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a b s t r a c t

A bivariate population balance equation applied to a grinding process is implemented in amodel (PBM). The par-

ticles are simultaneously characterized by their size and their mechanical strength, expressed here by the mini-

mum energy needed to break them. PBM is solved by the Direct QuadratureMethod of Moments (DQMOM). The

mixed moments of the distribution are expressed by the quadrature form of the population density defined for

one order (N) and incorporating the weights and the abscissas defined for the two properties. The effect of the

quadrature order (N=2,3,4) and the selected set of the 3Nmoments needed to solve the systemon the accuracy

of the results is discussed. For a given order of the quadrature, the selected set of the initial mixed moments

slightly affects first the weights and abscissas derived from the initial particle distribution. The set of moments

also affects the precision of the moments calculated versus time but only those having high orders in relation

with the respective range of the solid properties considered. Problems of convergence and significant differences

in the predictedmixed moments are also observed when the order of the quadrature is equal to 2. However, the

changes of a bivariate distribution versus time applied to a grinding process arewell predicted using theDQMOM

approach, choosing a number of nodes equal to 3, associated with a smart selection of the moment set, incorpo-

rating all the moments of interest.
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1. Introduction

Particulate process models are currently based on population bal-

ance equations either in homogenous conditions or heterogeneous sys-

tems combining CFD modeling. They allow tracking the temporal

evolution, and eventually the spatial change, of the population density

or the particle distribution during continuous processes (growth, disso-

lution, coating, grinding, erosion,…) or discrete events (nucleation, ag-

gregation, rupture, flocculation, …) [1–4]. The solid phase

characteristics are described by the particle size or volume. More rarely,

two or more properties for the discontinuous phase are considered

(such as surface/volume, size/composition, or volume/size [5–7]. Bivar-

iate or multidimensional population balance equations have particu-

larly been developed to describe solid properties during crystallization

[8–10] or precipitation processes [11–12], as well as for granulation

[13], coagulation and sintering processes [14] or even more recently to

describe the depolymerization of branched polymers [15]. The popula-

tion balance models applied to grinding processes usually allow de-

scribing the transient change of the particle size distribution.

However, other properties of the solid phase can be important to drive

the process, as morphological or physical properties. In this work, we

use a population balance equation (PBE) in which the particles are si-

multaneously characterized by their size and their mechanical resis-

tance. The particle resistance, expressed as the minimal energy

needed to break the particles, also called the breakage energy, can be

evaluated from fracture tests usually done on individual particles as

with the Hopkinson pressure bar or the Ultrafast Load Cell [16–17].

Nano-indentation tests, developed more recently, are also performed

on single particles. Such tests allow performing the analysis of mechan-

ical properties on fine particles or even in the submicron particle size

range [18].

The PBE in homogeneous conditions is solved here using the Direct

Quadrature Method of Moments (DQMOM) since one of its advantages

is to easily take into account of several properties for the solid phase

[19–22,15]. The mixed moments of the population density are given

by the quadrature approximation incorporating the weights and

abscissas with respect to the two solid properties. The weights and

abscissas are defined for a given number N of nodes. In the studied

case, based on Crespo analysis [23], the two properties of the solid

phase are dependent since the breakage energy is conditioned by the

particle size. The PBE could then be solved with a conditional quadra-

turemethod ofmoments [24]. However, in order to keep things generic,

the method has been developed using the more general DQMOM ap-

proach. Then it could be extended to track any solid properties, either

dependent or not. The validation of the DQMOM method and the
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interest of a bivariate approach considering both the particle size and

the breakage energy compared to the monovariate approach have

been discussed in a previous paper [25]. The objective of the present

contribution is to discuss the effect of the number of nodes and the

mixed moments selected set needed to close the problem on the preci-

sion of the simulated results.

2. Grinding process modeling

2.1. DQMOM general equations

The homogeneous equation of population balance considering two

properties for the solid phase can be written as follows by introducing

the particle-size energy distribution f(x,e,t),which represents the mass

fraction of particles characterized by size x and fracture energy e at in-

stant t:

∂ f x; e; tð Þ

∂t
¼ S x; e; tð Þ: ð1Þ

The right hand side of the equation represents all the birth and death

terms. In case of a pure breakage process, it comprises only two terms,

the first one expresses the disappearance of particles due to their break-

age in smaller pieces and the second one the apparition of fragments of

properties x and e due to the breakage of larger particles:

∂ f x; e; tð Þ

∂t
¼ −a x; eð Þ f x; e; tð Þ

þ

Z

þ∞

0

Z

þ∞

x

a x0; e0ð Þ b x; e; x0; e0ð Þ f x0; e0; tð Þ dx0 de0: ð2Þ

a(x,e) is the selection function, it describes the rate at which parti-

cles of size x and breakage energy e are broken. The breakage function

b(x,e,x0,e0) represents the probability to obtain fragments of properties

(x,e) after a breakage event of particles characterized by a size x0 and a

breakage energy e0.

The quadrature methods of moments used to solve the population

balance equations are based on the approximation of the density func-

tion by the Gaussian quadrature:

f x; e; tð Þ ¼
X

N

i¼1

wi tð Þ δ x tð Þ−xi tð Þð Þ δ e tð Þ−ei tð Þð Þ ð3Þ

where N is the order of the quadrature, i.e. the number of nodes i, xi is

thefirst property of the node (the particle size), ei is the second property

of the node (the particle minimum energy for breakage),wi is the node

weight and δ the Dirac function. xi and ei are also called the abscissas.

If the discrete decomposition Eq. (3) is injected into Eq. (1), one ob-

tains the following equation:

XN

i¼1
δ x−xið Þ δ e−eið Þ ui−

XN

i¼1
δ
0 x−xið Þδ e−eið Þ

ðvi−xiuiÞ−
XN

i¼1
δ x−xið Þ δ0 e−eið Þ zi−eiuið Þ

¼ S x; e; tð Þ:

ð4Þ

ui , vi and zi being respectively the transient changes of the weights,

the weighted sizes and weighted energies defined as:

∂wi

∂t
¼ ui ð5Þ

∂ wixið Þ

∂t
¼ vi ð6Þ

∂ wieið Þ

∂t
¼ zi: ð7Þ

After transformation of Eq. (4) by themoments; themixedmoments

being defined by:

mkl tð Þ ¼ ∬
þ∞

−∞
xkel f x; e; tð Þ dx de ¼

X

N

i¼1

wi x
k
i e

l
i: ð8Þ

One obtains:

X
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with:

ai ¼ a xi; eið Þ ð10Þ

and:

bi
kl
¼ ∬

∞

0
xk el b x; e; xi; eið Þ dx de: ð11Þ

Eq. (9) is an algebraic systemwith 3N unknowns: u1,…, uN, v1,…, vN,

z1, …, zN which are themselves solutions of the ordinary differential

equations defined by Eqs. (5), (6) and (7).

2.2. Specific equations for the present case

Although the two solid properties (particle size and breakage en-

ergy) have been mathematically treated as if they were independent,

the breakage energy is assumed in thiswork to bedependent on particle

Table 1

Initial values of some mixed moments calculated for various selected sets of moments for N=3 varying the last moments given the first six ones as [m00,m10,m01,m20,m11,m02].

Approximated initial mixed moments (Eq. (19)) m00 m10 m01 m20 m11 m02 m30 m21 m12 m03 m40 m31 m22 m13 m04

1.00 2.99 3.06 9.25 9.72 14.84 29.25 31.55 49.40 111.80 94.68 104.71 167.92 388.85 1283.33

Back calculated initial mixed moments (Eq. (8)) m00 m10 m01 m20 m11 m02 m30 m21 m12 m03 m40 m31 m22 m13 m04

Moments set

m00 m10 m01 m20 m11 m02+

Set 1: m30 m03 m22 1.00 2.99 3.06 9.25 9.72 14.84 29.25 31.45 49.69 111.80 94.30 103.44 167.92 384.41 1035.22

Set 2: m30 m21 m03 1.00 2.99 3.06 9.25 9.72 14.84 29.25 31.55 50.36 111.80 94.56 104.48 173.08 393.75 1029.50

Set 3: m30 m12 m03 1.00 2.99 3.06 9.25 9.72 14.84 29.25 31.40 49.40 111.80 94.09 102.87 165.70 380.57 1038.74

Set 4: m30 m21 m12 1.00 2.99 3.06 9.25 9.72 14.84 29.25 31.52 49.40 96.04 94.03 103.51 165.84 326.16 690.45

Set 5: m21 m12 m03 1.00 2.99 3.06 9.25 9.72 14.84 29.28 31.51 49.41 111.80 94.33 103.37 165.69 280.02 1042.65

Set 6: m30 m21 m12 m03

m40 m31 m22 m13 m04

0.99 3.03 3.01 9.41 9.81 14.76 29.40 32.00 49.57 112.21 92.44 104.75 166.87 388.89 1282.05



size with respects to experimental data reported in the literature [23].

Indeed, theminimum energy needed to break particles is usually evalu-

ated from single-particle fracture tests [16–17]. This leads to scattered

data due to the particle structure heterogeneity and to the presence of

an initial crack pattern inside the particles. The fracture energy also de-

pends on particle size and tests are usually conducted on calibrated or

sieved particles. The experimental results are then interpreted using

statistical tools. The formulation adopted by Tavares and King [16]

was used; it expressed the fracture probability by a log-normal distribu-

tion:

P Ejxð Þ ¼
1

2
1þ erf

ln E=E50ð Þ
ffiffiffiffiffiffiffiffiffi

2σ2
E

q
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ð12Þ

where E is the mass-specific particle fracture energy, equal to the

particle fracture energy divided by the mass of a particle. E50 and σE

are the median and geometric variance of the distribution, respectively.

They depend onmaterial properties. Data reported by Tavares and King

[16] relative to irregular quartz particles were used. In the present case,

the units considered for particle size and fracture energy are respec-

tively mm and mJ and the grinding time is given in min.

The energy spectrum, assumed to be independent of time, is thus

given by:

f ejxð Þ ¼

exp '
ln e=e50ð Þð Þ

2

2σ2
E

" #

e
ffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2
E

q : ð13Þ

Moreover, the following selection and breakage functions have been

used. More details on the case studied could be found in Frances and

Liné [25]:

a x; eð Þ ¼ A0
x

xmax

5 6a0

exp −
e

e(

7 8h i

ð14Þ

b x; e; x0; e0ð Þ ¼ b x; x0ð Þ b ejxð Þ ¼
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x0

x
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5 6a0'1
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2

2σ2
E

" #

e
ffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2
E

q : ð15Þ

2.3. Computational details

Population balance equations adapted for DQMOMmethod have 3N

unknowns in the bivariate case constituted by the weights and the

abscissas for each solid property. 3N mixed moments are thus needed

Fig. 1. Change in the weights and abscissas for N=3 with different choices for the last three moments given the first six ones as [m00,m10,m01,m20,m11,m02].

Table 2

Initial values of weights and abscissas calculated for various selected sets of moments for

N=3 varying the last moments given the first six ones as [m00,m10,m01,m20,m11,m02]

Moments set

m00 m10 m01 m20

m11 m02+…

Weights Abscissas-size Abscissas-energy

Set 1: m30 m03 m22 0.41 0.49 0.10 2.38 3.41 3.47 1.90 2.63 10.06

Set 2: m30 m21 m03 0.50 0.40 0.10 2.50 3.48 3.57 2.13 2.46 9.94

Set 3: m30 m12 m03 0.34 0.57 0.09 2.28 3.35 3.43 1.75 2.66 10.14

Set 4: m30 m21 m12 0.30 0.48 0.22 2.21 3.30 3.42 1.75 1.88 7.47

Set 5: m21 m12 m03 0.31 0.59 0.10 2.21 3.34 3.42 1.63 2.70 10.22

Set 6: m30 m21 m12

m03 m40 m31 m22

m13 m04

0.36 0.61 0.02 2.73 3.27 3.58 0.71 4.05 15.63



Fig. 2. Change in the predictions of the first mixed moments vs. time obtained by DQMOMwith N=3 and different sets, given the first six moments as [m00,m10,m01,m20,m11,m02] and

varying the last three ones (panel a: t= 0, panel b: t = 5min, panel c: 20min, panel d: 50min) and corresponding dimensionlessmoment values taking the Set 1 as a reference (panel e:

t = 0, panel f: t = 5 min, panel g: 20 min, panel h: 50 min).



to close the system. Computationswere performed usingMatlab for dif-

ferent selected sets of moments and for different quadrature orders N

from 2 to 4. Eq. (9) is written under a matrix form and solved using

thematrix division Matlab operator. The solution of this linear ordinary

equation contains 3N components. These components correspond to

the right hand sides of the ordinary differential equations (ODE) given

by Eq. (5) to (7). The ODE system was solved using the Ode113 Matlab

subroutine.

The initial particle size-energy distribution has to be defined to ini-

tialize the code. For the results presented in the following sections, the

initial particle size distribution was assumed to be a normal-law with

a mean equal to 3 and a standard deviation to 0.5. The energy spectrum

was given by Eq. (13) in which the reference parameter e* and the geo-

metric variance energy distribution were taken as e⁎=e50(x=xmax=

6 mm) and σE
2=0.345. The kinetic parameters of Eq. (14) were also

kept constant (A0=0.5 min-1;a0=2).

Using the DQMOM approach, the code must be initialized by the

weights and abscissas of the initial distribution. In the monovariate

case, such quantities can be easily determined from the first moments

of the particle distribution using the Product-Difference algorithm

[26]. In the bivariate case, the determination of the weights and

abscissas is not so simple and may be a key point in the numerical pro-

cedure. In the present work, the initialization was performed using the

same mixed moments (at the initial time) as those considered for each

chosen set and solving by the least squares method (Matlab subroutine

lsqnonlin) the non-linear system defined by the following equations:

∑
N
i¼1 wi x

k
i e

l
i

mkl 0ð Þ
' 1 ¼ 0 ð16Þ

(k, l) scanning the 3N couples of the selected set of moments. The initial

mixed moments were calculated by the double quad method using the

Table 3

Comparison of DQMOM predictions for different numbers of nodes with the discrete solution

Initial mixed moments m30 m21 m12 m03 m40 m31 m22 m13 m04

Discrete solution 29.81 31.81 47.75 96.01 97.06 106.16 163.18 335.68 870.79

% Error N = 2 Set 1 −7.2 −0.8 +3.4 +15.0 −11.9 −0.8 +12.9 +33.1 +49.5

% Error N = 3 Set 1 −1.9 −1.1 +4.1 +16.4 −2.8 −2.6 +2.9 +14.5 +18.9

% Error N = 4 Set 1 −1.9 −0.8 +3.4 +16.5 −2.8 −1.4 +3.6 +15.9 +23.0

Mixed moments at 50 min m30 m21 m12 m03 m40 m31 m22 m13 m04

Discrete solution 2.84 2.19 2.86 5.84 5.69 5.06 7.66 17.69 53.98

% Error N = 2 Set 1 −2.5 −18.1 −44.3 −70.5 −16.5 −24.8 −49.1 −74.7 −90.1

% Error N = 3 Set 1 +1.3 +3.6 −1.0 −11.9 +4.4 +5.6 −0.5 −16.7 −40.9

% Error N = 4 Set 1 +1.7 +8.4 +20.7 +32.5 +4.4 +8.4 +12.6 +10.3 −6.3

Fig. 3. Change in the predictions of the first mixed moments vs. time obtained by DQMOM with different numbers of nodes and comparison with the discrete solution of the PBE.



Fig. 4. Predictions of some mixed moments by DQMOM with different numbers of nodes and different sets for N=3 and comparison with the discrete solution.



Matlab subroutine dblquad. On the base of the specific equations used

for the studied case, the mixed moments are defined by:

mkl ¼ ∬
∞

0
f x; e; tð Þ xk el dx de ¼ ∬

∞

0
f ejx; tð Þ f x; tð Þ xk el dx de: ð17Þ

The fracture probability being given by Eq. (12), the breakage energy

can be written as:

e ¼ e50 exp
ffiffiffiffiffiffiffiffiffi

2σ2
E

q

erfinv 2P ' 1ð Þ

5 6

: ð18Þ

Introducing the variable change s=2P-1 in Eq. (17), the following

simplified expression for the mixed moments can finally be derived:

mkl ¼ ∬∞0 f x; tð Þ xk el dx dP: ð19Þ

The initial mixed moments were then calculated using the Matlab

dlbquad subroutine, setting the minimum and maximum integral

bounds respectively at xmin=0 and xmax=6 mm for the particle size

and Pmin=0.00001 and Pmax=0.99999 for the fracture probability.

Some mixed moments are reported on Table 1.

A discrete solution of the population balance equationwas also used

to compare the results obtained with DQMOM varying the selected sets

or the quadrature order. For that purpose, discrete forms for the selec-

tion and breakage functions were introduced in the PBE as suggested

by Crespo [23]. The problem was then solved by considering one hun-

dred and fifty intervals for the particle size, ranging between 0 and

6 mm and one hundred and fifty intervals for the energy range. The en-

ergy rangewas chosen to obtain a breakage probability between 0 and 1

for each size class. More information on the discrete solution and nu-

merical details can be found in Frances and Liné [25].

3. Results and discussion

3.1. Effect of the selected set of mixed moments

Theoretically, the choice of moments can be done arbitrarily as long

as it results to a non-singular matrix derived from Eq. (9) whatever the

values of the weights and abscissas considered. General rules to select

an optimal set of moments were given by Fox [27]. Thus, it is recom-

mended to include all the lower-order mixed moments of a particular

global order n (a mixed moment mkl having a global order n defined

by n=k+ l) before adding moments of higher order and treating

equally all the internal coordinates. Following Fox [27], it is known

that in the general case (non-conditional properties), there is no opti-

mal set when the number of nodes is notably equal to 2 or 3. However,

although there is no optimal set in these cases, it is possible to select a

valid one, which allows building a successful quadrature approxima-

tion. For example, if N = 3 and if the number of internal coordinates is

equal to 2, nine mixed moments must be chosen to solve the system.

It is recommended to choose first all the moments with a global order

less than or equal to two, i.e. (m00,m10,m01,m20,m11,m02) and to select

for the remaining needed moments three moments among the four of

global order three. However, whatever the choice, the two internal co-

ordinates will not be treated equally. The only way to respect this last

condition is to choose two symmetric moments of global order three

and one symmetric moment (m22) of global order 4.

In this section the effect of the selected set ofmomentswithN=3on

the simulated results is discussed. Several sets, defined as valid ones as

discussed before, were tested. They are listed in Table 1 and in Table 2 as

well. Table 1 reports for the different selected sets, the initial values of

some mixed moments back calculated with the quadrature based for-

mula (Eq. (8)) in which were considered the weights and abscissas re-

covered for each selected set solving the non-linear system (Eq. (16))

and reported in Table 2. It can be observed that the initial values of

the mixed moments can slightly differ from the values approximated

by the double quad method and can also be different choosing one set

or another. All the mixed moments of a global order less or equal to 2

approximated by the double quadmethod or by the quadrature formula

whatever the selected set were identical. The differences become more

significant considering the mixed moments with a higher global order.

Moreover, it can also be noticed that the values of the mixed moments

(highlighted values in Table 1) calculated with the quadrature formula

are identical to the approximated values when these mixed moments

are included in the selected set. The corresponding weights and

abscissas obtained for the different selected sets are reported in

Table 2. It is again observed that the initial values of the weights and

abscissas are slightly different choosing one set or another. Using this

procedure the initial weights and abscissas, and consequently the initial

mixed moments, are not exactly the same, depending on the selected

set.

Another way to initialize the weights and abscissas is to consider an

oversized non-linear system (Eq. (16)) choosing a number of mixed

moments greater than 3N. For example, the Set 6 was constructed tak-

ing all the first mixed moments of interest having a global order equal

or less than 4 (15 mixed moments) as listed in Tables 1 and 2. In that

case, quite different values of initial weights and abscissas were ob-

tained (cf. Table 2), comparatively to the previous ones. The initial

mixed moments back calculated by the quadrature formula were glob-

ally close to themoments approximatedby thedouble quadmethod but

none of them was strictly identical to the approximated corresponding

value (cf. Table 1). Considering the initial values of weights and

abscissas reported on Table 2 for Set 6 and selecting then one set or an-

other (Set 1 to Set 5), the initial mixedmoments were obviously identi-

cal but some problems occurred using the DQMOM solving code

(negative abscissas recovered). So the first procedure to initialize the

code was applied in the following results.

The evolutions of the weights and abscissas along time are reported

on Fig. 1. Globally speaking, the change of the abscissas-size versus time

puts in evidence a decrease of the particle size which is obvious with a

pure breakage process. Even if it not fully true, if we consider in a sim-

plified view that the three nodes represent three sub-populations of

the particles, several observations can be done:

- The weight fraction of the coarser population (w3) is initially low

(around 10%) and it gradually decreases versus time to zero. The

grinding kinetics having an order 2 with respect to the particle size

(a0=2), the higher is the particle size, more rapid is the size de-

crease.

- Concerning the intermediate and finer sub-populations, their evolu-

tions are quite correlated. The sub-population of the intermediate-

size population first increases (may be due to the breakage of the

coarser particles) and then decreases to the benefit of the finer pop-

ulation. Inversely, the fraction of the fines seems to decrease during

the first minutes of the process before increasing and becoming the

main sub-population after ten minutes. In fact, during the first mi-

nutes of the process, the fines do not disappear but their character-

istic size (which can be approximated by x1) sharply decreases.

- The change of the abscissas-energy versus time is similar to that of

the abscissas-size since in the present case the energy needed for

breakage is correlated with the particle size. The higher the particle

size, the higher is the minimum energy for breakage in the studied

case.

Table 4

Evaluation of the process time-scale (in min) as function of the number of nodes

N τk1 τk2 τk3 τk4 δ1 δ2 δ3 δ4

N2 Set 1 33.3 18.5 13.7 11.6 20.8 15.9 – –

N3 Set 1 30.3 19.2 15.6 13.5 23.8 18.9 16.9 15.1

N4 Set 1 30.3 19.6 15.9 13.7 23.2 19.6 17.8 15.4



Moreover, the effect of the selected set of moments on the predic-

tions of the weights is not very important, remembering that slight dif-

ferences were already present at the initial time. The values of the

weights recovered for the different selected sets even seem to converge

along time, except for those obtained with the Set 5. Considering now

the changes of the size and energy abscissas versus time, it can be con-

cluded that the effect of the selected set of moments is rather weak for

the Sets 1, 2, 3 and 5. Somedifferences can be observed on the evolution

of the third abscissa. The difference ismore pronounced for the Set 4 but

this was already true at the initial time asmentioned before and it tends

to lessen versus time. It must be noticed that in Set 4 and Set 5 only one

puremoment of global order three (m30 or m03)was selected compared

to the other selected sets.

The change in the predictions of the first mixed moments for some

process times obtained with DQMOM for three nodes and different

sets are presented on Fig. 2(a–h). On Fig. 2a to d, the magnitude of the

calculatedmoments is put in evidence. On Fig. 2e to f, the corresponding

dimensionless moment values have been reported taking the first se-

lected set of moments as an arbitrary reference in order to emphasize

the effect of the selected set on the mixed moments at any time.

It can be observed on Fig. 2 that the moments of global order less

than or equal to 2, as well as the pure moments m30 and m40 are very

similar whatever the set chosen. More significant differences appear

for moments with a higher global order and more particularly for

those having a high order with respect to the second internal coordi-

nate: m03, m13, m04. These differences already exist at the initial time.

They are the consequence of the differences on the initial weights and

abscissas selecting one set or another as previously indicated and re-

ported in Table 2. The difference between the predictions slightly in-

creases versus time as it is put in evidence on dimensionless moments

reported on Fig. 2e to h. This result must be put in relation with the re-

spective range of variation of the two properties. Indeed, the particle

size varies between 0 and 6mm in that example, whereas the breakage

energy may take values greater than several tens of mJ. As a conse-

quence, pure moments of order 4 for the second property (m04) are

higher than six times the equivalent puremoments for thefirst property

(m40). It must again be noticed that the most discrepancy between the

predicted values occurs for those calculated using the Set 4, for which

the momentm03 is not included in the set.

Globally speaking, the values of the moments differ from one set to

another if they are not included in the set of moments used to saturate

the degrees of freedom. This limitation was already pointed out by

Marchisio and Fox [22]; including one moment of interest in the se-

lected set increases the accuracy of the prediction of this specific mo-

ment. The results presented here are also in agreement with Zucca

et al. observations [21]. Comparing the values of the moment m30 ob-

tained by a Monte Carlo method and a DQMOM method for various

sets of moments choosing the last three moments of global order 3,

global order 4 or global order 5 given the first six moments as it was

donehere, they concluded thatm30waswell predicted only by including

moments of global order three in themoment set. So in our example, ac-

curate predictions of moments of global order 4 could only be obtained

increasing the number of nodes. For N=4, twelve moments are needed

to solve the bivariate PBE. In that case, optimal sets can be used, given the

first ten moments as (m00,m10,m01,m20,m11,m02,m30,m21,m12,m03) and

choosing for the last two ones (m40,m04) or (m31,m13). In each of these

two selected sets, all the moments of order 0, 1 2 and 3moments are se-

lected and the two last ones allow treating equally both properties.

3.2. Effect of the number of nodes

The effect of the number of nodes forN equal to 2, 3, or 4was also an-

alyzed. In order to analyze the effect of the number of nodes on the cal-

culated results, the change in the predictions of the first mixedmoments

obtained with DQMOM with different number of nodes from 2 to 4 are

reported on Fig. 3 for some specific times. Several sets of moments

were tested for a number of nodes equal to 2, for which there is no opti-

mal set to choose. In that case several sets did not allow converging to-

wards a physical solution (prediction of negative abscissas for

example). The results reported here for N=2 were obtained choosing

the following set: Set 1=(m00,m10,m01,m11m21,m12). Choosing one op-

timal set or the other for N=4, the convergence towards physical solu-

tions was reached and the predictions were quite similar for all

moments having a global order less or equal to two and for pure mo-

mentswith respect to thefirst coordinate. As for the caseN=3, somedif-

ferences appear for moments with a higher global order especially for

those having a high order with respect to the second internal coordinate.

The results presented here for N=4 were obtained with the following

set: Set 1=(m00,m10,m01,m20,m11,m02,m30,m21,m12,m03,m31,m13).

Moreover, in the histograms of Fig. 3, the results obtained with the

Set 1=(m00,m10,m01,m20,m11,m02,m30,m03,m22) were considered to il-

lustrate the case N=3. Whatever the number the nodes, the selected

sets chosen to illustrate the effect ofNwere symmetric, allowing treating

both properties equally. Additionally, the results obtained with the dis-

crete solution of the PBE are also reported on Fig. 3.

Themixed moments of global order 0, 1 or 2 are quite similar what-

ever the number of nodes and equal to themoments calculated from the

discrete solution. Significant differences are observed, above all for a

number of nodes equal to 2 compared to the other cases. For N larger

than 2, an effect of the number of nodes on the results is only observed

for mixedmoments having a high order with respect to the second var-

iable. The accuracy of the predictions can also be evaluated comparing

the results with the moments calculated from the discrete solution.

Table 3 reports the errors (percentage of the difference between the

DQMOM and discrete solution over the discrete solution) on some

mixed moments calculated at the initial time and after 50 min of the

process. Best agreement between DQMOM and discrete solutions are

obtained with a number of nodes equal to 3 or 4 depending on the

mixed moment considered. In that case, the values calculated with the

discrete solution are over or under predicted with DQMOM with an

error less than 20% (excepted for m03 and m04). Remembering that the

discrete solute may also introduce approximations in the results be-

cause of a limited number of discrete intervals considered, the accuracy

of DQMOMmethod with a number of nodes equal to 3 or 4 may be said

reasonably correct.

In order to complete this analysis, the change of the predictions of

some specific mixed moments versus time have been reported on Fig.

4 for different values ofN. In the case ofN equal to 3, the results obtained

with the different sets discussed earlier have also been reported. It can

be concluded that the effect of number of nodes on the result is more

important than the effect of the selected set for a given number of

nodes. Indeed the curves corresponding to the different selected sets

for N=3 are placed between the ones obtained for N=2 and N=4.

Globally, the differences remain slight above all chosen a number of

nodes equal to 3 or 4.

Moreover, as reported by Frances and Liné [25], the change over the

firstminutes of the process of the dimensionlessmoments (obtained di-

viding the transient moments by their initial values) in a monovariate

model can be interpreted in order to evaluate the process time-scale.

It was shown that the size reduction time-scale was correlated with

the time-scale of the local disintegration phenomena (equal to 2 min

in the present studied case). A similar analysis can be done in a bivariate

model considering the pure mixed moments with respect to the two

properties. The following equations have be derived from the first five

minutes of the process:

mk0 tð Þ

mk0 0ð Þ
¼ exp '

t

τk

5 6

ð20Þ

m0l tð Þ

m0l 0ð Þ
¼ exp '

t

δl

5 6

ð21Þ



Fig. 5. Visualization on monovariate PSD of the couples (w,x) obtained by DQMOM with different numbers of nodes (N=2 dashdot red lines, N=3 solid black lines, N=4 dashed blue

lines).



in which τk and δl are the process time-scales respectively to the first

and the second property. The corresponding values are reported in

Table 4 for different numbers of nodes.

The decrease of pure mixedmoments related to the first internal co-

ordinate versus time is coherent with a particle size decrease (pure

breakage process). The time-scale of the process always exceeded the

time-scale of the local disintegration process. Furthermore, the values

of the size reduction time-scale are nearly the same when the number

of nodes are equal to 3 or 4 and slightly differ to the ones obtained

with a number of nodes equal to 2. Concerning the change versus

time of the dimensionless pure moments with respect to the second

property, their decrease is coherent with a decrease of the energy

needed for breakage as the particle size decreases. The values of the en-

ergy reduction time-scale recovered for a number of nodes equal to 3 or

4 are also rather similar. When the number of nodes is equal to 2, the

values obtained are significantly different for δ1 and δ2 and the

Eq. (21) is even no more valid for the dimensionless pure moments of

a global order greater than 2. The agreement of the results using N=

3 or 4 if thus also confirm considering the kinetic parameters of the

grinding process.

3.3. Visualization of DQMOMweights and abscissas on particle distribution

The DQMOM approach provides access to the change of the weights

and abscissas versus time. These data are not directly correlated to the

particle size-energy distribution but additional information can be

drawn visualizing theses values on the particle distribution for the dif-

ferent conditions. The monovariate particle distributions considering

the particle size as the property for the solid phase were obtained

using a discrete solution of the population balance equation. Using the

discrete solution of the particle size-energy distribution, the

monovariate distributions f(x, t) was then derived calculating the

mean values of the mass fractions over the energy range. The particle

size distributions are reported on Fig. 5 (on a linear scale from Fig. 5a

to d and on a semi-log scale from Fig. 5e to h) for four different charac-

teristic times. The couples (w,x) obtained with DQMOM and different

numbers of nodes (N=2,3 or 4) have also been reported on these

graphs. The particle size distributions (PSD) shown on Fig. 5a to d are

rather typical of a size-reduction process. Indeed, the PSD, which is ini-

tially narrow, spreads over time with the appearance of a sub-

population of fragments and then turns again monomodal as the sub-

population of the large particles disappears and the finer population be-

coming predominant. Whatever the number of nodes considered, the

values and the changes of the size-abscissas versus time are in good

agreement with the particle size curves. The abscissas with the highest

weights correspond to the modes of the distributions (more (or most)

probable particle size(s) for momomodal (or multimodal) distribu-

tions). It can be observed that the results obtained with a number of

nodes equal to 3 or 4 are rather similar. Indeed, two of the abscissas hav-

ing the highest weights have nearly the same values and the gap be-

tween them even decreases versus time. The “remaining part” of the

distributions is distributed on the third abscissa for N=3 or the third

and the fourth abscissas for N=4. It is also clear on these graphs that

a fourth abscissa is not really needed since the corresponding weight

is very lowwhatever the time considered and even when the PSD is bi-

modal. On the contrary, a number of nodes equal to two leads to differ-

ent values for the abscissas compared to the other cases and only two

abscissas also seem not to be enough to properly reproduce PSD.

Theoretically, the same analysis could be done on the particle energy

distributions. However, in that case, using the discrete solution of the

particle size-energy distribution, identical monovariate energy distribu-

tion curves f(e,t)would be obtainedwhatever the time considered since

the energy spectrum was assumed to be independent of time in the

present studied case. Indeed the dependence of the energy spectrum

on the particle size vanishes when mean values of the mass fractions

are calculated over the entire size range. On the opposite, on the bivar-

iate approach, the energy-abscissas change versus time because they

are linked to the particle size distribution through theGauss approxima-

tion and a direct comparison cannot be made.

So an alternative analysis is proposed on Fig. 6where the normalized

weighted abscissas (defined by the ratio of theweighted abscissa on the

sum of all the weighted abscissas) have been reported versus the pro-

cess time. It can be first observed on Fig. 6a that the normalized

weighted size curves predicted by DQMOMwith N=3 are rather simi-

lar to the first three normalized ones predicted withN=4. Two of these

curves have reflected patterns versus time. The first normalized

weighted size curve represents the evolution of the normalized length

of the intermediate-size population which increases first because of

the breakage of the coarser particles and decreases then producing

finer fragments. Inversely, the second normalized value expresses the

length of the finer population. It decreases first, because their character-

istic size sharply decreases, and increases then because of the increase of

the proportion of fine particles. The evolution of the length of the coarse

particles, always decreasing versus time, is represented by the third

curve when N=3 and by the third and the fourth ones when N=4.

As already mentioned above, the fourth term keeps low value all

along the process and it does not seem really useful in the breakage de-

scription. It is also clear on Fig. 6a that the normalized weighted size

values predicted with N=2 are completely different to the ones ob-

tained with a higher number of nodes.

Concerning the change versus time of the normalized weighted

energy reported on Fig. 6b, similar comments can be done, which is

not surprising since the energy needed for breakage is correlated with

the particle size. Although the differences between the curves predicted

with N=3 and N=4 seem to be more important than on Fig. 6a, the

same trends versus time and the same similarities taking N=3 or N=

Fig. 6. Effect of the number of nodes on normalized weighted size (a) and energy (b).



4 are observed. On the contrary, with N=2 the curves have complete

different patterns.

4. Conclusions

The DQMOM approach was used to solve a bivariate population bal-

ance equation applied to a grinding process inwhich the particles are si-

multaneously characterized by their size and the minimum energy

needed for their breakage. The mixed moments of the energy-size dis-

tribution are expressed by the quadrature form of the population den-

sity defined for a given number of nodes and incorporating the

weights and the abscissas defined for each solid property. We discuss

in this paper the effect of the number of nodes and the selected set of

moments needed to solve the system on the accuracy of the results.

The method allows predicting the transient change of the mixed mo-

ments whichwere compared to the values derived from a discrete solu-

tion of the PBE considering a finite number of size and energy intervals.

Themodelmust be initialized by theweights and abscissas correspond-

ing to the initial particle distribution. For that purpose, a squared mean

method has been implemented to solve the non-linear system consti-

tuted by the initial mixed moments. For a given number of nodes, the

values of the weights and abscissas can slightly differ depending on

the selected set of moments and consequently the initial mixed mo-

ments are not exactly the same. The choice of moments set also affects

the precision of the moments predicted versus time but above all the

values of the mixed moments for which the global order is high and

more particularly in the studied case for those having a high order

with respect to the second property. This result must be put in relation

with the respective range of variation of the two properties. The most

discrepancy between predicted values occurs for the moments which

are not included in the selected set. Moreover, the mixed moments of

global order 0, 1 or 2 are quite similar whatever the number of nodes

and equal to the moments calculated from the discrete solution. Signif-

icant differences are observed for themoments with a higher order and

above all for a number of nodes equal to 2. A good agreement between

DQMOM and discrete solutions are obtained with a number of nodes

equal to 3 or 4 depending on the mixed moment considered. It was

also concluded that the effect of the number of nodes on the results is

more important than the effect of the selected set for a fixed number

of nodes. Finally, it was observed that the values and the changes of

the size-abscissas versus time are well correlated with the particle size

distribution, calculated from the discrete solution, considering mean

values of themass fractions over the entire energy range. Two abscissas

(when the number of nodes is equal to 2) are not enough to represent

properly bimodal distributions but three abscissas for N=3 or N=4

give satisfactory results. The fourth abscissa for N=4 is not really

needed since the corresponding weight always remains very low. Con-

sequently the normalizedweighted size and energy curves predicted by

DQMOM with N=3 are rather similar to the first three normalized

curves predicted with N=4. That result confirms that the DQMOM ap-

proach, choosing a number of nodes equal to 3, associated with a smart

selection ofmoment set, incorporating allmoments of interest, is able to

predict in an efficient way the changes of a bivariate distribution during

a grinding process.
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