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Energy stability of a natural convective flow in a 
horizontal annular space 

Abdelkader Mojtabi and Jean-Paul Caltagirone 

Laboratoire d'Aérothermique du Centre National de la Recherche Scientifique, F92190-Meudon, France 

The conditions for global asymptotic stability are determined by energy theory. The basic flow is obtained 
using the perturbation method. The results are compared to those obtained by the linear theory and to 
those derived from various experimental investigations. 
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The linear and nonlinear stability of a Poiseuille flow
between two isothermal cylinders has been the subject
of many publications1

• 
2 but little has been published con

cerning the stability of a natural convection flow be
tween two isothermal cylinders, maintained at tempera
ture T; on the inner cylinder of radius r; and tempera
ture T

0 
on the outer cylinder of radius r0, with T; >T

0
• 

Linear stability was first studied in a porous medium3 

and more recently in a fluid.4 

To solve Eqs. (1) and (2), we develop T and if! in a power
series expansion of the Rayleigh number up to order
two. The convergence and the analytical expression of
this development are given in Ref. 5.

This note studies the energy stability of the basic flow
when it is induced only by natural convection.

We first find the solution of the basic flow. The
governing equations, for the basic stationary two-di
mensional flow, in dimensionless form, are

Pr'v41/J= u � ('v21/J) + ..!:'.:� (V21/J)or r o</J 

(cos</) ôT . oT) -RaPr -- -+sm</)-
r 'à</) or '
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where 1/J, T, U, and V de note, respectively, the stream
function, temperature, radial and tangential velocity
components of the basic flow. Ra denotes the Rayleigh
number based on r; and Pr denotes the Prandtl number.
</) has been referenced against the ascending vertical.
The boundary conditions are

r = 1; T =1, (3) 

To study the nonlinear stability of this basic flow, we
use the energy method as extended by Ref. 6. We as
sume the perturbation to be axisymmetric. Developing
the temperature and radial velocity perturbations as
periodic wavefunctions on the axial coordinate z: </)
= 0(r)e is,; and u =u(r)e isz and inserting them in the
Euler-Lagrange equationsü 

( t / 2 9T 1 ) (0) e 0 R, ;\ ----,--,-,,1 0 11-.,C -�= ,• or À"" r (6) 
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TABLE I. Critical Rayleigh and wavenumbers obtained by energetic theory and calculated 
for R = 1,2, fi, 2 and with approximations N � 1 , 2, 3, 4. 

N � 1 N=Z N=3 N�4 
R Rae Sœ Rae Sœ Rae See 

Rae See 

1.2 1740. 734 3.1191 1699.230 3.1189 1698.415 3.1189 1698.414 3.1189 
rz 1710.683 3.1293 1669. 723 3.1280 1668.818 3.1280 1668.818 3.1280 
2 1615.189 3.1642 1576.291 3.1597 1575.167 3.1599 1575.165 3.1599 
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FIG. 1. Comparison of experimental result to those obtained
by linear and energetic theory for air (Pr= 0.7). • Powe 
et àl. 1; 1, Grigull and Hauf 8 ; 0 Liu et al. 9 

The Galerkin method is applied to solve Eqs. (6) and 
(7) and consists of representing the perturbations e and
u by a set of functions satisfying the boundary conditions

N N 

e = L akek (r) and u = L bkuk (r).

Introducing these expressions into (6) and (7), multi
plying (6) by 0

1 
and (7) by u 1

, and integrating over (1,R) 
we obtain a homogeneous algebraic system of 2N equa
tions with 2N unknowns (ak and bk ). For this system to 
admit a nontrivial solution, the associated determinant 
must be zero. This determines the stability condition 
of this flow, 

F(R
x, s2, À112) = 0 .  

We numerically determined this stability curve and de
rived the wave number sce and critical Rayleigh number 
Rae [Rae = maxx (min8 Rx)] for each value of the radius 
ratio R and for various degrees of approximation (Table 
I). To determine Rae and the linear critical Rayleigh 
number Ra 1 the same trial functions were used 

_[(r-l)(R-r)]k+l 

de 
_[(r-l)(R-r)Y 

uk - (R _ l)2k+2 an k -

(R _ 1)2k 

The critical Rayleigh and wavenumbers cited in Table I 
and plotted as a function of R in Figs. 1 and 2, are 
based on the annular thickness (r

0
-r;). 

Table I gives, for three different radius ratios, the 
values of Ra., and sce for air (Pr=0.7). The good con
vergence of Galerkin's method is to be noted since, for 
N = 3 and N = 4, the difference is only 2 x 10-s. 

In Fig. 1 the experimental results for air obtained by 
several authors7

-
9 are compared with our theoretical 

work. For R greater than 2, experimental results vary 
widely and, on the other hand, the perturbation method 
does not provide a good approximation; so we cannot 
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FIG. 2. Critical linear and energetic wavenumbers as a func
tion of the radius ratio for air. 

use it. As R tends toward 1, the upper region of the 
annular space can be considered as a horizontal plane; 
Rae and sce simultaneously approach 1708 and 3.12, 
respectively. The se are well known results, they cor
respond to the onset of convection in a horizontal fluid 
layer heated from below. 

For a flow due to natural convection in a horizontal 
cylindrical annulus, our treatment of linear and energy 
stability theories permit us to forecast the conditions 
for instability in the stationary two dimensional flow for 
two-dimensional disturbances. Two critical Rayleigh 
numbers have been presented. For Ra <Rae, the flow is 
always stable, regardless of the perturbation ampli
tude. For Ra> Ra1, the flow is linearly uns table and al
ways reaches a turbulent state. For Rae <Ra< Ra1, the 
flow may be, but is not necessarily, unstable for per
turbations of finite amplitude. However for infinitesi
mal perturbations the flow remains stable. As Ra in
creases toward Ra1, the perturbation amplitude neces
sary to render the system unstable approaches zero. 
This explains why Ra1 is difficult to obtain experimen
tally and accounts for the differences in Fig. 1. 
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