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Abstract—Multipath remains the main source of error when
using global navigation satellite systems (GNSS) in constrai-
ned environment, leading to biased measurements and thus
to inaccurate estimated positions. This paper formulates the
GNSS navigation problem as the resolution of an overdetermined
system, which depends nonlinearly on the receiver position and
linearly on the clock bias and drift, and possible biases affecting
GNSS measurements. The extended Kalman filter is used to
linearize the navigation problem whereas sparse estimation is
considered to estimate multipath biases. We assume that only
a part of the satellites are affected by multipath, i.e., that the
unknown bias vector is sparse in the sense that several of its
components are equal to zero. The natural way of enforcing
sparsity is to introduce an ℓ1 regularization associated with the
bias vector. This leads to a least absolute shrinkage and selection
operator (LASSO) problem that is solved using a reweighted-
ℓ1 algorithm. The weighting matrix of this algorithm is designed
carefully as functions of the satellite carrier to noise density ratio
and the satellite elevations. The smooth variations of multipath
biases versus time are enforced using a regularization based on
total variation. An experiment conducted on real data allows the
performance of the proposed method to be appreciated.

Index Terms—GNSS, multipath mitigation, sparse, LASSO,
reweighted-ℓ1 algorithm.

I. INTRODUCTION

Multipath (MP) is one of the most difficult error sources

that needs to be tackled for GNSS positioning [1]. MP signals

are generally due to reflections on various obstacles, and thus

strongly depend on the geometric configuration of the scene in

which the receiver is located. More precisely, in the absence

of obstacle, the receiver is not affected by MP. Conversely,

when the receiver is located close to buildings, the received

GNSS measurements are very likely to be subjected to MP.

The problem of mitigating MP effects in GNSS measurements

has received a considerable attention in the literature. MP

can be mitigated at the antenna level [2] or at the receiver

level, more precisely working on the correlator [3], [4] or the

discriminator [5]. All these techniques require specific and ex-

pensive hardware that cannot always be purchased. Mitigating

MP at a measurement or position level is thus an interesting

alternative. A first solution is to take advantage of a 3D model

of the environment to predict MP signals [6], and even to

combine these techniques to other sensors, such as cameras.

However, this 3D model is not always available in practical ap-

plications. A second option is to use the information available

at the receiver, such as pseudoranges, Doppler shifts, satellite

ephemeris and C/N0, which is the carrier-to-noise density

ratio (expressed in dB-Hz), corresponding to the ratio of the

carrier power and the noise power per unit bandwidth [7].

Other techniques consist in exploiting different measurements

from the same satellite, for instance the difference between

the measurements from two receivers leading to differential

GNSS [8, ch. 8] or even from two different users (collaborative

or cooperative positioning) [9]. An interesting family of MP

mitigation methods rely on statistical tests trying to exclude

or correct the faulty measurements. The receiver autonomous

integrity monitoring (RAIM) method belongs to this class of

strategies [8, ch. 15]. More recent technique uses a-contrario

modeling for discarding bad satellites [10]. Note that these

techniques require redundant measurements, that are not al-

ways available in urban environment, and that the user will

only be able to detect/estimate up to two faulty measurements.

Other techniques based on sequential Monte Carlo methods,

also referred to as particle filters, have been proposed in [11].

However, these methods are computationally intensive, making

a real time implementation very complicated. Finally, it is

interesting to mention other techniques based on non-Gaussian

error terms, such as Markov processes [12] or Dirichlet process

mixtures [13].

The point of view considered in this work is to model the

effect of MP signals on GNSS measurements as sparse additive

biases following the recent paper [14]. These biases are then

estimated and subtracted from the GNSS measurements to

mitigate MP effects. The bias estimation strategy is based on

a reweighted-ℓ1 algorithm projecting the observed measure-

ments on an appropriate subspace related to the GNSS geo-

metry matrix. However, we have observed that this estimation

can be impacted by biases that are not in accordance with the a

priori weights used for their estimation. The main contribution

of this paper is to add a smooth regularization term to the

reweighted-ℓ1 algorithm of [14] enforcing smooth variations

of the additive MP biases. This regularization is motivated

by the fact that biases due to MP are generally observed

at several consecutive time instants. Introducing smoothness

in the LASSO problem of [15] by using a total variation

regularization will result in a fused LASSO problem [16].

Note that we do not want the problem to be smooth in the



satellite domain, since different satellite can be affected or not

by MP depending on the satellite geometry.

This paper is organized as follows: Section II summarizes

some basic principles on satellite navigation, describing how

measurements (code measurements and Doppler rates) are

related to the state vector (position, velocity) and the possible

MP biases. This section also recalls the Kalman filtering steps

that will be used to track the receiver position. Section III

presents the method proposed in [14] to estimate MP biases

using sparse estimation, formulating the positioning problem

as a penalized least squares problem with a weighted ℓ1
penalty. Section IV explains how the algorithm can be ge-

neralized to ensure smooth MP bias variations, avoiding loss

of estimation in certain situations. Finally, Section V evaluates

the performance of the different estimation methods via several

experimental results, showing interesting improvements for

local estimation problems as well as on the full validation

campaign.

II. GNSS NAVIGATION

A. State model

The GNSS navigation problem is formulated using the

method described in [8, ch. 7], which is summarized in this

section. The unknown state vector at time k (to be estimated)

is defined as Xk = (xk, yk, zk, bk, ẋk, ẏk, żk, ḃk)
T where

rk = (xk, yk, zk)
T and vk = (ẋk, ẏk, żk)

T are the receiver

position and velocity in a given frame, bk is the receiver clock

bias, ḃk is the receiver clock drift, and the subscript k means

that the variable or vector corresponds to time instant k. A

random walk is adopted for the state propagation leading to

Xk+1 = FkXk + uk with Fk =

[

I4 (∆tk)I4
04 I4

]

(1)

where I4 is the R
4×4 identity matrix, 04 is the R

4×4 zero

matrix, ∆tk is the time between time instants k and k + 1,

and uk is a zero-mean Gaussian noise vector of covariance

matrix Qk ∈ R
8×8, i.e.,

uk ∼ N (08,Qk) (2)

where 08 is the zero vector of R
8 and N (.) is the Gaussian

distribution (closed-form expressions for Qk can be found

in [17, ch. 11], [18, ch. 12]).

B. Observation model

To estimate the unknown state vector Xk, we assume

that the receiver has access to two kinds of measurements:

the pseudoranges related to the geometric distances between

the receiver and the satellites, and the pseudorange rates,

which are the Doppler measurements up to a multiplicative

constant, related to the relative velocities between the recei-

ver and the satellites. Denote as sk the number of satelli-

tes visible at time instant k. The number of measurements

acquired by the receiver is 2sk, namely sk pseudoranges

denoted as ρ1,k, ..., ρsk,k and sk pseudorange rates, denoted as

ρ̇1,k, ..., ρ̇sk,k. These measurements are gathered in the vector

zk = (zk,1, ..., zk,2sk)
T ∈ R

2sk whose components are

zk,i = ρi,k and zk,i+sk = ρ̇i,k (3)

for i = 1, ..., sk. As mentioned before, these measurements

are functions of the various components of the state vector.

More precisely, using the notations ri,k = (xi,k, yi,k, zi,k)
T

and vi,k = (ẋi,k, ẏi,k, żi,k)
T for the i-th satellite position and

velocity at time instant k, we obtain

ρi,k = ‖rk − ri,k‖2 + bk + εi,k (4)

ρ̇i,k = (rk − vi,k)
T rk − ri,k

‖rk − ri,k‖2
+ ḃk + ε̇i,k (5)

where

• ri,k = (xi,k, yi,k, zi,k)
T is the i-th satellite position at

time k expressed in the same frame as rk,

• vi,k = (ẋi,k, ẏi,k, żi,k)
T is the ith satellite velocity at

time instant k expressed in the same frame as vk,

• ‖rk−ri,k‖2 =
√

(xk − xi,k)2 + (yk − yi,k)2 + (zk − zi,k)2

is the geometric distance between the user and the ith
satellite,

• εi,k and ε̇i,k are the error terms associated with the

ith propagation channel (modeling ionospheric delay,

tropospheric delay, satellite clock bias, satellite position

uncertainty, Sagnac effect, relativistic effects, MP and

receiver noise).

Note that bk and ḃk affect the sk corresponding measurements

similarly. Usually, MP and receiver noise are treated apart

from other error sources, for which we have models. We

will assume that these models are sufficient for correcting the

corresponding errors. Thus, the measurement equations can be

rewritten as

zk = hk(Xk) +mk + nk (6)

where mk = (m1,k, ...,m2sk,k)
T ∈ R

2sk is the vector accoun-

ting for the eventual MP biases, nk = (n1,k, ..., n2sk,k)
T ∈

R
2sk is the receiver noise vector supposed centered and

Gaussian with covariance matrix Rk ∈ R
2sk×2sk defined as

Rk =

[

σ2
UEREIsk 0sk×sk

0sk×sk σ̇2
UEREIsk

]

(7)

where σ2
UERE and σ̇2

UERE are constants used for the pseudo-

range and pseudorange rate variances (UERE stands for “User

Equivalent Range Error” [8, p. 208]), and hk is a nonlinear

function which is not provided here but can be deduced from

(4), (5) and error models as in [8, ch. 7]. Given the linear state

equation (1) and the non-linear measurement equation (6), it

is natural to investigate the extended Kalman filter (EKF) [8,

ch. 3], [19, ch. 8] to estimate the state vector Xk.



C. The extended Kalman filter for navigation

In absence of additive bias mk, i.e., for centered errors

in (6) (such that mk = 0), the EKF leads to

X̂k|k−1 = Fk−1X̂k−1|k−1 (8)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (9)

Kk = Pk|k−1H
T
k

(

HkPk|k−1H
T
k +Rk

)−1
(10)

X̂k|k = X̂k|k−1 +Kk(zk − hk(X̂k|k−1)) (11)

Pk|k = (I8 −KkHk)Pk|k−1 (12)

where Hk ∈ R
2sk×8 is the Jacobian matrix of the function

hk at point X̂k|k−1. This filter consists in applying a Kalman

filter to the state equation (1) and the first order approximation

around X̂k|k−1 of hk(Xk) in (6) with mk = 0

zk ≈ hk(X̂k|k−1) +Hk(Xk − X̂k|k−1) + nk. (13)

If mk would be a known bias term, the EKF would be similar

to the above derivations, except that (11) should be replaced

in the previous filter by

X̂k|k = X̂k|k−1 +Kk(zk − hk(X̂k|k−1)−mk). (14)

The next section proposes a method allowing the unknown

vector mk to be estimated using some sparsity constraints.

The estimated vector will be used in place of mk in (14) to

mitigate MP effects.

III. SPARSE ESTIMATION THEORY APPLIED TO GNSS

MULTIPATH MITIGATION

This section recalls the principles of the sparse estimation

method of [14] using the LASSO algorithm and a reweighted-

ℓ1 regularization.

A. The LASSO problem

Assume that we have a vector of measurements ỹk ∈ R
2sk

defined as ỹk = H̃kθk + ñk, where H̃k ∈ R
2sk×2sk is a

known regression matrix, θk ∈ R
2sk is an unknown sparse

vector (to be estimated) and ñk ∈ R
2sk is an unknown error

term1. A classical way of estimating θk from the observed

measurement vector ỹk is to consider a data fidelity term
1
2‖ỹk − H̃kθk‖

2
2 penalized by an additive regularization pro-

moting the sparsity of θk as the problem is underdetermined

(when H̃k is not full rank). One can think of defining this

additive regularization as the ℓ1 norm of θk defined by

‖θk‖1 =

2sk
∑

i=1

|θk,i|. (15)

This problem formulation leads to the so-called LASSO esti-

mator defined as [15]

θ̂k = argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1 (16)

where λk ∈ R
+ is a fixed constant referred to as regularization

parameter.

1The meaning of the different vectors ỹk,θk, ñk in the GNSS context will
be clarified in subsection III-C.

B. The reweighted-ℓ1algorithm of [14]

Candès [20] investigated a so-called reweighted-ℓ1 method

defined as follows

argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λ‖Wkθk‖1 (17)

where Wk ∈ R
2sk×2sk is a diagonal weighting matrix. Ideally,

the weights contained in Wk should be inversely proportional

to the magnitude of the true unknown vector θ0, i.e., such that

wk,i =

{ 1
|θ0,i|

, θ0,i 6= 0,

∞, θ0,i = 0.
(18)

However, this weight definition cannot be used in practice

since θ0 is an unknown vector. An iterative solution was

proposed in [20], but did not give good results for our

application. Looking carefully at (18), we can see that if we

know a priori that θ0,i has a large (resp. small) value, we

should define a low (resp. high) weight wk,i. The weighting

strategy proposed in the next section precisely meets this

property.

C. A reweighted-ℓ1 method for GNSS

In the presence of an additive bias affecting the measure-

ment equation, using the notations yk = zk − hk(X̂k|k−1) ∈

R
2sk and xk = Xk − X̂k|k−1, Eq. (13) should be rewritten

yk = Hkxk +mk + nk. (19)

The proposed MP mitigation method assumes that the bias

vector mk is sparse, i.e., that some of its components are

exactly equal to 0. Exploiting this sparsity assumption, and

following the previous ideas, we propose to solve the following

problem

argmin
xk,mk

1

2
‖yk −Hkxk −mk‖

2
2 + λk‖Wkmk‖1 (20)

in order to detect the measurements affected by MP (i.e.,

measurements affected by the presence of additive biases),

estimate the corresponding biases, and replace them in (19).

Regarding the weighting matrix Wk, we propose to consider

the strategy of [14], leading to

w1(x) = (21)










10
x−T

a

((

A× 10
F−T

a − 1
)

x−T
F−T

+ 1
)−1

, x < T

1, x ≥ T

where

• x is the value of C/N0 expressed in dBHz,

• T = 45 is a threshold after which the weight is set to 1

(indicating that the measurements are “good”),

• a = 80 allows the bending of the curve to be adjusted,

• F = 20 defines the value of C/N0 for which the function

w1 is forced to have the weight defined by parameter A
• A = 30 controls the value of the function w1 for x = F

(w1(F ) = 1/A).



and

w2(x) =

{

sin2 (x)
sin2 (5◦)

x < 5◦

1 x ≥ 5◦
(22)

where x is a given satellite elevation (also referred to as

altitude) expressed in degrees. The final weight introduced in

the reweighted-ℓ1 approach is defined as the product of the

two previous functions for each satellite, i.e.,

wi,k [(C/N0)i,k, ei,k] = w1 [(C/N0)i,k]w2(ei,k) (23)

where wi,k is the i-th diagonal element of the matrix Wk,

(C/N0)i,k and ei,k are the C/N0 and elevation associated with

the ith satellite at time instant k. These weights give more

importance to satellites associated with high C/N0 and/or

elevation. Conversely low weights are assigned to the satellites

with low elevation and/or C/N0, since these satellites are more

likely to suffer from MP.

In order to obtain a formulation similar to (17), it is

interesting to note that the minimization of (20) with respect

to xk for a fixed mk has the following closed-form expression

xk = (HT
k Hk)

−1HT
k (yk −mk) (24)

which is the classical least squares solution. After replacing

this expression of xk in (20), we obtain the so-called profile

likelihood

L(mk) =
1

2
‖(I2sk − Pk)(y −mk)‖

2
2 + λk‖Wkmk‖1 (25)

where Pk is the following projection matrix

Pk = Hk(H
T
k Hk)

−1HT
k . (26)

Finally, after introducing the following notations

ỹk = (I2sk − Pk)yk (27)

H̃k = (I2sk − Pk)W
−1
k (28)

θk = Wkmk (29)

the original problem (20) reduces to

argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1. (30)

As a consequence, we have to solve a LASSO problem

whose solution can be obtained using classical efficient al-

gorithms [15], [21], [22]. In this paper, we have used the

“shooting algorithm” (detailed for instance in [23] and [24]).

The resulting MP mitigation strategy can be summarized as

follows

1) estimate the unknown parameter vector θk as the solu-

tion of the LASSO problem (30) yielding θ̂k,

2) estimate the bias vector as m̂k = W−1
k θ̂k,

3) consider the EKF proposed in Section II-C defined by

(8), (9), (10), (14) and (12).

This method has shown interesting results in many practical

scenarios [14]. However, we have observed some problems

when the proposed weighting is not in agreement with the

actual bias values, e.g., when the a priori weight is high (which

means that it is a priori not likely to have an MP bias on the

considered satellite), and there is an important bias affecting

the observed measurements. In such cases, we have observed

that even if the algorithm fails, the biases at the previous time

instants were estimated correctly, which could be exploited

to improve estimation performance. Therefore, we propose

to introduce some temporal smoothness for successive bias

estimates. The next section describes the strategy adopted to

introduce this temporal smoothness.

IV. SMOOTH SPARSE ESTIMATION

Jointly imposing some sparsity and smoothness properties

is the objective of the fused LASSO described in [16] and

defined as

argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1 + µk

2sk
∑

i=2

|θk,i − θk,i−1|.

(31)

where the last regularization term is referred to as total

variation (TV) and µk ∈ R
+ is a regularization parameter. If

we keep the previous equation, the smoothness will be induced

along satellites, which is not our main objective. In order

to ensure a temporal smoothness, we propose to introduce a

penalty associated with the temporal variations of the different

biases leading to the following problem

argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1 + µk

2sk
∑

i=1

|θk,i − θ̂k−1,i|

(32)

or equivalently

argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1 + µk‖θk − θ̂k−1‖1.

(33)

Note that the temporal smoothing is assigned to the weighted

biases and not to the biases themselves. Indeed, this strategy

induces more smoothing to channels affected by large weights,

which is a desired property.

However, some satellites might not be visible at some time

instants k. Thus, the last regularizer has to be only evaluated

for satellites that are visible at time instants k and k − 1. In

order to respect this constraint, we introduce the following

penalty

‖θk − θ̂k−1‖1,Sk
=

∑

i∈Sk

|θi,k − θ̂i,k−1| (34)

where Sk is the set of indices associated with satellites that

are jointly visible at time instants k and k − 1. Therefore we

propose to modify the MP mitigation technique of [14] as

1) estimate the unknown parameter vector θ̂k as the solu-

tion of

argmin
θk∈R

sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1 + µk‖θk − θ̂k−1‖1,Sk

(35)

2) estimate the bias vector as m̂k = W−1
k θ̂k,



3) consider the EKF proposed in Section II-C with equati-

ons (8),(9),(10),(14) and (12).

Remarks:

1) we will also consider an ℓ2 smoothing penalty term, re-

placing the ℓ1 norm in Step 1) of the previous algorithm

by an ℓ2 norm, leading to

argmin
θk∈R

sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1 + µk‖θk − θ̂k−1‖

2
2,Sk

(36)

where ‖.‖2,Sk
is defined as ‖.‖1,Sk

with an ℓ2-norm.

2) To solve the problem with the ℓ2-smoothing penalty

of (36), we introduce the notation ∆k = diag(i ∈ Sk),
which is the diagonal matrix whose i-th entry is 1 if the

corresponding satellite was visible at the previous time

instant, and 0 if it was not. Thus, the problem (36) can

be rewritten

argmin
θk∈R

sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1+µk‖∆k(θk−θ̂k−1)‖

2
2.

(37)

Denote as Ak the square root matrix of H̃T
k H̃k +

2µk∆k such that AT
kAk = H̃T

k H̃k + 2µk∆k. Straig-

htforward computations allow the previous problem to

be rewritten as

argmin
θk∈R

sk

1

2
‖(AT

k )
−1(H̃T

k ỹk + µk∆kθ̂k−1)−Akθk‖
2
2

+ λk‖θk‖1 (38)

which is a LASSO problem.

3) To solve the problem with the ℓ1-smoothing term, a

method similar to the one proposed in [24] can be used

to derive the corresponding shooting algorithm. More

details can be found in the technical report [25].

The next section evaluates the performance of the proposed

GNSS navigation strategy and compares it with the method

proposed in [14].

V. EXPERIMENTAL RESULTS

To appreciate the efficiency of the proposed method, it

was evaluated on real measurements provided by a u-blox

AEK-4T receiver, and compared with the solution investigated

in [14] (without smoothness), and the solution associated

with the ‖.‖2,Sk
penalty. A reference solution was obtained

during the measurement campaign using a very accurate (high-

cost) receiver, i.e., a Novatel SPAN composed of a GPS

receiver Propak-V3 and an inertial measurement unit (IMAR).

Figure 1 displays the situation that led us to study the proposed

method, showing the theoretical and estimated pseudorange

rate bias and C/N0 for satellite #13 versus time. As can be

seen, between time instants 313220 and 313225 seconds, the

important bias cannot be mitigated leading to the bad cyan

positions shown in Fig. 2 (the green arrow shows the instant

from which the bias is badly estimated). Fig. 2 also shows

the estimates obtained with the ‖.‖2,Sk
smooth regularization

and the proposed solution providing very competitive results.

Note that the reduced performance obtained with the method

of [14] is due to a disagreement between the high theoretical

bias and the high value of C/N0 (> 40 dBHz). More precisely,

due to the high value of C/N0, the weight in the reweighted

ℓ1 algorithm is large, preventing the bias to be estimated.

The different methods were also evaluated during the full

campaign described in [14]. The corresponding cumulative

distribution functions (CDFs) are displayed in Fig. 3. Fig. 3

clearly shows that the planar (horizontal) and altitude (vertical)

errors obtained with the proposed ℓ1-smoothed method are

globally smaller than those obtained with the other methods.

The effects of the temporal smoothing introduced for the

biases tend to correct local positioning errors such as the one

observed in Fig. 2 indicated by the green circle.

Fig. 1: Typical example showing an MP bias that has not been

mitigated. The figure displays the estimated and theoretical

biases for the pseudorange rate of satellite #13 (in blue) and

the C/N0 values (in orange) versus time.

Fig. 2: Actual and estimated trajectories: reference (white),

without MP correction (blue), reweighted-ℓ1 (referred to as

“No smoothing”) (red), smooth-ℓ2 reweighted-ℓ1 (yellow),

smooth-ℓ1 (purple), and a specific change instant (green ci-

rcle). Note that the vehicle moved from top to bottom.



Fig. 3: Planar (left) and altitude (right) error CDFs for the

different methods.

VI. DISCUSSION

The method introduced in this paper was motivated by

the results obtained in [14]. Indeed, even if the global per-

formance of the proposed multipath mitigation method was

quite promising, we observed some local problems due to a

wrong estimation of biases introduced in the navigation model.

An example of problem was displayed in Fig. 2 showing

the estimated trajectories obtained without (blue curve) and

with (red curve) bias estimation/correction resulting from the

reweighted-ℓ1 method of [14]. These problems were due to

discontinuities in the estimated biases corresponding to a

channel with a high value of C/N0 but affected by multipath.

Therefore, we had the idea of introducing a smoothing step

for channels characterized by high values of C/N0 or high

elevations (i.e., channels with high weights). This smoothing

step provided very interesting results with better estimated

trajectories (as the purple one shown in Fig. 2). The multipath

mitigation investigated in this paper allowed local estimation

problems to be corrected with a global estimation performance

equivalent to the one obtained with the method in [14] (as

displayed in Fig. 3).

VII. CONCLUSIONS

This paper investigated a modification of the reweighted-ℓ1
method investigated in [14] to mitigate multipath effects for

GNSS navigation. The proposed modified algorithm exploited

the joint smoothness and sparsity properties of MP affecting

the different satellite channels. Experiments conducted on real

data clearly outlined the benefits of including a temporal bias

smoothness. One possible investigation for future work is

to consider a more general distribution for the measurement

noise, which was assumed white Gaussian with a common

variance for all the pseudoranges and a common variance for

all the pseudorange rates. Note that some estimation methods

such as the well known weighted least squares algorithm

aim at weighting the measurements according to the noise

variances [26], [27], which would deserve to be investigated

for our problem.
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Toulouse, France, Tech. Rep., Feb. 2018. [Online]. Available:
http://perso.tesa.prd.fr/jlesouple/documents/TRfusion2018.pdf

[26] P. D. Groves and Z. Jiang, “Height Aiding, C/N0 Weighting and
Consistency Checking for GNSS NLOS and Multipath Mitigation in
Urban Areas,” Journal of Navigation, vol. 66, no. 5, pp. 653–669, July
2013.

[27] L. Li, J. Zhong, and M. Zhao, “Doppler-Aided GNSS Position Estima-
tion With Weighted Least Squares,” IEEE Trans. Veh. Technol., vol. 60,
no. 8, pp. 3615–3624, Oct 2011.


