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Université de Toulouse
Toulouse, France

firstname.lastname@isae-supaero.fr

Gianluca Di Flumeri
Dept. Molecular Medicine

Sapienza University of Rome
Rome, Italy

firstname.lastname@uniroma1.it

Kevin J. Verdière
ISAE-SUPAERO
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Abstract—There is growing interest for implementing tools
to monitor cognitive performance in naturalistic environments.
Recent technological progress has allowed the development of
new generations of brain imaging systems such as dry electrodes
electroencephalography (EEG) and functional near infrared spec-
troscopy (fNIRS) to investigate cortical activity in a variety of
human tasks out of the laboratory. These highly portable brain
imaging devices offer interesting prospects to implement passive
brain computer interfaces (pBCI) and neuroadaptive technology.
We developed a fNIRS-EEG based pBCI to monitor cognitive
fatigue using engagement related features (EEG engagement ratio
and wavelet coherence fNIRS based metrics). This mental state
is known to impair cognitive performance and can jeopardize
flight safety. In this preliminary study, four participants were
asked to perform four identical traffic patterns along with a
secondary auditory task in a flight simulator and in an actual
light aircraft. The two first traffic patterns were considered as the
low cognitive fatigue class, whereas the two last traffic patterns
were considered as the high cognitive fatigue class. As expected,
the pilots missed more auditory targets in the second part than in
the first part of the experiment. Classification accuracy reached
87.2% in the flight simulator condition and 87.6% in the actual
flight conditions when combining the two modalities. This study
demonstrates that fNIRS and EEG-based pBCIs can monitor
mental states in operational and noisy environments.

Index Terms—Cognitive fatigue, Hybrid fNIRS-EEG BCI, Real
flight conditions, Neuroergonomics

This study was supported by the AXA research fund (”Neuroergonomics
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I. INTRODUCTION

Operating aircrafts is a complex activity that takes place
in a dynamic, complex and uncertain environment. Flying
requires high working memory capacity as well as divided
and focused attentional abilities to control the flight, monitor
the flight parameters, interact with air traffic control and
adapt to external contingencies [1]–[3]. There is now a large
body of evidence that long periods of intense and sustained
cognitive activity induce active cognitive fatigue [4], [5] also
referred as mental fatigue [6] or time on task (TOT) [7]. In
return, this cognitive fatigue has been shown to promote task
disengagement, thus leaving human operators ill-equipped
to respond to unexpected events [5], [8], [9]. Interestingly
enough, such ”cognitive fatigue induced-disengagement” is
literally mirrored by a disengagement of the prefrontal and
the parietal cortices as measured by changes in hemodynamic
response [7], [8], [10]. Other techniques such as electro-
encephalography have been considered to study this degraded
mental state. For instance spectral analyses over the EEG
signal revealed that shifts in alpha, theta and beta power are
a neural signature of cognitive fatigue that can be efficiently
used for he estimation of this mental state [11]–[17] (see also
[18] for a review).

A relevant approach to improve flight safety is to



implement passive brain computer interfaces (pBCI) or
neuro-adaptive technology [19]–[21] to continuously monitor
pilots’ brainwaves and hemodynamic responses to derive
cognitive fatigue. Recent technological progress has allowed
the development of new generations of highly portable brain
imaging systems for BCIs such as wireless dry electrodes
EEG and functional near infrared spectroscopy (fNIRS) to
investigate cognition under ecological settings. EEG is by
far the most popular technique [18] but fNIRS has recently
gained momentum for online state estimation in real life
situations such as in aviation [1], [22] and was succesfully
used to classify cognitive fatigue [23], [24], [53]. The
combination of these two techniques offer complementary
prospects for the BCI community [25] as it takes advantage
of the high temporal resolution of the EEG and superior
spatial accuracy of the fNIRS. Moreover, several BCI studies
have revealed that their hybridation provides better accuracy
than when used separately [26], [27].

The objective of the present study is to develop a fNIRS-
EEG based pBCI to infer cognitive fatigue in the context of
flying. Participants were asked to perform four identical traffic
patterns at Lasbordes airfield (Toulouse, France) along with a
secondary auditory task in simulated and real flight conditions.
The secondary task is used as an indirect index of cognitive
fatigue since its performance is expected to decrease over
time if fatigue is increasing. We thus implement a fNIRS-EEG
based classifier to discriminate the first part of the experiment
(i.e. the two first traffic patterns) versus the second part of
the experiment (the two last traffic patterns). An originality
of this work is to compute the EEG engagement ratio defined
by [28] as an index of cognitive fatigue. This index presents
the advantage of aggregating the main frequency band asso-
ciated with cognitive fatigue (α, β and θ) [16] but it also
reflects fluctuations of task engagement [12], [28], [29] as a
consequence of TOT. A complementary approach to account
for the dynamics of such a mental state is to use connectivity
measures computed over the fNIRS signal [9]. Indeed, cogni-
tion cannot be reduced to the activation of specialized brain
areas but should rather be seen as the cooperation among large
scale distributed neural networks [23], [30]–[34]. We propose
to compute a connectivity feature known as wavelet coherence
which has gained some momentum in fNIRS signal analysis
[35]–[38] and that has been shown to be efficient to predict
levels of pilot’s engagement in a flight simulator [39].

II. METHODS

A. Experimental protocol

Four pilots were recruited among the students of the
ISAE-SUPAERO engineering school to participate in the
study (4 males; 25-30 years old, with 50-150 flight hours
experience). All had normal or corrected-to-normal vision
and no history of neurological or psychiatric disorders. The
study was approved by the European Aviation Safety Agency
(EASA60049235) and all participants gave their informed

written consent.

1) Experimental environment: ISAE-SUPAERO flight
simulator and DR400 aircraft: The study was conducted using
the ISAE-SUPAERO (Institut Supérieur de l’Aéronautique et
de l’Espace - French Aeronautical University in Toulouse,
France) flight simulator and experimental light aircraft (see
Fig 1). The flight simulator was composed of a Primary Flight
Display, a Navigation Display, and an Electronic Central
Aircraft Monitoring Display, a rudder, thrust, and stick. The
DR400 light aircraft was powered by a 180HP Lycoming
engine and was equipped with classical gauges, radio and
radio navigation equipment, and actuators such as rudder,
stick, thrust and switches to control the flight.

2) Scenario: The scenario in the simulated and in the real
flight conditions was identical. It consisted of four identical
and consecutive traffic patterns at Lasbordes airfield. Each
traffic pattern, according to the standards of visual flight rules
(VFR), is divided into five flight phases—the upwind take-off
leg, the crosswind leg, the downwind leg, the base leg and
the final landing. The experiment lasted around 50 minutes.
The participants were asked to perform a secondary classical
oddball paradigm with a total of 600 auditory stimuli: 25%
were targets (120 normalized pure tone at 1100 Hz, 90 dB
SPL) and 75% were non-targets (480 normalized pure tone
at 1000 Hz, 90 dB SPL). Inter-trial interval was set to 2000
ms with a 2000-ms jitter. The volunteers had to ignore the
frequent non-targets and report the number of auditory targets
during the first part of the experiment - defined as the two
first traffic patterns - and the second part of the experiment
- defined as the two last traffic patterns. The number of
reported auditory targets was used as an indirect index of
cognitive fatigue. It was expected that pilots would commit
more errors during the second part than the first part of
the experiment as a consequence of TOT. The order of the
conditions (real flight vs simulated flight) was counterbalanced
across participants. A flight instructor was present in the
simulated and real flight conditions and was left-seated.
The experimenter was the backseater and his role was to
place and calibrate the sensors, trigger the odd-ball task and
write the number of auditory targets reported by the volunteer.

3) EEG and fNIRS recording and preprocessing: EEG data
were recorded at 500Hz using the 32 dry-electrode Enobio
Neuroelectrics system positioned according to the 10-20 sys-
tem. Only 23 channels out of 32 were recorded (P7, P4, Cz, Pz,
P3, P8, O1, O2, F8, C4, F2, Fz, C3, FPz, F7, Oz, AF4, CP6,
CP2, CP1, CP5, FC1 and AF3). Remaining channels were
removed in order to put the fNIRS sensors on the same cap
and to allow sufficient comfort for the participants. fNIRS data
were recorded at 8.93Hz using the NIRSport NIRX system
using 7 sources (F3, FP1, AFz, FP2, F4, T7, T8) and 8
detectors (AF7, AF3, AF8, AF4, TP7, FT7,TP8, FT8) which
resulted in 12 channels.

EEG and fNIRS data were synchronized using Lab Stream-



Fig. 1. Experimental environment: flight simulator (left), EEG-fNIRS cap (middle) and DR400 light aircraft (right).

ing Layer, they were analyzed using Matlab R2015b using
EEGLab and several functions from the Homer2 software
package [41].

EEG and fNIRS data were firstly epoched into successive
and non-overlapping 1 minute time windows. Epochs were
then analysed independently in order to extend our method to
online classification (see section II-B).

Regarding EEG, Automatic Subspace Reconstruction (ASR)
[42] (default settings) was used to remove non-stationary high-
variance signals from the EEG by means of an interpolation
of components that exceeded a threshold relative to the covari-
ance of the calibration set of relatively clean data segments.
The calibration set has been extracted from EEG signals
recorded prior to the first traffic pattern, and therefore was
independent from EEG epochs used for classification.

Regarding fNIRS, they were converted into optical density.
Artifacts were identified by detecting high variance parts of
the signal, a spline interpolation was then used to remove
those parts. The artifact-free optical density signal was then
band-pass filtered using 2 butterworth filter (low-pass: 0.5
Hz order: 3 and high-pass: 0.01 Hz order: 5). Optical density
were converted to chromophore concentrations ([HbO] and
[HbR]) using the Modified Beer-Lambert Law (MBLL).

a) EEG feature - engagement ratio: We used the
following EEG engagement ratio β

α+θ defined according
to [28]. The power of each frequency band (α, β, and θ)
was computed by estimating the one-sided Welch’s power
spectral density of the EEG signal. The engagement ratio
was computed independently for each channel, resulting in as
many features as EEG channels.

b) fNIRS feature - wavelet coherence: A coherence mea-
sure based on the wavelet transform was used : the wavelet
coherence [42]. The wavelet coherence power R2

n(s) can be
defined as:

R2
n(s) =

|S(s−1W xy
n (s)|2

S
(
s−1|W x

n (s)|2
)
S
(
s−1|W y

n (s)|2
) (1)

Where W x
n (s) and W y

n (s) represent respectively the wavelet
transform of x and y at the n time point for a wavelet scale

s.W xy
n (s) is the cross wavelet transform of x and y (being

the wavelet transform of the cross correlation function). S is
a smoothing operator (for more detail see [42]).

This measure can be seen as a localized correlation coeffi-
cient in time frequency space [43]. Coherence values range
from 0 to 1, 1 meaning there are perfectly phased-locked
oscillations at a given frequency for the 2 analyzed signals.

The wavelet coherence was computed only on the [HbO]
signals for each couple of channels namely C

(
n
k

)
= 66 couples

(k = 2, n = 12).
The resulting coherence was averaged for frequency band
ranging from 0.0781 Hz to 0.3125 Hz corresponding to 1/12.8
sec to 1/3.2 sec according to the litterature [35]. This 66
averaged coherence measures were then used as features by
the classifier for the pBCI implementation.

B. Passive BCI implementation

A shrinkage linear discriminant analysis (sLDA) was per-
formed, providing better results in a high dimensional fea-
ture space [44]. This method has already been applied with
success to efficiently classify auditory event-related potentials
[45]. EEG and fNIRS features were computed based on data
recorded during the same trials. For each class (first part
versus second part), trials correspond to successive and non-
overlapping 1 minute time windows. The number of trials
differed from each subject, depending of the time spent to
realize the traffic patterns. Finally, balanced classification
accuracy was assessed, for each subject, by using a random 5-
fold cross-validation procedure with an equal number of trials
per class.

III. RESULTS

The behavioral results on the secondary auditory task
disclosed that participants exhibited lower performance to
report the exact number of auditory targets in the second
part than in the first part of the experiment (first part: mean
error= 6.6; second part: mean error =18, Cohen’s d=0.72
- equivalent to a moderate size effect) whatever the flight
condition was. More specifically, the errors were higher in
the real flight condition (first part: mean error =10; second
part: mean error=26.5) than in the simulator condition (first



part: mean error =3.25; second part: mean error =9.5).

As regards the estimation of the cognitive fatigue using a
pBCI pipeline, the mean accuracy in the simulator condition
was 86.7% when using the EEG features only, 81.5% when
using the fNIRS features and reached 87.2% when combining
the EEG and fNIRS features (see Fig. 3). The mean classifi-
cation accuracy in the real flight condition was 86.4% when
using the EEG features only, 83.2% when using the fNIRS
features and reached 87.6 % when combining both EEG and
fNIRS features (see Fig. 3).

IV. DISCUSSION

The objective of this paper was to implement an hybrid
fNIRS-EEG based pBCI to monitor cognitive fatigue in
aviation. The pilots had to perform four traffic patterns along
with a secondary oddball task. This latter task was used as a
probe to infer cognitive fatigue between the first part (i.e. the
two first traffic patterns) and the last part of the experiment
(i.e. the two last traffic patterns). This goal was challenging
as this study was the first to report the combination of these
two brain imaging techniques under realistic settings such
as real flight conditions. As expected, the pilots committed
more errors when reporting the number of auditory probes
during the second part of the experiment than during the first
part as a consequence of TOT. This finding indicates that
cognitive fatigue can impair auditory attention to an extent
that auditory sounds can be missed. This phenomenon known
as inattentional deafness is a critical safety issue that has
been generally attributed to flying task difficulty [46], [47],
over-engagement [49] and stress [48]–[50]. To our knowledge
this is the first study to bring to light the involvement of
cognitive fatigue in the occurrence of this phenomenon.

Moreover, the classification results disclosed that the fNIRS
and EEG engagement-related metrics allowed to classify the
variation of cognitive fatigue between the beginning and the
end of the experiment with a high level of accuracy (i.e.
above 87%). Although our small sample size (N=4) did
not allow us to statistically test the classification accuracies
between the used features (i.e. EEG only, fNIRS only or
EEG-fNIRS concatenation), or the flight setting (i.e. simulator
or real aircraft), nevertheless the average results reveal that
the combination of the two recording modalities provided
better accuracy that when used separately. Also, they reveal
that for this aeronautical application, increasing the level of
ecology in the setting, that is to say going from the simulator
into the real world, did not negatively impact mental state
estimation as one could have expected. Indeed, there was no
decrement in classification performance since cognitive fatigue
estimation reached 87.2% in the simulator and was still at
87.6% in the real light airplane. Therefore, the results of
this preliminary study show that these highly portable devices
can be effectively used in the noisy environment of a flight
simulator and more importantly, even in the noisy environment
of an airplane by using various signal processing techniques.

This finding confirms and complements previous studies that
dry-electrode EEG could be used in real flight to monitor
cognitive performance such as spatial disorientation [51] and
auditory processing [52]. To the authors’ best knowledge,
only one study implemented a fNIRS-based BCI to infer
working memory load in actual flight context [53]. Taken
together these results open promising perspectives to monitor
mental states such as cognitive fatigue, bringing us closer to
the realization of neuroergonomics based technology in the
cockpit to promote performance and safety of the pilots, crew,
and passengers.
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