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! QMOM-based population balance model involving a fractal dimension.
! Aggregation and breakage kernels involving a fractal dimension.
! Simulation of the first 6 moments of the particle size distribution.
! Analytical relations between sink and source terms of the population balance equation.
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a b s t r a c t

An experimental and computational study of agglomeration and breakage processes for fully destabilized

latex particles under turbulent flow conditions in a jar is presented. The particle size distribution (PSD)

and the fractal dimension of flocs of latex particles were monitored using an on-line laser diffraction

technique. A population balance equation (PBE) was adapted to our problem by including the fractal

dimension in its formulation as well as in the aggregation and breakage kernels. The quadrature method

of moments was used for the resolution. The adjustment of 4 model parameters was then conducted on

the first 6 moments of the PSD for various mean shear rates. The model correctly predicts the evolution

of the first 6 moments calculated from the experimental PSD. The experimental results were adequately

simulated by a single set of adjusted parameters, proving the relevance of the dependency on the fractal

dimension and mean shear rate. A sensitivity analysis was performed on two main adjusted parameters

highlighting the major roles of (1) the power to which the mean shear rate is raised in the breakage

kernel and (2) the sizes of the colliding aggregates in the collision efficiency model. Finally, analytical

relations between the sink and source terms of the breakage or aggregation of the PBE were derived and

discussed, highlighting interesting features of the PBE model.

1. Introduction

Solid-liquid suspensions are processed in numerous industrial

applications, such as drinking water production, wastewater

treatments, synthesis of ceramics, and pharmaceutical product

formulation. The final properties of particulate systems generally

result from aggregation processes during which primary particles

stick together to form clusters, aggregates or flocs whose size can

eventually reach several millimeters. To better understand and

even predict floc formation, numerous models have been devel-

oped. One of the most common approaches for such systems is

based on the resolution of a Population Balance Equation (PBE)

(Marchisio and Fox, 2013) describing the evolution of dispersed

phase properties, called internal coordinates, due to several me-

chanisms such as aggregation, breakage, etc. These phenomena are

modeled by kernels depending on physicochemical and/or hy-

drodynamic phenomena.

Under shear conditions, several expressions have been derived

to describe aggregation of solid particles as well as breakage

events. Aggregation is the result of two events: the collision of

particles, which is characterized by a collision frequency induced

by hydrodynamics, and the attachment of particles, which is re-

presented by the collision efficiency because not all encounters are

necessarily successful. The efficiency is controlled by both the

hydrodynamics and physico-chemistry. Different expressions of

the aggregation efficiency can be found in the literature, mainly

depending on the sizes of the colliding aggregates (Han and
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Lawler, 1992; Selomulya et al., 2003). Although the aggregation

phenomena are rather well described in the literature, the

breakage phenomena are usually modeled in a simpler way, un-

doubtedly due to a restricted comprehension of the physics of the

process. Breakage is related to hydrodynamic stresses exerted by

the fluid on the aggregates and depends on their strengths and

structures. For dilute systems where the timescales of mixing are

much smaller than those of aggregation and breakage, Marchisio
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PBE Population Balance Equation

PSD Particle Size Distribution

QMOM Quadrature Method Of Moments



et al. (2006) showed that a volume average of the shear rate is

sufficient to properly depict the influence of the hydrodynamics

on breakage events. Otherwise, the effects of the spatial variations

of the hydrodynamics would have to be considered by coupling

the resolution of the PBE to a computational fluid dynamics code.

Once the agglomeration and breakage kernels are selected, the

PBE has to be solved. To that end, different methods can be ap-

plied. Among them, the earliest and most intuitive ones are the

discretization methods (see, e.g., Kumar and Ramkrishna, 1996)

that consist of splitting the state space (the space of diameters for

example) in a number of classes and integrating the population

balance over each of them. Other works employ probabilistic tools

to resolve a population balance with Monte Carlo methods (Tan-

don and Rosner, 1999; Lee and Matsoukas, 2000; Rosner and Yu,

2001). Although these methods are undoubtedly accurate, their

major drawback is their computational time, which can become

prohibitive as the number of classes increases. An alternative is

proposed by the moment methods that consist of following the

changes in the first moments of the distribution instead of the full

distribution. The number of equations is substantially reduced,

and so is the computational time, making it possible to consider a

coupling with computational fluid dynamics calculations (Prat and

Ducoste, 2006; Zucca et al., 2006). The Quadrature Method Of

Moments (QMOM) is now well known. It was first proposed by

McGraw (1997) for the solution of a population balance applied to

aerosols and then extended to aggregation and breakage problems

(Marchisio et al., 2003a, 2003b, 2003c; Grosch et al., 2007). The

vast majority of studies using QMOM for the simulation of a Par-

ticle Size Distribution (PSD) are usually validated against the ratio

of 2 moments corresponding to an average size having a physical

meaning such as D4,3 and easy to measure experimentally; how-

ever, limiting the output of the PBE model to only one global

parameter is disappointing.

In this paper, experimental flocculation results are briefly pre-

sented, and a PBE accounting for the fractal dimension of ag-

gregates is formulated. The first objective of this study is to de-

velop an aggregation-breakage model that accounts for aggregate

structure and depends on the hydrodynamic conditions, so that

changes in the hydrodynamic conditions do not involve adjusting

the model parameters. The second objective is to bring some

deeper insights into the consequences of the mathematical treat-

ments of the experimental data as well as the behavior of the

model and the associated terms of the PBE.

The time evolution of a latex microsphere suspension under

turbulent and fully destabilized conditions in a jar was monitored

using an on-line laser diffraction technique. It gives access to the

volumetric PSD and a global fractal dimension. Such a technique

has been previously used by several authors, to analyze off-line

and on-line aggregation processes, especially Selomulya et al.

(2004) and Rasteiro et al. (2008). The first 6 moments of the ex-

perimental number distribution of particle size were then calcu-

lated taking into account the fractal dimension. The fractal di-

mension was included in the PBE formulation for the time evo-

lution of the moments of the PSD as well as in the aggregation and

breakage kernels. The QMOM of order 3 was used for the resolu-

tion of the first 6 moment equations. Validation of the model was

then conducted on the 6 moments for various mean shear rates,

and a sensitivity analysis was performed on the model parameters.

Finally, the changes over time of the four terms of the PBE were

examined.

2. Experimental data

2.1. Experimental setup and protocol

The experimental setup is sketched in Fig. 1.

Flocculation experiments were conducted in a 1-L jar test

vessel and monitored by on-line light scattering analysis. The hy-

drodynamics in the reactor was studied by (Bouyer et al., 2001).

The mean values of the most important hydrodynamic character-

istics are presented in Table 1: N (rpm) is the tuned rotation speed

of the impeller, Re (-) is the Reynolds number defined as =
ν

Re
ND2

where D (m) is the impeller diameter and ν (m2 s"1) is the ki-

nematic viscosity, G (s"1) is the mean velocity gradient and η

(m) is the mean value of the Kolmogorov microscale. All experi-

ments were conducted under turbulent conditions.

Measurements of the volume-based size distribution of ag-

gregates were performed with the particle size analyzer Mas-

tersizer2000 (Malvern Instruments).

The particles used in this study were IDC™ monodispersed latex

beads purchased from Life Technologies™ (median diameter

2.15 mm). These beads were perfectly convenient for the modeling

framework presented in the next section. The critical coagulation

concentration (CCC) given by the supplier was 1 mol L"1 of mono-

valent cation. The suspensionwas destabilized by sodium chloride at

a concentration of 1.3 mol L"1 above the CCC, providing a liquid

phase density equal to that of the solid phase (1055 kg m"3) to
avoid sedimentation. The viscosity measured at 25 °C was µ = −10 3

Pa.s; therefore, the hydrodynamics were unchanged by the presence

of the salt. The water used was demineralized and degassed. The

saline solution was first poured into the reactor. Then, the rotation

speed and the circulation were set, and the latex beads were finally

injected in an area close to the impeller to favor quick mixing. The

solid volume fraction of the suspension was φ¼3.5 10"5. All ex-

periments were conducted at room temperature.

To monitor the evolution of the size distribution in the course

of the experiments, which lasted 4 h, samples were continuously

recycled after measurement so that the suspension volume re-

mained constant. The tank was customized with a tangential

outlet at the bottom, from which the suspension flowed toward

the measurement cell through flexible pipes. A peristaltic pump

located downstream of the measurement allowed draining of the

Fig. 1. Experimental apparatus.

Table 1

Main hydrodynamic properties in the jar test.

N (rpm) 60 90 150

Re (dimensionless) 5800 8700 14,000

G (s"1) 34 65 133

η (mm) 170 130 90



sampled suspension back into the tank, where it was reinjected in

the impeller zone through a fixed solid pipe. All pipes were made

as short as possible to minimize the residence time outside of the

tank (o20 s). The volume in the measurement loop was less than

5% of the total volume. The pump flow was chosen to provide a

mean velocity gradient in the flexible pipes equal to the one in the

tank. Thus, the changes in hydrodynamic conditions caused by the

measurement and recycling loop were minimized, and their con-

sequences were negligible for the purpose of this work.

2.2. Experimental results

According to Mie’s theory, the scattered light signal is inter-

preted as a volumetric PSD using the diameters of equivalent

spheres, referred to as CED (Circle Equivalent Diameter). The vo-

lume average value of the volume distribution as given by the

particle size analyzer software is plotted in Fig. 2. As is well

known, the average CED increases during flocculation (Oles, 1992).

The resulting size increases as the shear rate decreases. Obviously,

it also stabilizes faster when the shear rate is higher. Thus, a pla-

teau was reached within the experimental duration only in the

case of the highest shear rate.

The Particle Size Distributions (PSD) versus time are plotted in

Fig. 3 for each tested hydrodynamic condition. The PSD of the

primary particles is represented as a continuous line and was

measured without salt.

t0 corresponds to the first measurement done during the ex-

periments, that is a few seconds after the injection of the particles

in the jar. The mode of the PSD measured at t0 is reported on Fig. 4

as a function of the applied mean shear rate G. It can be concluded

from this graph that the aggregation of the primary particles is

rather rapid since aggregates are formed quasi-instantaneously

and the aggregate size is controlled by the hydrodynamics even in

the early stage process.

As the process time increases, the mode of the PSD increases as

G decreases. As previously mentioned, the floc size is correlated to

hydrodynamics and especially to the mean shear rate G. This

finding is in accordance with previous works (Bouyer et al., 2001,

2004). Moreover for = −G 34 s 1 the size distributions are clearly

bimodal, showing a main population constituted by large flocs and

a second population corresponding to tiny aggregates. The

spreading of the PSD is related to the heterogeneity of the hy-

drodynamics in the mixing tank. Indeed, as shown by Bouyer et al.,

2004, 2005, the more G is increased, the more homogeneous the

mixing is and the more narrowed the distribution is. As a con-

sequence, the full PSD is controlled by the hydrodynamics.

Looking more precisely on the volume based PSD versus time

reported on Fig. 3, it can be seen that the steady state seems to be

reached at G¼133 s"1 as the last two PSD are almost super-

imposed, but the PSD for G¼34 s"1 was still evolving after 4 h of

experiments. This point will be discussed in the later sections.

Considering aggregates made of identical primary particles, the

aggregate volume v and the aggregate size L are related through

: = 34 s
-1

: = 65 s
-11

: = 133 s
-1

Fig. 2. Average value of the Circle Equivalent Diameter versus time for 3 hydro-

dynamic conditions.

(a) GG = 34 s
-1
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: t0 + 1

(
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(b) G = 65 s
-1

: t0 + 2 h

1

: t0
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: t0 + 15 min

: t0 + 4 ho

(c) G = 13

n

ours 

33 s
-1

Fig. 3. Volume-based PSD versus time for 3 hydrodynamic conditions.



the fractal dimension Df defined by Eq. (1) where v0 is the primary

particle volume and L0 is the primary particle diameter ( Φ=v L0 0 0
3

where Φ = π
0 6

in the case of spherical primary particles).

=
( )

⎛

⎝
⎜

⎞

⎠
⎟

v

v

L

L 1

D

0 0

f

The fractal dimension is an indicator of the aggregate structure,

its value ranges between 1 (linear) and 3 (spherical, non-porous

particle).

Experimentally, it was possible to obtain global information

about the particle structure by determining a scaling exponent or

fractal dimension Df from the slope of a log-log plot of the relative

scattering signal I versus the modulus of the scattering wave

vector q or the scattering angle in the power law regime (Spicer

et al., 1998; Sorensen, 2001; Ehrl et al., 2008). Although our con-

ditions do not fulfill the Rayleigh – Debye – Gans theory since the

size of the primary particles is larger than the laser wavelength, it

can be noticed that for the larger scattering angles there is only

one single slope. Thus, the fractal dimension Df has been ap-

proximated to the scaling exponent that is the slope of the scat-

tering plot for angles lying between 3° and 30°. During the first

hour, the aggregates were only composed of a few primary par-

ticles (as can be deduced from Fig. 2); therefore, the obtained Df

values may not be relevant (Ehrl et al. (2008)). After the first hour,

Df remained almost unchanged over time so that constant values

of Df were imposed in the numerical part of the study corre-

sponding to the final values (after 4 h) of Df . Those values are

given in Table 2.

As shown by Oles (1992) and Selomulya et al. (2001), Df in-

creases with the average shear rate. According to the previous

authors, for very low shear stress, aggregates withstand the hy-

drodynamic shear forces and show open structures. As the shear

stress increases, the restructuring of aggregates, most likely due to

a more frequent exposure to the high shear zone near the impeller

(Bouyer et al., 2005) is observed leading to more compact struc-

tures and thus to higher values of Df .
As the modeling part of study will be performed with QMOM, it

is necessary to compute the 6 moments of the PSD from the ex-

perimental data. The particle size analyzer provides a volume
fraction ( ̅ )v Li of particles within a size range [ ]+L ; Li i 1 represented

by the size ̅Li , which is the geometric mean of the size range. The
moment of order k of a size distribution is generally expressed as a

function of the density function ( )n L t, as defined by Eq. (2).

∫( ) ( )=
( )

∞
m t L n L t dL,

2k
k

0

The conversion of ( ̅ )v Li to the number density ( ̅ )n Li was per-

formed accounting for Df as follows. By definition, the number

density can be expressed as Eq. (3), where Ni is the number (per

suspension volume unit) of aggregates in the size range [ ]+L ; Li i 1 .

( )̅ =
− ( )+

n L
N

L L 3
i

i

i i1

The number Ni can be deduced from the volume occupied by

the particles in the size range divided by the representative vo-
lume of this size range ̅Vi (Eq. (4)),

( )φ
=

̅

̅ ( )
N

v L

V 4
i

i

i

where φ is the volume fraction of particles. The representative
volume ̅Vi is related to the representative diameter ̅Li according to

the fractal relation Eq. (1).

From the previous equations, the number density is obtained as

( ) ( )
( )

φ
̅ =

̅

Φ ̅ − ( )+

n L
v L

L L L 5
i

i

i
D

i i1
f

where

Φ =
Φ

( )
−

L 6
D

0

0

3 f

Finally, the experimental moments of the number distribution

are evaluated as

( )( )
( )( )

∑
φ

=
−

Φ − + ( )

+
+ +

+

m
v L L L

L L L k 1 7
k exp

i

i i
k

i
k

i
D

i i

,
1
1 1

1
f

To highlight the influence of the introduction of Df in the ex-

perimental moments, Fig. 5 shows the evolution of the experi-

mental moments normalized by their initial value for the case
=G 65s-1. The results are compared on each graph with the ex-

perimental value =D 1.9f to the one that would be obtained with

the assumption =D 3f . Fig. 5 shows that the sensitivity of the mo-

ments to Df increases with their order and that the moments of

order <k Df decrease over time while the moments of order >k Df

increase. By definition, the zero-order moment is the total number

of particles. As aggregation occurs, the total number of particles

decreases (Fig. 5(a)). The first-order moment corresponds to the

total size, which also decreases over time (Fig. 5(b)). Usually, when

=D 3f , the 3rd order moment is related to the total mass (assuming
a constant material density) and therefore is expected to be con-

stant (Fig. 5(d)). Taking into account the fractal dimension for the

computation of the experimental moments, the conservation of

the total mass is verified for = =k D 2f . When Df is close to 2, the

2nd order moment is thus almost constant (Fig. 5(c)). A focus on

the largest particles of the population can be made with the mo-

ments of order ≥k 3. During flocculation, aggregates grow over

time leading naturally to an increase in the high order moments.

: Mode of the PSD at t0

: Mode of the PSD at tf

1

10

100

10 100 1000

S
iz

e
 (

µ
m

)

G (s-1)

Fig. 4. Characteristic sizes of the aggregates at t0 and tf.

Table 2

Experimental values of Df used in the model.

G (s"1) 34 65 133

Df (dimensionless) 1.75 1.9 1.95



Changing the fractal dimensions Df to values other than 3 sig-

nificantly changes the values and physical meanings of the mo-

ments. The impact of the fractal dimension on the estimation of

the usual ratios Dp q, defined by Eq. (8), which still have the di-

mension of the characteristic diameters, is now addressed.

= = +
( )

D
m

m
p q; 1

8
p q

p

q
,

The most current Dp q, are plotted on Fig. 6. D1,0 is the number

average diameter while D3,2 and D4,3 are interpreted as the surface
and volume average diameter, respectively, when the assumption

=D 3f is valid. As can be expected, Dp q, are higher when evaluated

with a lower Df . Indeed, a lower fractal dimension implies looser

aggregates that appear larger for a given amount of solid matter.

3. Population balance model

3.1. Introduction of the fractal dimension in a diameter-based po-

pulation balance

The continuous population balance equation for aggregation

and breakage in a homogeneous system describes the time

evolution of the number density of particle volume as Eqs. (9)–(13)

(Kumar and Ramkrishna, 1996), where ( )′ v t,a and ′ ( )v t,b are

the birth terms due to aggregation and breakage, respectively, and

similarly ( )′ v t,a and ( )′ v t,b are the death terms due to ag-

gregation and breakage.

( )( )
( ) ( ) ( ) ( )

∂ ′

∂
= ′ − ′ + ′ − ′ ( )

n v t

t
v t v t v t v t

,
, , , ,

9a a b b

∫( ) ( ) ( )α′ = ′( − ) ′( − ) ′ − ′ ( )
v t v u u C v u u n v u t n u t du,

1

2
, , , ,

10a

v

0

∫( ) ( ( )α′ = ′ ) ′( ) ′( ) ′ ( )

∞
v t n v t v u C v u n u t du, , , , ,

11a
0

∫( ) ( )β′ = ′( ) ′( ) ′ ( )

∞
v t v u B u n u t du, , ,

12b
v

( )′ = ′( ) ′( ) ( )v t B v n v t, , 13b

In these equations, the prime symbol (′) indicates functions of

particle volume; ′( )n v t, is the number density of particles of vo-
lume v at time t; ′( )C u v, is the collision kernel (m3 s"1) modeling
the collision frequency of particles of volumes u and v; α′( )u v, is

(a) 

(d) 

(b) 

(e) 

:  = 1.9

:  = 3

9

(c) 

(f) 

Fig. 5. Influence of Df on the changes of
( )
( )

mk t

mk 0
as a function of time for G¼65 s"1.



the collision efficiency i.e., the rate of collisions that effectively

lead to aggregation; ′( )B v is the breakage kernel representing the
disruption frequency of a particle of volume v (s"1) and β′( )v u, is

the fragment distribution function describing the number density

of particles of volume v produced by the breakage of a particle of

volume u. The aggregation and breakage functions are to be

modeled according to physical considerations that depend on the

experimental system and will be detailed in the next section.

The general aggregation-breakage equation (Eq. (9)) describes

the evolution of the volume-based number density function and

must fulfill the mass conservation constraint (or the volume con-

servation if a constant particle density is considered). Indeed,

whatever the type of event (aggregation or breakage), the mass (or

the volume) of the parent aggregate(s) must be strictly equal to

the mass of the daughter particle(s). It is possible to reformulate

the population balance in terms of particle size (length), providing

a relation between particle size and volume given by the fractal

relation (Eq. (1)). The population balance is reformulated below as

the evolution of the diameter-based number density function,

involving the aggregate fractal dimension that is introduced by the

conversion from volume to diameter. This formulation is a gen-

eralization of the one proposed by (Marchisio et al., 2003a) that

was written in the particular case =D 3f ; such a generalization to

≠D 3f was suggested by (Wang et al., 2005).
Let the fractal dimension (Eq. (1)) be rewritten as Eq. (14)

where Φ Φ=
−

L
D

0 0

3 f . Then, the relations between the differential

quantities (Eq. (15)) are derived, and the relation between the

volume-based number density function ′( )n v t, and the diameter-

based number density function ( )n L t, are given as Eq. (16).

Φ= ( )v L 14Df

Φ
Φ

= ⟺ =
( )

−
−

dv D L dL dL
dv

D L 15
f

D

f
D

1
1

f
f

( ) ( )
Φ

′ =
( )−

n v t
n L t

D L
,

,

16f
D 1f

The collision frequency, the collision efficiency and the break-

age kernels are then written as functions of sizes (L or λ) instead of

volumes (v or u, respectively) according to Eqs. (17)–(19).

( )Φ Φλ λ′( )= ′ = ( ) ( )C v u C L C L, , , 17
D Df f

( )α α Φ Φλ α λ′( )= ′ = ( ) ( )v u L L, , , 18
D Df f

( )Φ′( )= ′ = ( ) ( )B v B L B L 19
Df

The fragment distribution function is subjected to the same

transformation as the number density function, leading to Eq. (20).

β
β λ

Φ
′( )=

( )

( )−
v u

L

D L
,

,

20f
D 1f

The diameter-based (or length-based) population balance

equation is eventually obtained as Eqs. (21)–(25). Note that the

term of birth due to aggregation ( )L t,a involves a conversion

from a volume difference ( − )v u to the corresponding length

λ( − )LDf Df Df

1

.

( ) ( ) ( )∂( ( ))
∂

= − + − ( )
( )

n L t

t
L t L t L t L t

,
, , , ,

21a a b b

∫( )

( )

λ λ λ

λ λ λ

= ( − ) ( − )

( − )
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−
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∫( ) ( ) ( )λ λ λ= ( )
( )

∞
L t n L t Q L n t d, , , ,

23a
0

∫( ) ( ) ( ) ( )β λ λ λ λ=
( )

∞
L t L B n t d, , ,

24b
L

( ) ( )= ( ) ( )L t B L n L t, , 25b

where ( )λQ L, is the aggregation kernel defined as:

( )λ λ α λ= ( ) ( ) ( )Q L C L L, , , 26

In this work, a population balance equation that accounts for

the aggregate structure through the fractal dimension Df directly

introduced by the volume to length conversion is proposed

without any additional hypothesis. A similar methodology can be

conducted for the expression of agglomeration and breakage

kernels.

3.2. Introduction of the fractal dimension in breakage and aggrega-

tion kernels

3.2.1. Breakage model

The breakage kernel ( )B L is the breakage frequency of particles

of size L. Several expressions for this function were proposed in

the literature, among which two main forms can be retained

=1,9 

: D1,0

: D3,2

: D4,3

= 3
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: D4,3

0

2

3

Fig. 6. Influence of Df on the changes of some characteristic diameters as a func-

tion of time (G¼65 s"1).



(Marchisio and Fox, 2013): the exponential form (Delichatsios and

Probstein, 1976; Kusters, 1991; Oles, 1992; Kusters et al., 1997;

Wang et al., 2005; Sang and Englezos, 2012) and the power law

kernel (Valentas et al., 1966; Ramkrishna, 1974; Pandya and

Spielman, 1983; Wang et al., 2005; Marchisio et al., 2006; Soos

et al., 2006; Soos et al., 2007). The latter is generally expressed as

( )=B L C LC1 2 where C1 and C2 are constants. The first parameter C1

usually includes hydrodynamic characteristics as ∝C GC
1 3 (Wang

et al., 2005; Marchisio et al., 2006; M. Soos et al., 2007) or

ε νC C C
1

4 5 (Kramer and Clark, 1999; Marchisio et al., 2003b). In the

present study, the breakage frequency was expressed as

( )=
( )

⎛

⎝
⎜

⎞

⎠
⎟B L aG

L

L 27
b

c

0

where a and b are adjusted parameters and = + −c D3
D

f3

f . The

physical meaning of this exponent is to be understood as follows.

According to the fractal relation (Eq. (1)), ( )LL
Df

0
is proportional to

the solid volume; consequently, ( )LL
D /3f

0
is proportional to the

diameter of the mass-equivalent sphere. The ratio

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

L

L

Df

L

L

0

0

3
is the solid

volume divided by the circumscribed sphere volume so it can be

interpreted as a density (Oles, 1992). Therefore,

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

L

L

L

L

Df

0

3

0

can be in-

terpreted as the inverse of density. The breakage kernel for-

mulated here shows a dependence on the hydrodynamics re-

presented by the mean shear rate and a double dependence on the

aggregate properties: on the one hand a characteristic length re-

presentative of the aggregate mass (the larger the aggregate, the

more likely to break), on the other hand, a structure property re-

presentative of the density (the looser the aggregate, the more

likely to break).

A breakage event represents the splitting of an aggregate into

smaller aggregates assuming mass conservation. The fragmenta-

tion distribution describes how the mass is distributed over the

daughter particles. Among the most currently applied distribution

functions (see, e.g., Marchisio et al., 2003a), one can find either

some particular mechanisms such as symmetric fragmentation or

erosion or continuous functions such as the uniform distribution

of daughter particles. With no physical assumption on a specific

breakage mode, a uniform fragmentation distribution was used in

this work, meaning that all possibilities are equally probable.

When the particle volume is used as an internal coordinate, it is

expressed as Eq. (28) (Kumar and Ramkrishna, 1996).

β′( )= <
( )

v u
u

v u,
2
,

28

To be used in a diameter-based population balance, the pre-

viously mentioned conversion (Eq. (20)) is applied, leading to Eq.

(29).

( )β λ
λ

λ′ = <
( )

−

L
D L

L,
2

,
29

f
D

D

1f

f

3.2.2. Aggregation model

The aggregation kernel λ( )Q L, describes the aggregation fre-

quency between two particles of given sizes L and λ and involves

the collision frequency ( )λC L, and the collision efficiency ( )α λL, .

Several expressions of the collision frequency ( )λC L, can be found

depending on the aggregation regime considered that a relative

velocity between particles must exist to allow their collision. It can

result from Brownian (diffusion) motion, differential sedimenta-

tion or shear flow. In this work, when the primary particle dia-

meter is 2.15 mm, the Peclet number that compares the Brownian

diffusion time ( )πμ θ⎜ ⎟
⎛
⎝

⎞
⎠

k6 /
L

B2

3
to the time scale of shear flow ( )G1/

is high (above 150), indicating that the Brownian motion is neg-

ligible (Cloitre, 2010). The differential sedimentation was reduced

by setting the fluid density equal to the solid one through the

choice of salt concentration. Therefore, the relative motion of the

aggregates is mainly due to fluid velocity gradients. In this case,

with the aggregates being smaller than the Kolmogorov micro-

scale, a classical orthokinetic kernel written as Eq. (30) was cho-

sen, where ( )λ+L is the diameter of the collision sphere and G

stands for the mean shear rate.

( ) ( )λ λ= +
( )

C L
G

L,
6 30

3

The collision efficiency is usually introduced as a correction

factor, accounting for the fact that the aggregation frequency is

actually lower than the collision frequency (Adachi et al., 1994).

Therefore, the collision efficiency can be understood as the ratio of

collision events leading to aggregation events. It can be used as a

fitting parameter (Soos et al., 2006) thus independent from the

sizes of the aggregating particles. However, many authors worked

on establishing collision efficiency models based on physical

considerations.

The curvilinear approach (Han and Lawler, 1992) was devel-

oped as a complement to the rectilinear approach that led to the

aggregation kernel expression, based on isolated particle trajec-

tory calculations (Adachi et al., 1994). When two particles en-

counter each other, hydrodynamic interactions induce trajectory

modifications. Some authors studied the trajectories of two iden-

tical solid spheres approaching one another (Van de Ven and

Hunter, 1977). Adler addressed the issues of the sizes (Adler,

1981b) and permeability (Adler, 1981a) of particles. By calculating

trajectories of impermeable solid spheres of different sizes, it was

shown that homocoagulation is generally more favorable than

heterocoagulation, i.e., the more different the particle sizes are, the

less efficient the collision will be. Considering aggregate perme-

ability, the flow penetration into the aggregate reduces the pre-

viously mentioned trajectory modifications. Torres et al. (1991)

and Kusters et al. (1997) proposed accounting for a potential floc

porosity to evaluate the aggregation efficiency. Kusters et al.

(1997) distinguished three cases: solid (nonporous) particles,

porous impermeable flocs and porous permeable flocs, with por-

osity being represented by a fractal dimension. The latter are de-

scribed by the shell-core model, representing a solid core whose

radius is used for the trajectory calculation, surrounded by a

permeable shell used to evaluate the collision radius. Collision

efficiency in each of these three cases was evaluated as a function

of the size ratio between the two particles. The results from this

set of calculations offered a strong dependence of the collision

efficiency on the structure (porosity) and the sizes. Selomulya et al.

(2003) thereafter proposed a collision efficiency model given by

Eq. (31).

( )α λ α=

− −

( ) ( )

⎜ ⎟

⎛

⎝
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⎠
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n n
, .

1

. 31
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i j
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In this expression, the aggregate size is expressed as a mass,

represented by the number of primary particles composing the

aggregates, ni and nj defined as

( ) ( )λ λ
= =
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The efficiency collision involves three parameters α x,max and y.

The collision efficiency is all the more high when aggregates are

small, which is reflected by the product n ni j and the parameter y.

The maximum value of α is reached when two primary particles

encounter ( = =n n 1i j ) and is equal to a third adjustable parameter

αmax (ranging between 0 and 1). In this study, the NaCl con-

centration being above the CCC, the energy barrier is thus com-

pletely overcome, and it can be thought that the aggregation of

primary particles will always be successful. Therefore, the max-

imum efficiency αmax was set to 1. Moreover, α is higher when the

colliding aggregates have similar sizes, leading to a preference of

homocoagulation versus heterocoagulation. This is accounted for

by the ratio n n/i j and the parameter x. This partially empirical

model was shown to adequately simulate latex flocculation (Se-

lomulya et al., 2003; Bonanomi et al., 2004; Soos et al., 2007;

Antunes et al., 2010; Jeldres et al., 2015).

In the present work, the collision efficiency model proposed by

Selomulya et al. (Eq. (31)) was considered. The fractal dimension

was used to evaluate the number of primary particles (Eq. (32)).

The collision efficiency was therefore calculated in such a way that

a dependency on the aggregate structure was considered. The

parameters x and y were adjusted to fit the experimental data (see

section 4.1, =x 0.014 and =y 0.6). The resulting values of the

collision efficiency for homocoagulation ( =L L1 2) used in the pre-

sent model are plotted in Fig. 7 for different values of Df . The range

of sizes corresponds to those of the experiments (Fig. 3). The

collision efficiency is maximum for the collision of primary par-

ticles ( ( )α α= =L L, 1max0 0 ) and sharply decreases as the size of ag-

gregates increases.

In the case of heterocoagulation, Fig. 8 illustrates the isovalues

of ( )α λL, . The graphs are obviously symmetrical because

( )α λ α λ= ( )L L, , . The aggregation efficiency values for homo-

coagulation are located on the first bisector. The higher values are

obtained in the bottom left corner of the graphs because this lo-

cation corresponds to homocoagulation between primary parti-

cles. The fast decreasing of α λ( )L, with increasing sizes is due to

the high weight y, while the shape of the lines depends on the pair

of parameters ( )x y, . Due to the adjusted parameters, a much

higher weight is given to the mass product ( = )y 0. 6 than to the

mass ratio ( =x 0. 014). The iso-lines are therefore perpendicular to

the first bisector over a wide region, where the mass ratio has

practically no influence (this trend is observed when y is sig-

nificantly higher than x, whatever their absolute values). If a re-

latively higher weight was set to the size ratio, the lines would be

shaped as more elongated lobes. The difference between the three

graphs of Fig. 8 is solely due to the fractal dimension. When Df

increases, the number of primary particles in an aggregate of a

given size also increases so the aggregation efficiency decreases.

Therefore, the aggregation efficiency values for fractal aggregates

are much higher than those of spherical particles.

In the present model, α λ( )L, varies by three orders of magni-

tude in the experimentally covered size range, indicating a very

strong dependency on the size. It was indeed impossible to fit the

experimental data with a constant value of the collision efficiency.

For the fractal dimension, the influence of the collision efficiency is

also noticeable: more porous particles aggregate more easily.

3.3. Moment transformation

The Quadrature Method of Moment (QMOM) is based on the

quadrature approximation (Eq. (33)) (McGraw, 1997) where ( )w ti

is the weight associated with the abscissa ( )L ti , leading to the

moment approximation (Eq. (34)).

( ) ∑ δ≈ ( ) ( − )
( )=

n L t w t L L,
33i

N

i i

1

q

: =1,7 : ==1,9 : =1,95  : =3 

Fig. 7. Collision efficiency ( )α L L, for 4 values of ( )= =D x ;y0.014 0.6f .

Fig. 8. Iso-values of the collision efficiency
( )α

α

L L

max

1, 2 obtained with different values of ( )= =D x ;y0.014 0.6f .



Table 3

Overview of the aggregation-breakage model.

Aggregation model
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Fig. 9. Time evolution of normalized experimental and numerical moments for G¼65 s"1 (Df ¼1.9).



( ) ( )∑≈ ( )
( )=

m t w t L t
34
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q

where Nq is the order of the method.
Implementing the moment approximation in the continuous

PBE (Eq. (21)), the discretized moment equations are finally ob-

tained (Eq. (36)) where β ̅i
k is the kth order moment of the fragment

distribution function:
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∞
L L L dL,
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The expressions of the aggregation (Q ij) and breakage (Bi and

β ̅i
k ) kernels used in this study are summarized in Table 3.

The numerical resolution of the moment equations (Eq. (36)) is

accomplished by using the product-difference algorithm (Gordon,

1968; Marchisio et al., 2003b). The QMOM with order =N 3q was

proven accurate for aggregation-breakage problems (Marchisio

et al., 2003a). It allows following the evolution of the first six

moments of the distribution.

4.1. Numerical methods and results

The QMOM was implemented in Matlab using three nodes to

reproduce the evolution of the first six moments of the size dis-

tribution as a function of time. The initial conditions of the six

moments were obtained through the experimental measure after

the injection of particles into the jar test. The numerical solution

required the adjustment of four parameters a, b, x and y. The first

step of the simulation consisted of focusing on the early stage of

flocculation when mainly agglomeration occurred. Indeed, be-

cause the flocs were tiny, they were not subjected to rupture, and

the breakage terms of the PBE were small compared to the ag-

glomeration ones and could thus be neglected. By assuming that a

and b were equal to zero at the beginning of the process, ap-

proximate values of parameters x and y included in the agglom-

eration efficiency could be determined. x and y mainly influenced

the slope of the exponential growth stage (not shown here). In a

second step, keeping x and y fixed, the parameters a and b were

adjusted to handle the steady-state moments. Because breakage

mainly impacts large aggregates, this fitting was mostly performed

on the high order moments (kZ3). To support the above meth-

odology, Fig. 9 illustrates the change in the first six normalized

moments versus time. Here, the values derived from the experi-

mental data and the simulated ones are compared taking into

Fig. 10. Change over time of normalized experimental and simulated moments for G¼34 s"1 (Df ¼1.75).

4. Results and discussion



account or ignoring the breakage terms. During approximatively

the first hour of the process, the experimental moments are

equally fitted with or without the breakage events but the gap is

increasing then more and more if the rupture is neglected. From a

general point of view, as expected, the larger a and b are, the more

rapidly the steady-state moments are reached.

After these two preliminary steps, a set of optimized fitting

parameters was obtained through a Matlab function of optimiza-

tion based on minimizing differences between the six experi-

mental and numerical moments. Finally, the set of optimized fit-

ting parameters was
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In Figs. 10–12, the evolutions of the six moments normalized by

their initial value are plotted against time for the three mean shear

rates experienced.

Whatever the shear rate, the parameters enabled fitting the

order of magnitude of the experimental data. The special feature of

the experimental results was their very slow evolution. The higher

the k, the lower the G, and the slower the evolution of the size. For

G¼133 s"1; low order moments quickly reached a plateau. In

contrast, for G¼34 s"1, the six moments were still evolving after

4 h. This behavior was particularly difficult to model. The first si-

mulations were drawn using a constant but adjustable efficiency,

coupled with various models of breakage; all failed to reproduce

this slow dynamics. Indeed, most of the models "naturally"

brought a relatively fast evolution towards a steady state. Taking

into account the sizes and the ratio between the sizes of the ag-

gregates colliding, only the model of Selomulya was able to cor-

rectly reproduce this slow evolution of moments, with different

dynamics according to the velocity gradient. Fitting the six mo-

ments allows the behavior of the entire population to be tracked.

However, from a numerical point of view, it was rather proble-

matic to reach a satisfying fit for each of the six moments.

More generally, numerical model predictions are validated

considering the changes versus time of some characteristic aver-

age sizes such as D1,0 or D4,3. The values of D D, ,1,0 3,2 and D4,3

derived from the experimental data or calculated using the model

with the optimized set of parameters are reported in Fig. 13.

The characteristic average sizes were quite satisfactory but re-

mained less correctly predicted than the six moments of the dis-

tribution. From a general point of view, the evaluations of D1,0 was
of the right order of magnitude but the precision was lower than

expected, most likely due to the conversion in the number of the

native volume distribution. Predictions of D3,2 and D4,3 look better.
However, because the size volume distributions were mostly bi-

modal, global parameters such as Dp q, do not correctly represent

the entire population.

4.2. Precision of the model

To quantify the precision of the model, the Goodness of Fit

(GoF) used by several authors (Biggs and Lant, 2002; Antunes

Fig. 11. Change over time of normalized experimental and simulated moments for G¼65 s"1(Df ¼1.9).



Fig. 12. Change over time of normalized experimental and simulated moments for G¼133 s"1 (Df ¼1.95).

Fig. 13. Change over time of experimental and numerical Dp,q.



et al., 2010; Jeldres et al., 2015) was adapted and calculated. In-

deed, GoF was calculated including the 6 moments of the size

distributions without giving weight to one moment k over an-

other.

( ) ∑ σ
= ̅ −

̅ ( )=

GoF
m

m
% 100.

40k

k k

k0

5

where ̅mk is the average of all the data values over the process

time and σk is the standard error.

A GoF of 100% would represent a perfect fit of the model to the

experimental results for the six moments of the distribution. With

the set of fitting parameters presented above, the global GoF was

determined to be greater than 85% as seen in Table 4.

The quality of the fitting was higher for the moments of order

1–4 than for m0 and m5 in accordance with Figs. 10–12. This in-

dicates that the model provides a rather good estimate of the

flocculation dynamics.

4.3. Sensitivity analysis

By varying the 4 parameters independently, a first sensitivity

analysis of the model can be drawn. The influence of each para-

meter on the GoF is shown on Fig. 14 for the 3 experimental

conditions. The plotted values of GoF were obtained by varying

one parameter by approximately 20% of its optimized value, while

the three other were kept constant.

Whatever the shear rate, the GoF displays similar tendencies.

Fig. 14 shows a higher sensitivity of the model to b and y com-

pared to a and x in the vicinity of the optimized values. This can be

understood from a mathematical point of view. Indeed, regarding

the breakage kernel (Eq. (27)), a is a multiplying factor while b is

an exponent. Regarding the aggregation efficiency (Eq. (31)), both

x and y are exponents, but the value of y being much higher than

x makes the 20% variation of x poorly significant. Thus, by keeping

a and x fixed to aopt and xopt , a more detailed sensitivity analysis

can be drawn. Fig. 15 provides the sensitivity analysis on moment

predictions for values of b varying by 10%.

The parameter b played an important role mainly over the

moments of high order ( k42), that is, on rather large particles

(Fig. 15(c)–(f)). This effect was all the more important as G was

high (not shown in the figures). An increase of b favored breakage

events, thus the moments of high order were lower for =b b1.1 opt

leading to smaller aggregates and thus a higher number of parti-

cles in the entire population. Indeed, the higher b was, the higher

m0 and m1 were. The parameter b also played a role in the time
needed to reach the steady state: the higher b was, the quicker the

steady state seemed to be reached.

Fig. 16 presents a similar sensitivity analysis for y.

Increasing y led to a reduction in the agglomeration efficiency,

specifically the higher the sizes of the colliding aggregates, the

lower α is. Therefore, as y increased, m0 and the total length (m1)

slightly increased whereas moments of orders higher than 2 de-

creased meaning that formed flocs are less numerous and smaller

(Fig. 16(a) and (b)). To better understand their sensitivities, the

analysis of each of the 4 terms of the PBE is performed in the next

section.

4.4. Evolution of source and sink terms of the PBE

The time evolution of the moments of the distribution brings in

four terms; for each phenomenon (agglomeration and breakage),

both a sink (or death) and a source (or birth) term are involved as

shown in Eq. (41).

= − + −
( )

dm

dt
B D B D

41
k

a a b b

The change over time of each term of the PBE is shown in

Fig. 17.

For the first two moments (m0 and m1), the agglomeration sink

term is dominant compared to the agglomeration source term

(Fig. 17(a) and (b)). This can be explained by the facts that (1) small

particles are numerous and (2) their collision efficiency is high

(Fig. 8). The breakage terms behave just the opposite and are

nearly constant. As expected at the beginning of the experiment,

the weights of the agglomeration terms were high compared to

those of the breakage terms, validating the way we conducted the

first step in the research of fitting parameters. Surprisingly, at the

end of the experiment, the agglomeration source termwas close to

Fig. 14. Evolution of GoF.

Table 4

GoF values.

m0 m1 m2 m3 m4 m5

G¼34 s"1 GoF of mi 72.6 92.4 98.3 91.9 88.3 85.6

Global GoF 88.2

G¼65 s"1 GoF of mi 81.9 95.1 99.7 96.5 91.0 77.7

Global GoF 90.3

G¼133 s"1 GoF of mi 72.7 86.6 99.4 89.7 86.3 76.8

Global GoF 85.25



the breakage sink term, and the agglomeration sink term was al-

most equal to the breakage source term (Fig. 17).

For moments of high order (m3 to m5), the agglomeration terms

dominated the breakage terms at the beginning of the process

(Fig. 17(c)–(f)). At the beginning of the experiment, because the

population was mainly composed of small particles that were not

much subjected to breakage, the weights of breakage terms are

negligible. As time t increases, the flocs grew leading to an in-

crease of in the rupture frequency and thus of the source and sink

breakage terms.

For any the order of the moment (k), Fig. 17 shows that both

breakage terms seemed to behave the same way. From a mathe-

matical point of view, the ratio of breakage terms reads:

( )
( )

=
∑

∑

=
+

=

( )

= +
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Thus, regardless of the size of the aggregate, the ratio between

the two breakage terms only depends on the order of the moment

(k). When Df is close to 2, for ko2, Bb4Db, while if kZ2, BboDb.

This result can be extended to most of the frequency kernels and

fragment distribution functions. Among the various forms of the

fragmentation function, only the erosion kernel does not lead to a

constant ratio of the breakage terms.

The behavior of the agglomeration terms of the PBE was less

obvious than that of the breakage terms. Indeed, the ratio of the

agglomeration terms of the PBE could not be written as easily as

that of the breakage terms. However, the following developments

could be applied for any type of agglomeration kernel (Q ij).

In the case of moment of order 0 (k¼0), Eq. (36) becomes

∑ ∑ ∑ ∑ ∑ ∑β= − + ̅ −
( )= = = = = =
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From which the following relations can be derived:

=
( )

B D
1

2 44a a

= ( )B D2 45b b

At steady state conditions, assuming the previously established

relation between breakage terms (Eq. (42)),

= ( )B D 46a b

= ( )D B 47a b

From a physical point of view, Eq. (46) indicates that the

number of aggregates smaller than a size L involved in aggregation

events leading to the birth of an aggregate of size L is strictly

Fig. 15. Sensitivity analysis for parameter b: change over time for G¼65 s"1of normalized experimental and numerical moments (Df ¼1.9).



balanced by the number of daughter particles produced by the

breakage of particles of size L. Eq. (47) means that the number of

aggregates of size L involved in agglomeration phenomena leading

to aggregates with size greater than L is equal to the number of

daughter particles produced by the breakage of particles larger

than L.

From a practical point of view, the previous relations Eqs. (46)

and (47) show beyond a doubt that for a shear rate of 65 s"1, the

steady state was not completely reached after 4 h of flocculation

(Fig. 17(a) and (b)).

For higher order moments (k40), writing the agglomeration

terms in matrix form as

∑=
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where =Q Qij ji, the following relationship between diagonal terms

arises:
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−
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f

However, the non-diagonal terms can only be easily linked in

specific cases where there exists a relationship between

( )+L Li

D
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f f f
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Fig. 16. Sensitivity analysis for parameter y: change over time for G¼65 s"1 of normalized experimental and numerical moments (Df ¼1.9).



For monomodal particle size distributions ( = =L L L1 2 3), the non-

diagonal terms behave as diagonal terms, thus giving

= ( )
−

B D2 51a

k
D

a

1
f

In other specific cases, such as = =k D 2f , then the agglomera-

tion terms are equal to the breakage terms

= ( )B D 52a a

= ( )B D 53b b

For = −G 65s 1, Df was found to be equal to 1.9, which is close to

2, and it is the reason why the agglomeration and breakage terms

seem to blend when approaching the steady-state in Fig. 17(c).

5. Conclusion

A population balance model was adapted to describe the ag-

gregation and breakage of fractal aggregates under varying tur-

bulent conditions. The population properties were monitored

thanks to an on-line experimental setup providing the change over

time of the volume-based distribution of an equivalent size (CED)

and a fractal dimension. Using the fractal relation between ag-

gregate mass and size, the experimental data can be interpreted as

the number distributions, and their moments can be calculated.

The interpretation of the moments, and particularly of their

characteristic diameters ( D D,1,0 3,2 and )D4,3 , was shown to be
different from usual when the assumption of spherical particles

( =D 3f ) is not made. The fractal relation was then considered to

transform the PBE, initially written as the evolution of the number

distribution of particle volume, reformulated as the evolution of

the number distribution of particle diameter. This formulation

now accounts for the fractal dimension. The aggregation and

breakage models were chosen depending on the hydrodynamic

conditions through the mean shear rate G and on the aggregate
structure through Df . Moreover, the choice was made to adjust the

model parameters by fitting the moments instead of the char-

acteristic diameters Dp q, because the moments are raw properties

of the distribution that contain more information about the po-

pulation of aggregates than the characteristic diameters. The ex-

perimental results obtained under various hydrodynamic condi-

tions were adequately simulated by a single model (involving a

single set of adjusted parameters), proving the relevance of the

Fig. 17. Change over time of source and sink terms for G¼65 s"1(Df ¼1.9).



dependency to G and Df and the suitability of the aggregation
and breakage expressions used.

The final parts of the study aimed at better understanding the

model behavior. A sensitivity analysis was performed on the ad-

justed parameters in ranges close to their optimized values. Two of

the parameters were much more influential than the other two (in

the range of values around the optimized set). First, the parameter

b is the power to which G is raised in the breakage kernel. Second,

the parameter y is the factor weighing the mass product of ag-

gregates in the collision efficiency model. Their influences on the

moment evolution were highlighted, providing clues for the tun-

ing of such models. To further analyze the model behavior, each of

the four terms of the moment equation was isolated, and an

analytical study was initiated. Some relations between sink and

source terms of breakage or aggregation were shown, opening

new issues for further developments.
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