
 
  

Open Archive Toulouse Archive Ouverte (OATAO) 

OATAO is an open access repository that  collects the work of some Toulouse
researchers and makes it freely available over the web where possible. 

This is a publisher’s version published in: http://oatao.univ-toulouse.fr/  20475  

Official URL: https://doi.org/10.1063/1.4977993 

To cite this version: 

Ezzaier, Hinda and Marins, Jéssica Alves and Razvin, Ilia and Abbas, Micheline and 
Ben Haj Amara, Abdessalem and Zubarev, Andrey and Kuzhir, Pavel Two-stage 
kinetics of field-induced aggregation of medium-sized magnetic nanoparticles. (2017) 
Journal of Chemical Physics, 146 (11). 114902. ISSN 0021-9606 

Any correspondance concerning this service should be sent to the repository administrator: 

tech-oatao@listes-diff.inp-toulouse.fr

https://doi.org/10.1063/1.4977993
http://oatao.univ-toulouse.fr/


THE JOURNAL OF CHEMICAL PHYSICS 146, 114902 (2017)

Two-stage kinetics of field-induced aggregation of medium-sized
magnetic nanoparticles

H. Ezzaier,1,2 J. Alves Marins,1 I. Razvin,1 M. Abbas,3 A. Ben Haj Amara,2 A. Zubarev,4
and P. Kuzhir1,a)
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The present paper is focused on the theoretical and experimental study of the kinetics of field-induced
aggregation of magnetic nanoparticles of a size range of 20-100 nm. Our results demonstrate that
(a) in polydisperse suspensions, the largest particles could play a role of the centers of nucleation
for smaller particles during the earliest heterogeneous nucleation stage; (b) an intermediate stage
of the aggregate growth (due to diffusion and migration of individual nanoparticles towards the
aggregates) is weakly influenced by the magnetic field strength, at least at high supersaturation; (c)
the stage of direct coalescence of drop-like aggregates (occurring under magnetic attraction between
them) plays a dominant role at the intermediate and late stages of the phase separation, with the
time scale decreasing as a square of the aggregate magnetization. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4977993]

I. INTRODUCTION

Magnetic micro- and nanoparticles and their liquid sus-
pensions or gels are gaining a growing interest in environ-
mental and biomedical applications, such as water purification
from organic and inorganic molecules,1,2 magnetic resonance
imaging,3,4 cell separation,5 protein purification,6,7 magnetic
hyperthermia,8,9 controlled drug delivery and release,10,11

magneto-mechanical lysis of tumor cells,12,13 high sensitiv-
ity immunoassays,14 and tissue engineering.15,16 In many of
these applications, magnetic particles are subject to aggre-
gation induced by an external applied magnetic field, and
the kinetics of aggregation becomes an important factor
affecting the efficiency of a considered system. An excellent
example is enhancement of the magnetophoresis of magnetic
microbeads due to their field-induced aggregation—the phe-
nomenon referred to as co-operative magnetophoresis,17–20

which could be beneficial for separation and detection of
biomolecules using functionalized magnetic microbeads.

Most of existing works characterize the field-induced par-
ticle aggregation in terms of three governing parameters—the
particle volume fraction φ, the ratio of the energy of dipole-
dipole interaction between particles to thermal energy—so
called dipolar coupling parameter λ, and the ratio of the energy
of interaction of a magnetic particle with an external magnetic
field of an intensity H0 to thermal energy called magnetic field
parameter or Langevin parameter ξ. Both last parameters are

a)Author to whom correspondence should be addressed. Electronic mail:
kuzhir@unice.fr

defined by the following expressions:21

λ =
mp

2

4πµ0kBTd3
∝ d3, (1a)

ξ =
mpH0

kBT
∝ d3, (1b)

where µ0 = 4π×10�7 H/m is the magnetic permeability of vac-
uum, mp—the particle magnetic moment (in T × m3), d—its
diameter, kB ≈ 1.38× 10�23 J/K—the Boltzmann constant, and
T—absolute temperature. Since the particle magnetic moment
is linear with the particle volume, the parameters λ and ξ are
proportional to the cube of the particle size. The physics of par-
ticle aggregation is rather different for micron-sized particles
(with λ� 1) and for nanoparticles (with λ ∼ 1).

Kinetics of field-induced aggregation of micron or sub-
micron-sized particles (typically d > 100 nm) has been studied
experimentally by either direct visualization22–24 or light scat-
tering.25–28 The common feature shared between most of the
studied systems is that these particles exhibit a rapid field-
induced aggregation in linear chains aligned with the direction
of applied magnetic field, and the average chain length 〈2a〉
grows with time as 〈2a〉 ∝ tγ, with 0.45< γ < 0.8. At longer
times, lateral aggregation dominates over tip-to-tip aggrega-
tion, and the chains can merge and form either a fibrous struc-
ture “frozen” in non-equilibrium state likely by inter-particle
friction22 or column structures confined by the walls orthog-
onal to the applied field,29 or unconfined ellipsoidal drop-like
aggregates under pulsed magnetic field.30,31 Theoretical stud-
ies are mainly based on Langevin dynamics simulations19,32,33

or solution of Smoluchowski kinetic equation.23,24,27,28,33–35 A
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simplified theoretical approach, so-called hierarchical model,
has been developed by See and Doi36 considering only coales-
cence of the chains of equal sizes and showing a satisfactory
agreement with experiments on 〈2a〉, even though it pre-
dicts monodisperse particle chains instead of experimentally
observed polydisperse distribution.

In the opposite size limit, typically d < 20 nm, when
considering aggregation, one usually speaks about the field-
induced phase separation or a condensation phase transition.
Appropriate phase diagrams and equilibrium microstructures
have been extensively studied theoretically and experimen-
tally.37–47 Kinetics of phase separation has been studied by
light scattering by Socoliuc and Bica48 for aqueous dispersions
of nanoparticles (ferrofluids) and by Laskar et al.49 for non-
aqueous ferrofluids. Elongated scattered patterns have been
reported by these authors corresponding to the formation of
long drop-like aggregates, which during time settle to a stable
space configuration owing to a magnetic lateral repulsion. A
thermodynamic approach broadly used for molecular liquids
is appropriate for modeling of the phase separation in suspen-
sions of magnetic nanoparticles. Using this approach, Zubarev
and Ivanov50 and Ivanov and Zubarev51 have considered three
different stages of the phase separation: (a) appearance of
critical nuclei at an early stage of homogeneous nucleation;
(b) evolution of the nuclei to long drop-like aggregates, and
(c) Oswald ripening when the particles are transferred from
smaller to larger aggregates leading at infinite times to a full
coalescence of the concentrated phase into a single bulk phase.
The aggregate size distribution has been calculated and the
average aggregate volume has been found to increase with
time as 〈V〉 ∝ t7/4 at an early stage, followed by an intermedi-
ate plateau at the end of the stage (b) showing a final increase
with 〈V〉 ∝ t7/6 at the ripening stage (c).

Magnetic nanoparticles of medium size, 20< d < 100 nm,
have not been available for a long time because of difficul-
ties related to their colloidal stabilization. To prevent their
aggregation by magnetic interactions in zero field, they have to
be superparamagnetic. So, these particles are usually porous
nanoclusters composed of smaller 10-nm superparamagnetic
nanoparticles.52–56 Similarly to small nanoparticles, medium-
sized colloids exhibit condensation phase transitions54,55,57

which enhance drastically their magnetic separation on magne-
tized collectors.57–61 Kinetics of phase separation of medium-
sized nanoparticles has been studied only scarcely. Socoliuc
et al.54 have conducted direct visualization and light scatter-
ing experiments on 80-nm magnetic nanoclusters and shown
appearance of elongated drop-like aggregates. In addition to
three kinetic stages postulated by Zubarev and Ivanov50 and
Ivanov and Zubarev,51 Socoliuc et al.54 claim a fourth final
stage of coalescence of aggregates into larger domains. This
kinetics seems to combine features of condensation phase
transitions of small nanoparticles with aggregation of large
micron- or submicron-sized particles. To the best of our knowl-
edge, theoretical description of such kinetics is still missing.

The present paper is focused on the theoretical modeling
of kinetics of aggregation (or phase separation) of the medium-
sized (20< d <100 nm) superparamagnetic nanoparticles. The
main goal is to establish theoretical correlations for the tem-
poral evolution of the aggregate size and shape as a function

of the initial supersaturation of the suspension (or initial par-
ticle volume fraction φ0) and of the applied magnetic field. To
check our model, aggregation process is visualized using an
optical microscope, and the size and shape of the aggregates
are analyzed as a function of time. Visualization experiments
allow assessing dominant mechanisms of aggregation, which
are implemented into the theory. Therefore, the present theory
is developed for two stages that are explicitly distinguished in
our experiments and are interesting from the practical point
of view: (a) intermediate aggregate growth by particle diffu-
sion and magnetophoresis and (b) aggregate coalescence due
to dipolar interactions. A simple hierarchical model of See and
Doi36 developed for chain-like clusters is extended to coales-
cence of drop-like aggregates, while the transition between
two aggregation stages is managed by a comparison of the
aggregation rates at each stage.

The present paper is organized as follows. A theoretical
model implying two observed aggregation stages is developed
in Sec. II. The aggregate growth and coalescence stages are
described in Secs. II A and II B, respectively, while the tran-
sition between stages is considered in Sec. II C. Experimental
details of optical visualization and image processing are pro-
vided in Sec. III. Experimental data on temporal evolution of
the aggregate size are compared with the theoretical results in
Sec. IV, while the conclusions and perspectives are outlined
in Sec. V.

II. THEORY
A. Aggregate growth

Let us consider initially homogeneous suspension of
Brownian super-paramagnetic hard sphere particles, all having
the same diameter d, and dispersed at a volume fraction ϕ0 in a
Newtonian liquid of a dynamic viscosity η0. In the absence of
any external magnetic field, the particles magnetic moment is
zero, they do not exhibit dipolar interactions and do not form
any clusters.

When a uniform external magnetic field, of intensity H0,
is applied, particles acquire magnetic moments and attract to
each other, while the Brownian motion tends to re-disperse
them. Depending on the values of ϕ0 and H0, the suspension
undergoes a phase separation manifested by the appearance
of elongated aggregates. At infinite times, the system tends
to a thermodynamic equilibrium at which the particle volume
fraction in the dilute (outside the aggregates) and concentrated
(inside the aggregates) phases tends to steady-state values ϕ′

and ϕ′′ depending on H0, while ϕ′(H0) and ϕ′′(H0) depen-
dences correspond to coexistence curves of a H0−ϕ phase dia-
gram.38 Such diagrams have been modeled for our particular
nanocluster suspensions,55,57 and strong inequality ϕ′′ � ϕ′

has been found. In the present paper, ϕ′ is directly measured
as a function of H0 [see Figure 6 in Sec. IV A], while the value
ϕ′′ ∼ 0.6 close to the random close packing limit is taken for
the aggregates. In this section, we intend to find the evolution
of the aggregate size and shape with time and as a function of
two governing dimensionless parameters ∆0 = ϕ0 − ϕ

′ called
initial supersaturation62 and ξ—the magnetic field parameter
depending on H0 [Eqs. (1b) and (10)].
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The aggregation starts by a short nucleation stage not con-
sidered here, which is most likely heterogeneous and during
which primary aggregates composed of large number of parti-
cles are expected to appear around the biggest particles playing
a role of nucleation centers. These primary aggregates are sup-
posed to be of the same size and to have a shape modeled by a
prolate ellipsoid of revolution extended along the applied mag-
netic field as commonly admitted in theoretical models30,50,51

and observed in experiments with ferrofluids.48,54,63–65 Initial
volume V0 and initial volume fraction Φ0 of primary aggre-
gates (ratio of the total volume of all the aggregates to the
suspension volume) are considered as adjustable parameters
of the model.

With time, individual magnetic particles are attracted to
the aggregates and induce the aggregate growth. The aggre-
gates are supposed to conserve their ellipsoidal shape but
their concentrationΦ in the suspension and size, characterized
by a major semi-axis a, a minor semi-axis b (as depicted in
Fig. 1), and a volume V = 4πab2/3, increase progressively
with time. Nevertheless, the aggregate concentration is sup-
posed to remain low enough Φ� 1 (approximation valid for
very dilute suspensions with∆0/ϕ

′′� 1), and possible coales-
cence of aggregates at this stage is neglected. The aggregate
shape is quantified by their aspect ratio ra = a/b, which is
assumed to be very high, ra� 1, in agreement with numer-
ous observations.48,54,63–65 During all this aggregation stage,
the aggregates are supposed to be of equal size, their number
concentration is assumed to be constant with time n = Φ/V
=Φ0/V0, while possible appearance of new nuclei is neglected.
These rough approximations are to some extent supported by
the more precise theory of aggregation of small nanoparticles50

(d < 20 nm).
The internal aggregate volume fraction ϕi (ratio of vol-

umes of all particles constituting the aggregate to the aggregate
volume) is supposed to be close to the equilibrium concentra-
tion of the concentrated phase: ϕi ≈ ϕ

′′ ∼ 0.6, while the particle
concentration in any point of the dilute phase around the

FIG. 1. Sketch of the ellipsoidal aggregate. Cylindrical and ellipsoidal coor-
dinates are introduced. Key values of the particle concentration inside the
aggregate (ϕ′′), on the outer side of the aggregate surface (ϕ′), and far from
the aggregate (ϕ∞) are also indicated. The external uniform magnetic field
H0 is oriented along the z-axis.

aggregate is ϕ � ϕi. Finally, possible sedimentation of indi-
vidual particles and aggregates is neglected. This assumption
is justified in Sec. III.

The starting point of the model is the particle conservation
equation implying that the growth rate, dN /dt of the number
of particles, N, in the aggregate is equal to the particle flux J
towards the aggregate,

J =
dN
dt
=

(ni − ns)dV
dt

≈
ϕ′′

v
dV
dt

, (2)

where ni = ϕi/v ≈ ϕ′′/v is the number concentration of parti-
cles inside the aggregates; ns = ϕs/v and ϕs are, respectively,
the number concentration and the volume concentration of
individual particles around the aggregate in the vicinity of its
surface; v is the volume of primary particles.

The particle flux density j outside the aggregates at any
point of the dilute phase is related to the gradient of the local
chemical potential µ and local volume fraction ϕ of particles.
The expressions for µ and j take the following form in the
dilute-limit approximation:50,66

µ = kBT ln ϕ + U = kBT ln
(
ϕeu) , (3a)

j = −ζ
ϕ

v
∇µ = −

D
v

e−u∇
(
ϕeu) , (3b)

where ζ and D= ζkBT = kBT/(3πη0d) are the particle mobil-
ity and diffusion coefficient, respectively, U and u = U/(kBT )
are, respectively, the dimensional and dimensionless energies
of magnetic interaction of a particle with the local field H at a
given position of the particle outside the aggregate. The expres-
sion for U takes the following form under the approximation
of linear magnetization of particles, valid at low magnetic field
intensities H0 ≤ 4 kA/m, considered in our experiments:67

U = −
∫

mpdH ≈ −
3
2
µ0 βpH2v, (4)

where βp = χp/(3 + χp) is the magnetic contrast factor of an
individual nanoparticle of magnetic susceptibility χp. The spa-
tial distribution of the magnetic field H around the ellipsoidal
aggregate and the dimensionless energy u are calculated in
Appendix A.

Let us introduce an axisymmetric ellipsoidal coordinate
system (σ, φ, τ), with an origin situated at the aggregate center
and whose coordinate surfaces σ = const and τ = const rep-
resent confocal ellipsoids of revolution and hyperboloids of
revolution, respectively [Fig. 1]. These coordinates are related
to the coordinates (ρ, φ, z) of the cylindrical coordinate system
by the following expressions:68

z = cστ; ρ2 = c2(σ2 − 1)(1 − τ2);

σ ≥ σs>1; −1 ≤ τ ≤ 1, (5)

where c2 = a2 − b2 and σs = a/c is the value of σ on the
aggregate surface. The polar coordinate φ is common for both
coordinate systems. The metric coefficients of the ellipsoidal
system are

gσσ = c2σ
2 − τ2

σ2 − 1
; gττ = c2σ

2 − τ2

1 − τ2
;

gφφ = c2(σ2 − 1)(1 − τ2). (6)
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The particle diffusion towards the aggregates is consid-
ered in a quasi-stationary approximation div j ≈ 0, for which
it can be shown that (a) the particle flux J through the surfaces
σ = const is independent of σ, (b) the chemical potential of
particles outside the aggregates depends only on the coordi-
nate σ, and (c) the product ϕeu intervening into Eq. (3b) is
independent of τ. Bearing this in mind, we arrive at the follow-
ing expressions for the normal component of the particle flux
density and the flux through a coordinate surface σ = const:

jσ = −
D
v

e−u 1
√

gσσ

∂

∂σ

(
ϕeu) , (7a)

J = −
∮

jσdS = −

2π∫
0

1∫
−1

jσ
√

gττgφφdτdφ

= 2π
D
v

c(σ2 − 1)
∂

∂σ

(
ϕeu) 1∫

−1

e−udτ, (7b)

where we make use of Eq. (6) for the metric factors and the
minus sign in Eq. (7b) comes from the fact that the parti-
cle flux is oriented towards the aggregate. Isolating the term
∂ (ϕeu) /∂σ, and integrating over σ from σs to infinity, we get
the following expression for the particle flux independent of
the coordinate σ:

J = 2π
D
v

c
ϕ∞eu0 − ϕseus

∫
∞
σS

[
(σ2 − 1) ∫

1
−1 e−udτ

]−1
dσ

, (8)

where u0 is the dimensionless energy of the particle in the
external field H0, ϕ∞ is the particle volume fraction at the infi-
nite distance from the aggregate, us and ϕs are, respectively,
the dimensionless energy and concentration of particles at any
point (σs, τ) situated on the outer side of the aggregate surface.
Since the product ϕseus is independent of τ, it can be replaced
by ϕs0eu0 , where ϕs0 is the particle concentration at the point
of the aggregate surface where the magnetic field intensity is
equal to H0. Furthermore, the local thermodynamic equilib-
rium at the aggregate surface imposes that the concentrations
outside and inside the aggregate are approximately equal to the
binodal concentrations: ϕs0 ≈ ϕ′ and ϕi ≈ ϕ′′ [Fig. 1]. This
allows expressing the particle flux through the supersaturation
∆ = ϕ∞ − ϕ

′ of the suspension as follows:

J = 2π
D
v

c
∆

I
, (9)

where the integral I = ∫
∞
σS

[
(σ2 − 1) ∫

1
−1 e−(u−u0)dτ

]−1
dσ is

estimated in Appendix B [cf. Eq. (B6)] as a function of the
magnetic field parameter [Eq. (1b)], which, for the case of
the medium-sized magnetic nanoparticles with induced dipole
moment and linear magnetization appears to be proportional
to the square of the magnetic field intensity H0 and takes the
following form:

ξ = −u0 =
3µ0 βpH0

2v

2kBT
. (10)

In the aforementioned case, the parameter ξ is closely related to
the dipolar coupling parameter λ [Eq. (1a)] through ξ = βpλ/4.
In the considered limit of high aspect ratio aggregates,
ra = a/b� 1, the magnitude c intervening into Eq. (9) could

be expressed through the aggregate volume V = 4πab2/3 as
follows:

c = (a2 − b2)1/2 ≈ a =

(
3

4π
Vra

2
)1/3

. (11)

On the other hand, the local thermodynamic equilibrium
of an aggregate requires the minimization of its free energy at
any time and leads to the following key relationship50 between
the aggregate volume V and its aspect ratio ra valid at ra � 1:

V ≈ B
ra

7

ln3 ra
; B =

π4

48

(
Σ

µ0M2

)3

, (12)

where M is the aggregate magnetization and Σ—the aggregate
surface tension. The volume-scale B has been shown to be
of the order of particle volume:69 B ∼ π3v/64. Equation (12)
allows expressing ln ra and ra through V using the strong
inequality ln (ln ra) � ln ra valid at ra � 1 as follows:

ln ra ≈
1
7

ln
V
B

, (13a)

ra =

(
V
B

)1/7

ln3/7 ra ≈

(
V
B

)1/7 (
1
7

ln
V
B

)3/7

. (13b)

Combining together Eqs. (2), (9), (11), (13), and (B6),
Equation (2) of the aggregate growth takes the following form:

ϕ′′
dV
dt
≈

4πκ
K

DB1/3 (V/B)3/7

ln5/7(V/B)
∆, (14)

where κ = 75/7 (4π/3)−1/3 ≈ 2.5 and K is a numerical factor
depending on ξ and given by Eq. (B6b) in Appendix B.

To integrate Eq. (14), we need to relate the supersaturation
∆ = ϕ∞ − ϕ

′ to the aggregate volume V. First, the concentra-
tion ϕ∞ can be estimated from the condition of conservation
of the total volume of particles in the suspension,

ϕ0 = Φϕi + (1 − Φ)ϕ∞, (15)

with ϕi ≈ ϕ
′′. Second, under the aforementioned assumption of

a constant number of aggregates during the aggregate growth
stage (n = Φ/V ≈ const =Φ0/V0), the aggregate concentration
Φ at a given time t is related to the aggregate initial volume
V0 and concentration Φ0 by

Φ ≈ Φ0
V
V0

. (16)

Combining Eqs. (15) and (16), and taking into account the
smallness of the aggregate concentration, Φ� 1, in initially
dilute suspension with ϕ0 � 1, we obtain

∆ = ϕ∞ − ϕ
′ =

ϕ0 − ϕ
′′Φ

1 − Φ
− ϕ′ ≈ ∆0 − ϕ

′′
Φ0

V
V0

. (17)

Recall that∆0 = ϕ0−ϕ
′ is the initial supersaturation. The time

integration of Eq. (14) with the initial condition V (0)=V0 leads
to the following expression for the elapsed time t as a function
of the dimensionless volumes V̂ = V/B and V̂0 = V0/B:

t =
Kϕ′′

4πκ

(
B2/3

D

) V̂∫
V̂0

[
V̂3/7

(ln V̂ )5/7

(
∆0 − ϕ

′′
Φ0

V̂

V̂0

)]−1

dV̂ .

(18)
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One can fit Eq. (18) by the following formula, exact at both
short and long time limits:

t ≈
K

4πκ

(
B2/3

D

)
V̂0

Φ0

(ln V̂ )5/7

V̂3/7
f

(
∆

∆I

)
ln
∆I

∆
, (19a)

f

(
∆

∆I

)
= 1 + 0.8

(
∆

∆I

)0.45 (
1 −
∆

∆I

)0.3

, (19b)

where ∆I = ∆0 − ϕ
′′Φ0 is the suspension supersaturation at

the beginning of the aggregate growth stage corresponding to
primary aggregates with a volume V0. Both theoretical depen-
dencies (18) and (19) of the dimensionless volume V̂ = V/B
on the dimensionless time t̂ = Dt/B2/3 are plotted in Fig. 2
for the following values of the parameters appropriate for our
experimental conditions: ∆0 = 10−4, Φ0 = 10−6, ϕ′′ = 0.6,
V̂0 = 107, and K = 1.

The aggregate volume exhibits an initial sharp increase
with time and becomes almost constant at longer times. Such
saturation of the aggregate volume corresponds to the vanish-
ing of the suspension supersaturation ∆ [Eq. (17)] with time
when the dilute phase concentration ϕ∞ approaches the bin-
odal concentration ϕ′ and the aggregate concentration tends to
its maximum value dictated by particle conservation [Eq. (15)]:
Φm ≈ ∆0/ϕ

′′ � 1. However, such a state with a final number
of aggregates, n ≈ Φ0/V0, is thermodynamically unfavorable,
since aggregates start to coalesce in order to decrease the sus-
pension free energy—the mechanism considered in Sec. II B.
Another striking point is that the characteristic time of the
aggregate growth is about nine orders of magnitude higher
than the diffusion time scale t ∼B2/3/D∼ d2/D at the consid-
ered set of parameters. This is explained by the fact that the
aggregates contain a very large number of particles (107-109

in the current example), and the real time scale is based on
the aggregate volume, rather than on the particle volume, as
inferred from Eq. (19): t ∼ (B2/3/D)(V̂4/7

m /∆0).
Finally, the considered kinetics includes both diffusive

and magnetophoretic particle fluxes related, respectively, to
the 1st and the 2nd term of Eq. (3a) for the chemical poten-
tial. The diffusive flux arises thanks to the fact that the particle
concentration in the dilute phase in the vicinity of the aggre-
gate surface is close to the equilibrium value ϕ′ and is lower

FIG. 2. Theoretical dependence of the dimensionless aggregate volume on
the dimensionless time for the aggregate growth stage. The following set of
parameters were used in calculations: ∆0 = 10−4, Φ0 = 10−6, ϕ′′ = 0.6,
V̂0 = 107, and K = 1.

than the concentration ϕ∞ far from the aggregate. The mag-
netophoretic flux is responsible for particle migration towards
the aggregate due to magnetic attraction. The contribution of
magnetophoretic flux appears in final Equations (18) and (19)
through the numerical multiplier K ≤ 1, which is a logarith-
mically decreasing function of the magnetic field parameter ξ
[cf. Eq. (B6b) in Appendix B]. The magnetophoretic flux (or
the value of K) does not change the shape of the time depen-
dency of the aggregate volume [Fig. 2] but decreases the time
of the aggregate growth, with respect to the time governed
exclusively by diffusive flux.

B. Aggregate coalescence

As already pointed out, the state with a finite number
of aggregates is thermodynamically unfavorable, the system
tends to decrease the surface area between concentrated and
dilute phases, which promotes coalescence of aggregates, even
if their concentration is low. In the present section, we consider
the coalescence stage of the phase separation neglecting possi-
ble aggregate growth by absorption of individual particles from
the dilute phase. This assumption is valid if the time scale of
the aggregate growth stage is much shorter than that of the
coalescence stage, such that the dilute phase concentration ϕ∞
rapidly approaches the binodal concentration ϕ′ and the aggre-
gates are no more able to absorb particles from the surrounding
fluid. The coalescence is supposed to begin when the aggre-
gates achieve some initial volume Vτ , same for all of them,
and initial volume fraction Φτ , which can be different from
those used for the initial conditions of the aggregate growth
stage [Sec. II A]. Again, during all this stage, the aggregates
are assumed to preserve their ellipsoidal shape, high aspect
ratio ra � 1, low concentration Φ � 1 and to be of the
same size. We seek for the evolution of the aggregate volume
with time thanks to their coalescence induced by magnetic
attraction between them.

To this purpose, we adopt the basic idea of the hierar-
chical model of See and Doi,36 who considered that all pairs
of primary aggregates coalesce at the same time producing
secondary aggregates of a volume 2Vτ ; then, all the pairs of
secondary aggregates coalesce at the same time into the aggre-
gates of a volume 4Vτ , and so on, until full coalescence of
the bulk concentrated phase. At the beginning of the coales-
cence stage (t = 0), the initial number fraction of aggregates
is nτ = Φτ/Vτ . Let τ0 be the time for two neighboring aggre-
gates to coalesce into an aggregate of a volume V1 = 2Vτ . The
number concentration of the aggregates at t = τ0 is divided by
two, n1 = nτ/2, while the volume fraction does not change,
Φ1 = Φτ under the considered assumption that the aggre-
gates do not absorb individual particles from the surrounding
fluid. After the first coalescence, the secondary aggregates will
coalesce into aggregates of a volume V2 = 2V1 = 22Vτ at
number fraction n2 = nτ/22 during a time interval τ1. The i-
th coalescence step will correspond to the aggregate volume
Vk = 2kVτ , the number fraction nk = nτ/2k , and the vol-
ume fraction Φk =Φτ ≡Φ, while the total elapsed time from

the beginning of the process is tk =
k−1∑
i=0

τi. We have now to

relate the time interval τi of each i-th coalescence step to the
aggregate volume V i.
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To this purpose, let us consider two identical drop-like
aggregates aligned with the applied magnetic field and hav-
ing a major semi-axis a, a minor semi-axis b, an aspect ratio
ra = a/b � 1, and a volume V = 4πab2/3. Mutual position of
their centers is described by a distance r and an angle θ in
a spherical coordinate system with an origin in the center of
the first aggregate [Fig. 3(a)]. The average position (r, θ) of a
pair of aggregates should meet the requirement of the volume
conservation of the concentrated phase, which can be satisfied
by a cell model often used in mechanics and optics of com-
posite materials.70,71 Each aggregate is supposed to be situated
inside an ellipsoidal cell having an aspect ratio ra equal to that
of the aggregate and a volume equal to V/Φ. The major and
minor semi-axes of the cell are equal to a/Φ1/3 and b/Φ1/3,
respectively. From geometrical considerations, the center of
the second aggregate can be situated at any point on the surface
of a control ellipsoid [dotted line on Fig. 3(a)] with semi-axes
α = 2a/Φ1/3 and β = 2b/Φ1/3. The time interval of a given
coalescence step can be evaluated as an inverse of the aggregate
flux through the surface of this ellipsoid.

During the coalescence stage, the aggregates have a size of
several microns and their diffusive flux is therefore negligible.
The magnetophoretic flux of the aggregates through the surface
of the control ellipsoid is expressed through the force F of
magnetic interactions between two aggregates as follows:

J = −2
∫

J>0
n(ζ · F) · ndS

= −

(
2nζ⊥

∫
J>0

FρnρdS + 2nζII

∫
J>0

FznzdS

)
, (20)

where n = Φ/V is the aggregate number fraction supposed to
be homogeneous on the aggregate surface, n is the outward
unit vector normal to the control ellipsoid surface, and ζ⊥, ζII

are the transverse and longitudinal diagonal components of the
aggregate mobility tensor ζ. The two terms in the right-hand
side of Eq. (20) correspond to the radial and axial components
of the flux with respect to the cylindrical coordinate system
(ρ, φ, z) introduced in Fig. 3(a). The factor 2 before the inte-
grals comes from the fact that both aggregates are moving
towards each other at the same speeds, while the minus sign

FIG. 3. Sketch of the cell model (a) and of the “four charges” model (b). In
both cases, the external uniform magnetic field H0 is oriented along the z-axis.

stands for the positive inward flux. The integration domain J
> 0 corresponds to the fact that only inward flux is considered
to contribute to the coalescence of a given pair of aggregates,
while the outward flux would induce a coalescence of another
pair. The products nρdS and nzdS are the projections of the
surface element dS on the z-ϕ and r-ϕ coordinate surfaces,
respectively. They have the following expression in cylindri-
cal coordinates: nρdS = 2πρ(z)dz and nzdS = 2πρdρ, where
ρ(z) = (α2 − z2)1/2/ra on the control ellipsoid surface. The
expression (20) for the flux reads as follows:

J = −2
*..
,
4πnζ⊥

α∫
z0

Fρ ρ(z)dz + 4πnζII

ρ0∫
0

Fz ρdρ
+//
-

, (21)

where (ρ0, z0) are the coordinates of the point on the control
ellipsoid surface where the flux density is zero.

The magnetic force F will be estimated in a “four charges”
approximation initially developed for chains of magnetic par-
ticles.29 By analogy with electrostatics, the induced dipole
moment of each aggregate is supposed to be a result of two
opposite point charges q and �q concentrated at the aggre-
gate tips, as shown schematically in Fig. 3(b). The charge
q is related to the aggregate dipole moment ma = 2aq, and
the latter is defined though the aggregate magnetization M
as ma = µ0MV , such that q= µ0MV/(2a). Absolute values of
the four forces acting on the poles of the right aggregate in
Fig. 3(b) are given by the Coulomb’s law, neglecting magnetic
susceptibility of the medium surrounding the aggregates,

F++ = F−− =
q2

4πµ0r2
; F+− =

q2

4πµ0r2
1

; F−+ =
q2

4πµ0r2
2

,

(22)

where r2 = ρ2 + z2, r2
1 = ρ

2 + z2
1, and r2

2 = ρ
2 + z2

2 are the
squares of the distances between different pairs of charges
belonging to two aggregates; r corresponds to the distance
between the centers of two aggregates; z1 = z + 2a and
z2 = z− 2a. The radial and axial components of the total force
acting on the right aggregate of Fig. 3 read as follows:

Fρ = (F++ + F−−) sin θ − F+− sin θ1 − F−+ sin θ2

=
q2

4πµ0

(
2

r3
−

1

r1
3
−

1

r2
3

)
ρ, (23a)

Fz = (F++ + F−−) cos θ − F+− cos θ1 − F−+ cos θ2

=
q2

4πµ0

(
2z

r3
−

z1

r1
3
−

z2

r2
3

)
, (23b)

where θ, θ1, and θ2 are the angles between the z-axis and
the lines connecting different pairs of charges belonging to
two aggregates, and θ corresponds to the angle that the line
connecting the aggregate centers makes with the z-axis.

Evaluation of the flux [Eq. (21)] with appropriate expres-
sions for the forces Fρ, Fz and for the charge q shows that the
second term (axial flux) is always negligible under considered
approximations Φ � 1, ra � 1, while the first term (radial
flux) reads as follows:
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J ≈ −
nζ⊥µ0M2V2

2a2
ra

×

α∫
z0

(
2
(
α2 + (r2

a − 1)z2
)−3/2

−
(
α2 − z2 + r2

a (z + 2a)2
)−3/2

−
(
α2 − z2 + r2

a (z − 2a)2
)−3/2

)
(α2 − z2)dz. (24)

Estimation of this integral is presented in detail in
Appendix C, and the final result for the aggregate flux reads
as follows:

J =
Φµ0M2

6η0

ln ra

r2
a

*
,

25
√

5

24Φ2/3r2
a

+ 1+
-

−1

. (25)

The aggregate aspect ratio ra and its logarithm are related to
the aggregate volume by Eq. (13); therefore the time interval of
the i-th coalescence step is related to the volume V i as follows:

τi ≈ J−1
i ≈ τ

∗

(
7ε

ln(Vi/B)
+

71/7(Vi/B)2/7

ln1/7(Vi/B)

)
, (26)

where ε = 25
√

5/(24Φ2/3) and τ∗ = 6η0/(Φµ0M2) is a charac-
teristic time scale of the coalescence stage with the aggregate
magnetization, M, independent of ra and V i thanks to negligi-
ble demagnetizing effects in the high aspect ratio limit, ra� 1.
The total elapsed time corresponding to k successive coales-
cence steps is obtained by summing up the durations τi and
using Vi = 2iVτ ,

tk =
k−1∑
i=0

τi = τ
∗

k−1∑
i=0

(
7ε

ln(2iV̂τ)
+

71/7(2iV̂τ)2/7

ln1/7(2iV̂τ)

)
, (27)

where V̂τ = Vτ/B and B ∼ π3v/64 as it was defined below
Eq. (12); v is the volume of individual nanoparticle. The
sum in Eq. (27) admits the following approximate expression
with a maximal deviation of 3.7% from the exact numerical
result:

tk ≈ τ
∗ *
,

7ε
ln 2

ln

(
ln (2kV̂τ)

ln V̂τ

)
+

71/7V̂2/7
τ

ln1/7(2k−1V̂τ)

22k/7 − 1

22/7 − 1
+
-

.

(28)

Finally, using 2k = Vk/Vτ in the last equation, and moving
from a discrete variation of the volume to a continuous varia-
tion, valid at k� 1 (omitting subscripts k at V k and tk), we get
the following expression for the elapsed time t as a function
of the dimensionless volume V̂ = V/B:

t ≈ τ∗ *
,

7ε
ln 2

ln

(
ln V̂

ln V̂τ

)
+

71/7

22/7 − 1
·

V̂2/7 − V̂2/7
τ

ln1/7 V̂
+
-

. (29)

Theoretical dependency of the dimensionless aggregate
volume V̂ on the dimensionless elapsed time t̂ = t/τ∗ is plotted
on a double logarithmic scale in Fig. 4 for the values ε = 104

and V̂τ = 107 typical for our experiments.
The solid curve in that figure corresponds to the general

expression Eq. (29) derived for any value of the parame-
ter ra

3Φ but in the limits Φ � 1 and ra � 1. The shape
of this curve is explained by the behavior of two terms of
Eq. (29). The first term in the brackets of Eq. (29) is dom-
inant in the beginning of the coalescence process when the

FIG. 4. Theoretical dependences of the dimensionless aggregate volume on
the dimensionless time for the aggregate coalescence stage. The following
parameters were used in calculations: V̂τ = 107, ε = 104.

aggregates are still small enough and the strong inequality
ra

3Φ � 1 holds. This term corresponds to the point dipole
approximation and gives an initial very slow linear increase
of the aggregate volume V ≈ Vτ(1 + ln 2/(7ε) × (t/τ∗)) at
t/τ∗ � 7ε/ ln 2 ≈ 105, followed by an extremely fast growth
with time V ≈ V exp(ln 2/(7ε)×t/τ∗)

τ at t/τ∗ ≈ 7ε/ ln 2 ≈ 105.
However, at longer times, the aggregates become very long
and the second term of Eq. (29) becomes dominant when the
distance between aggregates is much shorter than their length,
implying the strong inequality ra

3Φ � 1. This second term
gives a power-law growth of the aggregate volume with time,
V ∼ Vτ(t/τ∗)7/2 at t/τ∗ � 7ε/ ln 2 ≈ 105, explaining a final
linear part of the V̂ (t̂) dependency with a slope 7/2 in double
logarithmic scale. Both asymptotic behaviors at ra

3Φ � 1 and
ra

3Φ � 1 corresponding to two terms of Eq. (29) are shown
in Fig. 4 by dotted and dashed lines, respectively.

C. Transition between growth and coalescence stages

The transition from the aggregate growth stage (at shorter
times) to the coalescence stage (at longer times) could be found
by a simple approach based on the comparison of aggregation
rates, dV /dt, of both stages. The transition is supposed to take
place at some volume Vτ corresponding to the equality of the
aggregation rates of two stages; the aggregate growth takes
place at V < Vτ and coalescence—at V > Vτ . The aggregation
rate for the growth stage is directly given by Eq. (14), while
the rate for the coalescence stage is obtained by derivation of

Eq. (29) with respect to V̂ : dV̂/dt =
(
dt/dV̂

)−1
. The equality

of aggregation rates gives the following transcendent equation
for the dimensionless transition volume V̂τ :

4πκ
Kϕ′′

(
D

B2/3

)
V̂3/7
τ

(ln V̂τ)5/7

(
∆0 − ϕ

′′
Φ0

V̂τ
V̂0

)

=
1
τ∗



7ε
ln 2

·
1

V̂τ ln V̂τ
+

2 × 7−6/7

22/7 − 1
·

1

V̂5/7
τ ln1/7 V̂τ



−1

,

(30)

recalling that the correction factor K is given as a function of
the magnetic field parameter ξ by Eq. (B6b) in Appendix B
and τ∗ = 6η0/(Φτ µ0M2) = 6η0/(Φ0V̂τ µ0M2).
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Once the value of V̂τ is obtained from the numeri-
cal solution of Eq. (30), the elapsed time covering both
phase separation stages is obtained from Eqs. (19) and (29)

taking into account that the initial time of the coalescence
stage corresponds to the final time of the growth stage at
V̂ = V̂τ ,

t ≈




K
4πκ

(
B2/3

D

)
V̂0

Φ0

(ln V̂ )5/7

V̂3/7
f

(
∆

∆I

)
ln
∆I

∆
, V̂ ≤ V̂τ

K
4πκ

(
B2/3

D

)
V̂0

Φ0

(ln V̂τ)5/7

V̂3/7
τ

f

(
∆τ

∆I

)
ln
∆I

∆τ
+ τ∗ *

,

7ε
ln 2

ln

(
ln V̂

ln V̂τ

)
+

71/7

22/7 − 1
·

V̂2/7 − V̂2/7
τ

ln1/7 V̂
+
-

, V̂>V̂τ

, (31)

where ∆I = ∆0 − ϕ
′′Φ0, ∆τ = ∆0 − ϕ

′′Φ0V̂τ/V̂0, ∆ = ∆0

−ϕ′′Φ0V̂/V̂0 [Eq. (17)]; the correction factor f (∆/∆I ) is given
by Eq. (19b).

The behavior of Eq. (31) is inspected in detail in Sec.
IV in which it is tested against experimental results, and the
validity and drawbacks of the current approach (based on the
comparison of aggregation rates) are discussed.

III. EXPERIMENTS

In experiments, the phase separation process was visu-
alized using an optical microscopy. The main goal was to
determine the aggregate size as a function of the elapsed time,
the magnetic field intensity, and the initial particle volume
fraction.

A suspension (ferrofluid) of iron-oxide nanoparticles dis-
persed in distilled water and covered by a double layer of oleate
salts has been synthesized using a conventional method of co-
precipitation of iron salts in alkali medium.21,72 This synthesis
gave permanent nanoclusters of nearly spherical shape and
composed of numerous nanoparticles likely because of a rapid
and uncontrolled kinetics of adsorption of the second oleate
layer.55 The nanoclusters have a relatively broad size distribu-
tion ranging from 20 to 220 nm with the average size equal
to 54 nm, as inferred from dynamic light scattering [Fig. S1
of the supplementary material]. This size corresponds to the
gravitational Péclet number PeG ≈ 3 × 10−5, defined as the
ratio of the diffusion time to the sedimentation time, and con-
firming a good stability of the suspension against gravitational
sedimentation. The saturation magnetization of the solid phase
of nanoclusters was measured by vibrating sample magnetom-
etry and found to be MS = 481 kA/m, the value close to that of
the bulk magnetite. The details of the nanoclusters’ synthesis
and characterization are given in the supplementary material.
To avoid any confusion between nanoclusters and aggregates,
the former are hereinafter called magnetic particles or shortly
particles.

The minimum particle volume fraction ϕ′ at which the
suspension undergoes phase separation at a given magnetic
field was measured by direct visualization of the suspen-
sion structure. To this purpose, the synthesized ferrofluid was
diluted by distilled water at different particle volume fractions
ϕ ranging from 8× 10�6 to 3× 10�3 (8× 10�4–0.3%vol.). Each
suspension was injected to a transparent cell of size 20 × 10
×0.2 mm sketched in Fig. 5 and formed by a Plexiglas substrate

and a microscope glass slide separated from each other by a
polyvinyl seal. The cell was placed into a transmitted light
inverted microscope Nikon Diaphot-TMD (Japan) equipped
with a complementary metal oxide semiconductor (CMOS)
camera PixeLINK PL-B742U (Canada). An external homo-
geneous magnetic field was generated by a pair of Helmholtz
coils placed around the microscope and was applied parallel
to the thin layer of the suspension inside the cell. The observa-
tion of the suspension structure was carried out using a 10-fold
objective (Nachet 10 PLan 0,25) with a large working distance,
allowing detection of aggregates of a minimum size of about
1 µm.

In the absence of an external magnetic field, the suspen-
sions were homogeneous on the length scale 1 µm of the
microscope optical resolution. When a strong enough mag-
netic field was applied, long and thin particle aggregates of
a size above 1 µm and aligned with the direction of the
applied magnetic field rapidly appeared and grew with time,
as shown in Fig. 7 of Sec. IV B. If the applied magnetic
field was not strong enough, the aggregates were not observed
for at least half an hour. The threshold field H at a given
concentration ϕ was determined as a medium value of two
closest magnetic fields H1 and H2 at which the aggregates
were not and were observed during 30 min, while the uncer-
tainty was estimated as (H2 − H1)/2. The obtained exper-
imental dependency ϕ′(H) will be analyzed in Fig. 6 of
Sec. IV A.

FIG. 5. Sketch of the experimental setup. The ferrofluid sample is squeezed
between a lower Plexiglas and an upper glass plate separated from each other
by a polyvinyl seal (not shown here).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-038710
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-038710
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FIG. 6. Experimental ϕ-H phase diagram of the nanoparticle suspension in
the presence of a uniform magnetic field. Only one of the coexistence curves,
ϕ′(H), is available in the experiments. Another coexistence curve ϕ′′(H) is
unavailable and not shown here. The error bars correspond to the sum of the
standard deviations on three independent measurements and of uncertainties
of measurements of H and ϕ.

A similar experimental setup [Fig. 5] was used for mea-
surements of the aggregate size during phase separation. Upon
application of the external magnetic field of a desired inten-
sity H0, the aggregation process was recorded for 20 min and
snapshots were taken each 1 min. The measurements were per-
formed for the suspensions of initial particle volume fraction
ϕ0 = 1 × 10�3, 2 × 10�3, and 3 × 10�3 and for the mag-
netic field intensities H0 = 0.78, 2.75, and 4.0 kA/m. The
observed microstructure will be analyzed in Sec. IV B. To draw
quantitative conclusions, the snapshots were processed by the
Image J software. The aggregate size and shape were char-
acterized by the following magnitudes: (a) a tip-to-tip length
2a called the aggregate length [Fig. 1], (b) a width 2b at the
half-length [Fig. 1]; (c) the aggregate volume, supposing its
ellipsoidal shape, V = 4πab2/3, and (d) the aggregate aspect
ratio ra = (2a)/(2b). Because of a limited number of aggre-
gates per observation window, it was rather challenging to
obtain a smooth distribution function of their size, and we
restricted our analysis to arithmetic averages 〈2a〉, 〈2b〉, 〈V〉,
and 〈ra〉 of the measured quantities defined in different focal
planes of the sample. The evolution of these quantities with
time will be analyzed in Sec. IV C for different values of H0

and ϕ0. Uncertainties on these quantities were estimated as a
sum of the standard deviation between three independent mea-
surements and the error related to focusing and sharpness of
the aggregate border.

IV. RESULTS AND DISCUSSION
A. Binodal curve

The experimental dependency ϕ′(H) obtained at relatively
long elapsed times (when the particle aggregation seemed to
stop) is shown in double logarithmic scale in Fig. 6. The region
below this curve corresponds to the dilute gas-like suspension
phase of the suspension. The region above and on the right from
this curve corresponds to a mixture between the dilute and the
concentrated liquid-like or solid-like phases. The technique
described in Sec. III does not allow determination with con-
fidence of the second coexistence curve ϕ′′(H). The shape of

the ϕ′(H) curve has some similarities with the shape of the cor-
responding coexistence curve of the phase diagram calculated
by Hynninen and Dijkstra42 for dipolar hard spheres. A step
in the middle of the binodal curve could stand for transition
between entropically driven73 to magnetically driven phase
transition, as inferred from our previous study.57 In our case,
this curve was fitted by the following empirical formula, valid
in the concentration range 8× 10−6 < ϕ′ < 3 × 10−3 and in the
range of the magnetic field intensities 150 <H < 12500 A/m:

ϕ′(H)=




a1H
H − h1

, 150 <H < 3030 A/m

ϕ1 +
ϕ2 − ϕ1

1 + ea2(H−h2)
, 3030 <H < 12500 A/m

, (32)

where the magnetic field intensity H is in A/m and the fit-
ting parameters take the following values: a1 = 5.05 × 10−4,
a2 = 2.90 × 10−3 A−1m, h1 = 133 A/m, h2 = 3330 A/m,
ϕ1 = 8.259 × 10−6, and ϕ2 = 7.072 × 10−4. The fitting curve
[Eq. (32)] is shown in Fig. 6 by a continuous line.

It is important to notice that the measured values of the
threshold magnetic field correspond to unexpectedly low val-
ues of the magnetic field parameter ξ [Eq. (10)] and of the
dipolar coupling parameter λ = βpξ/4 (both ranged between
10�2 and 10). The phase separation in magnetic colloids is usu-
ally expected at λ > 1 and ξ > 1 and the reason for the phase
separation at λ < 1 and ξ < 1 very likely comes from rela-
tively high polydispersity of magnetic particles, as discussed
in details in Sec. IV E.

B. Microstructure

Snapshots of the suspension microstructure at different
elapsed times are shown in Fig. 7 for the intensity of the applied

FIG. 7. Snapshots of the suspension microstructure at different elapsed times
(different rows), for three initial particle concentrationsϕ0 (different columns)
and for the intensity of the applied magnetic field H0 = 4.0 kA/m.
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magnetic field H0 = 4.0 kA/m. The three columns correspond
to the three studied initial particle volume fractions ϕ0 = 1
× 10�3, 2 × 10�3, and 3 × 10�3. The first row corresponds to
the initial moment of time t = 0 at which the magnetic field was
applied to initially homogeneous suspension in the direction
horizontal with respect to the page.

Upon the field application, elongated drop-like aggre-
gates aligned with the applied magnetic field appear and are
already distinguishable at the elapsed time t = 1 min (second
row in Fig. 7). This means that the initial nucleation stage is
very short and unobservable in our optical microscopy exper-
iments. The aggregate size increases progressively with time.
At relatively short times, t < 5 min, the growth of individual
aggregates is observed, certainly thanks to adsorption of mag-
netic particles from the surrounding fluid. At longer times,
t > 5 min, neighboring aggregates start to coalesce because
of their dipolar interactions, when their length is compara-
ble to the average distance between them. Coalescence seems
to accelerate the aggregate growth until t ≈ 15 min. How-
ever, at t > 15 min, the average aggregate length becomes
much longer than the distance between them and the coales-
cence rate seems to decrease, at least at the considered field,
H0 = 4 kA/m, likely because of the repulsive dipolar interac-
tions between aggregates.

Because of insufficient optical resolution, it was impossi-
ble to retrieve exact aggregate shape. Qualitatively, the aggre-
gate width progressively decreases when moving from the
aggregate center to the tips, as in the case of ellipsoidal shape
supposed in the model. Conical spikes have not been detected
on aggregate tips, as opposed to the experiments of Promis-
low and Gast30 on drop-like aggregates of magnetorheological
fluids and to our previous experiments on phase condensation
around a magnetized micro-bead.55,57 In fact, the character-
istic period Π = (Dη0/(∆ρag))1/3 of patterns arising during
convective instability on the interface between two miscible
magnetic phases74 is about one micron for our experimental
case (here ∆ρa is the difference between the aggregate and the
surrounding medium densities). This length scale is compara-
ble to the aggregate width, such that the aggregate tip is likely
unable to develop numerous spikes.

As expected, at increasing initial particle volume frac-
tion ϕ0, the aggregate size increases at a given elapsed time.
The effect of the volume fraction and of the applied magnetic
field on the aggregation state of the suspension can be bet-
ter inspected on Fig. 8, where, all the snapshots are presented
for the same elapsed time, equal to t = 20 min but for three
different values of ϕ0 and H0. The suspension structure does
not seem to change qualitatively with variations in ϕ0 and
H0: more or less long aggregates, extended along the applied
magnetic field are observed for all studied concentrations and
fields. However, the aggregate length and thickness seem to
increase considerably with increasing magnetic field and ini-
tial particle concentration and this effect will be inspected in
detail in Sec. IV C.

It is important to notice that the aggregates have a thick-
ness of a few microns and the length of several hundreds of
microns. The aggregate thickness is governed by the interplay
between magnetic and surface energy of the aggregates lead-
ing to Eq. (12) relating the aggregate volume to its shape. Their

FIG. 8. Snapshots of the suspension microstructure at the fixed elapsed time
equal to t = 20 min and different intensities H0 of the applied magnetic field
and different initial particle concentrations ϕ0.

gravitational Péclet number is of the order of PeG ∼ 102 and
their sedimentation time (required for a horizontal aggregate
to fall a distance equal to its width) is equal to a few seconds,
so the aggregates are expected to sediment and reach the bot-
tom of the cell during a few minutes. However, the images
at different horizontal planes show that there are no aggre-
gates near the bottom and the upper walls of the cell within
boundary layers of a characteristic thickness of about 10 µm.
This could be tentatively explained by magnetic levitation of
aggregates dispersed in a dilute ferrofluid, when the lines of the
magnetic field induced by the aggregate are “repelled” from
non-magnetic walls and create an effective repulsion of the
aggregate from the cell walls, by analogy with levitation of
magnets in ferrofluids.21

C. Aggregate size

Our model was mostly focused on the calculations of the
elapsed time as a function of the aggregate volume V. The
three remaining geometrical parameters of the aggregates are
easily related to the aggregate volume using Eqs. (11) and
(13). Thus, the aggregate aspect ratio ra is directly given by
Eq. (13b), while the aggregate length and width are given by
the following expressions:

2a = 2

(
3

4π
Vra

2
)1/3

= 2

(
3

4π

)1/3

V̂3/7
(

1
7

ln V̂

)2/7

B1/3,

(33a)

2b = 2

(
3V

4πra

)1/3

= 2

(
3

4π

)1/3

V̂2/7
(

1
7

ln V̂

)−1/7

B1/3.

(33b)

The most precise measured quantity describing the aggre-
gate size is the average aggregate length 〈2a〉. Theoretical and
experimental dependencies of the average aggregate length on
elapsed time are presented in Figs. 9(a)–9(c) for three differ-
ent values of the intensity H0 of the applied magnetic field
and for the three different initial particle volume fractions ϕ0

of the suspension. Most of the experimental curves show an
initial sublinear increase of the aggregate length with time,
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FIG. 9. Experimental and theoretical
dependences of the average aggregate
length on the elapsed time for differ-
ent initial particle concentrationsϕ0 and
different magnetic field intensities H0
= 0.78 kA/m (a), 2.75 kA/m (b), and
4.0 kA/m (c). Symbols stand for the
experiments, solid lines—for the theory.
The inset in (b) shows the same depen-
dency forϕ0 = 0.1% in an extended time
scale. The experimental results were fit-
ted by the theoretical dependences with
the values of the adjustable parameters
Θ = 3.3 × 10−4 and ϑ = 5.0 × 1012.

followed by a change in the slope at t ≈ 10-15 min and by
a stronger increase. Qualitatively, such a change of the slope
corresponds to a transition between the aggregate growth and
the aggregate coalescence regimes, as checked by tracking the
snapshots [Fig. 7]. Since in experiments the aggregates had
unequal lengths, the transition was progressive, i.e., occurred
within finite lapses of times and aggregate volumes. Experi-
ments also show that at the same elapsed times, the aggregate
length is an increasing function of the magnetic field intensity
H0 and of the initial particle volume fraction ϕ0. This means
that the aggregation process accelerates with increasing H0

and ϕ0. This was expected because an increasing magnetic
field enhances dipolar particle-particle, particle-aggregate, and
aggregate-aggregate interactions, while an increasing particle
concentration reduces the time of approach of two particles
and of two aggregates.

The theoretical dependence of the average aggre-
gate length 〈2a〉 on time is found in parametric form
{〈2a〉 = f1(V ), t = f2(V )} [Eqs. (33a) and (31)] and is pre-
sented by solid lines in Fig. 9. The aggregate magnetiza-
tion M intervening into the time scale τ∗ of the coalescence
stage was calculated in a linear approximation, M ≈ χH0,
with the aggregate magnetic susceptibility estimated using
the Maxwell-Garnett mean field theory:71 χ = 3βpϕ

′′/(1
− βpϕ

′′) ≈ 3ϕ′′/(1 − ϕ′′) ≈ 4.5, where βp ≈ 1 [cf. definition
below Eq. (4)] and ϕ′′ ≈ 0.6—the internal volume fraction of
aggregates [cf. Sec. II A]. Two remaining unknown parame-
ters, V̂0 and Φ0, were found by fitting the experimental 〈2a〉
versus t dependences by theoretical ones. Both these parame-
ters have been found to strongly vary with the magnetic field
intensity H0 and the initial particle volume fraction ϕ0. The
initial aggregate concentration Φ0 is expected to be propor-
tional to the concentration of the condensation centers in the
suspension and is assumed to vary linearly with ϕ0, as follows:

Φ0 = Θϕ0. On the other hand, depending on the kinetics of the
early nucleation stage, the initial dimensionless volume V̂0 of
aggregates could be an increasing function of both the mag-
netic field parameter ξ and the initial particle volume fraction
ϕ0. We have supposed the empirical correlation V̂0 = ϑξϕ

2
0 for

V̂0, which allows a reasonable agreement with the experiments.
Thus, all the nine experimental curves shown in Fig. 9 have
been fitted to the theory using the aforementioned expressions
forΦ0, V̂0 and the single set of adjustable parametersΘ and ϑ.
The best fit was obtained atΘ = 3.3×10−4 and ϑ = 5.0×1012.

Our model seems to qualitatively reproduce the main
experimental behaviors. First, one can distinguish a change
of the behavior of the 〈2a〉 versus t theoretical curves from
sublinear to stronger than linear dependency. This change cor-
responds to the transition between two aggregation stages. The
slope changes in a less abrupt manner than in experiments
but rather continuously according to the proposed scenario
of the transition based on equality of the aggregation rates
[Sec. II C]. The change of the slope can be better appreciated
in inset of Fig. 9(b), where 〈2a〉 versus t dependence is plotted
for a broader range of the elapsed times at H0 = 2.75 kA/m
and ϕ0 = 0.001. Second, the model captures the increasing
dependence of the aggregate length on the applied field H0.
The magnetic field accelerates both stages of the phase sep-
aration. During the aggregate growth stage, it decreases the
correction factor K responsible for magnetophoretic particle
flux and increases initial supersaturation ∆0 = ϕ0−ϕ

′ through
a decrease of the equilibrium dilute phase concentration ϕ′(H0)
according to Eq. (32) and Fig. 6. Since the aggregate growth
rate dV /dt is proportional to the ratio ∆/K = (∆0 − ϕ

′′Φ)/K
[Eq. (14)], both effects contribute to the increase of the aggre-
gation rate with an increasing magnetic field. The effect of∆0 is
found to dominate over the effect of K within our experimental
ranges of H0 and ϕ0 because K is a weakly (logarithmically)
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decreasing function of ξ and therefore of H0 [Eq. (B6b) in
Appendix B]. During the coalescence stage, the magnetic field
decreases significantly the time scale of the process propor-
tionally to the square of the aggregate magnetization M, thus
to the square of the applied field τ∗ ∝ M−2 ∝ H−2

0 . Third, the
model predicts an increase of the aggregate length with the ini-
tial particle volume fraction ϕ0. During the aggregate growth
stage, the aggregation rate is proportional to the supersatu-
ration ∆ = ∆0 − ϕ

′′Φ ∝ ϕ0 [Eq. (14)], thus, it increases
linearly with ϕ0. During coalescence stage, both terms of the
elapsed time are proportional to Φ−5/3 and Φ−1, respectively
[Eq. (29)], implying an increasing growth rate with increas-
ing ϕ0. In addition to it, higher initial aggregate volumes
V̂0 ∝ ξϕ0

2 ∝ H0
2ϕ0

2 at higher applied fields and higher initial
concentrations also lead to an increase of the aggregate length
with the growth in H0 and ϕ0.

Quantitative discrepancy between the theory and experi-
ments could come from different assumptions of the model.
For example, a slower variation of the aggregate size than that
observed in experiments at t > 15 min likely arises because of
underestimation of the coalescence rate using the cell model
[cf. Sec. II B]. On the other hand, step-like shape of some
experimental curves could be a result of insufficient number of
aggregates at long elapsed times when individual coalescence
events (resulting in a step-wise increase of the aggregate size)
are not sufficiently frequent for obtaining a smooth variation
of the aggregate size.

The behavior of other geometrical parameters, 〈2b〉, 〈ra〉,
and 〈V〉, was also inspected and plotted as a function of time
in Figs. 10(a) and 10(b) for the magnetic field H0 = 2.75 kA/m
and the initial particle volume fraction ϕ0 = 0.001. For the
sake of comparison, the aggregate length 〈2a〉 is also plotted
in Fig. 10(a). We remark that the aggregate width 〈2b〉 exhibits
a slower growth with time than the aggregate length 〈2a〉: in
experiments the length increases from 0 to 150 µm, while
the width—from 0 to 2.6 µm [symbols on Fig. 10(a)]. This
trend is confirmed by our model [lines in Fig. 10(a)] and is
explained by minimum energy principle (valid for individual
aggregates under local equilibrium assumption) leading to the
scaling laws 〈2a〉 ∝V3/7 [Eqs. (33a)], 〈2b〉 ∝V2/7 [Eqs. (33b)]
and showing that the length increases stronger than the width
with the aggregate volume, and therefore with time. Even
though experimental determination of the aggregate width is

subjected to relatively large errors, our model systematically
overestimates it. This is likely because of overestimation of
the aggregate surface tension Σ, and thus of the volume scale
B ∝ Σ3/(µ0M2)3 ≈ π3v/64 [Eq. (12)]. Such overestimation is
expected to promote thicker aggregates with a smaller aspect
ratio, as compared to those observed in experiments—see
Fig. 10(b) for 〈ra〉. The model reproduces qualitatively the
shape of the experimental 〈V〉 versus t dependency, but since
it overestimates the aggregate thickness by a factor of about
1.7, it overestimates the aggregate volume 〈V〉 ∝

〈
b2

〉
by a fac-

tor of 3. A better agreement between theory and experiments
should be obtained in future in frames of a more precise model
based on the determination of the aggregate size distribution.

D. Aggregate concentration

Another important parameter that can be retrieved from
our model is the aggregate concentration Φ, which changes
with time, at least during the aggregate growth stage when the
aggregates absorb individual particles from the surrounding
fluid. In our model, the aggregate concentration is related to the
dimensionless aggregate volume by the following equation:

Φ =



Φ0V̂/V̂0, V̂ ≤ V̂τ

Φ0V̂τ/V̂0 = const, V̂ > V̂τ
, (34)

where the upper expression corresponds to the aggregate
growth stage, the lower expression—to the coalescence stage,
and the volume V̂τ at the transition is found by numerical
solution of Eq. (30).

Theoretical dependence of the aggregate concentra-
tion on the elapsed time is obtained in parametric form{
Φ = f1(V̂ ), t = f2(V̂ )

}
[Eqs. (34) and (31)] and is plotted in

Fig. 11 for the magnetic field intensity H0 = 4 kA/m and
for three different initial particle volume fractions ϕ0. In the
beginning, the aggregate concentration increases stronger than
linearly with time during the aggregate growth stage propor-
tionally to the aggregate volume. Then, above the transition
point, it becomes independent of time and the curves show a
final horizontal plateau. As expected, at the same elapsed time,
the aggregate concentration increases with the initial particle
volume fraction ϕ0 because the initial aggregate concentration
Φ0 has been supposed to be proportional to ϕ0 in frames of the
heterogeneous nucleation scenario.

FIG. 10. Experimental and theoretical dependences of the average aggregate length and width (a), as well as of the average aggregate volume and aspect ratio
(b) on the elapsed time for the magnetic field intensity H0 = 2.75 kA/m and the initial particle volume fraction ϕ0 = 0.1%. Symbols stand for the experiments,
solid lines—for the theory. The experimental results were fitted by the theoretical dependences with the same values of the adjustable parameters, as the ones
used for fitting the data on Fig. 9.
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FIG. 11. Theoretical dependence of the aggregate concentration as a function
of elapsed time for the magnetic field intensity H0 = 4.0 kA/m and three
different initial particle volume fractions ϕ0. For calculations, we have used
the same values of the adjustable parameters, as the ones used for fitting the
data on Fig. 9.

It is important to note that the concentration Φτ at the
plateau of Φ versus t dependences does not reach the maxi-
mal concentration Φm ≈ ∆0/ϕ

′′ expected at the equilibrium
between the dilute and concentrated phases at the end of
the phase separation. For instance, the plateau value for H0

= 4 kA/m and ϕ0 = 0.003 is Φτ ≈ 4.3 × 10−5, while the maxi-
mum value isΦm ≈ 9.7×10−3, so, it is two orders of magnitude
larger thanΦτ . This means that the particle concentration ϕ∞ in
the dilute phase does not reach the equilibrium concentration
ϕ′ but remains relatively close to the initial particle volume
fraction ϕ0, implying that the suspension supersaturation ∆
does not tend to zero at infinite times, as expected at equilib-
rium, but decreases insignificantly with respect to its initial
value ∆0.

Such inconsistency could come from the transition sce-
nario developed in Sec. II C. Apparently, the transition
between two stages occurs at relatively low aggregate volumes,
V � Vm, well below the plateau of the aggregate growth stage
[cf. Fig. 2], when the aggregate concentration is still far from
the maximum value Φm. After transition, during the coales-
cence stage, possible aggregate growth due to absorption of
individual particles is ignored, implying constant aggregate
concentration, which is well below the equilibrium value Φm.
In reality, the aggregates are expected to grow both due to
absorption of particles and coalescence.

It is worth noticing that in experiments, the aggregate con-
centrationΦ at long elapsed times also seems to be much lower
than the equilibrium value Φm. Direct estimation from the
micrographs, obtained at different focal plains across the thick-
ness of the observation cell, gives the Φ value of the order of
10�4 for t = 20 min, H = 4 kA/m, and ϕ0 = 0.3%, so, two orders
of magnitude lower than the equilibrium value Φm ≈ 10−2.
However, the reason of the experimental discrepancy between
Φ and Φm is rather different from the reasons indicated above
for the theoretical discrepancy. The experimental discrepancy
is expected to come from particle polydispersity, as discussed
in detail in Sec. IV E.

E. Possible effects of polydispersity

Polydispersity is expected to have different effects on the
phase separation process. First, it leads to the heterogeneous

mechanism of the particle nucleation: the biggest particles play
the role of the condensation centers for formation of nuclei, as
opposed to the homogeneous nucleation occurring in monodis-
perse suspensions free of any impurity, in which the nuclei are
formed by the particles of the same size, as has been described
in detail in the work of Zubarev and Ivanov.50 The hetero-
geneous nucleation is expected to lead to another nucleation
rate and other details of the earliest stage than those for the
homogeneous nucleation. The initial stage of heterogeneous
nucleation is too short for our system and cannot be detected
using the optical microscopy.

Second, the particle polydispersity is expected to result in
polydisperse initial nuclei enhancing the degree of polydisper-
sity of final bulk drop-like aggregates. Third, only the largest
particles of the polydisperse magnetic colloid are expected to
form aggregates. This can be implicitly checked by comparing
the fraction of particles Φϕ′′/ϕ0 belonging to the aggregates
with the fraction of large particles in the suspension. Assum-
ing ϕ′′ ≈ 0.6, we estimate Φϕ′′/ϕ0 ≈ 0.02 (2%vol). This
fraction corresponds to the particles of the size d > 150 nm
according to the size distribution curve [Fig. S1 of the supple-
mentary material]. The population of the largest particles has
a medium size of about 180 nm and corresponds to the param-
eters ξ ranged between 1 and 23 for the experimental range of
the magnetic fields. These values of ξ are more relevant for the
field-induced phase separation described in Sec. IV A rather
than the values of ξ calculated using the average particle size,
d = 54 nm, of the suspension. The rest of the particles (98%)
do not contribute to the aggregates, such that the dilute phase
concentration ϕ∞ should not be very different from the initial
particle concentration ϕ0. This fact is confirmed by the analysis
of the transmitted light intensity through the medium between
the aggregates. This also explains the difference between the
measured value of the aggregate concentrationΦ and the max-
imum value Φm that would be expected if the particles of all
sizes were able to aggregate [cf. Sec. IV D].

The effect of the polydispersity of the magnetic colloid
on the phase equilibrium is often accounted for in a bi-
disperse approximation,75,76 with a size ratio and a fraction
of largest particles considered as two adjustable parameters of
that model. Our assumption that aggregates are mainly consti-
tuted by coarse particles is in agreement with the prediction of
the bi-disperse model. Bi- or polydispersity of particles would
certainly affect the predictions of our kinetic model not only
through appearance of unequal aggregates but also through a
modification of the time scale B2/3/D ∝ d3 and of the initial
aggregate concentrationΦ0 and initial supersaturation∆0 both
depending on the initial concentration of the fraction of largest
particles ϕ0L < ϕ0. We believe, however, that our monodis-
perse approximation gives a satisfactory physical picture of the
kinetics of aggregation of medium-sized nanoparticles with-
out introduction of two supplementary adjustable parameters
related to the particle polydispersity. The extension to the
polydisperse case will be performed in a future work.

V. CONCLUDING REMARKS

The present paper is focused on the theoretical model-
ing and experimental studies of the kinetics of aggregation

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-038710
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-038710


114902-14 Ezzaier et al. J. Chem. Phys. 146, 114902 (2017)

of medium sized superparamagnetic nanoparticles (20 < d
< 100 nm) in the presence of an external uniform magnetic
field.

In experiments, the kinetics of aggregation was directly
observed in the presence of a magnetic field using a trans-
mission light microscope. At initial particle concentrations
ϕ0 > ϕ

′(H0), upon application of an external uniform mag-
netic field, a suspension of magnetic nanoparticles undergoes
a phase separation manifesting by appearance of long needle-
like aggregates extended along the direction of the applied
field. The aggregate size grows with time, and two distinct
aggregation stages are distinguished: (a) growth of individual
aggregates by absorption of nanoparticles from the ambient
fluid; (b) coalescence of neighboring aggregates occurring at
longer elapsed times, while the earliest heterogeneous nucle-
ation stage is too short and cannot be observed in optical
microscopy experiments. The beginning of coalescence is
accompanied by a change of the slope of the time dependency
of the average aggregate length. The aggregation rate appears
to increase with increasing magnetic field intensity H0 and
initial particle concentration ϕ0.

For the better understanding of each aggregation step,
separate theoretical models have been developed for both
steps and a transition scenario has then been proposed. First,
a kinetic equation including diffusive and magnetophoretic
fluxes of the single particles and their adsorption by the aggre-
gate has been developed for the aggregate growth step. The
kinetic equation shows a saturation of the aggregate size
with time when the dilute phase particle concentration ϕ∞
approaches the equilibrium value ϕ′, meaning that the super-
saturation ∆ = ϕ∞ − ϕ

′ goes to zero. Second, the hierarchi-
cal model of See and Doi36 was adapted for coalescence of
the ellipsoidal aggregates, while possible aggregate growth
due to absorption of particles between coalescence steps was
neglected. This model predicts a stronger than linear increase
of the aggregate volume and of the aggregate length with time,
namely, 〈V〉 ∝ t7/2 and 〈2a〉 ∝ t3/2 at t� τ∗/Φ2/3. Both
models confirm experimental findings on an increase of the
aggregation rate with growing magnetic field intensity and the
initial particle volume fraction. However, the magnetic field
H0 has a much stronger effect on the kinetics of the coales-
cence stage (decreasing the time scale τ∗ proportionally to
H0

2) than on the kinetics of the aggregate growth stage.
A transition between two aggregation stages was sup-

posed to occur when the aggregation rate of the coalescence
regime becomes larger than that of the aggregate growth
regime. Such approach gave a reasonable agreement between
the theory and experiments for the time dependencies of the
aggregate length at different magnetic fields and initial particle
concentrations. The agreement was less good for the aggregate
width and volume. Another important point is that the model
predicts the transition at the aggregate concentrations Φτ well
below the equilibrium value Φm ≈ ∆0/ϕ

′′ and during coa-
lescence stage the concentration is supposed to be constant
Φ = Φτ � Φm. The reason for the experimental discrepancy
betweenΦ andΦm lies in the fact that only the largest particles
of the polydisperse colloid contribute to the phase separation.

In summary, the presented model captures the main
features of the aggregation process and allows at least

semi-quantitative agreement with experimental results. The
results could be useful for designing specific systems based
on the manipulation of medium-sized magnetic nanoparticles.
The theory can be further improved by considering particle
polydispersity, the early nucleation stage, and final Oswald
ripening stage, as well as calculating the size distribution
of aggregates using either Fokker-Planck or Smoluchowski
kinetic equations. New experiments allowing a precise descrip-
tion of the early nucleation stage are necessary to complete the
physical picture of kinetics of phase separation in polydisperse
suspensions.

SUPPLEMENTARY MATERIAL

See supplementary material for Materials and Methods.
Synthesis and characterization of magnetic nanoparticles are
described.
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APPENDIX A: SPATIAL DISTRIBUTION OF THE
MAGNETIC FIELD AND THE PARTICLE ENERGY

Both ellipsoidal aggregates and the surrounding fluid are
considered as continuous media, with high and low particle
concentrations, respectively, and possessing magnetic suscep-
tibilities equal to χa and zero, respectively. The magnetostatic
potential Ψ around the aggregate can be found using a similar
approach to the one employed for the electrostatic potential
of the conducting ellipsoid.67 In ellipsoidal coordinates intro-
duced in Sec. II A [Eqs. (5) and (6)], the solution for Ψ
reads

Ψ = −H0z

(
1 + A

γ(σ)σs

γ(σs)σ

)
, (A1a)

γ(σ) = σ arcothσ − 1, (A1b)

A = −χ
σs(σ2

s − 1)

1 + χnII
, (A1c)

nII = (σ2
s − 1)γ(σs), (A1d)

recalling that σs = a/c = a/
√

a2 − b2 is the value of σ on the
aggregate surface. The components Hσ and Hτ of the magnetic
field H = −∇Ψ outside the aggregate as well as its absolute
value H can be calculated as

Hσ = −
1

√
gσσ

∂Ψ

∂σ
; Hτ = −

1
√

gττ

∂Ψ

∂τ
; H2 = H2

σ + H2
τ , (A2)

where the metric coefficients gσσ and gττ are given by
Eq. (6).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-038710
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The difference of the dimensionless energies (u − u0),
intervening into the integral I appearing in Eq. (9), is given by
the following expression:

u − u0 =
U − U0

kBT
= −ξΓ(σ, τ), (A3)

where the magnetic field parameter ξ = −u0 is given by Eq.
(10) and Γ(σ, τ) = H2/H2

0−1. Combining Eqs. (A1) and (A2),
after some algebra, we arrive at the following expression for
the factor Γ, appearing in Eq. (A3) for the energy difference
of a particle around the aggregate as a function of the particle
position (σ, τ):

Γ(σ, τ) =
1

σ2 − τ2

[
τ2(σ2 − 1)C(σ) + (1 − τ2)D(σ)

]
,

(A4a)

C(σ) = 2Aγ′ + A2γ′2, (A4b)

D(σ) = 2Aσγ + A2γ2, (A4c)

γ′ =
dγ
dσ
= arcothσ −

σ

σ2 − 1
. (A4d)

APPENDIX B: ESTIMATION OF THE INTEGRAL
I IN EQ. (9)

We aim at expressing the integrals

I =
1
2

∫ ∞
σS

dσ

(σ2 − 1)Iσ
, (B1a)

Iσ =
∫ 1

0
e−(u−u0)dτ =

∫ 1

0
eξΓ(σ,τ)dτ (B1b)

as a function of the magnetic field parameter ξ, the aggregate
aspect ratio ra, and the aggregate susceptibility χ.

First, we obtain the following asymptotic values of Iσ and
I at ξ = 0—the case when the magnetophoretic particle flux
is neglected:

Iσ = 1; I =
1
2

arcothσs ≈
1
2

ln(2ra) at λ → 0 and ra � 1.

(B2)

At nonzero values of ξ and at the considered high aspect
ratio limit ra � 1, the integrand of Iσ exhibits a sharp increase

close to the aggregate tips, i.e., at σ ≈ σs and in the vicinity
of the integration limit τ = 1, while it takes a value close to
unity on the rest of the integration interval. At such condition,
the term Γ(σ, τ) [Eq. (A4)] can be expanded in Taylor series
in the vicinity of the point τ = 1 and the integral Iσ can be
evaluated as follows:

Iσ ≈

1∫
0

exp

[
ξ

(
Γ(1) −

(
∂Γ

∂τ

)
τ=1

(1 − τ)

)]
dτ

≈
eξΓ(1)

ξ (∂Γ/∂τ)τ=1
=

(σ2 − 1)eξC(σ)

2ξ(σ2C(σ) − D(σ))
, (B3)

where the functions C(σ) and D(σ) are given by Eqs. (A4b)
and (A4c).

This evaluation is only valid at σ ≈ σs, while at larger
distances σ from the aggregate surface the integral falls to
its asymptotic value of 1. Nevertheless Eq. (B3) will allow
obtaining an approximate analytical expression for the integral
I. To this purpose, both numerical and analytical estimations
of the integrand 1/

[
(σ2 − 1)Iσ

]
of I are plotted in Fig. 12(a)

as a function of σ/σs for ra = 100, ξ = 1, and χ = 4.5. Ana-
lytical estimation (dashed curve) seems to be rather precise
at σ/σs<1.000 03 as compared to the numerical result (solid
curve). At σ/σs > 1.000 08, the numerical estimation gives
Iσ ≈ 1 and the integrand is approximately equal to 1/(σ2 − 1)
as inferred from comparison between the dotted and the solid
lines in Fig. 12(a).

The exact value of the integral I represents the area below
the solid curve in Fig. 12(a). This area can be roughly estimated
as the area of the hatched figure whose upper border is defined
by the curve 1/(σ2 − 1) and the left border—by a vertical
line corresponding to the intersection between the theoretical
dashed curve and 1/(σ2 − 1) dotted curve. This corresponds
to the following approximate expression for I:

I ≈
1
2

∫ ∞
σC

dσ

σ2 − 1
=

1
2

arcothσC , (B4)

where σC is found from Eq. (B3), in which Iσ is set to
unity. The equation Iσ(σC) = 1 has an approximate analytical
solution in the limit ra � 1 and gives the following explicit
expression for the integral I:

FIG. 12. The integrand of I as a func-
tion of σ/σs for ξ = 1 (a); the correc-
tion factor K as a function of the mag-
netic field parameter ξ (b). Both figures
(a) and (b) are plotted for ra = 100 and
χ = 4.5.
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I ≈
1
2

ln

2ra

(
(1 + δ/ξ)1/2 − 1

χ

)1/2
, (B5a)

δ = ln
(
2χ(χ + 2)ξra

2
)

. (B5b)

Finally the integral I can be presented as a product of its
value at ξ = 0 by a correction factor K defined as follows:

I ≈
1
2

K ln(2ra);∼
1
2

K ln ra at ra � 1, (B6a)

K =



K∗, K∗ ≤ 1

1, K∗ > 1
K∗ = 1 +

1
2

ln
[(

(1 + δ/ξ)1/2 − 1
)
/χ

]

ln(2ra)
,

(B6b)

where δ is given by Eq. (B5b), and the conditional expression
in Eq. (B6b) is introduced in order to avoid the values of K > 1
at low values of ξ for which Eqs. (B3)–(B5) are no longer
valid but the value of K is close to unity. In the whole range
of ξ, the correction factor K can be evaluated numerically as
K = 2I/ ln(2ra), where I [Eq. (B1)] is integrated numerically.

Both numerical and analytical values of the correction
factor K are plotted as a function of the magnetic field param-
eter ξ in Fig. 12(b) for ra = 100 and χ = 4.5. Analytical and
numerical calculations show a slow decrease of K as a function
of ξ, in agreement with a logarithmic decrease predicted by
Eq. (B6b). For instance, K decreases only by a factor of about
2 when ξ varies from 0 to 100. Such a small decrease could
be explained by the fact that magnetic field in the vicinity of
strongly elongated aggregates is everywhere close to the exter-
nal field H0, except for the aggregate tips; this leads to a rather
weak magnetophoretic flux and results to a weak dependence
of K on ξ. Finally, the relative error of the analytical estimate
of K [Eq. (B6b)] is less than 6% at ξ < 10 and reaches 19% at
ξ = 100.

APPENDIX C: ESTIMATION OF THE AGGREGATE
FLUX [EQ. (25)]

For evaluation of the integral in Eq. (24) for the aggregate
flux, it is more convenient to use a spherical coordinate sys-
tem (r, θ) introduced in Fig. 3. First, we have to express the
magnitudes z and dz on the surface of the control ellipsoid,
intervening into Eq. (24), through the angle θ,

z = r cos θ =
α cos θ(

ra
2 sin2 θ + cos2 θ

)1/2
, (C1)

dz =
dz
dθ

dθ = −
αra

2 sin θ

(r2
a sin2 θ + cos2 θ)3/2

dθ. (C2)

Using the last expressions along with the relationship
α = 2a/Φ1/3 in Eq. (24) and applying the limit ra � 1,
we arrive at the following approximate expression for the
aggregate flux:

J ≈
nζ⊥µ0M2V2

2a2

θ0∫
0

[
−2 + (1 + ψ sin 2θ + ψ2 sin2 θ)−3/2

+ (1 − ψ sin 2θ + ψ2 sin2 θ)−3/2
]

sin θdθ

=
nζ⊥µ0M2V2

2a2


2 cos θ0 −

cos θ0 − ψ sin θ0(
1 − ψ sin 2θ0 + ψ2 sin2 θ0

)1/2

−
cos θ0 + ψ sin θ0(

1 + ψ sin 2θ0 + ψ2 sin2 θ0

)1/2


, (C3)

where we denoted ψ = raΦ
1/3 and the angle θ0 corresponds to

the position on the control ellipsoid surface [Fig. 3(a)], where
the flux density is zero. This corresponds to the condition

−2 + (1 + ψ sin 2θ0 + ψ2 sin2 θ0)−3/2

+(1 − ψ sin 2θ0 + ψ2 sin2 θ0)−3/2 = 0. (C4)

Explicit solutions of Eq. (C4) with respect to θ0 exist only in
the limits of small and high ψ giving the following asymptotes
for the flux:

J =




4Φ5/3µ0M2

25
√

5η0

ln ra, ψ = raΦ
1/3 � 1

Φµ0M2

6η0

ln ra

r2
a

, ψ = raΦ
1/3 � 1

. (C5)

In deriving the last equation from Eq. (C3), we have used
n=Φ/V for the number fraction of aggregates and ζ⊥
≈ (ln(2ra) + 1/2) /(8πη0a) ∼ ln ra/(8πη0a) for the transverse
component of the aggregate hydrodynamic mobility77 at ra

� 1. Beyond these two asymptotes, using numerical solution
for θ0 in Eq. (C3), we get a numerical result for the aggregate
flux, which is fitted by Eq. (25) of Sec. II B at a maximal error
of 5.2% at ψ ≈ 1.5.
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