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Two-dimensional numerical analysis of the Poiseuille–Be ´nard flow
in a rectangular channel heated from below

X. Nicolas and A. Mojtabi
Institut de Mécanique des Fluides, UMR CNRS/INP-UPS 5502, Université Paul Sabatier, UFR MIG,
118 route de Narbonne, 31062 Toulouse Cedex, France

J. K. Platten
Laboratoire de Chimie Générale, Faculté de Médecine, Université de Mons-Hainaut, 7000 Mons, Belgium

The Poiseuille–B́enard flow ~PBF! is studied by a two-dimensional numerical simulation for a 
Prandtl number equal to 6.4 ~that of water at 23 °C! and for a wide range of Rayleigh ~Ra! and 
Reynolds ~Re! numbers: Ra<6000 and Re<3. The two observed flow configurations are ~1!
thermally stratified Poiseuille flow and ~2! thermoconvective transversal rolls superimposed to the 
basic Poiseuille flow. The time evolution of the velocity components, the spatial development of the 
transversal rolls, their frequency, wavelength and velocity, the Nusselt number, together with the 
stability map in the Ra–Re plane, are studied in detail. Whenever possible, quantitative comparisons 
are made with published results: most of the experimental data, based on laser-Doppler anemometry
~LDA!, are recovered with amazing accuracy; a good agreement with results of convective stability 
deduced from a weakly nonlinear Ginzburg–Landau theory is also obtained. 
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I. INTRODUCTION

The Poiseuille–Be´nard flow ~PBF! is a mixed convec-
tion flow in a horizontal rectangular channel heated fro
below. This problem has been widely studied, particula
because of its practical or technological interest. During t
first half century, research on this subject attempted to
plain certain meteorological phenomena like the cloudy b
alignment under the action of the wind.1,2 More recently,
applications have been concerned with technological p
cesses like the cooling of electronic components3,4 or the
production of thin films in CVD~chemical vapor deposition
reactors;5–10 these works have mainly focused on the h
transfer enhancement related to thermoconvective struct
in the flow. Because of the richness of its dynamical beh
ior, the PBF has also given rise to fundamental studies on
stability of the different thermoconvective patterns that
liable to arise. The present paper is in keeping with th
studies.

The PBF is the result of the superimposition of two co
vective sources:~1! a horizontal pressure gradient giving ris
to a forced flow, characterized by its Reynolds number
and ~2! a vertical temperature gradient~characterized by its
Rayleigh number Ra! the source of thermoconvective stru
tures.

Results of linear hydrodynamic stability theory11–13have
shown that the thermally stratified Poiseuille flow~the ‘‘ba-
sic flow’’! keeps stable as long as Ra does not excee
certain critical value Ra* ~cf. Fig. 1!. Beyond this value, the
basic flow becomes unstable and two kinds of thermoc
vective structures, called ‘‘transversal rolls’’ and ‘‘longitud
nal rolls,’’ may appear. The transversal rolls,R' ~respec-
tively longitudinal rolls,Ri! have their axes perpendicula
~respectively parallel!to the direction of the mean flow
While the longitudinal rolls are stationary structures, t
transversal rolls are carried away out of the channel by
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average flow; they can be considered like a quasi-tw
dimensional~2-D! structure, while in the longitudinal rolls
the three velocity components are excited. In the case
ducts of infinite lateral extension~the transversal aspect rati
B5 l /h5`, where l and h are, respectively, the channe
width and height!, the longitudinal rolls are shown to appe
first @Fig. 1~a!#, since the critical Rayleigh number for th
longitudinal rolls, Rai*51708, is always smaller than Ra'

*
~the critical Rayleigh number for the transversal rolls!.
For finite rectangular ducts@Fig. 1~b!#, the lateral confine
ment has two effects: first, it tends to stabilize the ba
flow @when B decreases, Ra*5min(Ra'* ,Rai* ) grows;
Ra*.1708#; second, the vertical lateral boundaries prom
the appearance of the transversal rolls at Re smaller th
critical value Re* ; when Re.Re*, the main flow favors the
longitudinal rolls. Note that Ra'* depends not only on Re an
B, but also on the Prandtl number Pr: when Pr increas
Ra'* increases. Since Rai* is not modified by Pr, Re* dimin-
ishes when Pr increases. Thus, for Pr'0.7 ~air! Re*'7 ~see
Refs. 14 and 15!and for Pr'6.4~water!Re*'0.3 ~see Refs.
14 and 16!. The very small value of Re* explains why, for a
long time, only a few works have been devoted to the tra
versal roll behavior or to the transitionR'–Ri , comparing
with the literature dealing with the longitudinal rolls.

It is important to note that the stability diagram in Fig.
is the result of a linear analysis, only valid near the critic
Rayleigh number Ra* . When investigating the nonlinear be
havior of the PBF, the structure of the flow becomes mu
more complex. Experimental works by Ouazzaniet al.14,16,17

or by Chiu and Rosenberger,9 recent 3-D numerical
simulations15,18 and studies based on a weakly nonline
Ginzburg–Landau model19,20 have shown that the transitio
R'–Ri is not as sharp as it is represented in Fig. 1. Near
triple transition point K@Fig. 1~b!#, the transversal and lon
gitudinal rolls compete and periodic or intermittent patter
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can arise.17 Furthermore, in some conditions, transversal
longitudinal rolls, can be observed for the same set of
dimensionless parameters, according to the initial conditio

Considering first only transversal rolls, Mu¨ller et al.21

have applied the concept of convective instability in the PB
and defined a new critical Rayleigh number for the transv
sal rolls, Ra'

conv.Ra'* ~Fig. 2!. When Ra'*,Ra,Ra'
conv, the

flow is convectively unstable: a local perturbation, appear
at time t0 at x5x0 ~cf. Fig. 2!, will be allowed to increase
with time in a moving frame of reference, but it will be

FIG. 1. Schematic presentation and stability diagram~result of the linear
stability theory!of different configurations encountered in the PBF;~a!PBF
between two infinite horizontal plates;~b! PBF in a channel with infinite
longitudinal aspect ratio and finite lateral aspect ratio.

FIG. 2. Critical Rayleigh numbers for the transversal roll configuration a
cording to the linear and convective stability criteria; schematic presenta
of the space and time evolution of a small perturbation in the cases
absolutely stable flows and convectively and absolutely unstable flows.
r
e
s.

F
r-

g

damped, at each point of the duct, for a long enough tim22

In our case and in the domain of convective instabilities
will be necessary to sustain a perturbation by a forcing~or a
white noise!to create a global pattern, i.e., transversal ro
When Ra.Ra'

conv, the flow is absolutely unstable: any loc
perturbation~Fig. 2!will grow at all points of the duct until
it asymptotically reaches saturation and the establishmen
the transversal rolls.

In their study, Müller et al.21 carry out a 2-D numerica
simulation of the PBF, for the transversal roll configurati
and for Pr51, in order to validate the Ginzburg–Landau a
plitude equation. Recently, Ouazzaniet al.23 have adapted
the results of the preceding study to the case of water~Pr
56.4! to compare with experiments based on LDA inves
gations; they show that the transition between the therm
stratified Poiseuille flow and the transversal rolls favora
compares with Ra'

conv, but not with Ra'* : the transition
closely corresponds to the convective instability curve, no
the neutral one.

In the present paper results are reported on the trans
sal roll behavior obtained by a 2-D direct numerical simu
tion. A part of these results refer to the experiments of Ou
zaniet al.14,16in order toquantitativelycompare experiments
and theory. Therefore, the Prandtl number of the fluid
equal to 6.4; the flow is systematically studied for Reyno
and Rayleigh numbers such that Re,3 and Ra,6000. Thus,
all the presented results cover a wide range of dimension
parameters, from the linear to the nonlinear domain. Wh
ever possible, comparisons with the studies of Mu¨ller
et al.21,23,24are also given. The specific problems linked wi
the numerical simulation of convective patterns and op
flows on finite computational domains are presented; in p
ticular, the influence of the boundary conditions at the ou
of the channel and that of the periodic boundary conditio
will be dealt with.

After having presented the methodology used to co
pute the PBF, the results are discussed in five distinct pa

First, quantitative comparisons with Ouazzani’s expe
ments, are made concerning the evolution of the vertical
locity componentW with Ra and Re; most of the experimen
tal measurements of this velocity component, obtained
LDA in Ref. 16, are numerically reproduced with amazin
accuracy. Simultaneously, the horizontal velocity comp
nent,U, and the average Nusselt number, Nu, on the top
bottom plates for the fully established transversal roll flo
are recorded and discussed.

Then, for numerous values of Ra and Re, the space
velopment of the transversal rolls is visualized by means o
stationary intensity envelope ofW. The characteristic growth
length, l e, of the transversal rolls is deduced from these e
velopes and is shown to be in very good agreement with
result obtained by the Ginzburg–Landau theory.23

In the next part, the stability map of the 2-D numeric
PBF is presented. It shows the transition between the P
seuille flow and the transversal rolls~the only two configu-
rations that can be observed by 2-D simulation! in the
Ra–Re plane. Ra'

* , Ra'
conv and the different convective pat

terns encountered in Ouazzani’s experiments are proje

-
n
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on this map. The good agreement with the criterion of c
vective instability can be verified.

Then, the space and time average Nusselt number,^Nu&,
is favorably compared with a theoretical formula given
Müller24 and valid on a weakly nonlinear domain~Ra
,2500!. The numerical values of^Nu& are obtained from
two different configurations of the computational doma
using two different kinds of inlet and outlet boundary con
tions. By means of the Nusselt number, the transition fr
the transversal rolls to the Poiseuille flow is shown to sati
the criterion of convective stability when open bounda
conditions ~OBC! are used at the outlet of the domai
whereas the criterion of linear stability is verified when p
riodic boundary conditions are imposed.

Finally, we focus on the transversal roll frequencyf ,
wavelengthl, and velocity. To our knowledge, the prese
work is one of the few studies dealing with the waveleng
evolution in the PBF, for a wide range of the parameters i
nonlinear domain. On the other hand, it is we
known4,12,14–16,18,25that the transversal roll velocity,Vr, can
be from 10% to 50% higher than the average velocity,U°,
of the flow; the ratioVr/U° is also shown to decrease lin
early with Ra, but to be independent of Re. In this paper,
present several results forVr/U° at Pr56.4 and we show
that it is possible to precisely reproduce the results obtai
by the Ginzburg–Landau model.24

II. METHODOLOGY

The numerical code used to simulate the 2-D PBF sol
the three conservation equations~mass, momentum, and en
ergy! on a rectangular domain of lengthL and heighth,
uniformly heated from below~at temperatureTh! and cooled
from above~at temperatureTc!; the no slip boundary condi
tions are applied to the velocity on the top and bottom pla
A Newtonian and incompressible fluid is considered and
Boussinesq approximation is assumed to be valid. Thus,
dimensionless governing equations in primitive variab
~velocity vectorV, pressureP, temperatureT! can be written
as

“–V50, ~1!

]V

]t
1~V–“ !V52“P1

1

Re
DV1

Ra

Re2 Pr
Tk, ~2!

]T

]t
1V–“T5

1

Re Pr
DT, ~3!

where the characteristic length, velocity, pressure, and t
perature for scaling areh, U°, r~U°!2, and (Th2Tc), respec-
tively. Therefore, the Reynolds number Re5U°h/n, the Ray-
leigh number Ra5gb(Th2Tc)h

3/na, and the Prandtl
number Pr5n/a. Herer is the mass per unit volume,n the
kinematic viscosity,g the gravitational acceleration,b the
thermal expansion coefficient, anda the thermal
diffusivity.26 In addition,k is the upward vertical unit vector

The numerical code used to treat the incompressib
constraint and the velocity–pressure coupling between
mass and momentum equations, is based on the augme
lagrangian method27,28 and the use of a Uzawa-typ
-
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algorithm.29 ~For more details about the method and the n
merical aspects see Ref. 30.! The equations are discretize
by a finite volume method on a staggered grid. The conv
tive terms are discretized by a second-order centered di
encing and the diffusive terms are approximated by seco
order centered derivatives. The time scheme is Ge
second-order backward implicit scheme; the time stepDt
50.0005 is used for all the unsteady computations. The
ear systems are solved with a preconditioned conjugate
dient method.30

All the computations have been realized on the sa
geometrical configuration~noted config-1!but, in a few
cases, two other configurations~config-2 and config-3! have
been studied.

Config-1: @Fig. 3~a!# this is a ten aspect ratio duct (A
5L/h510). ~However, in some cases clearly mentione
this aspect ratio will be equal to 20.! The inlet boundary
conditions are a Poiseuille profile for velocity and a line
profile for temperature. At the outlet boundary, several O
have been tested and compared;30 an Orlanski31-type bound-
ary condition has been chosen allowing the smallest am
tude perturbation at the outlet. The boundary conditions
summarized in Table I.

All the computations with config-1 have been achiev
with the following space steps in the axial and spanw
directions: (Dx;Dz)5~0.1; 0.05!. This configuration allows

FIG. 3. Schematic presentation of the transversal roll development an
the boundary conditions for the two main computational configuratio
used;~a! config-1: thermally stratified Poiseuille flow at the inlet and op
boundary condition at the outlet;~b! config-2: periodic boundary conditions

TABLE I. Boundary conditions used to compute the PBF with config-1

Inlet ~x50! Bottom ~z50! Top ~z51! Outlet (x5L/h)

U(0,z,t)56(z2z2) U(x,0,t)50 U(x,1,t)50
]U

]t
1U0

]U

]x
50

W(0,z,t)50 W(x,0,t)50 W(x,1,t)50
]W

]t
1U0

]W

]x
50

T(0,z,t)512z T(x,0,t)51 T(z,1,t)50
]T

]t
1U0

]T

]x
50
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us to observe the space amplification of the perturbation u
nonlinear saturation occurs; when thermoconvection de
ops in the PBF, three zones can be distinguished@Fig. 3~a!#:
~1! for 0<x<xin , the entrance zone in which the perturb
tion is growing; then, after its saturation,~2! for xin<x<xout,
a fully established periodic flow of transversal rolls; and~3!
near the outlet, forxout<x<L/h, a small zone where the roll
are slightly distorted by the OBC. In most of our simulation
the length of this third zone is smaller thanh but can be
higher in a few runs due to its divergence at the criti
point.30 Note that, for a fixed Rayleigh number, the length
the entrance zone increases when the Reynolds numbe
creases; sometimes, transversal rolls do not even appe
the domain of computation at high Reynolds numbers, es
cially for small Rayleigh numbers. Numerically, this co
figuration allows us to compute the characteristic grow
length, l e , of the transversal rolls, and consequently, to d
termine Ra'

conv, defined by the divergence ofl e .
21

Config-2:to be able to analyze the fully established th
moconvective flow, especially for small Ra, periodic boun
ary conditions have been implemented30 @Fig. 3~b!#. Further-
more, as at each time step, a transversal roll that leaves
computational domain is simultaneously sent to the in
config-2 allows us to determineRa'* ; indeed, when being in
the convectively unstable flow phase, the perturbations a
outlet are continuously reinjected at the entrance: a kind
forcing is maintained at the inlet of config-2.

The transversal roll wavelength,l, is imposed by the
aspect ratioA of the domain. Computations with config-
having shown thatl'1.95, we take hereA53.9; thus, four
transversal rolls may develop in config-2. Furthermo
(Dx;Dz)5~0.078; 0.05!.

Config-3: taking advantage of the fact that, in config-
the flow is periodic from the entrance to the outlet of t
computational domain, it is possible to make the flow s
tionary with a frame of reference moving at the same vel
ity as the transversal rolls. Thus, config-3 is the same
config-2 except that, using a very simple change of varia
in Eqs.~1!–~3! the rolls are made stationary. Note that it h
then been possible to takeDt50.01, instead ofDt50.0005,
without losing accuracy.

To be complete, it can be added that, whatever the c
figuration, two initial conditions have been used: either
isothermal Poiseuille flow~at temperatureTc!, or an already
thermoconvective flow of transversal rolls; no hystere
phenomenon has been observed with these conditions.

III. RESULTS AND DISCUSSION

All the results presented in the five following parts we
obtained in the case of config-1, unless otherwise stated

A. Comparison with experiments — preliminary
observations

As a first result of the numerical simulation of the PB
four particular flows are presented in Figs. 4, 5, 6 and
Figure 4 represents the time evolution of the experime
~part a!and computed~part b! vertical velocity componen
W, of the computed horizontal velocity componentU ~part c!
and of the space average Nusselt number Nu on the top
til
l-
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bottom plates~part d!, at Re50.21 for an increasing Ray-
leigh number. Figures 5, 6, and 7 represent the same qua
ties for an increasing Re, respectively, for Ra52420, 2024,
and 1804.

The computed velocity components,U andW, are re-
corded at midheight of the channel~z50.5!, atx57.5. The
numerical signals obtained by recording the dimensionlessW
at each time step are presented dimensionally~in mm/s! in
view of a comparison with the equivalent experimental da
obtained by LDA in Refs. 14 and 16. These experiment
recordings are realized at midheight, at 6.5 cm from the e
trance of the channel, i.e., at (x,z)5~15.7, 0.5!. For conve-
nience, they are reproduced in Figs. 4~a!, 5~a!, 6~a!, and 7~a!
of this paper: these are, respectively, the Figs. 6 and 7 of R

FIG. 4. Time evolution in the transversal roll phase, of the vertical [W(t)]
and horizontal [U(t)] velocity components and of the space average Nusse
number@Nu(t)# for Re50.21, Ra51804, 2074, 2490, 2896, and 3460, an
for Pr56.4;~a!W(t) at (x,z)5~15.7, 0.5!from the experiments of Ouazzani
et al.;14,16 ~b!,~c!,~d!, respectively,W(t), U(t), and Nu(t) at (x,z)5~7.5,
0.5! for the present numerical work~config-1!.
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16, Figs. 5–18 of Ref. 14, and Fig. 10 of Ref. 16. The tim
evolution of U and Nu are only given for the numerica
simulations since these quantities were not measured in
experimental available papers. Nu is defined as follows:

Nu~ t !5
1

x22x1
E
x1

x2 1

2 F S ]T

]zD
z501

~x,t !

1S ]T

]zD
z512

~x,t !Gdx. ~4!

The average over the length of the duct is taken betwe
x154 andx258.5 in order to avoid the inlet and outlet zone
in the evaluation of the mean. This is usually sufficient, e
cept for extremely small Rayleigh numbers.

In Figs. 4~a! and 4~b!, the sinusoidal behavior ofW
around a zero mean value characterizes traveling transve

FIG. 5. The same as Fig. 4 for Ra52420 and Re50.19, 0.53, 0.65, and 0.83
~plus Re51 and Re52 for the numerical simulation!; ~a! for the
experiments,14,16 transition to longitudinal rolls at Re50.83;~b!,~c!,~d! for
the 2-D numerical simulations, transition to the Poiseuille flow at Re52.
he

n

-

sal

rolls.W'
max ~the maximum vertical velocity component of the

transversal rolls at midheight! increases with Ra and its
square~W'

max!2 is a linear function of Ra. The two signals
experimental and numerical, agree with each other, both
amplitude~except at Ra51804!and in frequencyf . At Re
50.21, f keeps constant whatever the Rayleigh number. It
approximately equal to 6.531023 s21 in Fig. 4~a! and

FIG. 6. The same as Fig. 4. for Ra52024 and Re50.15, 0.27, 0.42, 0.46,
and 0.5 ~plus Re50.6 for the numerical simulation!; ~a! for the
experiment,14 transition to ‘‘intermittent pattern’’ at Re50.5; ~b!,~c!,~d! for
the 2-D numerical simulation, persistence of the Poiseuille flow until R
50.6.
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7.1531023 s21 in Fig. 4~b!, that is to say a difference of
10%.

Concerning the amplitude, Table II givesW'
max for the

experimental and numerical signals of Figs. 4, 5, 6, and
The maximum discrepancy between the two sets is less t
5%, except at the smallest Rayleigh number, Ra51804,
where it can reach as much as 40%. This can partially
attributed to the difficulty of determining precisely the valu

FIG. 7. The same as Fig. 4 for Ra51804 and Re50.04, 0.13, 0.18, and 0.25
~plus Re50.5 for the numerical simulation!; ~a! for the experiment,14,16tran-
sition to the Poiseuille flow at Re50.25; ~b!,~c!,~d! for the 2-D numerical
simulation, transition to the Poiseuille flow at Re50.5.
7.
an

e

of the Rayleigh number in the experiments~as already dis-
cussed in Ref. 23!. Subsequently, asW'

max is proportional to
~Ra/Ra'

conv21!1/2, the relative error onW'
max increases when

Ra tends to Ra'
conv. On the other hand, a part of the error c

also be attributed to the position of the ‘‘measuring probe
x515.7 in the experiments andx57.5 for the numerical
simulations. At Ra51804, atx515.7, the flow is fully devel-
oped, whereas, atx57.5, we could still be in the entranc
zone of the PBF, where the amplitude ofW has not yet
reached its maximum.

In Fig. 4~c!, the signal ofU becomes bichromatic, show
ing the fundamental frequencyf ~the same as forW! and the
first harmonic 2f . Their amplitudes increase with Ra. Th
harmonic 2f has already been observed in the classi
Rayleigh–Be´nard convection.32,33 A detailed analysis of all
our numerical results shows that the amplitudes of the
modes are independent of the Reynolds number, at lea
the fully developed zone@this is, however, not clearly visible
in Figs. 5~c!, 6~c!, and 7~c!#. In all cases, the mean value
U corresponds exactly to the maximum Poiseuille velocit

Figure 4~d!shows the increase of the Nusselt numb
with Ra. The weak oscillations in the signal are due to
finite arbitrary width of the interval [x1 ,x2] in the computa-
tion of Nu @cf. Eq. ~4!#, which do not necessarily contain
finite number of rolls. Consequently, we will note^Nu& the
time average Nusselt number over these oscillations:

^Nu&5
1

t22t1
E
t1

t2
Nu~ t !dt, ~5!

where the time interval (t22t1) excludes the small initial
transient phase when increasing the Rayleigh number.

In each of the Figs. 5, 6, and 7, the Rayleigh numbe
constant. If the Reynolds number is small enough~for the
values listed in Table II!, stabilized transversal roll flows a
observed:W'

max ~and ^Nu& in a lesser extent! keeps constan
with Re ~cf. Table II!. In addition, the roll frequency in-
creases linearly with Re~shown in detail later!. In Fig. 5~a!
when Re increases, the flow undergoes experimentall
transition to longitudinal rolls (Ra.Rai* ), characterized by a
nonzero and constant vertical velocity component, at
52420 and Re50.83; in the 2-D numerical simulation, t
transition is to the Poiseuille flow, at Re52, characterized
W50 and a constantU signal together with a Nusselt num
ber equal to 1@Figs. 5~b!–5~d!#. In Fig. 6, at a lower Ray-
leigh number~Ra52024!, the scenario remains the sam
except for the so-called ‘‘intermittent pattern’’17 in the ex-
perimental signal at Re50.5. In Fig. 7, for a still lower R
~Ra51804!, a transition to the Poiseuille flow is observed
the two cases since now Ra,Rai* ; it occurs between Re
50.18 and Re50.25 in the experiments, and between
50.25 and Re50.5 in the numerical simulations~a more
precise determination yields Re50.36!. When the Reynolds
number is reduced to the previous value Re50.13, transver-
sal rolls with the same amplitude and the same frequency
restored.

As already mentioned before, an aspect ratioL/h510
computational domain is unsufficient to get fully establish
flows at the lowest Ra~Ra51804 in Table II!. So, in the



as a
TABLE II. Comparison of the maximum vertical velocity component during the transversal roll phase,
function of Ra and Re, obtained experimentally by Ouazzaniet al.14,16 and numerically in the present work.

Ra Re
W'

max ~mm/s! at x515.7
Experimental work14,16

W'
max ~mm/s! at x57.5

Present numerical work
Discrepancy

~%!

Fig. 4 1804 0.21 106 71 39.5
2074 197 189 4.1
2490 292 289 1.0
2896 357 365 2.2
3460 432 455 5.0

Fig. 5 2420 0.19 273 274 0.4
0.53 273 273 0.0
0.65 273 273 0.0

Fig. 6 2024 0.15 180 174 3.4
0.27 180 174 3.4
0.42 180 173 4.0

Fig. 7 1804 0.04 106 84 23.2
0.13 104 75 32.4
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subsequent paragraphs and figures, for Ra51804 and 1836,
L/h520 is always used and results in better agreement w
the experimental values of Table II.

B. Space development of the transversal rolls

As was already stated in the Introduction, the obser
critical Rayleigh number compares with Ra'

conv and not with
Ra'* . In this paragraph, we want to numerically recover,
Pr56.4, previous results obtained experimentally and th
retically concerning Ra'

conv; eventually, we also want to
show that the numerical tool allows us to give results at h
Rayleigh numbers, where a Ginzburg–Landau-type appro
certainly fails to produce accurate results. Therefore, in F
8 and 9, at different Ra and Re, we present numerous
tionary envelopes of the maximum vertical velocity comp
nent along the axis of the channel. More precisely, the p
of the figures giveWmax as a function ofx, where

Wmax~x!5 max
tP@ t1 ,t2#

~ max
zP@0,1#

W~x,z,t !!, ~6!

with t2.t1 and t1.t t , wheret t is the time marking the end
of the transient flow phase.

As an example, let us focus on the graph drawn at
51836 for which the computational domain has been
tended toL/h520 in order to avoid the effect of the OBC
clearly important at small Ra and Re. The saturation am
tudeWs , defined by

Ws5 max
xP@xin ,xout#

Wmax~x!, ~7!

is equal to 102mm/s. The characteristic growth lengthl e is
defined byWmax( l e)5Ws/2. For each Reynolds number,l e
has been determined from the plots of Fig. 8, and is give
Fig. 10. Its divergence at Re'0.44 is clearly seen to coincid
with the result of the amplitude equation23 and to agree fairly
well with the experiments~dashed line!. The results at R
51804 and 2024 are also reported; of course, the diverge
of l e is found earlier~Re'0.36!at Ra51804 and later~Re
th
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'0.8!at Ra'2024. As a matter of fact, the procedure can
repeated for all the Rayleigh numbers presented in Fig. 8 a
the divergence ofl e appears at higher Reynolds numbe
when Ra increases~not shown in Fig. 10!. The Poiseuille

FIG. 8. For fixed Ra and several Re, stationary envelopes representing
space evolution of the maximum vertical velocity component along the a
of the channel, from the inlet to the outlet of config-1 domain; for Ra51804
and Ra51836,A5L/h520; for Ra52024, 2420, 3460, and 4700,A510.



axis of the
FIG. 9. For fixed Re and several Ra, stationary envelopes representing the space evolution of the maximum vertical velocity component along the
channel, from the inlet to the outlet of config-1 domain; for Re50.21, 0.5, and 1,A5L/h510; for Re50.31,A520.
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flow is reached whenWmax(x)50 for all xP[0, L/h]; it is
only shown for ~Ra, Re!5~1804, 0.5!,~2024, 0.8!, and
~2420, 1.5!in Fig. 8, and for~Re, Ra!5~0.5, 1875!and ~1,
2200! in Fig. 9.

FIG. 10. Characteristic growth length over which the vertical velocity e
velope of the transversal rolls,Wmax(x), increases from the inlet to half its
value of saturation~Ws/2!, as a function of Re; at Ra51836, comparison
with Ouazzani’s experiment23 and with a result obtained from the amplitude
equation theory by Mu¨ller.23
In Fig. 11, the saturation amplitude of the vertical velo
ity component,Ws , is shown to be independent of the Re
nolds number~as it should be!, and is compared with th
experiments of Ouazzaniet al.14,16 The maximum discrep-
ancy between the results of the two studies is at most
mm/s.

C. Stability diagram in (Ra–Re) plane

Figure 12 presents the stability diagram in the Ra–
plane. The results of the linear12 and of the convective21,23,24

stability theory, together with the experimental results
Ouazzaniet al.14,16 are superimposed to the results of t
present numerical work. The theoretical results apply to 2
flows, whereas the experimental results are 3-D; con
quently, the experiments allow more flow configurations a
transitions.

Numerically, the nature of each point of the diagra
Poiseuille flow, or transversal rolls, is determined by follo
ing the evolution of a given transversal roll flow as initi
conditions and updating Re and/or Ra. In some cases,
have verified that the choice of the initial conditions do n
lead to hysteresis effects: the same transversal roll flow
computed starting with a conductive solution of the PBF a
adding a small sinusoidal perturbation onW equal to 5% of
the final amplitude of the rolls. In practice, very long CP
times are needed to compute the points near the trans
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curve. Consequently, only 19 points have been computed
determine its position. Furthermore, to save computation
time, all the computations, even for the smallest Rayleig
numbers, have been realized with config-1 forL/h510.
However, a few times,L/h520 has been used in order to

FIG. 11. Saturation amplitude of the vertical velocity component as a fun
tion of Re, for the experiments of Ouazzaniet al.14,16 and for the present
numerical work.
to
al
h

assess the presence of the transversal rolls; for exampl
Fig. 9, at Re50.31 and Ra51780, i.e. close to Ra'

conv, the
instability seems to develop only afterx510. Nevertheless
this remark is a function of the criterion used to determ
the nature of the flow; in this study, it is considered that t
transversal rolls disappear for the benefit of the Poiseu
flow when the following criterion is verified:

H ;xP@0,10#, Wmax~x!,0.1 mm/s,

and

^Nu&21,1026.

~8!

Figure 12 shows that the numerical results coincide qu
well with the results of the amplitude equation; therefore,
2-D numerical simulations of the PBF with config-1 satisfi
the convective stability criterion, not the linear one.

Experimentally, the stability diagram of the 3-D flow
much more complex. Ouazzaniet al.14,16have identified five
regions~cf. Fig. 12!: for the small Rayleigh numbers~zone
I!, the Poiseuille flow keeps stable; for the bigger Raylei
numbers the flow is thermoconvective: transversal rolls
always observed in II and longitudinal rolls in III; betwee
these two zones, in IV, there are either transversal or lon
tudinal rolls, depending on the initial conditions; and, in t
small zone V, the flow structure shows an intermittent ch
acter for which the vertical velocityW oscillates around a
nonzero mean value.16,17 Except for the smallest Reynold

-

FIG. 12. Stability diagram of the different configurations encountered in the PBF with Pr56.4. The numerical results of the present work are obtained with
config-1; other already published results are superimposed to the numerical solution.
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numbers~,Re*'0.3!, it is difficult to compare the experi-
mental stability diagram with the others: a 3-D numeric
simulation would be necessary. Nevertheless, two 3-D n
merical studies of the PBF can be pointed out: in Ref. 15
zone IV is observed for a flow in a transversal aspect ratio
duct and for Pr50.7 ~even though this result seems to b
linked with a numerical artefact: the choice ofDt!; in Ref.
18, withB5 l /h54.1 and Pr5530~silicon oil!, Schröder and
Bühler show flow configurations where transversal and lo
gitudinal rolls superimpose; these solutions could be fav
ably compared with certain experimental signals obtained
region V by Ouazzaniet al.14,17

D. Nusselt number

In Fig. 13, the space and time average Nusselt num
^Nu& is plotted as a function of Re for several values of R
The results of the numerical simulations, computed w
config-1 and config-2, are compared with those obtained
Müller24 and valid for a 2-D flow. From the amplitude equa
tion, Müller proposes the following formula to compute th
horizontally average Nusselt number:

^Nu&511
1

g

Ra2Ra'*

Ra
, ~9!

where, for Pr56.4,g50,699, i.e. 1/g51.4306~see Ref. 23!.
On the other hand, Schlu¨ter et al.34 give a formula valid

on a linear domain for pure free convection and an infin
roll pattern between two horizontal plates:

^Nu&511K
Ra21708

Ra
, ~10!

where

FIG. 13. Space and time average Nusselt number as a function of Re
Ra; comparison of the numerical solutions obtained on config-1 a
config-2 with the linear stability result obtained by Mu¨ller.24
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K5
1

0.699 4220.004 72/Pr10.008 32/Pr2

51.4308 for Pr56.4.

Therefore, Mu¨ller’s formula ~9! is nothing else but the
Schlüter et al. formula ~10! in which 1708, is replaced by
Ra'* ; thus,^Nu& in ~9! is a function of Re through Ra'

* and it
is valid only for small Rayleigh numbers.

For the numerical computations with config-1 at R
51804, the Nusselt number is averaged fromx1510 to
x2518 @cf. ~4!# becauseA520; in the other cases,A510 and
the average is taken, as said before, fromx154 to x258.5.
For config-2,A53.9 and^Nu& is averaged fromx150.2 to
x253.7.

In the three different studies, the Nusselt number
creases with Re. It tends tôNu&51, corresponding to the
conductive Poiseuille flow. With config-1, this limit i
reached when crossing the Ra'

conv curve, as it can be seen a
Ra51804, 2024, and 2420. Obviously,^Nu& obtained with
config-1 and config-2 coincide very well whatever Ra, f
small values of Re, i.e., for the cases where, in config-1,
transversal roll amplitude has reached its stationary va
betweenx1 andx2.

For config-2,^Nu& decreases slightly with Re, until th
value ^Nu&51 is reached when crossing the neutral critic
curve Ra'* . It has been computed earlier

12 that Ra'* 5 1804 at
Re52.27 and Ra'* 5 2024 at Re54.12. We find here tha
^Nu& drops to 1 at Ra51804 when Re'2.05 instead of 2
~see the lower curve of Fig. 13!, and at Ra52024 when R
'4.2 instead of 4.12~not shown in Fig. 13!. The Nusse
number computed with Eq.~9! is in agreement with the nu
merically found values, at least at small Rayleigh numb
~Ra<2420!. At higher Ra, Eq.~9! cannot remain a good
approximation.

E. Transversal roll frequency, wavelength,
and velocity

In Fig. 14, the transversal roll frequencyf , computed
with config-1, is plotted as a function of Re, for several Ra
leigh numbers. The frequency has been determined from
same type of signals as those presented in Figs. 4–7. F
fixed Rayleigh number,f is a linear function of Re. It has
been verified thatf does not vary withx, as long asx,xout.
The numerical results are in good agreement with the exp
mental results of Ouazzani.14 The fact that all the curves do
not pass through the origin is attributed to the outlet OBC
fact already observed and discussed in Ref. 18. With the
of periodic boundary conditions~config-2!, all the curves do
pass through the origin. In contradistinction with Ref. 18~a
study realized at a totally different Prandtl number Pr5530!,
in which the authors found thatf decreases when Ra in
creases whatever Re, we find in our simulations that thi
only the case for Re,0.26; beyond,f increases slightly
when Ra increases. This is due to the small mismatche
the wavelength in the two studies, conducted at very diff
ent Prandtl numbers.

The dimensionless wavelength,l, is plotted in Fig. 15.
Here,l is computed averaging from the signals ofU,W, and
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d
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T recorded forx1<x<x2 , at eight different time steps fo
t>t t . From a single signal, whenA510, Dx50.1, and
x22x154.5, l is approximately evaluated within60.05.
But, by multiplying the number of signals~both for U, W,
andT at eight different times, i.e. 24 signals!, the error onl
for each point of Fig. 15 is estimated to be less than 0.0
~the error bars are drawn only for a few points!. So, in sp
of an inaccuracy linked to the mesh size,l is shown to
weakly decrease when Re and Ra increases~except for the
smallest Reynolds numbers Re<0.3!. This is in good quali-
tative agreement with the result of the 2-D numerical sim
lation by Müller et al.21 at Pr51, and with those of Schro¨der
and Bühler,18 who found the same tendency forl, even at
Pr5530.

Figure 16 presentsVr/U°5l/t5@h2/~n Re!#fl as a
function of Ra~wheret is the dimensionless time period,l
the dimensionless wavelength plotted in Fig. 15, butf is the
frequency in s21 plotted in Fig. 14!. As already said in th
Introduction, the four plotted curves, corresponding to Ou
zani’s experiment,14,16 Müller’s 2-D theory,24 and to the
present numerical results obtained with config-1 a
config-3, decrease linearly with Ra and are independen
Re. The three 2-D studies give nearly the same curves,

FIG. 14. Transversal roll frequency, computed on config-1, as a functio
Re and Ra and for Pr56.4; comparison with Ouazzani’s experiment14 at
Ra52024 and 2420.

FIG. 15. Transversal roll dimensionless wavelength ~with error bars drawn 
for a few points!, computed on config-1, as a function of Re and Ra and for 
Pr56.4.
5
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the linear stability result obtained by Luijkx12 in the case of
infinite lateral extension ducts~Vr/U°51.29 interpolated for
Pr56.4! is exactly reproduced by the amplitude equati
theory and by the present simulations with config-3. Ou
zani’s 3-D result is also in good agreement with the line
stability theory,12 where we estimateVr/U°'1.5 at the criti-
cal point forB5 l /h53.6. Therefore, the difference betwee
Vr/U°51.29 and 1.5 is clearly due to the lateral confineme
of the fluid. The slope of the only available experiment
curve has never been theoretically verified yet; a 3-D n
merical simulation would be necessary.

For config-1, the curve of Fig. 16 is the result of th
linear interpolation ofVr/U° computed fromf andl; since
f increases with Ra~when Re>0.26!, the decrease ofVr/U°
is due to the faster decrease ofl. The Re independence o
Vr/U° is determined within60.03. The line equation is
Vr/U°51.25420.9531025 Ra.

Müller’s curve and that of the simulation with config-
merge into one single straight line in the validity domain
the Ginzburg–Landau equation: for Ra,2500,Vr/U°
51.30821.3231025 Ra. The curve with config-2~not drawn
in the graph!is parallel and at 0.02 units below the curve
config-3. With the periodic boundary conditions, sincel is
constant,Vr/U° is more precisely determined than whenl
varies; the Re independence is once more verified, wit
60.01 for config-2 and within60.002 for config-3. Further-
more,Vr/U° is not modified when the longitudinal aspe
ratio A of these two configurations varies between 3.5 a
4.5: the roll frequency adjusts itself to the imposed wav
length so that the roll velocity remains the same. Finally,
us note that Hasnaouiet al.4 have found a result very close t
our finding for the roll velocity, also using periodic bounda
conditions similar to config-2; their line equation, for Pr57,
is Vr/U°'1.284–0.9031025 Ra.

IV. CONCLUSION

In this study, numerous results characterizing the PB
in a wide range of the dimensionless parameters Ra and

ofFIG. 16. Ratio of the transversal roll velocity,Vr, to the average velocity of
the flow,U°, as a function of Ra and for Pr56.4; comparison of the numeri-
cal solutions obtained on config-1 and config-3 with the experimental res
of Ouazzaniet al.14,16 and with Müller’s theoretical result24 ~the limit of
validity of this theory, Ra'2500, is indicated by a vertical line!. All the
curves are independent of Re.
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have been presented in detail; each time possible, they
validated thanks to quantitative comparisons with the alre
published experimental and theoretical works.

For the transversal roll configuration, the time evoluti
of the vertical velocity and the frequency have been sho
to be in a very good agreement with the experiments
Ouazzaniet al.,14,16 as soon as Ra.2000. The theoretica
results of Müller et al.,21,23,24based on the Ginzburg–Landa
amplitude equation and valid for Ra,2500, are also w
reproduced: particularly, the results concerning the abso
instability-convective instability transition between the tran
versal rolls and the Poiseuille flow, the characteristic grow
length l e , the variation of the velocityVr/U° with Ra, and
the variation of the Nusselt number with Re. However, a 3
numerical simulation seems to be necessary in view of
explanation of the experimental slope concerningVr/U°,
and, obviously, concerning the reproduction of the stabi
map and the numerous varieties of flow patterns experim
tally observed~longitudinal rolls, intermittent patterns,...!.

Finally, it has been shown that the simulations with
computational configuration with OBC at the outlet~config-1
type! give the convective stability curve Ra'

conv, whereas a
config-2 type configuration~with periodic boundary condi-
tions! simulates the linear stability curve Ra'

* .
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différentes—2,’’ Int. J. Heat Mass Transfer33, 1417~1990!.

17M. T. Ouazzani, J. K. Platten, and A. Mojtabi, ‘‘Intermittent patterns
mixed convection,’’ Appl. Sci. Res.51, 677~1993!.
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