions. In this paper, we will
present the services related to Time Management and Data Management.

Data Exchange in HLA. For each federation, a Federation Object Model
(FOM) describes the shared objects, interaction classes and their attributes.
The object management services allow message exchange between federates. Let
us consider two federates F1 and F2: F1 sends the signal aircraft vertical speed
to F2. In HLA terms, F1 publishes the class Aircraft speed and F2 subscribes
to attribute v speed of this class. The HLA services used are, respectively,

6 J. Cardoso and P. Siron

publishObjectClass and subscribeObjectClassAttributes. There are two steps
concerning the object management:

(1) When federate F1 is launched, it registers an object instance of
Aircraft speed class (service registerObjectInstance). When federate F2

is launched, it discovers object instances Aircraft speed related to the
attribute v speed it subscribed (callback discoverObjectInstance);

(2) During the simulation, F1 sends through the RTI a new value of
Aircraft speed.v speed using the service updateAttributeValues (UAV). The
RTI sends this value to F2 using the callback reflectAttributeValues (RAV).

Time Advance in HLA. HLA time management services enable deterministic
and reproducible distributed simulations [5]. Each federate manages its own
logical time and communicates this time to the RTI that ensures that federates
observe events in the same order [12].

The time advance phase in HLA is a two-step process: (1) a federate sends
a time advance request service, and (2) waits for the time to be granted, pro-
vided by timeAdvanceGrant (TAG) service. There are two services for a time
advance request: the timeAdvanceRequest service (TAR), used to implement
time-stepped federates; and the nextEventRequest service (NER), used to
implement event-based federates. The time step between successive TAR ser-
vice calls can change during a simulation, but it is frequently chosen as a fixed
time step TS. There is a trade-off between the performance and the precision
of the simulation according to the time step used. The user needs to carefully
make this choice. Such a choice is not required for NER, since the time advance
request has the timestamp of the next event. According to the HLA standard,
a federate can switch from TAR to NER and NER to TAR during a simulation.
However, in our framework, a federate can use one of these services but the
user must make the choice before the simulation. The HLA standard does not
impose a time representation. In general, the HLA standard proposes IEEE-754
double-precision floating point numbers.

Is There a Link Between Data Exchange and Time Management?
By default, the RAV callbacks are received during the time advance phases
and they are delivered in the order messages are received. This is the one and
only link between data exchange and time advance for so-called HLA real time
simulations. For the sake of repeatability and determinism, the data exchanges
are in timestamp order. This order can also reflect causality relations.

When dealing with timed systems as CPS, the messages must be timestamped
and the federates are time-constrained and time-regulating1. Besides the value

1 A federate can only advance its time if it is granted by the RTI. When this feder-
ate is time-constrained, this grant is computed by the RTI with knowledge of the
time advancements of the time-regulating federates, so that the conservative prop-
erty of the distributed simulation is guaranteed between regulating and constrained
federates.

Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework 7

of the attribute of a class instance, the UAV service has a timestamp. When
the simulator is at current date t, it computes a new value of the attribute
for a date t∗ in the future, t < t∗ ≤ t+ lookahead. This lookahead (a value
associated with a federate) establishes a lower bound on the timestamps that
can be sent. In a distributed simulation, strictly positive lookahead values allow
the use of well known, deterministic and efficient distributed algorithms for the
time management in the RTI. The lookahead can be equal to zero, and in this
case may cause a deadlock. A first alternative is to rely on new algorithms in
the RTI, for example the use of the Null Message Prime protocol [6] or the
computation of a distributed snapshot [19]. A second alternative is that the user
resolves the (possible) deadlock by using the TARA and NERA services2 instead
of sending a message with a zero lookahead [11].

Besides the attribute value of a class instance, the RAV service has a times-
tamp. The delivery of these callbacks is done in chronological order of the
timestamp values. At current time t, during the time advance phase starting
by TAR(t′) and ending by TAG(t′), all RAV callbacks have a timestamp t′′

that respects t < t′′ ≤ t′. These callbacks can concern the same instances of
a class or different instances (of the same class or of different classes). For a
time advance phase starting with NER(t′), if any callback with timestamp t′′

is received, this phase will end with a TAG(t′′). If there are any RAV callbacks
with timestamps within t′′ and t′, they will be delivered during the following
time advance phase(s). This is the main difference between TAR and NER con-
cerning the way time is advanced. Section 4 shows that the execution time of a
federation is also different between TAR and NER. We could have an equality
between the timestamps of two RAVs of different object instances. HLA does
not allow to specify an order in this case (FIFO order between messages com-
ing from different federates). For the sake of determinism, the user code must
produce the same result for the different execution cases. This is not difficult
because, generally, the new state computation (and, in general, the sending of a
data) in a simulation follows the time advance phase when all the required data
is received.

3 Putting Ptolemy and HLA Together

The distributed co-simulation framework must comply with both, HLA and
Ptolemy rules, in particular concerning data exchange and time advance ones.
As of now, only NER and TAR are implemented in the framework and the
lookahead cannot be zero. The way the coupling is designed is discussed next.

2 NERA stands for Next Event Request Available and TARA for Time Advance
Request Available. A TARA(t) (respectively, NERA(t)) that ends with a TAG(t)
can be followed with the production and the reception of new events timestamped
with t. If federates exchange data at the same time in a loop, the loop must be
broken by calling TAR(t) (respectively, NER(t)). Then no additional event will be
delivered to the federate with timestamp t and time can be advanced.

8 J. Cardoso and P. Siron

For the sake of simplicity, a time-stepped federate will be called a TAR
federate, and an event-based federate will be called a NER federate. In this
work, the RTI compliant with HLA is CERTI, an open source RTI written in
C++ [25]. However, another RTI could be used.

3.1 How Time Is Advanced in the Ptolemy-HLA Framework

The first thing to point out is the existence of two timelines in a federate: the
Ptolemy timeline t and the HLA timeline h. Both timelines use the same global
unit (e.g., second or millisecond). Ptolemy (local) logical time t must be com-
pliant with HLA logical time h. It means that the time must be advanced
using HLA services NER or TAR, and a new interface called HlaManager was
designed. Concerning the time, it has a method called proposeTime implement-
ing a TimeRegulator interface (presented in Sect. 2.1). When Ptolemy wants to
advance to the timestamp t′ of the earliest event in its calendar queue, the DE
director will check if this is possible with the proposeTime method. In this section,
it is considered that no data exchange exists in the federation, in order to focus
on time advance. According to the federate time management NER or TAR, the
time will be advanced by calling Algorithms 1 or 2.

As time representation in CERTI and Ptolemy are different, a conversion is
needed in both algorithms: f converts double to Time, and g converts Time to
double [18,21]. To minimize the comparisons, the time step TS (see Sect. 2.2) in
Algorithm 2 is represented as double in Ptolemy model.

An important difference can be noticed between Algorithms 1 and 2 when
Ptolemy wants to advance to t′, the timestamp of the earliest event in its queue:

– at least one NER(g(t′)) is called in Algorithm 1, but more NER(g(t′)) can
be called according to the number of TAG messages received. Each time a
TAG(h′′ < g(t′)) is received, Ptolemy advances to f(h′′). When TAG(h′′ =
g(t′)) is received, Ptolemy advances to t′;

– k TARs will be called in Algorithm2, k ≥ 0, with

k = (�g(t′) − h)/TS� − 1). (1)

When the last TAG is received, Ptolemy advances to t′, with the guarantee
that k ∗ TS < g(t′) < (k + 1) ∗ TS.

It is worth mentioning that, after asking to advance to t′, Ptolemy time
eventually advances to t′ and has the same time history, independent of the
time management (NER or TAR) used. But HLA time can have a different
time history according to the time management, as presented in Fig. 3 and some
examples shown next. For the sake of readability, time conversions f and g are
not represented in Fig. 3.

Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework 9

Algorithm 1. NER ProposeTime(t′)
1: NER(g(t′))
2: while not granted do
3: tick() � Wait TAG(g(t′))
4: end while
5: h ← g(t′) � Update HLA time
6: return t′ � Update PtII time

Algorithm 2. TAR ProposeTime(t′)
1: while g(t′) > h + TS do
2: TAR(h + TS)
3: while not granted do
4: tick() � Wait TAG(h + TS)
5: end while
6: h ← h + TS � Update HLA time
7: end while
8: return t′ � Update Ptolemy time

Fig. 3. Time advance using TAR or NER without consider time conversion.

Let us consider federations Fa = {f1}, Fb = {f1,f2} and Fc = {f1,f3}; feder-
ates f1, f2 and f3 are depicted in Fig. 4a and b and c. Each federation is used
to explain a particular point in the time advance. No federate sends any data
through the RTI. To keep track of the time representation in Ptolemy and HLA,
an index will be added to the time value v in each timeline: vT and vd for Time
and double.

Federation Fa: A unique federate advances its time with the RTI.
The f1 model has a (current) Ptolemy start time t = 0T and HLA start time

h = 0d. The unique next event e in the f1 calendar queue is the stop time event
e(t′ = 4T). Table 1 depicts the services called and its callbacks in this federation,
as well the final Ptolemy and HLA time when using NER or TAR (with time
step TSf1 = 1d) time management. As discussed above in the presentation of
proposeTime Algorithms 1 and 2, the Ptolemy final time is the same using NER
or TAR as well its time history: {0, 4T }. But the HLA time history is different:
{0, g(4T)} when using NER, and {0d, 1d, 2d, 3d, 4d} when using TAR.

Table 1. Time advance of f1 using NER or TAR.

Type Service call Callback Final h Final t

NER NER (g(4T)) TAG(g(4T)) g(4T) 4T

TAR TAR(1d), TAR(2d), . . . TAR(4d) TAG(1d), TAG(2d), . . . TAR(4d) 4d 4T

10 J. Cardoso and P. Siron

Fig. 4. Federates used in Fa = {f1}, Fb = {f1,f2} and Fc = {f1,f3}.

Federation Fb: Two federates advance their time in coordination with the RTI.
Federates f1 and f2 have the same parameters except that f2 has (HLA) time
step TSf2 = 2d (needed when TAR is used) and stop time is 5T . Whatever f1

uses NER or TAR, its results (final time and time history) are the same, as
depicted in Table 1. For f2, its final Ptolemy time is tf2 = 5T and Ptolemy time
history is {0, 5T }. The f2 HLA final time 4d and its time history is {0d, 2d, 4d},
since g(5T) �> 4d + 2d and so noTAR(6d) is executed (Algorithm 2, line 1).

Federation Fc: Time coordination with a federate that produces internal events.
Federate f3 has two internal events, e(1T) and e(3T), produced by DiscreteClock,
and has stop time e(4T). Its (HLA) time step is TSf3 = 2 (needed when TAR
is used). Now, besides the event stop time, its internal events will be added to
the calendar queue. The rule is the same: the Ptolemy model needs to check
with HLA if it can advance to the time of the event. The Ptolemy time history
of f3 is the same using NER or TAR: {0T , 1T , 3T , 4T }. Concerning HLA time
history, it is {0d, g(1T), g(3T), g(4T)} when using NER, and {0d, 2d, 4d} when
using TAR. Ptolemy and HLA time stories of f1 are the same as the ones in
federation Fa.

The distribution of a simulation is necessary and/or appropriate, but it comes
at a price. Beside the complexity of the implementation, the timestamp of a
message can change according to the simulator tool, as presented in [21]. A
federate may have two kinds of events: (i) events that are only internal to the
model (as f3 participating in Federation Fc above); (ii) events that are sent and
received through the RTI. The latter will be discussed in the following.

3.2 How Data Is Exchanged in the Ptolemy-HLA Framework

The unit of data in Ptolemy is a token, and in HLA it is the attribute of an object
class described by the FOM. As seen in Sects. 2.1 and 2.2: (i) both are times-
tamped and have a value with a type; (ii) both have a production-consumtion
behavior. The user gives – in a (classical) Ptolemy model or in an HLA federate
– the (static) information about who produces and who consumes. In a Ptolemy
model, the communication via ports is represented by a link between two actors

Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework 11

A1 and A2 (Fig. 1): The A1 output port sends the data and the A2 input port
receives the data. In an HLA federation, a federate F1 (as in Fig. 2) must indicate
that it publishes an attribute of a class and federate F2 must indicate it sub-
scribes to this attribute. Besides this static information, let us recall that an
HLA federate has two more steps: (a) After launching, each object instance is
registered once by the producer and discovered by the consumer; (b) During the
simulation, the attribute of an object instance is updated by the producer and
reflected by the consumer; this step occurs each time there is a new sent value.
These steps are provided by the Ptolemy-HLA framework – and hidden from
the user – making it easier for the user to distribute a simulation.

To establish a relationship between a token and an object class attribute,
two new actors, HlaPublisher and HlaSubscriber, are added to the Ptolemy-HLA
framework. They are depicted in Fig. 5a and b with parameters Class (Signal)
and Attribute (val) according to the FOM (.fed file in Fig. 5c). The type of the
ports corresponds to the type of the attribute. As events have a timestamp, time
is involved and so the HlaManager interface needs to interact with them. Each
actor has two roles: The HlaPublisher registers the object instance and sends
the data through the RTI; The HlaSubscriber discovers the object instance and
receives the data from the RTI. This is transparent to the user, that must connect
the input port of an actor (receiving data from the RTI) to an HlaSubscriber

actor, and connect the output port of an actor (sending data through the RTI)
to an HlaPublisher actor (see federation F14 in Fig. 8).

Fig. 5. HlaPublisher and HlaSubscriber icons in accordance with a FOM.

Data Sent by Ptolemy Through the RTI: When the earliest event e(t)
in the Ptolemy queue is the input of an HlaPublisher actor, the DE director
first advances its time to t (as explained in Sect. 3.1), and then executes the
HlaPublisher actor. Its execution consists of sending an update to the federation
at t or as soon as possible, by calling the HLA service UAV. It means that the
HlaPublisher actor provides a mechanism for (possibly) delaying an event (as,
e.g., TimeDelay does) when necessary. But when is this necessary? Remember that
a federate with lookahead lah and current time t cannot send any message before
t+lah, which delimits a forbidden zone (see Sect. 2.2). So, if an HlaPublisher actor
is fired at current time t, if t < f(h + lah) (inside the forbidden zone), it will

12 J. Cardoso and P. Siron

send a UAV(g(t) + lah); otherwise, it will send a UAV(t). It is worth mentioning
the values of the Ptolemy and HLA timelines (t, h) can be different during a
simulation, as seen in Sect. 3.1. This can happen in particular at the firing of an
HlaPublisher at t, and depends on the time management used:
– TAR: they can be different as represented in Fig. 3a: (t, h = n ∗ TS ≤ g(t)),
n = 1..k, k given by Eq. 1, with UAV given by Eq. (3) in Table 2;
– NER: they are the same, modulo the time conversion, as represented in Fig. 3b:
(t, h = g(t)) if no RAV is received or (t = f(h), h) otherwise, with UAV given by
Eq. (2) in Table 2.

Table 2. UAV sent by an HlaPublisher.

NER UAV (g(t) + lah) (2)

TAR
UAV (g(t) + lah) if g(t) < h + lah
UAV (g(t)) otherwise

(3)

Table 3. Event received by
an HlaSubscriber.

NER e(f(h′′)) (4)

TAR e(f(h + TS)) (5)

Data Received by Ptolemy from the RTI: The data reception is started
by the arrival of an RAV callback during the advance time phase (see Sect. 2.2).
Algorithms 1 and 2 are extended to the Algorithms 3 and 4 to take into account
the data arrival.

In the Ptolemy-HLA framework, the activation of an HlaSubscriber actor at
t follows the reception of a RAV(h′′) event received from the RTI (correspond-
ing to a UAV(h′′) sent by another federate). The HlaSubscriber activation date
depends on the time management used: Eqs. 4 and 5 in Table 3 describe how an
HlaSubscriber adds an event from an RAV callback when using NER or TAR
respectively.

There is no delay added in the reception in a NER federate (Algorithm 3), but
a delay up to an HLA time step can be added in a TAR federate (Algorithm 4),
as can be seen in Federation Fd in the sequel. Why is, in a TAR federate, an
RAV(h′′) callback not translated into an event in the calendar queue at time f(h′′)
by an HLASubscriber actor, as in a NER federate? The reason is the following:
an RAV(h′′), h′′ ≤ h + TS, is received, when a TAR federate is waiting for
a TAG(h + TS) (after it asked to advance its time with TAR(h + TS)). So,
at the RAV(h′′) reception, the federate is still at h. But if an event e(f(h′′),
HlaSubs) is put in the queue, and if this actor is directly or indirectly connected
to an HLAPublisher, an UAV(g(f(h′′)) would be sent through the RTI. This breaks
another HLA rule, saying that a federate that did a TAR(h∗) cannot send any
UAV message before h∗ + TS. This is why, in our framework, an RAV(h′′) is
translated into an event timestamped e(f(h + TS), HlaSubscriber).

Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework 13

Algorithm 3. NER proposeTime(t′)
taking RAVs into account
1: if g(t′) > h then

2: NER(g(t′))
3: while not granted do

4: tick() � Wait TAG(h′′)
5: end while

6: h ← h′′ � Update HLA time
7: if receivedRAV then

8: t′′ ← f(h′′)
9: if t′′ > t then � General case

10: t′ ← t′′
11: else
12: t′ ← t + r
13: end if

14: putRAVonHlaSubs(t′)
15: end if
16: end if
17: return t′ � Update PtII time

Algorithm 4. TAR proposeTime(t′)
taking RAVs into account
1: while g(t′) > h + TS do

2: TAR(h + TS)

3: while not granted do

4: tick() � Wait TAG
5: end while

6: h ← h + TS � Update HLA time
7: if receivedRAV then

8: t′′ ← f(h)

9: if t′′ < t′ then

10: t′ ← t′′
11: end if
12: putRAVonHlaSubs(t′)
13: return t′ � Update PtII time

14: end if

15: end while
16: return t′ � Update to asked PtII t′

Assume there is a Federation Fd with two federates cons1 and prod1, as
depicted in Fig. 6a and b respectively. Their HLA time steps are different
(TScons1 = 8 and TSprod1 = 7) and so are their end of simulation times
(20.0 for cons1 and 13.0 for prod1). Both have t0 = 0T and h0 = 0d and
the same lookahed lah = 0.1. Federate prod1 publishes val: the input of
HlaPublisher(Signal.val) is connected to the Ramp actor that produces events
e(t) with timestamps 3T , 6T , 9T , 12T depicted in Fig. 6b. As seen in Sect. 3.2,
the timestamp of the UAV sent to the RTI depends on the time manage-
ment. Federate cons1 subscribes to attribute val of class Signal using the
HlaSubscriber(Signal.val) actor. Figures 6c–f show the plotter in the cons1
federate when the federates use different combinations of time management.
• Both prod1 and cons1 use TAR (the result is depicted in Fig. 6c)

The earliest event of cons1 is e(20T), the end of simulation; from Algorithm3,
a TAR(8) is called, since g(20T) > h + 8d. The earliest event of prod1 is e(0; 3T);
from Algorithm 3, no TAR is called and its time is advanced to t = 3T , since
g(3T) < h + 7d. The HlaPublisher is executed, and according to Eq. (3) in
Table 2, a UAV(0, g(3T)) is sent.

The same behavior appears for the next event in prod1, e(1; 6T), and
UAV(0, g(6T)) is sent. But a TAR(7d) will be called for event e(2, 9T) and
UAV(0, g(9T)) is sent. When prod1 reaches the end of simulation, cons1 is the
only federate and the RTI sends a TAG(8d). As indicated in Eq. 5 in Table 3,
the RAV(0, g(3T)) and RAV(1, g(6T)) are then put in the queue as events
e(0, (f(8d), 1), HlaSubscriber) and e(1, (f(8d), 2), HlaSubscriber). Notice that
they have the same timestamp f(8d) and different microsteps. After TAR(16d),
prod1 will receive RAV(2, g(9T)) and RAV(3, g(12T)), the events e(2, (f(16d), 1),
HlaSubs) and e(3, (f(16d), 2), HlaSubsc) are generated. The entire exchange is
presented in Fig. 7. This figure can be compared to Fig. 3. Notice that the left

14 J. Cardoso and P. Siron

Fig. 6. Federation Fd (a,b); plotter at cons1 (c to f).

side of Fig. 7 is similar to Fig. 3a, because prod1 has internal events and Ptolemy
wants to advance its time to values others than k ∗ TS.
• prod1=TAR and cons1=NER (the result is depicted in Fig. 6d)

The behavior of prod1 is the same as above. At cons1, according to Eq. 4
in Table 3, no delay is added to the received RAVs and the translated Ptolemy
events are: e(0, g(3T)), e(1, g(6T)), e(2, g(9T)) and e(3, g(12T)).
• prod1=NER and cons1=TAR (the result is depicted in Fig. 6e)

When prod1 advances to t=3T , a UAV(0, g(3T)+lah) = UAV(0, g(3.1T)) is
sent according to Eq. (2) in Table 2 (lah =0.1). As cons1 uses TAR, the corre-
sponding RAV(0, g(3T + lah)) generates an event e(0, (f(8d), 1), HlaSubscriber),
since g(3T) + lah < TS = 8d. As g(6T) + lah < TS = 8d, RAV(1, g(6T)+ lah)
generates e(1, (f(8T), 2), HlaSubscriber). Notice that Fig. 6e and c are the same.
• Both prod1 and cons1 use NER (the result is depicted in Fig. 6f)

According to Eq. 4 in Table 3, no delay is added in the received RAV; prod1
sent a UAV(0, 3.1), and cons1 will receive a RAV(0, 3.1) that is translated to
e(0, f(g(3.1))) as can be seen in Fig. 6f. The other events are e(1, f(g(6.1))),
e(2, f(g(9.1))) and e(3, f(g(12.1))).

These examples point out that the user needs to carefully analyze the seman-
tics of the models. This will be discussed in the following.

3.3 Zooming in on the Boundaries

During the waiting phase of a TAG, many RAVs can be received by a federate
(see Algorithms 3 and 4, lines 3–5). These RAVs are memorized in a FIFO.

Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework 15

Fig. 7. Fd: cons1/TAR (TS = 8) + prod1/TAR (TS = 7).

After the while loop, a unique Ptolemy time t′ is calculated for the firing of the
corresponding HLASubscriber actor. The function putRAVonHlaSubscribers(t′)
empties this FIFO and adds event ej(t′, HlaSubs) to the Ptolemy calendar queue.

How many RAVs can be received? Without lack of generality, let us consider
the RAVs from the same instance of a class.

In a TAR federate, k RAVs can be received with different timestamps h′′, all
h′′ ≤ h + TS, and all will be translated to events ej(f(h + TS), nj), HlaSubs),
j = 1..k, with increasing microsteps. The order in which the RAVs are received is
maintained using microsteps. This occurs, for example, in Federation Fd, Fig. 6c
and e. This can happen when the federates have different rhythms in the data
exchanges: different HLA time steps when using only TAR, or a NER federate
sending data to a TAR federate.

Let us consider, for example, the reception of different values from the same
sensor. In this case, the freshest value is more useful, and the solution could be
to insert only one event e(f(h + TS, 1), HlaSubs) corresponding to the freshest
kth RAV. Moreover, the calculation of a new state and, in general, a new output
(e.g., the control of an actuator in a CPS) can be meaningful for just one value
at a time t.

However, when designing a model, there are always elements where the user
should use good software design patterns to ensure the model has the right
semantics. One way to tackle the reception of k RAVs(h′′) is to add a clock to
the federate (subscribing to these attributes) that will dictate the wanted rhythm
for the calculation [20]. Another way to tackle the RAV reception is to focus on
the sending of the UAV. From the HLA point of view, it is not relevant to send
several UAVs for the same object instance at the same date h. For example,
before sending a UAV of an attribute that is subscribed to by an actuator, a
MostRecent actor can be inserted in the input of the HlaPublisher such that only
the freshest event will be sent.

16 J. Cardoso and P. Siron

Some tests have been added to Algorithms 3 and 4 for taking into account
that the time representation of Ptolemy (t) and HLA (h) are different.

The first one is in Algorithm 3 of proposeTime, line 12 (NER federates):
Because of the needed conversions, it can happen that f(h′′) = t, e.g.,
f(10d + ε) = 10T . In this case, inserting a new event at e(t,HlaSubs) can be
a problem to the director, since all existing events e(t,HlaSubs) have already
been executed. Our choice was, in this particular case, to add the time resolu-
tion r to t, since it is the shortest value that we can add for advancing the time
beyond t. Let us point out that the microstep is used and correctly taken into
account in the other cases as depicted in Fig. 6c and e.

The second one is in Algorithm 4 proposeTime (TAR federates), and makes the
algorithm robust when dealing with a very particular case. This case can happen
when t′ and f(h + TS) have the same (mathematical) values, e.g., t′ = 10T and
h+TS = 10d, but f(h+TS) > t′. Let us recall two points: (1) The proposeTime

method in the TimeRegulator interface of a Ptolemy model must return the
same proposed time or a smaller time; (2) HLA guarantees that the timestamp
of an RAV will never be smaller than the current time h (or larger than h+TS).
So, if f(h + TS) is bigger than the initial t′, caused by the conversion, then the
returned time must be t′. Otherwise, the Ptolemy time would advance to a time
larger than timestamp t′, when there is still an event e(t′) in the queue, and this
event would be in the past.

Another issue is the following: Is it possible to produce an internal event
in a Ptolemy federate f with the same timestamp as an RAV-event received
from another federate? Let us consider two federates f1 and f2 sending a data
update: except for cases where these federates have exactly the same code (and
same time representation), their UAVs rarely have the same timestamp, because
hf1 can be different from hf2. In the general case where Ptolemy federates can
interoperate with, e.g., C++ federates, this can be very difficult or even impos-
sible to achieve, because of the different time representations. But even in a
pure Ptolemy federation, because of the RTI time representation, it can still be
impossible to have an internal event tf1 = f(hf1).

Ptolemy can be downloaded from website [27]. The Ptolemy-HLA framework
can be found at $PTII/org/hlacerti. The F14 demo presented in the sequel and
others demos are provided, as well as a user guide. Some practical information
can be found in the wiki [28].

4 Case Study: F14

Simulation is a very powerful way to perform validation, but one needs confi-
dence in the results. The Ptolemy-HLA framework provides useful information,
allowing for performance measures and simulation validation: simulation data
(parameters of the federate e.g., name and time management); simulation results
(e.g., events in the Ptolemy calendar queue and events coming from the RTI);
and simulation statistics (e.g., number of TARs/NERs and number of TAGs,

Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework 17

simulation execution time, execution time between services calls). This informa-
tion appears in .csv text files generated during the simulation (if the user chooses
this option) [3].

Fig. 8. The F14 federation of a centralized model.

An aircraft is a very good example of a CPS. Figure 8a depicts a Ptolemy
model of a F14 aircraft derived from a Simulink demo: PilotStick and Aircraft

have a Continuous director and AutoPilot uses a DE MoC [17]. Both continuous
models have a Sampler actor with sampling time 10ms, that provides the input
for AutoPilot, and Aircraft has a ZeroOrderHold actor in its input. This model
was split up into the three federates represented in Fig. 8b, c and d. Taking
advantage of the interoperability of HLA, the pilot stick simulated in Fig. 8c
was later successfully replaced with a real pilot stick. The results presented in
this section are for the federation with the simulated pilot stick. The first step
is checking the simulation results of the distributed model against those of the
centralized model. Figure 9a shows the simulation results for federate AutoPilot
and attribute elevCom, comparing the centralized and the distributed simulation
results of the F14 Federation depicted in Fig. 8. The results were obtained using
NER and TAR (with HLA time step TS = 0.010) and two values of the lookahead
(0.005 and 0.010). The error is almost zero in steady state and smaller than 17%
using TAR or NER with the smaller lookahead (0.005).

Concerning the performance related to the time management used by the
federates: Fig. 10 shows the number of time advancement requests in the federate
Aircraft using TAR and NER as a function of the HLA time step TS. As expected,
NER is constant, since it does not depend on the HLA time step. Concerning
TAR, the number of time advance requests is the same as NER when the HLA
time step TS is equal to the sampling time of Sampler actor (10 ms). For values

18 J. Cardoso and P. Siron

Fig. 9. Relative difference between centralized and distributed simulation.

Fig. 10. Time advance requests in the federate Aircraft using TAR and NER.

of TS <10 ms, the performance of the TAR simulation is worse than in the NER
case, but the accuracy of the simulation is better. The opposite occurs when TS
>10 ms: better performance for TAR as opposed to NER, but worst accuracy,
as expected.

5 Conclusion

In this paper, we present Ptolemy-HLA, a distributed simulation framework
for complex and heterogeneous systems such as encountered in CPS. We have
combined Ptolemy – which allows for heterogeneous systems simulation with a
clean time representation – and the use of the HLA standard – which allows for
Distributed Discrete Event Simulation (DDES) and interoperability of simula-
tions. We hope this framework gathers the benefits of both. Moreover, Ptolemy
and CERTI, an HLA-compliant RTI, are open-source, and so is Ptolemy-HLA.

Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework 19

A key feature in Ptolemy-HLA is that it can be easily installed and experimented
with, without requiring in depth knowledge of HLA or the (quite complex) DDES
domain. Collaborative contributions by other researches would be welcome.

Topics addressed in this work deal mainly with the existence of different
timelines across distributed components and their coordination. The way time is
advanced in the framework is carefully discussed and algorithms are presented:
first, without data exchange, and then, the more general case that includes data
exchange. We also present the way Ptolemy tokens and HLA attributes are trans-
lated into one another, taking into account the time advance and the conversion
between the two timelines. Other features are implemented in the framework
but are not discussed in this paper, such as the use of an initial synchronization
point that makes it easier to launch the federation, and the ability to manage
several instances of a class (e.g., several f14 aircrafts flying in formation).

The framework presented here allows Ptolemy to be compliant with the HLA
standard. Moreover, we think the issues discussed can be re-used for other soft-
ware needing to be compliant with this standard. We have applied this framework
to the study of some CPS. In this paper, we have presented the F14 distributed
simulation and some results. We also implemented a federation simulating a fleet
of quad-rotors using Ptolemy and MORSE [22], a generic simulator for academic
robotics.

Future work include new applications and extensions to this framework.
Section 3.3 discusses issues related to data exchange. The last version of HLA
provides services for negotiating the rhythm of data exchange between feder-
ates. This could be implemented and may simplify the work for the user as well
as optimize the performance. Other HLA features not yet used, are the notion
of interactions, the ownership management of objects, and the optimized data
distributed management (with the introduction of subscribing and publishing
regions).

We hope that this research, finalized with a tool, will be useful to tackle
the problem of coupling different simulations, and the problem of coupling and
distributing real systems. HLA-FMI is a very promising coupling technology.
FIDE, a Ptolemy-FMI framework [8] could be combined with the Ptolemy-HLA
framework and provide an HLA-FMI coupling.

Since the beginning of this work in 2013, many contributors have been
involved, and we want to thank them warmly in this alphabetical and not exhaus-
tive list: Vandita Banka, Christopher Brooks, Tarciana Cabral de Brito Guerra,
David Come, Patricia Derler, Maxim Ivanov, Sébastien Jaillant, Gilles Lasnier,
Edward Lee, Yanxuan Li, Clément Michel, Claire Pagetti.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions to improve the quality of the paper.

20 J. Cardoso and P. Siron

References

1. Adelantado, M., Bussenot, J.L., Rousselot, J.Y., Siron, P., Betoule, M.: HP-CERTI:
towards a high performance, high availability open source RTI for composable
simulations. In: Fall Simulation Interoperability Workshop, September 2004

2. Bieber, P., Siron, P.: Design and implementation of a distributed interactive simu-
lation security architecture. In: 3rd IEEE International Workshop on Distributed
Interactive Simulation and Real-Time Applications, October 1999

3. Cabral De Brito Guerra, T.: Performance analysis of the framework Ptolemy-HLA.
Technical report, ISAE/DISC/RT2016/2, September 2016

4. Cardoso, J., Derler, P., Eidson, J.C., Lee, E.A., Matic, S., Yang Zhao, J.Z.: Mod-
eling timed systems. In: Ptolemaeus, C. (ed.) System Design, Modeling, and Sim-
ulation using Ptolemy II. Ptolemy.org (2014). http://ptolemy.eecs.berkeley.edu/
books/Systems/chapters/ModelingTimedSystems.pdf

5. Chandy, K.M., Misra, J.: Distributed simulation: a case study in design and verifi-
cation of distributed programs. IEEE Trans. Softw. Eng. SE–5(5), 440–452 (1979)

6. Chaudron, J.B., Noulard, E., Siron, P.: Design and model-checking techniques
applied to real-time RTI time management. In: Spring Simulation Interoperability
Workshop, April 2011

7. Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M., Tripakis, S.: Hybrid
co-simulation: it’s about time. Softw. Syst. Model., 1–25 (2017)

8. Cremona, F., Lohstroh, M., Tripakis, S., Brooks, C., Lee, E.A.: FIDE - an FMI
integrated development environment. In: Symposium on Applied Computing, April
2016. http://chess.eecs.berkeley.edu/pubs/1158.html

9. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. Proc.
IEEE 100(1), 13–28 (2012)

10. Forwardsim (2017). http://www.forwardsim.com/products/hla-toolbox/
11. Fujimoto, R.M.: Zero lookahead and repeatability in the High Level Architecture.

In: Spring Simulation Interoperability Workshop, March 1997
12. Fujimoto, R.M.: Time management in the high level architecture. SIMULATION

71(6), 388–400 (1998)
13. Garro, A., Falcone, A.: On the integration of HLA and FMI for supporting inter-

operability and reusability in distributed simulation. In: Proceedings of the Sym-
posium on Theory of Modeling and Simulation: DEVS Integrative MS Symposium,
vol. 47, pp. 9–16, 04 2015

14. HLA for FMI. https://www.ds.tools/products/hla-and-dis-for-fmi/
15. IEEE: IEEE standard for modeling and simulation (M&S) High Level Architecture

(HLA) - Framework and rules. IEEE Std 1516–2010 (Revision of IEEE Std 1516–
2000), pp. 1–38, August 2010

16. Kuhl, F., Dahmann, J., Weatherly, R.: Creating Computer Simulation Systems:
An Introduction to the High Level Architecture. Prentice Hall PTR, Upper Saddle
River (2000)

17. Lasnier, G., Cardoso, J., Siron, P., Pagetti, C., Derler, P.: Distributed simulation of
heterogeneous and real-time systems. In: Proceedings of the 2013 IEEE/ACM 17th
International Symposium on Distributed Simulation and Real Time Applications,
pp. 55–62. IEEE Computer Society (2013)

18. Li, Y.: A distributed simulation environment for cyber-physical systems. Technical
report, ISAE-Supaero, September 2015

19. Mattern, F.: Efficient algorithms for distributed snapshots and global virtual time
approximation. J. Parallel Distrib. Comput. 18(4), 423–434 (1993)

http://ptolemy.eecs.berkeley.edu/books/Systems/chapters/ModelingTimedSystems.pdf
http://ptolemy.eecs.berkeley.edu/books/Systems/chapters/ModelingTimedSystems.pdf
http://chess.eecs.berkeley.edu/pubs/1158.html
http://www.forwardsim.com/products/hla-toolbox/
https://www.ds.tools/products/hla-and-dis-for-fmi/

Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework 21

20. Michel, C.: Distributed simulation of cyber-physical systems. Technical report,
ISAE-Supaero, April 2017

21. Michel, C., Cardoso, J., Siron, P.: Time management of heterogeneous distributed
simulation. In: 31st European Simulation and Modelling Conference, October 2017

22. MORSE. https://www.openrobots.org/morse/doc/latest/morse.html
23. Nägele, T., Hooman, J.: Co-simulation of cyber-physical systems using HLA. In:

2017 IEEE 7th Annual Computing and Communication Workshop and Conference
(CCWC), pp. 1–6, January 2017

24. Neema, H., Gohl, J., Lattmann, Z., Sztipanovits, J., Karsai, G., Neema, S., Bapty,
T., Batteh, J., Tummescheit, H., Sureshkumar, C.: Model-based integration plat-
form for FMI co-simulation and heterogeneous simulations of cyber-physical sys-
tems. In: Proceedings of the 10th International Modelica Conference, pp. 235–
245, March 2014. https://modelica.org/events/modelica2014/proceedings/html/
ProceedingsOfThe10thModelicaConference.pdf

25. Noulard, E., Rousselot, J.Y., Siron, P.: CERTI: an open source RTI, why and how.
In: Spring Simulation Interoperability Workshop, March 2009

26. Cardoso, J., Derler, P., Eidson, J.C., Lee, E.A., Matic, S., Zhao, Y., Zou, J.: Mod-
eling timed systems. In: Ptolemaeus, C. (ed.) System Design, Modeling, and Sim-
ulation Using Ptolemy II. Ptolemy.org (2014). http://ptolemy.eecs.berkeley.edu/
books/Systems/chapters/Dataflow.pdf

27. Ptolemy source. http://ptolemy.eecs.berkeley.edu/ptolemyII/
28. Ptolemy-HLA. https://www.icyphy.org/hla/wiki/Main/PtII-hlacerti
29. Shrivastava, A., Derler, P., Baboudr, Y.S.L., Stanton, K., Khayatian, M., Andrade,

H.A., Weiss, M., Eidson, J., Chandhoke, S.: Time in cyber-physical systems. In:
2016 International Conference on Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS), pp. 1–10, October 2016

https://www.openrobots.org/morse/doc/latest/morse.html
https://modelica.org/events/modelica2014/proceedings/html/ProceedingsOfThe10thModelicaConference.pdf
https://modelica.org/events/modelica2014/proceedings/html/ProceedingsOfThe10thModelicaConference.pdf
http://ptolemy.eecs.berkeley.edu/books/Systems/chapters/Dataflow.pdf
http://ptolemy.eecs.berkeley.edu/books/Systems/chapters/Dataflow.pdf
http://ptolemy.eecs.berkeley.edu/ptolemyII/
https://www.icyphy.org/hla/wiki/Main/PtII-hlacerti

	Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework
	1 Introduction
	2 Tools for Distributed Simulation and Heterogenous Simulation
	2.1 Ptolemy
	2.2 High Level Architecture (HLA) Standard

	3 Putting Ptolemy and HLA Together
	3.1 How Time Is Advanced in the Ptolemy-HLA Framework
	3.2 How Data Is Exchanged in the Ptolemy-HLA Framework
	3.3 Zooming in on the Boundaries

	4 Case Study: F14
	5 Conclusion
	References

