Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of some Toulouse researchers and makes it freely available over the web where possible.

This is an author's version published in: http://oatao.univ-toulouse.fr/20552

Official URL: https://doi.org/10.1007/s10482-015-0617-x

To cite this version:

Lahoum, Abdelhadi and Bouras, Noureddine and Mathieu, Florence and Schumann, Peter and Spröer, Cathrin and Klenk, Hans-Peter and Sabaou, Nasserdine Actinomadura algeriensis sp. nov., an actinobacterium isolated from Saharan soil. (2016) Antonie van Leeuwenhoek, 109 (1). 159-165. ISSN 0003-6072

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

Actinomadura algeriensis sp. nov., an actinobacterium isolated from Saharan soil

Abdelhadi Lahoum • Noureddine Bouras • Florence Mathieu •
Peter Schumann - Cathrin Spröer • Hans-Peter Klenk • Nasserdine Sabaou

Abstract

During the course of a screening programme for new taxa of actinobacteria, a strain designated ACD1 ${ }^{\text {T }}$, was isolated from a Saharan soil in the Hoggar region (Algeria). The taxonomic position of this strain was determined using a polyphasic taxonomic approach. The strain was observed to form extensively branched, non-fragmenting substrate mycelium, and aerial mycelium with straight to flexuous, hooked and irregular spirals (1-2 turns) forming short chains of spores. The diamino acid present in the cell wall is mesodiaminopimelic acid. Galactose, glucose, madurose,

[^0]mannose and ribose occur in whole-cell hydrolysates. The diagnostic phospholipids detected were diphosphatidylglycerol and phosphatidylinositol. The major menaquinones were identified as MK-9 $\left(\mathrm{H}_{4}\right)$ and MK$9\left(\mathrm{H}_{2}\right)$. The major fatty acids were found to be $\mathrm{C}_{16: 0}$, $\mathrm{C}_{18: 1}$ cis 9 , iso- $\mathrm{C}_{16: 0}$ and 10-methyl $\mathrm{C}_{18: 0}$. Phylogenetic analysis based on the 16 S rRNA gene showed that the strain belongs to the genus Actinomadura, and is closely related to Actinomadura sediminis DSM 45500^{T} (98.5% similarity) and Actinomadura cremea subsp. cremea DSM 43676^{T} (98.3% similarity). However, DNA-DNA hybridization revealed only 48.0 \% relatedness with A. sediminis DSM $45500^{\text {T }}$ and 33.2% relatedness with A. cremea subsp. cremea DSM $43676^{\text {T }}$. The combined phenotypic and genotypic data showed that the strain represents a novel
P. Schumann C. Spröer

Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
H.-P. Klenk (凹)

School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
e-mail: hans-peter.klenk@ncl.ac.uk
species of the genus Actinomadura, for which the name Actinomadura algeriensis sp. nov. is proposed, with the type strain ACD1 ${ }^{\mathrm{T}}$ (= DSM $46744^{\mathrm{T}}=$ CECT 8841^{T}).

Keywords Actinomadura • Actinomadura algeriensis sp. nov. • Actinobacteria • Saharan soil • Polyphasic taxonomy

Introduction

The genus Actinomadura was proposed by Lechevalier and Lechevalier (1968), and is part of family Thermomonosporaceae. The strains of the genus Actinomadura produce extensively branched nonfragmenting substrate mycelium. Generally, the aerial mycelium is moderately developed. Spores chains are short (or sometimes long) and differentiate into straight, spiral or hooked form. Cell walls contain meso-isomer (DL) of diaminopimelic acid without glycine. Whole-cell hydrolysates contain madurose as the diagnostic sugar, diphosphatidylglycerol and phosphatidylinositol as the diagnostic phospholipids, and MK-9 $\left(\mathrm{H}_{4}\right)$ and MK-9 $\left(\mathrm{H}_{6}\right)$ as major menaquinones (Lechevalier et al. 1977; Kroppenstedt et al. 1990; Wink et al. 2003; Cook et al. 2005). The principal reservoir of the genus Actinomadura is the soil (Lu et al. 2003; Quintana et al. 2003; Ara et al. 2008). However, some species are isolated from patients, for example Actinomadura sputi (Yassin et al. 2010). In addition, several Actinomadura species were transferred to other new genera, including Nonomuraea (Zhang et al. 1998), Actinocorallia (Iinuma et al. 1994) and Actinoallomurus (Tamura et al. 2009). At the time of writing, the genus Actinomadura encompasses 52 species with validly published names (http://www.bacterio.net).

During our study on the diversity and taxonomy of actinobacteria in Saharan soils, many new taxa of nonhalophilic actinobacteria (Aouiche et al. 2015; Boubetra et al. 2015; Bouras et al. 2015) and halophilic actinobacteria (Boudjelal et al. 2015; Meklat et al. 2015; Saker et al. 2015) have been reported. In the present work, we describe a new species of nonhalophilic actinobacteria belonging to the genus Actinomadura. This is the first time that a new species of this genus is reported from Saharan soil.

Materials and methods

Isolation and maintenance of strain
Strain ACD1 ${ }^{\text {T }}$ was isolated from a soil sample collected from Hoggar region, Tamanrasset province $\left(22^{\circ} 47^{\prime} \mathrm{N}, 5^{\circ} 31^{\prime} \mathrm{E}\right)$, South of Algeria, by the dilution agar plating method using a chitin-vitamin B medium recommended for isolation of rare actinobacteria (Hayakawa and Nonomura 1987). The medium was supplemented with $80 \mathrm{mg} \mathrm{l}^{-1}$ of cycloheximide to inhibit development of invasive fungi. The strain was purified and maintained at $4^{\circ} \mathrm{C}$ on International Streptomyces Project (ISP) 2 medium (Shirling and Gottlieb 1966).

Strain ACD1 ${ }^{\mathrm{T}}$ has been deposited in the German Collection of Microorganisms and Cell Cultures (DSMZ), Germany, as strain DSM 46744^{T} and in Spanish Type Culture Collection (CECT), Spain, as strain CECT 8841^{T}.

Phenotypic characterization

Morphological characteristics were observed using several media, namely yeast extract/malt extract agar (ISP 2), oatmeal agar (ISP 3) and inorganic salts/starch agar (ISP 4) (Shirling and Gottlieb 1966), and also Bennett's medium (Waksman 1961). After incubation at $30^{\circ} \mathrm{C}$ for 7,14 and 21 days, morphological characteristics were recorded by the naked-eye and by using a light microscope (Motic, B1 Series, Hong Kong). The ISCC-NBS colour name chart (Kelly and Judd 1976) was used to determine the colours of aerial mycelium, substrate mycelium and diffusible pigments.

Several physiological tests were used to characterize the actinobacterial strain. Degradation of adenine, aesculin, arbutin, gelatin, guanine, hypoxanthine, starch, Tween 80 , L-tyrosine, xanthine and reduction of nitrate, and also coagulation and peptonisation of milk, were evaluated according to the methods of Goodfellow (1971) and Marchal et al. (1987). Utilization of carbohydrates and decarboxylation of organic acids were examined as described by Gordon et al. (1974). Temperature range ($15-45{ }^{\circ} \mathrm{C}$), pH range (5-10), tolerance to $\mathrm{NaCl}(0-15 \%, \mathrm{w} / \mathrm{v})$ and growth in the presence of novobiocin and rifampicin ($10 \mathrm{mg} \mathrm{l}^{-1}$) were determined on ISP 2 medium.

Chemical analysis of cell constituents

For chemotaxonomic study, strain ACD1 ${ }^{\mathrm{T}}$ was grown on ISP 2 broth in flasks on a rotary shaker at 250 rpm and $30^{\circ} \mathrm{C}$ for 5 days. Biomass was harvested by centrifugation and washed several times with distilled water, than dried at $37{ }^{\circ} \mathrm{C}$. Isomer of diaminopimelic acid and cell sugars were detected following standard procedures described by Becker et al. (1964) and Lechevalier and Lechevalier (1970). Menaquinones were extracted and purified by using the methods of Minnikin et al. (1984) and were analysed by HPLC (Kroppenstedt 1982, 1985). Polar lipids were extracted and identified by using two-dimensional TLC (Minnikin et al. 1984). The fatty acid profile was determined by the method of Sasser (1990), using the Microbial Identification System Sherlock software version 6.1 (method TSBA40, TSBA6 database).

Phylogenetic analyses

Genomic DNA was extracted with DNA extraction kit (MasterPure ${ }^{\text {TM }}$ Gram Positive DNA Purification Kit, Epicentre ${ }^{\circledR}$ Biotechnologies, Madison). PCR amplification of the 16 S rRNA gene sequence of strain ACD1 ${ }^{\mathrm{T}}$ was performed as described by Rainey et al. (1996). The sequence obtained was compared for similarity with the reference strains in the public sequence databases and with the EzTaxon-e server (Kim et al. 2012). Phylogenetic analyses were conducted using MEGA version 5 (Tamura et al. 2011). The 16 S rRNA gene sequence of strain $\mathrm{ACD} 1^{\mathrm{T}}$ was aligned using the CLUSTAL W program (Larkin et al. 2007) against corresponding nucleotide sequences of representatives of the Actinomadura genus retrieved from EzTaxon-e server. Phylogenetic trees were reconstructed by using the neighbour-joining method (Saitou and Nei 1987) with the model of Jukes and Cantor (1969), maximum-likelihood (Felsenstein 1981) with Kimura 2-parameter (Kimura 1980) model and maximum-parsimony (Fitch 1977) methods. Topology of the phylogenetic tree was evaluated by bootstrap analysis (Felsenstein 1985), based on 1000 resamplings of the neighbour-joining dataset.

For the DNA-DNA relatedness study, DNA was isolated by using a French pressure cell (Thermo Spectronic) and was purified by chromatography on hydroxyapatite as described by Cashion et al. (1977). DNA-DNA hybridization was carried out in
duplicate, as described by De Ley et al. (1970) under consideration of the modifications described by Huss et al. (1983).

Results and discussion

Strain ACD1 ${ }^{\text {T }}$ was found to show good growth on ISP 2, ISP 4 and Bennett's media and moderate growth on ISP 3 medium. The aerial mycelium (white to pinkish) was found to be abundant on ISP 2 medium, moderately developed on ISP 3 medium and absent on ISP 4 and Bennett's media. The substrate mycelium was observed to be a red purplish colour on all tested media. A red diffusible pigment was found to be produced on all tested media. The strain ACD1 ${ }^{\mathrm{T}}$ was found to form extensively branched non-fragmenting and sterile substrate mycelium. However, the aerial mycelium was found to bear short chains of spores that are straight to flexuous, hooked and irregular spirals (1-2 turns).

Strain ACD1 1^{T} grows at $20-37{ }^{\circ} \mathrm{C}$ (but not at 15,40 and $45^{\circ} \mathrm{C}$) and at $\mathrm{pH} 6.0-9.0$ (but not at pH 5 and 10.0). Detailed results of the physiological analyses are given in Table 1 (in comparison with the closest species) and in the species description.

Strain ACD1 ${ }^{\mathrm{T}}$ exhibited typical chemical markers of members of the genus Actinomadura. The cell wall of strain ACD1 ${ }^{\mathrm{T}}$ was found to contain meso-diaminopimelic acid but not glycine. The whole-cell hydrolysate was found to contain madurose as diagnostic sugar, along with glucose, ribose, galactose and mannose. These results indicate that this strain has cell-wall type III and whole cell sugar pattern type B (Lechevalier and Lechevalier 1970). The predominant menaquinones were determined to be MK-9 $\left(\mathrm{H}_{4}\right)$ (49 \%) and MK-9 (H_{2}) (32 \%); small amounts of MK$9\left(\mathrm{H}_{6}\right)(10 \%)$ and MK-9 $\left(\mathrm{H}_{0}\right)(7 \%)$ were also detected. The diagnostic phospholipids detected were diphosphatidylglycerol and phosphatidylinositol, which corresponds to phospholipid type PI (Lechevalier et al. 1977); phosphatidylinositol mannosides, phosphatidylglycerol, an unidentified phospholipid, an unidentified glycolipid and an unidentified aminolipid were also present (Fig. S1). The cellular fatty acids ($>1 \%$) were identified as $\mathrm{C}_{16: 0}(32.9 \%), \mathrm{C}_{18: 1}$ cis9 (24.6 \%), iso-C ${ }_{16: 0}$ (14.1 \%), 10-methyl $\mathrm{C}_{18: 0}$ $(13.9 \%), \mathrm{C}_{16: 1}$ cis $9(2.8 \%), \mathrm{C}_{17: 0}(2.1 \%)$, iso- $\mathrm{C}_{18: 0}$ $(2.1 \%), \mathrm{C}_{18: 0}(1.9 \%)$ and 10-methyl $\mathrm{C}_{17: 0}(1.2 \%)$.

Table 1 Phenotypic
characteristics that differentiate the strains ACD1 ${ }^{\mathrm{T}}$ from their closest relative recognized species of the genus Actinomadura (A. sediminis DSM 45500^{T} and A. cremea subsp. cremea DSM 43676^{T})

All data presented in this table were obtained under the same conditions
Strains 1 Actinomadura algeriensis ACD1 ${ }^{\text {T }}, 2$ A. sediminis DSM 45500^{T}, 3 A. cremea subsp. cremea DSM $4367{ }^{\text {T }}$, + positive, - negative

Characteristics	Type strains		
	1	2	3
Colour of aerial mycelium	White pinkish	White to pale yellow-pink	White to yellow
Colour of substrate mycelium	Red purplish	White to grey-brown	Colourless
Diffusible pigments	Red	Deep brown	-
Decomposition of			
Gelatin	+	-	+
Hypoxanthine	-	+	+
Starch	-	-	+
L-Tyrosine	-	+	+
Xanthine	-	+	-
Utilization of	+	-	+
Cellobiose	-	+	+
Galactose	+	-	+
Glucose	+	-	+
Maltose	-	-	+
Mannose	+	-	-
Ribose	+	-	+
Sorbitol	+	+	+
Trehalose	+	+	+
Growth at/with	-		+
$2{ }^{\circ} \mathrm{C}$			+
$45^{\circ} \mathrm{C}$			
$4 \%(w / \mathrm{v}) \mathrm{NaCl}$			

The morphological and chemical characteristics described above clearly support the placement of strain $\mathrm{ACD} 1^{\mathrm{T}}$ within the genus Actinomadura.

Phylogenetic analysis of the 16 S rRNA gene sequence (1446 bp , GenBank accession number KT259320) showed that strain $A C D 1^{\mathrm{T}}$ is related to members of the genus Actinomadura and exhibits high 16S rRNA gene sequence similarity to A. sediminis DSM $45500^{\mathrm{T}}(98.5 \%)$ and A. cremea subsp. cremea DSM $43676^{\mathrm{T}}(98.3 \%)$. The phylogenetic relationship between strain ACD1 ${ }^{\mathrm{T}}$ and the closely related Actinomadura species is seen in the neighbour-joining (Fig. 1), maximum parsimony (Fig. S2) and maxi-mum-likelihood dendrograms (Fig. S3).

Mean DNA-DNA relatedness values between strain ACD1 ${ }^{\mathrm{T}}$ and A. sediminis DSM 45500^{T} and A. cremea subsp. cremea DSM 43676^{T} were $48.0 \pm 1.3 \%$ and $33.2 \pm 3.1 \%$, respectively. These values are below the 70% cut-off point recommended for the assignment of strains to the same genomic species (Wayne et al. 1987).

In addition, a comparison of phenotypic characteristics of strain ACD1 ${ }^{\mathrm{T}}$ and A. sediminis DSM 45500^{T} showed differences in the colour of aerial and substrate mycelia, colour of diffusible pigments, utilization of cellobiose, galactose, lactose, maltose, ribose, sorbitol and trehalose as sole carbon sources, decomposition of gelatin, hypoxanthine, l-tyrosine and xanthine, and growth at 20 and $45^{\circ} \mathrm{C}$ and with $4 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}$. Furthermore, A. cremea subsp. cremea DSM 43676^{T} showed differences in the colour of aerial and substrate mycelia, production of diffusible pigments, utilization of galactose, lactose, mannose and sorbitol as sole carbon sources, decomposition of hypoxanthine, starch and L-tyrosine, and growth with $4 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}$.

In addition, it is interesting to note the presence of large amount of menaquinone MK-9 $\left(\mathrm{H}_{2}\right)$ in the cell membrane of strain ACD1 ${ }^{\mathrm{T}}$, while other Actinomadura species are characterized mainly by the presence of MK-9 $\left(\mathrm{H}_{6}\right)$, MK-9 $\left(\mathrm{H}_{4}\right)$ and MK-9 $\left(\mathrm{H}_{8}\right)$ (Kroppenstedt et al. 1990).

Sinosporangium album DSM 45181^{T} (EU438912)

$$
\Vdash_{0.005}
$$

Fig. 1 Neighbour-joining phylogenetic tree based on almost complete 16 S rRNA gene sequences showing the position of the strain ACD1 ${ }^{\mathrm{T}}$ (1446 bp) in the genus Actinomadura, including the taxonomically not yet validated 'A. maheshkhaliensis'. This illustrates the taxonomic position of strain ACD1 ${ }^{\mathrm{T}}$ relative to the related species. Asterisks indicate branches of the tree that were
also found using the maximum-likelihood (Felsenstein 1981) and maximum-parsimony (Fitch 1977) tree-making algorithms. Bootstrap values ($>50 \%$) based on 1000 resamplings are shown at branch nodes. Sinosporangium album DSM 45181^{T} was used as the out-group. Bar 0.005 substitutions per site
fructose, glucose, maltose, mannitol, rhamnose, ribose, sorbitol, trehalose and xylose, but not galactose, lactose, mannose, melibiose and raffinose. Growth does not occur in the presence of novobiocin and rifampicin. The diamino acid in the cell wall is meso-diaminopimelic acid. Madurose is the diagnostic sugar in whole-cell hydrolysates. The major phospholipids are diphosphatidylglycerol and phosphatidylinositol. The major menaquinones are MK-9 $\left(\mathrm{H}_{4}\right)$ and MK-9 $\left(\mathrm{H}_{2}\right)$. The major fatty acids are $\mathrm{C}_{16: 0}, \mathrm{C}_{18: 1}$ cis 9 , iso- $\mathrm{C}_{16: 0}$ and 10-methyl $\mathrm{C}_{18: 0}$.

The type strain is ACD1 ${ }^{\mathrm{T}}\left(=\mathrm{DSM} 46744^{\mathrm{T}}=\right.$ CECT 8841^{T}) isolated from a Saharan soil sample collected from Hoggar region (South Algeria). The 16S rRNA gene sequence of strain $A C D 1{ }^{\mathrm{T}}$ has been deposited in Genbank under the accession number KT259320.

Acknowledgments We would like to gratefully acknowledge the technical assistance of Gabriele Pötter (DSMZ).

References

Aouiche A, Bouras N, Mokrane S, Zitouni A, Schumann P, Spröer C, Sabaou N, Klenk H-P (2015) Actinokineospora
mzabensis sp. nov., a novel actinomycete isolated from Saharan sol. Antonie Van Leeuwenhoek 107:291-296
Ara I, Matsumoto A, Bakir MA, Kudo T, Omura S, Takahashi Y (2008) Actinomadura bangladeshensis sp. nov. and Actinomadura chokoriensis sp. nov. Int J Syst Evol Microbiol 58:1653-1659
Becker B, Lechevalier MP, Gordon RE, Lechevalier HA (1964) Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl Microbiol 12:421-423
Boubetra D, Zitouni A, Bouras N, Schumann P, Spröer C, Klenk H-P, Sabaou N (2015) Saccharothrix tamanrassetensis sp. nov., an actinomycete isolated from Saharan soil. Int J Syst Evol Microbiol 65:1316-1320
Boudjelal F, Zitouni A, Bouras N, Schumann P, Spröer C, Sabaou N, Klenk H-P (2015) Actinoalloteichus hoggarensis sp. nov., an actinomycete isolated from Saharan soil. Int J Syst Evol Microbiol 65:2006-2010
Bouras N, Meklat A, Zitouni A, Mathieu F, Schumann P, Spröer C, Sabaou N, Klenk H-P (2015) Nocardiopsis algeriensis sp. nov., an alkalitolerant actinomycete isolated from Saharan soil. Antonie Van Leeuwenhoek 107:313-320
Cashion P, Holder-Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461-466
Cook AE, Roes M, Meyers PR (2005) Actinomadura napierensis sp. nov., isolated from soil in South Africa. Int J Syst Evol Microbiol 55:703-706
De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133-142
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368-376
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791
Fitch WM (1977) On the problem of discovering the most parsimonious tree. Am Nat 111:223-257
Goodfellow M (1971) Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 69:33-90
Gordon RE, Barnett DA, Handerhan JE, Pang CHN (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54-63
Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferm Technol 65:501-509
Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184-192
Iinuma S, Yokota A, Hasegawa T, Kanamaru T (1994) Actinocorallia gen. nov., a new genus of the order Actinomycetales. Int J Syst Bacteriol 44:230-234
Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian Protein Metabolism, vol 3. Academic press, New York, pp 21-132
Kelly KL, Judd DB (1976) Color. Universal language and dictionary of names (national bureau of standards special publication 440). US Department of Commerce, Washington
Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing
EzTaxon-e: a prokaryotic 16S rRNA gene sequence data-
base with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716-721
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111-120
Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359-2367
Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173-179
Kroppenstedt RM, Stackebrandt E, Goodfellow M (1990) Taxonomic revision of the actinomycete genera Actinomadura and Microtetraspora. Syst Appl Microbiol 13:148-160
Larkin MA, Blachshields G, Brown NP, Chenna R, Pa M, Mcwiliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948
Lechevalier HA, Lechevalier MP (1968) A critical evaluation of the genera of aerobic actinomycetes. In: Prauser H (ed) The Actinomycetales. VEB Gustav Fischer Verlag, Jena, pp 393-405
Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435-443
Lechevalier MP, de Bièvre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249-260
Lu Z, Wang L, Zhang Y, Shi Y, Liu Z, Quintana ET, Goodfellow M (2003) Two new species of Actinomadura: Actinomadura catellatispora sp. nov. and Actinomadura glauciflava sp. nov. Int J Syst Evol Microbiol 53:137-142
Marchal N, Bourdon JL, Richard CL (1987) Les milieux de culture pour l'isolement et l'identification biochimique des bactéries. Doin Press, Paris
Meklat A, Bouras N, Mokrane S, Zitouni A, Schumann P, Spröer C, Klenk H-P, Sabaou N (2015) Bounagaea algeriensis gen. nov., sp. nov., an extremely halophilic actinobacterium isolated from a Saharan soil of Algeria. Antonie Van Leeuwenhoek 108:473-482
Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233-241
Quintana ET, Trujillo ME, Goodfellow M (2003) Actinomadura mexicana sp. nov. and Actinomadura meyerii sp. nov., two novel soil sporoactinomycetes. Syst Appl Microbiol 26:511-517
Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088-1092
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425
Saker R, Bouras N, Meklat A, Zitouni A, Schumann P, Spröer C, Sabaou N, Klenk H-P (2015) Prauserella isguenensis sp.
nov., a halophilic actinomycete isolated from desert soil. Int J Syst Evol Microbiol 65:1598-1603
Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101 . Microbial ID, Newark
Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313-340
Tamura T, Ishida Y, Nozawa Y, Otoguro M, Suzuki KI (2009) Transfer of Actinomadura spadix Nonomura and Ohara 1971 to Actinoallomurus spadix gen. nov., comb. nov., and description of Actinoallomurus amamiensis sp. nov., Actinoallomurus caesius sp. nov., Actinoallomurus coprocola sp. nov., Actinoallomurus fulvus sp. nov., Actinoallomurus iriomotensis sp. nov., Actinoallomurus luridus sp. nov., Actinoallomurus purpureus sp. nov. and Actinoallomurus yoronensis sp. nov. Int J Syst Evol Microbiol 59:1867-1874
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and
maximum parsimony methods. Mol Biol Evol 28:27312739
Waksman SA (1961) Classification, identification, and descriptions of genera and species. In: Holdeman LV, Cato EP, Moore WEC (eds) The actinomycetes, vol 2. Williams \& Wilkins, Baltimore, pp 331-332
Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International committee on systematic bacteriology. Int J Syst Bacteriol 37:463-464
Wink J, Kroppenstedt RM, Seibert G, Stackebrandt E (2003) Actinomadura namibiensis sp. nov. Int J Syst Evol Microbiol 53:721-724
Yassin AF, Spröer C, Siering C, Klenk H-P (2010) Actinomadura sputi sp. nov., isolated from the sputum of a patient with pulmonary infection. Int J Syst Evol Microbiol 60:149-153
Zhang Z, Wang Y, Ruan J (1998) Reclassification of Thermomonospora and Microtetraspora. Int J Syst Bacteriol 48:411-422

[^0]: A. Lahoum • N. Bouras • N. Sabaou (\boxtimes)

 Laboratoire de Biologie des Systèmes Microbiens
 (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
 e-mail: sabaou@yahoo.fr
 N. Bouras

 Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaïa, BP 455, 47000 Ghardaïa, Algeria
 F. Mathieu

 Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/ UPS), Université de Toulouse, INP de Toulouse/ENSAT, 1, Avenue de l'Agrobiopôle, Castanet-Tolosan cedex, France

