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Abstract. Three-dimensional (3-D) large-scale imaging of microvascular networks is of interest in various areas 
of biology and medicine related to structural, functional, developmental, and pathological issues. Light-sheet 
fluorescence microscopy (LSFM) techniques are rapidly spreading and are now on the way to offer operational 
solutions for large-scale tissue imaging. This contribution describes how reliable vessel segmentation can be 
handled from LSFM data in very large tissue volumes using a suitable image analysis workflow. Since 
capillaries are tubular objects of a few microns scale radius, they represent challenging structures to reliably 
reconstruct without distortion and artifacts. We provide a systematic analysis of multiview deconvolution image 
processing workflow to control and evaluate the accuracy of the reconstructed vascular network using various 
low to high level, metrics. We show that even if low-level structural metrics are sensitive to isotropic imaging 
enhancement provided by a larger number of views, functional high-level metrics, including perfusion 
permeability, are less sensitive. Hence, combining deconvolution and registration onto a few number of views 
appears sufficient for a reliable quantitative 3-D vessel segmentation for their possible use for perfusion 
modeling.  [DOI: 10.1117/1.JBO.23.8.086002]

Keywords: light sheet; multiview imaging; vascular network; microvasculature; permeability.

1 Introduction
The perspective of imaging tubular structures associated with
fibers,1 vascular structures,2 or roots3 is relevant in many bio-
medical contexts: development, tissue remodeling, physiology,
etc. However, even if many studies have considered imaging
local vessels, very few have tackled the complete reconstruction
of very large volumes.4–9 One motivation for aiming to perform
such microvascular networks reconstruction is the modeling
of blood perfusion7–9 to decipher supracellular level organiza-
tion from the analysis of the microvascular network7,10 and
to gain a global understanding of tissue structure/function
physiology as opposed to local analysis at the cellular scale.
Vascular structures provide nonlocal (graph-based) structural
information, directly relevant to perfusion and metabolic
exchanges, for which a tissue-scale computerized analysis
can bring significant understanding to tissue functions. Going
from fibers/tubular shapes in images to vascular tubes necessi-
tates skeletonization processing. Many skeletonization methods
have been proposed (cf., Refs. 11 and 12 for reviews) based on
various techniques such as vessel enhancement filters, region-
growing approaches, active contour centerline-based methods,
stochastic frameworks using particle filters, and Markov marked
point processes. Among these, homotopy preserving skeletoni-
zation methods provide very satisfactory results10,13,14 when
applied to isotropic voxels imaging such as x-ray tomography.
Nevertheless, when dealing with nonisotropic imaging resulting
from optical microscopy, one has to reconsider the entire set of

workflow associated with image treatments to evaluate the reli-
ability and sensitivity of the vessel’s segmentation.

One significant difficulty of LSFM is controlling illumination
light scattering and absorption, whose effects can immensely
degrade image quality in depth and widely depend on the shap-
ing of the light sheet. Many techniques have been developed to
compensate for laser light-sheet scattering, such as resonating
mirror,15 multiview deconvolution,16,17 structured illumination,18

and adaptive optics.19 Another important issue in LSFM is iso-
tropic imaging because isotropic voxels are of tremendous
assistance for reliable quantification and segmentation of spheri-
cal (e.g., cells and nucleus) or cylindrical (e.g., vessels and
fibers) objects. Light-sheet fluorescence microscopy (LSFM)
is an emerging and rapidly growing field where many variants
are currently developed.20,21 Currently, major efforts are applied
to image large samples, in areas ranging from multicellular
organoids/spheroids,17 whole organisms at the embryo level,22,23

whole mount mammalian tissues,1 and plants.20,24 The segmen-
tation of large vascular networks resulting from light-sheet
imaging has rarely been performed and, to our knowledge,
the quantification of the image analysis workflow accuracy asso-
ciated with LSFM three-dimensional (3-D)-images applied to
the blood vessel challenge has not been studied yet.

The aim of this contribution is to analyze the impact and
benefits of multiview deconvolution LSFM for a reliable and
quantitative 3-D reconstruction of fiber/vascular networks.
We describe how large-field-of-view multiview LSFM imaging
and deconvolution, performed on images acquired at low
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magnification, can be used to provide highly accurate
reconstruction and segmentation of the entire vascular network
of large tissue volumes. We focused our attention primarily on
addressing the aspects related to multiview deconvolution and
quality assessment of the resulting vascular segmentation.

2 Materials and Methods
The imaging and analysis workflow follows steps given in
Fig. 1(d). Tissue preparation and LSFM instrument are
described in Sec. 2.1. Appendices B and C provide details
about the registration and deconvolution steps.

2.1 Tissue Preparation and LSFM Imaging

The mice studied were anesthetized by intraperitoneal injection
of ketamine/xylazine mix. Then, an in vivo retro-orbital lectin
injection was performed to achieve proper vessel labeling (rhod-
amine labeled griffonia simplicifolia lectin I, RL-1102 from
Vectorlabs). Before tissue removal, animals were perfused intra-
cardially with 4% paraformaldehyde solution. Tissue was then
removed, oriented, and postfixed overnight, sunk in phosphate
buffer saline. Afterward, tissue was embedded in 1% agarose
before being dehydrated by ethanol then cleared by incubation
in benzyl alcohol-benzyl benzoate solution (BABB, 1:2 vol:vol
ratio) (Sigma-Aldrich). The sample is shown in Fig. 1(a). All
experiments were carried out in compliance with European
Community Guidelines (2010/63/UE) and approved by the
French Ethics Committee. Experiments were performed on 6-
to 8-week-old male C57BL/6J mice (Harlan Laboratories) on
a 12-h light/dark cycle with free access to food and water.
Cleared samples were imaged on a custom LSFM system
based on f ¼ 50-mm cylindrical lens illumination with a
561-nm laser (Oxxius, France) and a horizontal macroscope
detection with a 7-mm slit aperture to control the geometry
of the light sheet (thickness and flatness). The resulting thick-
ness T of the light sheet at the waist varied from 5 to 50 μm
according to the slit aperture. For the data sets of this paper,
T was set to a full-width at half-maximum (FWHM) of
about 20 μm to conserve homogeneous illumination over the
largest field of view (FOV) at the lowest magnification (i.e.,
1.2×) with a Macroscope (Nikon AZ100M), a 2× air objective
lens, and an eightfold zoom factor. The anisotropy of detection
is shown in Figs. 1(e)–1(g). The resolution of the microscope
was determine empirically by estimating the smallest vessel
diameters (near diffraction limit) by Gaussian fit. Imaging
cleared samples were performed through 2-mm-wall glass pol-
ished cuvettes. Rotation of the sample was performed by acting
on the agarose block embedding the sample with a driving rota-
tion stage (M116-DGH, Physik Instrumente, Karlsruhe,
Germany). Detection was performed with 50-nm bandpass fil-
ters and a CCD camera (ORCA-R2, Hamamatsu, Japan).
Figures 1(i)–1(k) show a typical vascular network image result-
ing from the imaging system at 6.72× with a voxel size
of 0.967 × 0.967 × 1.34 μm3.

To perform resolution measurements in BABB, we used sub-
diffraction 1-μm silica fluorescently labeled beads (DiagNano
DNG-L026, CD: creative diagnostics, New York), merged in
agarose blocks prior to clearing in BABB.

2.2 Multiview Registration and Deconvolution

Appendices B and C provide more details about registration
and deconvolution steps referenced in Fig. 1(d). In short, for

registration, we use rigid transforms based on normalized
cross correlation (NCC) with accurate multiscale and optimiza-
tion tuning using the elastix library.25 For deconvolution, we use
the Richardson–Lucy (RL) method, which has proven appropri-
ate for multiview deconvolution.23,26–28 Segmentation step five
and quality analysis step six [cf., Fig. 1(d)] are discussed in
Secs. 2.3 and 2.5, respectively. Section 2.4 provides details
about the manual segmentation performed to obtain ground
truth reference vascular networks.

2.3 Vessel Segmentation and Skeletonization

Deconvolved images are thresholded and the resulting binary
images are then used for network extraction. The spatial
graph representing the vascular network is built up according
to the vectorization of the binary image as described in
Ref. 29. The vessels’ center lines are extracted with an appro-
priate homotopy preserving skeletonization method30 used and
described in Ref. 29. (Avizo© FEI software has been used for
visualization only, not for any of the hereby described image
treatment.) Our experience with homotopy preserving
skeletonization30 (a special class of region-growing approach)
has provided reliable and robust results.10,14 The graph
G ¼ ðV; EÞ is then created, where V, the set of nodes, is
extracted from the branching-voxel and end-voxel, and E, the
set of edges, is extracted between connected node-voxels of
the vessel skeleton. An edge is composed of a chain of center
line voxels comprised between two nodes. In the following, we
will refer to segment and segment element instead of edges and
center line voxels as shown in Fig. 2(a). Vessel radii are esti-
mated following Ref. 14: for each segment element and
node, a sphere is expanded until 10% of its volume is left outside
the vessel shape in the binary image. Figure 1(b) shows the net-
work extracted from Fig. 1(a) with tubular-like visualization in
Avizo© FEI software.

2.4 Data Sets

We manually segmented three samples of 1283 voxels to assess
segmentation accuracy. The manual segmentation consists of
building a binary image, which can then be vectorized as
described in Sec. 2.3. Each sample is composed of about 300
segments, 300 nodes, and 4000 segment elements. Sample #1
of our ground truth data set is presented in Appendix D
[Fig. 8(a)]. We also created a 1283 voxels artificial network, pre-
sented in Appendix D [Fig. 8(c)], based on our knowledge of the
vascular properties of the analyzed tissue, i.e., using statistics
described in Sec. 3.4. This synthetic network is used to simulate
the estimated convolution artifact of the imaging system as well
as a controlled level of degradation as shown in Appendix D
[Fig. 8(c)].

2.5 Quality Evaluation

We have defined several metrics to appreciate the quality of the
extracted graph network based on ground truth data sets. These
metrics are elaborated to quantify accuracy from low- to high-
level structural properties of the vascular network. The details of
the metrics are given in Appendix A.
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Fig. 1 (a) Photography of a cleared mice inguinal adipose tissue. The red square indicates where LSFM
imaging has been performed. (b) Illustration of a 1-mm3 segmented and reconstructed vascular network
sample corresponding to the square region shown in (a). The network is composed of about 42,000 seg-
ments, 22,000 bifurcations, and 1,063,000 segment elements. Segments are scaled and colored accord-
ing to their estimated diameter (from cold color for small ones to hot color for large ones). (c) Schematic
representation of the LSFM instrument showing, not at scale, the glass chamber, the Agarose block (in
cyan) where the sample is embedded, the cylindrical lens (blue), and the slit to adjust the light-sheet
geometry. (d) Flowchart of the imaging, postprocessing, and analysis workflow. (e) Maximum intensity
projection (150-μm depth) of a small portion at full XY width (1 mm) of one view. (f) X − Z profile of the
centerline (dashed) in (e). (g) X − Y and axial profile of a small vessel oriented in X − Y , axial profiles are
represented perpendicular (A–B) and along the vessel axis (C–D). (h) Ratio of the Gaussian FWHM of
n ¼ 27 vessels distributed across the width of the data sets (blue data points) to show consistent light-
sheet geometry across the width of the image yielding an average isotropy of detection X − Y versus Z of
about 6.25. The same ratio is measured on fluorescent beads and yields (red data points) 7.9 (n ¼ 10) in
the center and 8.8 (n ¼ 10) on the edge of the image. Scale bars (g) and (h) 10 μm. (i) Image of a glass
fluorescent bead laterally and axially, scale bar μm. (j) Closer view maximum intensity projection of an
XY-plane of 100 μm Z -depth; scale bar: 40 μm. (k) The vascular network visualized with tubular struc-
tures in Avizo (FEI) software extracted from (a) with four-views reconstruction; the color scale encodes
vessel diameter. (l) Similarly, the vascular network extracted and compared for four-views and one-view
data sets: shared segment elements are in blue, black segment elements are specific to the one-view-
based network, and red segment elements are specific to the four-views-based network. The four-views
network contains several segments elements important for the topology and the permeability (in red),
which are not present in the one-view network; moreover, the one-view network contains artifact segment
elements (in black), which do not contribute to the permeability of the vascular network.
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3 Results
We performed light-sheet imaging of a fluorescently stained
blood vessels network in cleared mouse adipose tissue, as
shown in Fig. 1.

Two complementary strategies are possible for imaging vas-
cular networks in large tissue volumes with LSFM: (i) using an
axially confined light sheet (i.e., very thin) with tiled imaging of
small FOVs or (ii) using an axially “thicker” light sheet at a large
FOV. Depending on the detection system and its numerical
aperture (NA), lateral resolution may be acceptable over a
wide range of magnification to opt for the lowest number of
tiles or FOVs, thereby avoiding extensive mosaic stitching.
However, the axial extent of the light sheet required to homo-
geneously illuminate a large FOV may increase the anisotropy
of detection in the XY-sheet plane versus the Z-direction, perpen-
dicularly to the sheet plane. Higher magnification with thinner
light-sheet illumination will bring more isotropic detection and
would be a preferred instrumental choice. Nevertheless 3-D
stitching may be challenging on whole mount organs, both
for the intensity discontinuity between neighbors’ positions
and for colinearity of light sheet. The required XY-movement
may bring troublesome axial discontinuities in the data set.
Ideally, imaging at the lowest magnification would save in
acquisition complexity, time, and data storage. In the present
contribution, we focus our interest on the image processing
of the second strategy, for which multiview deconvolution
can be used for the enhancement of image quality in large
image data sets.16,26

3.1 Multiview Deconvolution

Figure 3(b) shows the resulting deconvolved images with the
tuned parameter for the n-views configuration (n ∈ ½1∶4�).
The intensity profiles plotted in Fig. 3(c) show how the
voxel isotropy is improved considering that the transverse sec-
tion of the vessel, where the profiles were extracted, should be
circular. Note that the one-view deconvolution configuration
delivers only an intermediate recovery of the Z-isotropy.
Also, Fig. 3(c) (first, third, and fourth plots) displays one exam-
ple of nonperfect centering of profiles following registration,
which is further discussed at the end of Sec. 4. Finally,
Figs. 3(b) and 3(c) show that the TV regularization perfectly
prepares images for segmentation by favoring high gradient

and homogeneous regions, so a simple thresholding of the inten-
sity then provides an appropriate vessel segmentation.

3.2 Accuracy on Ground Truth Data

Precision–recall curves for voxel matching and segment-
element matching are plotted in Figs. 4(a) and 4(b) for the n-
views configurations. Points of the curves are obtained by
applying various threshold values to the deconvolved images
resulting in binary images and then vascular graphs
(Sec. 2.3). An ideal case would be a precision [i.e., the ratio
of false positives (FP)] equal to the recall (i.e., the ratio of
misses) and equal to 1 (i.e., no FP and no misses). From the
two metrics, it is clear that four views outperform all other con-
figurations in any cases. However, three views and two views
provide close results, much better than the one-view configura-
tion. Similar conclusions can be drawn from other ground truth
data, showing a significant improvement from the n ¼ 1 view to
a larger number of views (n > 1).

Figure 4(c) shows the complete set of accuracy metrics
resulting from the segmentation of ground truth samples #1,
#2, and #3 and for n-views configurations (n ∈ ½1;4�). For
the three low-level metrics [voxel matching (F-score vox.), seg-
ment-element matching (F-score el.), and diameter error] as
well as for the graph similarity, a clear trend stands out for
the three samples: the best score, resp. the lowest error, is
found for the four-views configurations and decreases, resp.
increases, for the three views, two views, and finally reach
the lowest score, resp. highest error, for the one-view configu-
rations. Hence, here again, the one view (n ¼ 1) provides much
lower results than n > 1 regarding these metrics. It is interesting
to mention that the diameter error from ground truth is, respec-
tively, found equal to 35%, resp. 24%, for n ¼ 1, resp. n ¼ 4.
This could appear quite accurate, but one has to bear in mind
that perfusion is very sensitive to local vessel diameter, as
given by the fourth power dependence of the local conductance.
This is why the conductance error from ground truth is found
much higher in whole sets. This is also why an accurate repre-
sentation of vessels is a key methodological point for modeling
tissues since a reliable quantitative estimate of conductance
properties is a prerequisite for modeling. However, high-level
accuracy metrics, i.e., the conductance and the permeability
error, reveal a more mitigated trend. Concerning the conduct-
ance, the four-views configuration provided, again, the lowest
error compared with the others for sample #2, which is not

(a) (b) (c)

Fig. 2 (a) Network notations and bifurcation angles definitions. (b) Illustration within one bifurcation of the
skeletonization result. (c) Illustration of the comparison between two networks: the reference graph (in
blue) is composed of segment element (small bullets) paired with the ones of the segmented graph in red.
The pairing is materialized with gray cylinders, the diameter of which is scaled according to the asso-
ciated pairing error using the minimum cost flow algorithm.

Kennel et al.: Toward quantitative three-dimensional microvascular networks segmentation with multiview. . .



the case for samples #1 and #3, where no clear trend emerges.
Concerning the permeability error, it is interesting to note that
the lowest error results from the four-views configuration only
for sample #3 (with a clear trend), whereas it remains unstable
for samples #1 and #2.

3.3 Synthetic Data

We take advantage of the synthetic network to monitor con-
trolled degradation and evaluate how n-views perform on the
network extraction regarding to the six accuracy metrics in
the presence of increasing additive Gaussian noise [illustrated
in Appendix D, Fig. 8(c)] and Poissonian noise. Figure 5(a)
shows the n-views configuration score/error evolution for
each metric according to Gaussian noise level [peak signal-

to-noise ratio (PSNR)]. Similar results can be found in
Fig. 5(b) for Poissonian noise distribution.

Again, a clear trend stands out for the three low-level metrics
(the voxel matching F-score, the segment-element matching F-
score, and the diameter error) as well as the high-level graph
similarity: the four-views configuration outperforms the three
others with highest score/similarity and resp. lowest error,
whichever noise level applied. Similarly, three views outperform
two views, and two views outperform one-view configuration.
However, even if the conductance metric shows a similar hier-
archy at a low noise level, it does not display a clear trend any
more for noisy images. Concerning the permeability error, even
if the curves are noisy, we found a similar trend as previously
observed (cf., Sec. 3.2) for real data. One view gives the highest
error and the three other configurations give much lower, but

(a) (b)

(c)

Fig. 3 Improvement of the vascular network imaging isotropy from using multiview deconvolution.
(a) Illustration of raw isotropic 128 μm2 orthogonal plans extracted at the same spot with four different
views (imaging angles equal to −45, 0, 45, and 90 deg). Views at −45, 45, and 90 deg are registered
based on view at 0 deg. (b) Illustration of the corresponding multiview deconvolved isotropic 128-μm2

orthogonal plans obtained according to n-view configurations with n ¼ 1 (using view at 0 deg), n ¼ 2
(using views at 0 and 90 deg), n ¼ 3 (using views 0, 45, and 90 deg), and n ¼ 4 (using views −45,
0, 45, and 90 deg), RLTV iteration ¼ 25, and TV ¼ 0.01 (cf., Appendix C for more information).
(c) X (P1) and Z (P2) intensity profiles extracted at the red-cross spot (XZ-plans) from the raw images
[for the four angles in (a)] and the n-view deconvolved images [with n from 1 to 4 in (b)].
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Fig. 4 Left column: precision–recall (cf., Appendix A.1 for definitions) curves for (a) voxels matching and
(b) segment-elements matching resulting from segmentation and network extraction, with optimal
deconvolution parameters, of ground truth data set #1. Right column: comparison of several accuracy
metrics resulting from our network segmentation workflow on three ground truth data sets according to
n-views reconstructions. Parameters used (cf., Appendix C for more information): (c1) #1 RLTV it: ¼ 30
TV ¼ 0.001, (c2) #2 RLTV it: ¼ 35 TV ¼ 0.001, and (c3) #3 RLTV it: ¼ 60 TV ¼ 0.001.

(a) (b)

Fig. 5 Sensitivity of vascular network extraction to additive (a) Gaussian noise and (b) Poissonian noise
evaluated using six different accuracy metrics on our synthetic network with n-views reconstructions
(n ∈ ½1;4�) (cf., Appendix A for more information about metrics).
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quite similar, errors with a slight advantage for four views.
Hence, it is interesting to crop-up the statement that n > 1
views are generally much better than one view for vascular net-
work segmentation with a variable advantage of increasing the
number of view n.

3.4 Vascular Network Analysis of Biological Tissue

When applied at a large scale, the hereby proposed workflow
allows the extraction of important structural properties of vas-
cular networks. Figure 1(b) shows the vectorization of a 1-mm3

subarea of the vascular network of the inguinal adipose tissue in
mice. It reveals a particularly high vascular density [quantified
in Fig. 6(b)] compared with other tissues such as brain14 or
muscles. Figure 6 also shows characteristic bifurcation angles
according to the convention defined in Fig. 2, as well as the seg-
ment length and segment-element radius distributions. Further
statistics of interest, including several related to blood microcir-
culation in the tissue, are provided in Appendix G.

4 Discussion
Optical imaging of large-scale volumes is not easily achievable
with conventional optical microscopy. For high-resolution fluo-
rescence data collection, confocal microscopy is still the gold
standard. However, its ability to image in very large volumes
will suffer drastic axial resolution degradation together with
the working distance of the lens, which is required to target
a specific depth. In general, the deeper the target is, the
lower the NA is and, hence, the lower the axial resolution is.
3-D deconvolution techniques may somehow recover part of
this resolution degradation; however, the typical deterioration
of signal-to-noise ratio (SNR) at acute depth will not play in

favor of this aim. Multiphoton microscopy, on the other
hand, is typically limited to 1 mm in depth for in vivo experi-
ments, and, even if sample clearing can improve this value, low
NA lenses drastically reduce the efficiency of excitation of the
technique. On the contrary, the accepted advantages of LSFM
are to enable large working distances and high SNR and to
offer sample mounting solutions (e.g., sample rotation) that
are not accessible in conventional microscopy (e.g., confocal
microscopy).

Here, we performed light-sheet imaging of a fluorescently
stained blood vessels network in cleared mouse adipose tissue
with enhanced anisotropic illumination (i.e., much worse
axially) to probe the benefit for vessel segmentation of multi-
view fusion with deconvolution at low magnification range,
and thereby show that high-accuracy blood vessel imaging
can be performed without stringent conditions on the need
for acquisition of tiled mosaics.

We estimate theoretically that the ratio between the objective
lens lateral resolution (about 1.83 μm calculated for a 6.72×
magnification, in air, with an estimated NA of 0.2 and classical
equation for full lateral extent 0.61× wavelength/NA) and the
light-sheet axial extent (set experimentally and measured in
air to have a FWHM of about 20 μm, cf., Sec. 2) gives an
anisotropy factor of about 9.15. We confirmed this factor exper-
imentally by reporting a characterization of optical resolution
with glass beads, yielding from 7.9 to 8.8 [Fig. 1(i)]. Of
note, we used glass fluorescent beads to enable imaging in
BABB, providing a solution to the well-known problem of
latex/polymer beads, which dissolve in this corrosive clearing
medium. Finally, we empirically estimate this factor by meas-
uring in the X − Y and Z diameters of the smallest vessels in our
raw data sets to be around 6.25� −1.3 μm [cf., Fig. 1(h)],

(a) (b)

(c) (d)

Fig. 6 Statistics of interest calculated on the vascular network extracted from the large mice tissue sam-
ple presented Fig. 1(b). (a) Bifurcation angles according to convention presented Figs. 2(a) and 2(b)
relative local vascular volumic density (volume fraction of vessels) computed into 100-μm voxels,
(c) radius of segment elements, and (d) segment length. Vertical dashed lines represent mean values.
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consistently lower because the smallest blood vessels are not
subdiffraction objects for this range of magnification.

We were able to show that this factor can be reduced by mul-
tiview fusion to yield restored data with an anisotropy factor,
i.e., the ratio between axial and lateral resolution, measured
closer to 1 [as shown in Fig. 3(c)] even with only two views.

The aim of this contribution is to analyze and evaluate how
multiview deconvolution improves the voxel isotropy in 3-D
LSFM images for large-scale vascular network extraction.
Vascular networks are extremely complex 3-D objects, for
which an accurate evaluation of local structural properties is rel-
evant to biological function. Hence, it is important to provide a
systematic comparison of the influence of the multiview decon-
volution steps and parameters on the subsequent reconstruction
precision. Furthermore, the capabilities enabled by recent 3-D
LSFM images at the centimeter scale open the road for the
exploration of very large tissue volumes, for which a large
light-sheet axial extent helps to acquire amounts of data. Our
approach, therefore, consisted of working at low magnification
to probe the ability to restore highly anisotropic illumination
conditions with multiview deconvolution.

In conditions that are experimentally simple to set (at low
magnification with air lenses), the potential for image improve-
ment by multiview postprocessing is much larger than at high
magnification as the starting anisotropy of XY-detection versus Z
illumination (i.e., light-sheet thickness) is greater, therefore,
potentially simplifying the image acquisition procedure.
Hence, there is a need for the evaluation of multiview deconvo-
lution numerical costs and benefits for segmentation of large
data/volume analysis.

We investigated six different metrics of interest for the analy-
sis of low- to high-level structural properties of vascular net-
works. Using various ground truth data, we systematically
quantified how structural, geometrical, and topological ingre-
dients of vascular vessels are retrieved. First, we found that
low-level metrics related to voxel, segment element, and diam-
eter display a clear hierarchical quality response with the num-
ber n of views, i.e., four views > three views > two views > one
view. These results confirm the interest of multiview deconvo-
lution procedures as they permit reaching high-confidence
scores, as shown by PR curves of Figs. 4(a) and 4(b).
Second, the results given by high-level metrics, especially the
permeability, are found to be much less sensitive to the number
of views. It shows a decreasing improvement, which could
already be observed for low-level metrics in Figs. 4(a) and 4
(b). This observation is related to the functional role of vascular
networks. Even if, as previously mentioned, small structural
local information, e.g., vessel diameters, are important to esti-
mate accurately, they are not everywhere crucial to blood per-
fusion. When integrated into the network complexity, some
vascular segments might not play an important role for perfusion
[see Fig. 1(k), the segment difference between one view and four
views segmentation]. This is why we found that a 100% error in
conductance can translate into a 30% error only in permeability.
Also, more interestingly, the progressing quality estimation of
high-level metrics given in Fig. 4(c) does not show a clear hier-
archical quality response when n > 1. Since both computational
and memory cost increase as OðnÞ, it is interesting to note that,
above n ¼ 2, perfusion prediction resulting from multiview
deconvolution might poorly improve from increasing the num-
ber of views. This trend is confirmed when considering
progressive degradation in a synthetic network, shown in

Fig. 5. In noisy situations, even low-level metrics display a
much larger improvement from n ¼ 1 to n ¼ 2 than in a further
number of view refinements.

The relevance of the presented segmentation workflow is
shown in Fig. 6, where various vascular structural parameters
have been reported on the analyzed fat tissue. The vessel radius
histogram [Fig. 6(c)] displays a bell-shape Gaussian like curve,
the mode of which corresponds to a capillary diameter of 7 μm,
close to what can be found in brain.14 The vessel length distri-
bution [Fig. 6(d)] displays a Poissonian like behavior, whose
mean length equal to 35 μm is two times shorter than the
one found in brain.14 This feature illustrates the specificity of
fat tissue where adipocytes are tightly vascularized, such that
vascular segment length is comparable with their half perimeter.
Furthermore, vascular volume fraction displays an average 4%,
comparable with other tissues (e.g., brain and muscle) with dis-
tribution tails reaching values as large as 10%, as shown in
Fig. 6(b). Finally, Fig. 6(a) shows the histogram of orientation
angles as defined in Fig. 2(a). The orientation angle in red ϕ2

displays a symmetrical distribution as opposed to the two other
angles.31

Finally, let us now provide some elements for the usefulness
and future extensions of the presented results. Since the exposed
test cases (data, ground truth, and C++ code) are provided as
supplementary material (supplementary materials data and
code are available at: https://drive.google.com/file/d/1evXmG_
x7TzL2yoqWa23qA7iJpWSjdZsF/view?usp=sharing), this con-
tribution, using state-of-the-art processing, gives a first step
toward quantitative vascular segmentation from LSFM imaging.
Specific new methods associated with the image processing
workflow, i.e., registration,32 deconvolution, segmentation,33

and vectorization, might be interesting to explore in the future
since they might help to improve the recovery of vascular prop-
erties. A detailed discussion of such possible extensions is obvi-
ously beyond the scope of this study. However, considering the
registration step, we have explored the possibility of using non-
rigid B-spline-based transformation.25 Such nonrigid deforma-
tions require very careful parameter setting and are difficult
to configure to reach a perfect alignment of views for each ves-
sel, even considering local deformations sized to the vessel
scale. Despite our efforts, we were not able to improve registra-
tion, while, at the same time, the computational cost was signifi-
cantly increased.

5 Conclusion
We analyze the quantitative segmentation of large microvascular
networks from multiview LSFM images. Combining suitable
multiview deconvolution and registration procedures, we
addressed the question of vessel accurate segmentation and vas-
cular network reliable 3-D reconstruction. We showed the ben-
efit of increasing the number of angular views on image-based
and structural metrics, confirming the convergence toward iso-
tropic vessel reconstruction. However, considering higher-level
metrics, associated with the network topology, lead us to temper
the need for a large number of views. Using more than two
views does not provide better results on perfusion oriented met-
rics. The presented results represent the first systematic quanti-
tative evaluation of LSFM postprocessing workflow for reliable
vascular network reconstruction. Knowing how much gain
could be expected from a very large 3-D images data set and
heavy posttreatment computation is of practical interest for
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future research. This is especially true for image-based quanti-
tative modeling.

Finally, it is interesting to mention that, even if we mainly
restrict our analysis to a cubic millimeter volume of tissue,
the applicability of the imaging procedure has a much wider
potential. As a matter of fact, the analyzed region is situated
inside a much bigger layer into which the light-sheet penetrates
(see Fig. 1). Hence, the range of accessible imaged volume is
much wider, at least for high-quality clearing. Combining
LSFM with a suitable image posttreatment workflow shows
potential for centimeter tissue-scale analysis of vascular struc-
tures, at micron resolution, a perspective that deserves further
investigation and effort.

Appendix A: Metrics Definitions

A.1 Raw Level
We first compare the reference network Iref: and the segmenta-
tion results Iseg: at the raster level on binary images by counting
matching voxels using a classical precision/recall measurement.
We defined F-scorevox: ¼ 2PR∕ðPþ RÞ ∈ ½0; 1� with precision
P ¼ TP∕ðTPþ FPÞ, recall R ¼ TP∕ðTPþ FNÞ, true positives
(TP), false positives (FP), and false negatives (FN).

A.2 Segment-Element Level
The vascular graph representation allows the measurement of
error/score at the level of vascular segments and/or segment ele-
ments from the evaluation of matching to a reference segmented
graph. The segment-elements level of this matching requires a
pairing procedure. For this, we consider the correspondence
between segment elements (i.e., pairing) a weighted bipartite
graph matching problem. Following Ref. 34, we address this
assignment using a minimum cost flow algorithm defining
the cost function as the Euclidean distance between elements.
From only considering pairs lower than 5 μm apart, we perform
the accuracy calculation between each eligible pair. The result-
ing pairing is shown in Fig. 2(b). We then consider F-scoreelem:

using same precision/recall measurement as in Appendix A.1,
but obviously considering TP, FP, and TN among the sets of
suitable graph segment elements and nodes.

Paired segment elements allow us to compute an error on
vessel diameters. We defined a diameter error between
graph G1 and G2 (say G1 is the ground truth graph and G2

a segmented graph) as the normalized root mean square
error (NRMSE)

EQ-TARGET;temp:intralink-;e001;63;224NRMSEdiam:ðG1; G2Þ ¼
1

d1m

X
i∈P

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd1i − d2iÞ2

q �
; (1)

where ðe1i; e2iÞ is the i’th pair of elements from G1 and G2,
ðd1i; d2iÞ is the corresponding diameters, and d1m is the
mean diameter of elements from G1.

A.3 Segment Level
At the segment level, we consider the error associated with the
hydraulic conductance of each vascular segment for the blood to
flow from one bifurcation to the next one. This hydraulic con-
ductance is related to the ease, for a given blood pressure to

drive perfusion. We refer to the classical definition, e.g.,
given in Ref. 9, for which conductance c of a vessel segment
of length L is given by

EQ-TARGET;temp:intralink-;e002;326;719c ¼ π

128

�X
i∈L

μi
d4i

�
−1
; (2)

where di is the diameter associated with the i’th segment
element, where blood has viscosity μi. Since not all elements
of a reference segment are paired with elements of a segmented
graph, we defined the NRMSE related to conductance only for
the paired elements, which is thus a pseudoconductance error,
by

EQ-TARGET;temp:intralink-;e003;326;608NRMSEcðG1; G2Þ ¼
1

c1m

X
s∈E1

ecðE1s; G2Þ; (3)

where c1m is the mean conductance of segments E1 of G1 and

EQ-TARGET;temp:intralink-;e004;326;550ecðE1s; G2Þ ¼
X
i∈Ps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

d41i
−

1

d42i

�
2

s
; (4)

where μi ¼ 1, Ps are the paired elements of E1s with elements of
G2, and thus d1i and d2i are the associated diameters pair in G1

and G2.

A.4 Topological Level
We would like to quantify the topological proximity of seg-
mented vascular networks regarding ground truth with a
well-defined metric. For this, we consider a graph similarity
measurement developed for pattern recognition and widely
used in many computer vision tasks, as well as in graph match-
ing and graph clustering.35,36 Graph similarity is a difficult task
especially when one needs to gauge similarity without explicit
correspondence between nodes and edges, as needed here,
although we were able to pair segment elements. The main
idea is to use spectral graph theory to embed a graph in a
Riemannian manifold and to use the curvature embedding as
the appropriate invariant property to be compared from one
graph to another. Further details of this graph similarity can
be found in Appendix E.

A.5 Permeability Level
Finally, the most high-level metric that we consider is con-
cerned with the macroscopic transport properties of the micro-
vascular network: its permeability. This quantity is used to
describe the ability of a complex vascular network to perfuse
a given blood flux proportionally to the applied pressure differ-
ence. Hence, it defines some intrinsic transport coefficient,
almost independently of the blood properties (a more accurate
discussion is beyond the scope of this contribution9). Since the
essential biological role of vascular network is to perfuse
blood, comparing the transport properties of our segmented
networks regarding ground truth is interesting not only from
the biological viewpoint but also methodologically since
this permeability integrates many structural properties, already
present in the previously considered metrics, into a clear func-
tional perfusion property.

Using the network model described in Refs. 9 and 10 for
flow transport, we computed perfusion flow into three different
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directions denoted px, py, and pz. Further explanations about
transport model can be found in Appendix F. We defined the
relative permeability error as

EQ-TARGET;temp:intralink-;e005;63;719NRMSEperm:ðG1; G2Þ ¼
1

p1m

X
i∈fx;y;zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1i − p2iÞ2

q
; (5)

where p1m is the mean permeability of G1 over the three direc-
tions and p1i and p2i are the blood fluxes associated in a par-
ticular direction for graph networks G1 and G2.

Appendix B: Multiview Registration
Before registration, each image, acquired with a different rota-
tion angle, is interpolated in the Z-direction, so voxels match an
isotropic dimension of 0.967 μm width. The bead-based regis-
tration protocol16 is not suited to the biological purpose that we
pursue since beads are challenging to insert and stabilize homo-
geneously in the space inside large tissues. Furthermore, the
combination of beads and clearing agents is not always compat-
ible, and solvent-based clearing methods, which may provide
the best clearing results, may indeed compromise both fluores-
cence and structural integrity of commonly used polymer beads.
In this study, since we opt for a low z-resolution, extracting
salient points for point-based registration techniques gives
poor results. Even if subsampled data give an approximate regis-
tration, high-resolution registration was not possible since no
correspondence exists between salient points extracted at
high resolution. For this reason, we opt for a rigid registration
based on NCC with accurate multiscale and optimization tuning
using the elastix library.25 The registration follows a two-step
procedure: (i) a Y-rotation is applied to each view according
to the known angle of acquisition, for every view to become
almost aligned and (ii) an affine transformation is performed
to register each view onto the same view. A typical four-
views registration sample is presented in Appendix D
[Fig. 8(b)], where the XZ-plane is shown and the artifacts of
each view are visible through a cross-like shape of transversal
vessel slices. We performed the registration of the supplemen-
tary material data set provided for registration (4 × 5123 voxels
images) in about 5 min on an E5-2630 Intel processor worksta-
tion computer.

Appendix C: Multiview Deconvolution
Multiview deconvolution, more desirable than simple fusion
procedures for precision and information preservation, becomes
essential with multiview imaging for resolution improvement
by increased isotropy of detection.17,26 RL algorithm is
already used to remove artifacts from light microscopy37,38

and has proven appropriate and accurate for multiview
deconvolution23,26–28 even though computationally challenging.
Without the use of beads, the efficient estimate of the point
spread function (PSF) becomes challenging, especially when
its shape varies for spatially inhomogeneous light-sheet
depth. Variational deblurring,39 although attractive, is still hardly
applicable to large 3-D images for having detrimental memory
and computational costs. Since we chose a large light-sheet
depth and FOV, we consider a spatially homogeneous PSF
designed with a Gaussian shape in which standard deviation
σðzÞ ¼ 11 μm is related to the light-sheet depth (cf., main
text Sec. 2.1). We set σðzÞ ≃ T∕3, so 95% of the light-sheet
intensity Gaussian profile is recovered.

We used the RL iteration updates formulated in Ref. 26 and
add a total variation (TV) regularization term yielding to

EQ-TARGET;temp:intralink-;e006;326;513φrþ1 ¼ φr
Y
v∈V

TV

�
ϕv

φr � Pv
� P�

v

�
; (6)

where φr is the deconvolved image at iteration r, ϕv is the origi-
nal image view v, Pv is the PSF kernel corresponding to view v,
P� is the mirrored version of kernel P, * is the convolution oper-
ator, and the TV term is

EQ-TARGET;temp:intralink-;e007;326;417TVðIÞ ¼
�
1 − λ div

�
∇I

j∇Ij
��

−1
; (7)

where λ is the regularization parameter, divðÞ is the divergence
operator, and ∇I is the gradient of I.

RL deconvolution must be carefully parameterized regard-
ing the three parameters known to mainly influence the
convergence process. The PSF is, of course, the major one,
but we cannot extract the PSF from beads. Furthermore,
there is no geometrical optic model for the interaction
between a sphere and planar sheet illumination, as opposed
to other microscopy configurations such as confocal

Fig. 7 Tuning the multiview RL deconvolution algorithm with TV regularization according to three accu-
racy metrics, using ground truth data set #1.
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microscopy. For this reason, we empirically adjust the
designed Gaussian-based PSF (see previous paragraph). We
consider the influence of two supplementary parameters of
the RL deconvolution: the number of iteration and the ampli-
tude of the TV regularization term. We focus on the tuning
process using the three low-level metrics previously
described: the voxel matching, the segment-element match-
ing, and the diameter error. Figure 7 shows these three metrics
computed from ground truth data set #1, for one-view and
four-views configurations. Optimal parameters are found to
be very similar between one-view and four-views configura-
tions, i.e., about 25 iterations with a TV term of about 0.001.
However, an important relative difference is found between
one view and four views up to 0.12 on voxels matching,
0.18 on element matching, and 0.1 on diameter error at the
advantage of the four-views configuration.

Appendix D: Data Sets
Synthetic data have been generated from manual segmentation
of three 128 × 128 × 128 voxels images leading to sample #1, 2
and 3. Figure 8 illustrate various steps of the resulting segmen-
tation and synthetic data obtained from sample #1.

Appendix E: Graph Similarity Measurement
Graph similarity uses the concept of intrinsic curvature of the
graph embedding using its spectral properties.35,40 Let us denote
the graph G ¼ ðV; EÞ, where V is the set of nodes and E is the
set of edges. The Laplacian matrix L of G is obtained from the
adjacent matrix A and the degree diagonal matrix D by
L ¼ D − A, where Dðu; vÞ ¼ P

v∈VAðu; vÞ ¼ du. The normal-
ized Laplacian is L̂ ¼ D1∕2LD−1∕2. The spectral decomposition
is L̂ ¼ ΦλΦT ¼ PjVj

i¼1 λiϕiϕ
T
i , where λi is the i’th eigenvalue

and ϕi is the i’th eigenvector. Using the heat kernel equation,
we can defined the Euclidian distance between nodes u and
v as

EQ-TARGET;temp:intralink-;e008;326;612d2ðu; vÞ ¼
X
i∈jVj

expð−λitÞ½ϕiðuÞ − ϕiðvÞ�2: (8)

The curvature associated with each edge is defined
by k2ðu; vÞ ¼ 24½1 − dðu; vÞ�.

We can then compute the similarity between graphs
G1 ¼ ðV1; E1; k1Þ and G2 ¼ ðV2; E2; k2Þ. The set of all nodes
connected to the node I ∈ G2 by an edge is defined as
C2
I ¼ fJjðI; JÞ ∈ E2g, and the corresponding set of nodes con-

nected to the node i ∈ G1 by an edge is C1
i ¼ fjjði; jÞ ∈ E1g.

(a)

(c)

(b)

Fig. 8 (a) Ground truth data set #1 of 128 × 128 × 128 μm3 manually segmented; the vectorized graph
network overlays the binary image. (b) Typical registration of four isotropic views in the XZ-plan (0 deg
cyan, 45 deg red, −45 deg green, and 90 deg magenta). (c) Synthetic data set of 128 × 128 × 128 μm3:
the 3-D graph network visualization (left) and the generated convolved image (middle and right) with
additive Gaussian noise, PSNR ¼ 40 dB.
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The similarity measurement defined in Ref. 41 is finally given
by

EQ-TARGET;temp:intralink-;e009;63;730

SðG1; G2Þ ¼
1

jV1j × jV2j
X
i∈V1

max
I∈V2

X
j∈Ci

1

max
J∈C2

I

P½ði; jÞ

→ ðI; JÞjk2ðI;JÞ; k1ði;jÞ�: (9)

Appendix F: Flow Transport Model
The adopted discrete perfusion network is related to previ-
ously described flow microcirculation models42–44 already
used to model blood perfusion from image-based network
extraction.7–9 The basic assumptions of the modeling are
related to the fact that, since fluid inertial effects are negli-
gible in microcirculation flows, the relation between the pres-
sure drop and the blood flux is linear. Furthermore, since the
aspect ratio of the vessels, i.e., the ratio between average
diameter and length, is small, the fluid flow through these
elongated structures can be approximated using lubrication
approximation, as detailed in Ref. 9. Such simplistic but
robust modeling can also include the presence of red blood

cells (RBC), by taking into account a supplementary pressure
drop associated with their presence, through a saturation
parameter (the volume fraction of RBC). In any case, since
the pressure gradient is linearly varying along each vessel
centerline, it can be integrated from each bifurcation to the
next. Hence, it provides a single transport coefficient describ-
ing the proportionality between the pressure difference ΔP
between two successive bifurcations and the flux Q arising
in each vascular segment: Q ¼ KhΔP. This coefficient Kh ¼
−π∕½128∫ μa∕DðsÞ4ds� is related to the integration along the
vessel length of the apparent viscosity of the blood μa and the
vessel local diameter DðsÞ varying along the vessel centerline
curvilinear length s. Hence, from image-based skeletonization
providing the local diameter of each vessel, one is able to
build, for each vascular segment, the perfusion coefficient
Kh. Then, applying flux conservation at each node permits
solving for the pressure at each bifurcation.

Appendix G: Vascular Properties of Adipose
Biological Tissue
Figure 9 illustrates the statistical results resulting from the com-
plete vectorization of the micro-vascular network of a cubic
millimeter of adipose tissue.

(a) (b)

(c) (d)

Fig. 9 Vascular network statistics extracted from the 1-mm3 vascular network sample modelized from
the inguinal adipose tissue in mice. (a) Conductances distribution, (b) distances vessel–tissue distribu-
tion: distances are obtained from the distancemap calculated on the binary image, (c) junction exposants
distribution, and (d) asymmetry ratio distribution.
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