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One-flow feed divided electrochemical reactor for indirect electrolytic
production of hypochlorite from brine for swimming pool

treatment-experimental and theoretical optimization

T. Tzedakis ⇑, Y. Assouan

Laboratoire de Génie Chimique, Université de Toulouse – Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, France

h i g h l i g h t s

� Optimization of an electrochemical chlorinator for swimming pool.

� Divided asymmetric electrochemical continuously stirred reactor.

� Convective transfer of the anolyte across the separator to the cathodic compartment.

� The brine (5 M NaCl) conversion reaches 50% under 3 kA mÿ2 with a faradic yield of 80%.

� Correlation of current density versus chloride concentration for concentrated brine.

a b s t r a c t

A ‘two-compartment’ asymmetric electrochemical reactor, operating without electrodes polarity inver-

sion, was designed and optimized for the chlorination of swimming pools. Gaseous chlorine, produced

at the anode and absorbed in the alkalinized catholyte, provides the hypochlorite solution. Empiric equa-

tions providing the chloride concentration dependence on the initial current density magnitude were

established. Experimental optimization of the effect of the various operating parameters allows a chloride

conversion close to 50% with faradic yields higher than 80%, and a chlorine production of 1 kmol/day/m2

to be achieved. Macroscopic mass balance, was performed and the obtained theoretical results correlate

with the experimental ones (Xtheor:Clÿ ÿ Xexper:Clÿ < 10%).

1. Introduction

Gaseous chlorine was produced at industrial scale by electroly-

sis of concentrated brine solution. Several studies focus on the pro-

duction of chlorine, involving new material or processes, that

enable saving electrical energy; thus the field is important to

industrial production [1–7]. Furthermore, several commercial

devices (chlorinators) exist that produce chlorine or hypochlorite,

used for treating swimming pool water. Diluted brine solutions

(NaCl < 30 g Lÿ1), were electrolyzed using an undivided mono/bi

polar electrochemical reactor, continuously supplied by swimming

pool water.

DSA Ti/TiO2/RuO2, is the anodic material used for chloride oxi-

dation to chlorine [8–10]. Titanium (or stainless steel) was used

as the cathodic material.

Due to the neutral pH of the electrolyte, chloride oxidation

directly produces hypochlorite (Table 1, R1) used in swimming

pools. In fact, gaseous chlorine produced by electrolysis is trans-

formed into hypochlorite following the disproportionation reaction

(11 or 12, Table 1) by the action of soda [11,12]. Note that concen-

trated (50%) hypochlorite solutions were also produced by action

of gaseous chlorine and soda.

Chlorinators can operate as a function of the geographical area

for long periods; the main problem of these systems was due to the

limescale which can deposit on the electrodes, mainly the Ti or

steel cathodes (because of alkalinization of the interface); indeed,

during electrolyses the limescale cumulates on the electrode sur-

face leading to short circuits and damage to the electrodes, so

the system becomes inoperative.

Several devices have been patented in order to overcome the

limescale deposit growth [12–14]. For automated chlorinators,

one possibility consists of alternating the polarity of the electrodes

[14]. A slight acidification of the interface of the cathode during the

short anodic polarization causes dissolution of the limescale



deposit enabling activation of the electrode. Even if this system

appears efficient, after several ‘electrodes polarity’ inversions, the

catalytic layer (Ru/Ti oxides) is damaged; hypochlorite production

then drastically decreases and requires the electrodes to be

changed.

The goals of this study are to design and optimize an electro-

chemical reactor dedicated to supplying active chlorine/hypochlo-

rite for swimming pool. The main criteria that govern the design of

this device are indicated below:

– it must operate without polarity inversion (to avoid destruction

of the catalytic coating) to maximize the duration of the elec-

trode material.

– as with the existing devices, the new proposed reactor has to

operate automatically for the required duration (3–4 months),

implying that it is supplied by a concentrated brine (sodium

chloride �300 g Lÿ1; �5 mol Lÿ1), reducing the volume used.

To reach this goal, this study aims to design and optimize a

divided electrochemical cell, continuously supplied in the anodic

compartment by brine in slightly acidified (pH < 3), demineralized

water. The electrolytic compartments are separated by a porous

ceramic diaphragm allowing convective transfer of the anolyte to

the cathodic compartment. Acidification of brine allows gaseous

chlorine production; simultaneously, water (or H+) reduction to

H2 leads to alkalinization of the catholyte and the production of

soda. Absorption of gaseous chlorine in the catholyte (in the outlet

of the cathodic compartment) leads to the production of

hypochlorite.

Experimental and theoretical optimization of the various oper-

ating parameters (applied current density, electrolyte flow, pH

adjustment of the solutions,. . .) for chloride conversion and chlo-

rine converted to hypochlorite production, constitutes the main

points involved below.

2. Experimental section: chemicals-analytical procedure and

devices

Deionised water was used for all solutions. Chemicals were sup-

plied by WVR. A divided electrochemical cell of a volume of 50 cm3

per compartment, was used to carry out the electrochemical kinet-

ics studies. The electrolytic compartments were separated by a

ceramic diaphragm of porosity 5. Current potential curves were

plotted using a Potentiostat–Galvanostat (PGZ 100-Voltalab of

Radiometer Analytical, and a VoltaMaster 4 software). The working

electrode used was a chlorine/DSAÒ plate (24 mm2) e.g. titanium

grids covered by a catalytic layer of metallic oxides from

Ru/Ti/In-DSAÒ from ELTECH. A platinum rod was used as auxiliary

electrode and the reference electrode was a silver/silver chloride

(Ag/AgCl/KCl saturated).

Divided electrochemical cells with volume ratio (Vanolyte/

Vcatholyte � 2) were used to carry out preparative electrolyses. The

electrolytic compartments were separated by a ceramic diaphragm

of porosity 2–3. As anode, the same ELTECH-chlorine/DSAÒ was

used as previously and the cathodic material was Ti made. Various

surface ratios (1 < Sanode/Scathode < 4) are involved for the prepara-

tive electrolyses, carried out using a constant current electrochem-

ical supplier (lamvda 60 V/30A). The anolyte was supplied by

solutions of (i) Brine (NaCl 300 g Lÿ1) and (ii) an acidic solution

(HCl or H2SO4 6 mol Lÿ1, according to the experiments, to maintain

the anolyte pH < 3). A ‘two push-syringes’ device (model A-99 from

Fischer Scientific) was used to supply these solutions at constant

volumetric flow.

According to the operating conditions (pH, temperature, Clÿ

concentration,. . .) various reactions could take place (1–12,

Table 1).

Hypochlorite potentiometric titration was performed using an

anhydrous sodium sulfite Na2SO3 (97%) according to the method

described by Adam and Gordon [15]: reaction (13), Table 1.

By monitoring the zero current potential of a platinum elec-

trode versus a Ag/AgCl/KClsaturated reference electrode, the required

volume of the sulfite solution to neutralize the hypochlorite and to

access its concentration CClOÿ can be determined.

The overall conversion X of the chloride ions for an electrolysis

duration t (versus all the used volume of brine), as well as the

corresponding Faradic yield yf were calculated respectively by

Eqs. (14) and (15):

X ¼
mol of Cl

ÿ
transformed by electrolysis

mol of Cl
ÿ
ðinitialþ introduced brine and acidÞ

X ¼
2 � CClOÿ � Vp

ðCNaCl � VanolyteÞ
�

þ t � ðQacid � Cacid þ Qbrine � CbrineÞ
ð14Þ

yf ¼
produced mole number of OCl

ÿ

theoretical mole number of OCl
ÿ
produced

¼
CClOÿ � Vp

Iapplied �t

2�F

ð15Þ

where: V is the volume; Vp is the volume of the NaOH trapping solu-

tion of the produced gaseous chlorine (see corresponding section);

C is the concentration; Q is the volumetric flow; I is the applied

current and t the electrolysis duration.

3. Results

3.1. Electrochemical kinetics

To determine the appropriate current density to apply in order

to carry out electrolyses in optimal conditions (no oxygen, no

chlorate), current potential curves were plotted (Fig. 1) for various

concentrations of sodium chloride (curves 1–4), with (a) and

without (c) an electrolyte.

Table 1

Various possible reactions during electrolysis of a brine solution (1–12) depending on the operating conditions (pH, T°C, [Clÿ],. . .). The reaction (13) corresponds to the

hypochlorite potentiometric titration.

Electrode Main/acidic media pH < 3 N° Side/slight acidic or neutral media pH > 5 N°

Anode Clÿ ? 1/2 Cl2 + eÿ (1) Clÿ + 2OHÿ
? ClOÿ + 2eÿ (2)

H2O? 1/2 O2 + 2eÿ + 2H+ (3) OHÿ
? 1/4O2 + eÿ + 1/2H2O (4)

Cathode H+ + eÿ ? 1/2 H2 (5) H2O + eÿ ? 1/2H2 + OHÿ (6)

ClOÿ + 2eÿ + 2H+
? Clÿ + H2O (7) ClOÿ + 2eÿ + H2O? Clÿ + 2OHÿ (8)

O2 + 4H+ + 4eÿ ? 2H2O (9) O2 + 4eÿ + 2H2O? 4OHÿ (10)

Cl2 disproportionation (pH�P 4) Cl2 + H2O? HClO + Clÿ + H+ (11) (pH�P 7) Cl2 + 2OHÿ
? ClOÿ + Clÿ + H2O (12)

Hypochlorite titration ClOÿ + SO3
2ÿ

? SO4
2ÿ + Clÿ (13)



The curves obtained without electrolyte (Fig. 1c), especially at

chloride concentrations <1 M, present a pseudo plateau

(�1.4 V–�1.6 V); in the examined potential range, the curves do

not show a clear exponential shape corresponding to water oxida-

tion, meaning that the majority of the current is used for chloride

oxidation. It is impossible to have a measure of the ‘blank/residual

current’ in these conditions. Moreover, the current arises from

migration and diffusion flux. At 2 V, current density reaches

�5 kA mÿ2, for 1 M NaCl solution alone (curve 3c).

Adding K2SO4 as supporting electrolyte enables the current

used for water oxidation (curve 1a) to be estimated. Indeed, curves

(b) were obtained from curves (2a to 4a) after subtraction of the

curve (1a); this is the net current attributed to chloride oxidation,

in presence of an electrolyte. These curves clearly indicate a

plateau (mass transfer limitation) for E > 1.4 V.

The rate of the oxidation of water at 2.4 V (curve 1a) appears to

be significant for low concentrations of NaCl (50% of the overall

current, curve 2a); it represents less than 20 % at high concentra-

tions (curve 4a).

The net current densities, obtained for oxidation of chloride in

presence of an electrolyte are higher than those measured in

absence of K2SO4; for example, at 2 V, the ratio i(3b)/i(3c)
(�7 kA mÿ2)/(�5.2 kA mÿ2) shows a current density �30% higher

for 1 M NaCl solution with K2SO4.

Theoretically, (at the least for low NaCl concentrations, e.g. 1 M)

the expected current in the 2c experiments has to be slightly

higher than the current in the 2b experiments (and also for 2a),

the K2SO4 ensuring part of the migration current. The general com-

parison of curves (2b–4b Fig. 1) with K2SO4 as supporting electro-

lyte and without K2SO4 (2c–4c Fig. 1), shows that for the same

concentration of NaCl, the current is always higher, thus the

K2SO4 appears to have an electrocatalytic effect on the chloride

oxidation on the used DSA. Another explanation could be that

K2SO4 causes the ionic conductivity of the solution to increase;

consequently, for the same voltage, the current density increases.

Curves a0, b0 and c0 (Fig. 1), indicate the current density evolu-

tion as a function of the sodium chloride concentration for poten-

tials of the anode at 1.7 and 2 V/SCE. For all the curves, a non-linear

variation was observed (especially for high NaCl concentrations).

The main reasons could be: (i) the concentration is dependent on

the diffusion coefficient and (ii) the effect of significant quantities

of gaseous chlorine on the electrode surface could have led to a

slight passivation of the anode.

The following equations provide the chloride concentration

dependency on the magnitude of the current density at room tem-

perature, for curves (c0) obtained without an additional electrolyte,

and corresponding to a conversion of chloride equal to zero (initial/

input concentrations):

Iat 1:7 Vðin A mÿ2Þ ¼ 4532� C ÿ 562:6� C2 R2 ¼ 0:999 ð16Þ

Iat 2 Vðin A mÿ2Þ ¼ 6171� C ÿ 726:4� C2 R2 ¼ 0:998 ð17Þ

where C is the concentration of sodium chloride in the brine

(mol Lÿ1).

For a supplying solution containing chloride at 5 mol Lÿ1, the

initial admissible/maximal current density reaches 8.3 kA mÿ2 at

1.7 V and 12.5 kA mÿ2 at 2 V.

3.2. Reactor design

Fig. 2 describes the set-up designed for preparative electrolyses

of chlorine. It is a divided asymmetric (glassmade) cell, with volume

compartments in the ratio:Vanolyte/Vcatholyte = from1 to�2).Only the

anodic compartment was supplied both by brine and an acidic

solution at constant volumetric flow (Q1 = Qbrine + Qacid, as required).

The electrolytic compartments were separated by a ceramic

diaphragm; two different porosities (2/pores size in the range

100–200 lm, and 3/pores size in the range 10–50 lm) ceramic dia-

phragms were used to carry out the electrolyses; the goal here is to

Fig. 1. Current potential curves obtained on chlorine/DSAÒ plate working electrode (S = 24 mm2), immersed in solutions containing various NaCl concentrations. Auxiliary

electrode: Pt rod; Reference electrode: Ag/AgCl/KClsaturated. Potential scan rate 5 mV sÿ1; Stirred solution; room temperature (20 < T (°C) < 24). 1: K2SO4 at 0.1 M; 2: NaCl

0.5 M; 3: NaCl 1 M; 4: NaCl 5 M; (curves 0.1 and 2.5 mol Lÿ1 not represented). (a): Curves obtained with solutions containing K2SO4 0.1 M as supporting electrolyte. (b):

Curves obtained from (a) after subtraction of the curve (1a) e.g. i ¼ iðNaClþK2SO4Þ ÿ iðK2SO4Þ (c): Curves obtained without additional electrolyte (simple brine solutions). (a0), (b0)

and (c0): Current densities measured at two potentials as a function of the NaCl concentration (extracted from (a–c) respectively).



allow flow from the anodic to the cathodic compartment. Note that

a Teflon porous diaphragm could also be used, in order to increase

the life-time of the overall device.

Differences in the volumes of both compartments contribute to

the reduction of the back-diffusion flux of species from the catho-

lyte to the anolyte (especially convective flux), and consequently to

avoid losses in the Faradic yield: indeed, high values of the ratio

Vanolyte/Vcatholyte allows the velocity of the motion of the catholyte

to the outlet of the compartment to be increased (comparatively

to the velocity of the motion of the anolyte into the anodic

compartment).

To produce gaseous chlorine (1) and to avoid hypochlorite

formation (2), the pH of the brine in the anodic compartment must

be kept at less than 3 [11]. Two possibilities were chosen here to

supply the anodic compartment;

– the pH of the brine was adjusted to 3 (HCl or H2SO4) before

introduction to the reactor,

– the brine and an acidic solution (HCl or H2SO4) supply the

reactor simultaneously.

During electrolysis, the pH of the cathodic compartment

increased, measured values were higher than 10. Dissolved chlo-

rine (or hypochlorous acid as function of the pH), which appear

in the anodic compartment, could cross the ceramic separator

and move to the cathodic compartment, then they can be reduced

to chloride ions. The consequence of these phenomena is the drop

in the faradic yield of the system.

Note that (as a function of the operation), the reactor was

immersed in a cold water bath (14). This is to avoid significant

increases in temperature (as close to <30 °C as possible) to avoid

the generation of chlorates by secondary reactions [16].

Gaseous chlorine is produced at the anode according to the

reaction (1), Table 1; even if the potential of this reaction is higher

than the potential of the oxidation of the water, catalytic coating of

the chlorine DSA enables the oxidation of the chloride with very

satisfactory faradic yields.

Chlorine can follow two different circuits:

(i) Elements 10/11/12 of Fig. 2; Cl2 could be introduced in the

catholyte flow (NaOH + residual NaCl) using a fine porosity

disperser; then absorption of chlorine can take place,

followed by its disproportionation (reaction 12, Table 1)

leading to the hypochlorite formation. The resulting mixture

was introduced within the liquid flowing in the swimming

pool recycling loop; high flow in this recycling loop allows

efficient gas/liquid transfer and rapid conversion of Cl2 to

hypochlorite.

(ii) Element 9 of Fig. 2; in this study, in order to optimize the

involved system, a Cl2 trapping tank (absorption + dispro-

portionation to hypochlorite) containing at the initial time

concentrated NaOH solution (5 mol Lÿ1) was used. A second

identical trapping tank was connected at the outlet of the

first one, to retain the eventual unreacted chlorine.

3.3. Experimental optimization of the chloride conversion in the

reactor

Various preparative electrolyses were performed to optimize

the effect of the operating parameters (feed flow, Sa/Sc, T, acid nat-

ure and flow rate,. . .) on the chloride conversion within the reactor.

The mass balances were performed in both the anodic and the

cathodic compartments, according to the analytical procedure

previously described.

3.3.1. Effect of the residence time of the feeding solution on the steady

state establishment

Galvanostatic electrolyses were performed using the set-up

described in Fig. 2, supplied in the anodic compartment by two dif-

ferent solutions: the brine (NaCl, 5 mol Lÿ1) and hydrochloric acid

(6 mol Lÿ1) for pH adjustment. The applied current density

(1.69 kA mÿ2) corresponds to an anodic potential in the range of

1 V/SCE, and the aim of these experiments is to estimate the time

required to reach the steady state, in the cathodic compartment for

the chloride ions. Three different experiments are performed for

residence times (s) in the anodic compartment of 1.1, 1.7 and

2.5 h respectively.

Produced chlorine, cumulated under NaOCl form in the ‘gaseous

chlorine trapping solution (element 9, Fig. 2)’, was titrated accord-

ing to the reaction (13), Table 1 (see Section 2). Simultaneously,

chloride concentration within the cathodic compartment (and/or

in the ‘gaseous chlorine trapping solution (element 9, Fig. 2)’

was determined by potentiometric titration by silver nitrate.

Fig. 3 indicates the temporal evolution of both the residual concen-

tration of Clÿ ions (a) and their conversion (b).

Fig. 2. Schematic representation of the experimental set-up used to carry out preparative electrolyses. 1: Electrochemical reactor (divided asymmetric electrolyzer); 2 and 3:

anodic and cathodic compartments; 4: ceramic type diaphragm (porosity 2 or 3 depending on the experiments); 5 and 6: anode and cathode; 7: electrochemical power

supplier; 8: push syringe supplier (two flows: brine and acid); 9: gaseous chlorine trapping solution (Cl2 cumulates under NaOCl form in NaOH 5 mol Lÿ1); 10: absorber

(chlorine by soda); 11: swimming pool recycling loop; 12: swimming pool; 13: waste; 14: immersion bath allowing partial regulation of the temperature of the reactor.



Results showed that at a constant flow rate, the concentration

of the chloride ion in the anolyte (a) decreases with time to reach

a quasi constant value (steady state). Let us note that the steady

state concentration of chloride increases with the flow, showing

non optimized operating conditions. Permanent regime is reached

after durations in the range from 1.5 to 3 h, depending on the res-

idence time of the feeding solution. Usually the time t required to

reach steady state conditions (e.g. here a chloride constant concen-

tration) must be low in comparison to the duration of the overall

process, approx. 1- or 2-fold of the residence time.

Fig. 3/graph (b) shows the corresponding chloride conversion to

hypochlorite. As expected, at a constant flow rate, obtained conver-

sion increases over time for all the examined volumetric flow rates;

nevertheless, the maximal conversion reached remains low (�30%

for 60 cm3/h) and decreases until �10% when the flow increases

approximately twofold, indicating that under such conditions, all

the examined volumetric flow are high and inappropriate to the

request application (conversion >75% for faradic yield close to 90%).

It can be noted that the conversion value can be increased simply

by applying higher current density values, in accordance with values

determined by the I = f(E) curves of Fig. 1 (or the two Eqs. (14) and

(15) corresponding to the potentials of the anode 1.7 and 2 V/SCE).

3.3.2. Effect of the applied current density on electrolyses performance

The effect of the applied current density on both the chlorine

production and the faradic yield (yf) was examined by preparative

electrolyses, carried out under low volumetric flow (residence time

of the anolyte s = 5 h; Vanodic compartment = 150 cm3); the results are

indicated in Fig. 4.

(i) For short electrolysis durations (<5 h), curves (a) of Fig. 4,

show that, chlorine production (measured at time t, in the chlorine

trapping solution, element 9, Fig. 2) linearly increases over time, for

all the applied current densities; simultaneously, in the examined

range of 1.2–2.1 kA mÿ2, the faradic yield remains higher than

90% (curves (b), Fig. 4), meaning that, all the current was used for

chloride oxidation; the applied current density remains lower than

the maximal admissible. Moreover, despite the relatively high res-

idence time (3–4 h) of solution in the reactor, the obtained faradic

yields (�90%) demonstrate a minor effect of the back-diffusion flux

of the species from the catholyte to the anolyte. Indeed OHÿ

produced in the cathodic compartment and transferred

(migration/back diffusion) to the anodic one, could cause produc-

tion of ClOÿ/instead of Cl2; hypochlorite could be transferred by

convective flow to the cathodic compartment and could be reduced,

causing the faradic yield to decrease.

For higher durations, both the chlorine production rate and the

faradic yield decrease meaning that part of the current was used to

oxidize water and to produce the oxygen.

The slopes (s) of the straight lines of curves (a) of Fig. 4, indi-

cated in Fig. 5, can be used to determine the Cl2 moles number,

absorbed and transformed to hypochlorite, in the trapping solution

nCl2ðin molÞ = 0.25 � s � t (in h) for any electrolyses duration t < 5 h

(Fig. 5). Then, the empiric Eq. (18) ‘mole number of the produced

chlorine at time t, versus the applied current density’ was estab-

lished using the graph in Fig. 5.

f0:25� s� tgmol of produced Cl2
¼ 8:3� 10ÿ5 � iÿ 1:1� 10ÿ8

� i
2
ði in A=m2Þ R2 ¼ 0:989 ð18Þ

(ii) For electrolyses of longer duration (5–6 h), losses in current

are more significant, especially for the highest applied current

density. Fig. 4(c) confirms these results; indeed for 6 h electrolyses

duration, increasing the applied current density by 2-fold (1.3?

2.8 kA mÿ2, so �120%) causes the conversion to increase by about

65%(from30%to50%); thequantityof chlorineproduced (cumulated

under NaOCl form in the ‘gaseous chlorine trapping solution 250 ml

of the NaOH (element 9, Fig. 2)’) is in the range of 2.1–3.5 mol Lÿ1. In

addition, applying high current densities could contribute to the

acceleration of the degradation of the catalytic coating of the DSA,

so this parameter needs optimizing (see follow §).

To sum up, steady state seems to be achieved at about 6 h

(Fig. 4c), and for these experiments, only current densities lower

than around 1.5 kA mÿ2 offers faradic yields higher than 90% for

chloride conversions in the range of 35–40%.

3.3.3. Effect of the working electrode area on chlorine production

The effect on chlorine production of the geometric area of the

anode was examined by three preparative electrolyses achieved

under low volumetric flow (s = 5 h). To operate with the same
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Fig. 3. Temporal evolution of both the concentration (a) of the chloride ion in the

anolyte, and its conversion (b) in the outlet of the cathodic compartment, during

galvanostatic electrolyses, for various feed solutions of brine (CNaCl = 5 M): QNaCl at 5

mol L
ÿ1: 60, 85, 135 cm3/h for curves 1 , 2 and 3 respectively. i = 1.7kA mÿ2; Sanode

DSA Cl = 39 cm2; Scathode Ti = 19 cm2; Vanodic compartment = 150 cm3; T � 30 °C (as

possible).

Fig. 4. Results of galvanostatic electrolyses performed under various applied current densities i: ( ) 1.28, ( ) 1.7, ( ) 2.3 and ( ) 2.8 kA mÿ2 respectively. Sanode DSA Cl

= 39 cm2; Scathode Ti = 19 cm2; Vanodic compartment = 150 cm3; T � 30 °C (as close as possible); QNaCl at 5 mol L
ÿ1: 15 cm3/h. (a): Temporal evolution of chlorine cumulated under

NaOCl form in the ‘gaseous chlorine trapping solution (250 cm3 of NaOH, element 9, Fig. 2)’; (b) Faradic yield evolution, (c) Chloride ion conversion; QHCl at 6 mol L
ÿ1

for (a–c)

= 15 cm3/h.



current density (1.70 kA mÿ2) for all electrolyses, the applied cur-

rent was adjusted versus the electrochemical area of the electrode

according (IðAÞ ¼ 0:17� Sðcm2Þ). Three identical grids of DSA-Cl were

used to vary the area of the anode; one grid/39cm2, two or three

sandwiched grids for respectively 59 and 79 cm2.

Results are indicated in Fig. 6. As previously (Fig. 4(a)), for low

electrolysis durations (�4 h), curves show that chlorine production

linearly increases with time (for all electrolyses achieved), mean-

ing that, despite the high residence time of solution in the reactor,

all the current was used for chloride oxidation; the applied current

remains lower than the maximal admissible. For electrolyses of

longer duration, chlorine production rates decrease, implying

losses in current, and probably a partial back diffusion.

Increasing the applied current from �6.6 A (39 cm2) to �10 A

(59 cm2) causes the chlorine concentration (and chloride conver-

sion) to increase (Fig. 6); nevertheless, for the electrolysis involving

3 sandwiched grids as anode and a current of �13.5 A, chlorine

production remains lower than that obtained by the second elec-

trolyse. On the simple basis of the use of the applied current, there

is no reason to obtain a lower quantity of chlorine; even if the fara-

dic yield decreases, the quantity of chlorine has to be at the least,

the same as that obtained for surfaces area anode equal to

59 cm2. The following explanations could justify this behavior:

(i) for this kind of system involving juxtaposition of three grids,

the first electrode absorbs a larger fraction of the current, the other

grids being located behind the first anode; practically, this does not

work; this implies significant current densities on the first elec-

trode and consequently secondary reaction (water oxidation, chlo-

rates) leading to losses in the faradic yield. The consequence of this

is the impossibility to use several layers of the expanded metal

(simply sandwiched) as anode, to increase chlorine production.

(ii) The ceramic diaphragm used for this reactor (porosity 3),

causes an ohmic drop, leading to a significant increase in

temperature (60 °C) which favors secondary-type products (chlo-

rates). Moreover, ceramic used could locally dissolve under the

temperature effect, leading to the mixing of solution and loss in

production (Teflon porous diaphragm is preferable).

3.3.4. The effect of other parameters on the chlorine production

This section presents electrolyses that are expected to show the

effects of both temperature and the acidic nature on the electroly-

ses performances (conversion and yield).

(i) Electrolyses were carried out for three temperatures:

20 < T°C K 30, 30 < T°C K 45 and 40 < T°C K 55. Unfortunately

local values of temperature, especially at the electrodes and at

the ceramic diaphragm, could be higher, due to a low efficiency

of the ‘temperature-regulation’ system (cold water added periodi-

cally in the immersion bath-element 14, Fig. 2). All other condi-

tions are those indicated in Fig. 4 at 1.7 kA mÿ2.

The results show for all the electrolyses (and especially for elec-

trolyses durations <4 h), the same linear evolution of the chlorine

production {chlorine cumulated under NaOCl form in the ‘gaseous

chlorine trapping solution (element 9, Fig. 2)’} over time, according

to the follow equation:

CCl2ðmol Lÿ1Þ ¼ 0:435� tðhÞ for 20 < 8T�C < 50 ð19Þ

To conclude, in the examined range (20 < 8 T°C < 50;

i = 1.7 kA mÿ2) and for relatively short electrolyses durations

(<4 h ; XClÿ < 50%) temperature does not have an effect on the fara-

dic yield nor the chloride conversion.

For higher electrolyses durations or higher temperatures, results

show a non-linear evolution of the chlorine production over time;

side products could appear (chlorates, O2), and mixing of the ano-

lyte with the catholyte could cause the losses of the faradic yield

and the non-linear increase of the chloride conversion over time.

Fig. 5. Empirical correlations providing produced chlorine Cl2 moles number dissolved in the trapping solution, as a function of both the electrolysis duration and the current

density (results extracted from Fig. 4).

Fig. 6. Results of galvanostatic electrolyses performed using various electrochemical surface area anodes: Sanode DSA Cl: 39, 59 and 79 cm2 for curves 1 , 2 and 3

respectively; Scathode Ti = 19cm2; ianode = 1.7 kA mÿ2; Vanodic compartment = 150 cm3; QHCl at 6 mol Lÿ1 = QNaCl at 5 mol Lÿ1: 15 cm3/h; (30 < T °C[45, as close as possible). (a): Temporal

evolution of chlorine cumulated under NaOCl form in the ‘gaseous chlorine trapping solution (9, Fig. 3)’; (b) : Temporal evolution of the conversion of the chloride ions.



(ii) This concerns the effect of the acidic nature added to the

anodic compartment; both sulfuric and hydrochloric acids were

used, for the same volumetric flow and concentration, to maintain

acidic conditions in the anodic compartment (due to back diffu-

sion/migration of OHÿ from the cathodic compartment). Three dif-

ferent sets of experiments were performed by varying the current

density and using alternatively HCl or H2SO4. For both acids, the

results, indicated in Fig. 7(a), do not show significant differences

in the produced quantity of chlorine: its concentration practically

linearly varies versus time for short/�4 h electrolysis durations,

meaning that:

– applied current density remains lower than the maximal

admissible,

– the anion SO4
2ÿ does not affect the kinetics of the system Clÿ/Cl2,

– HCl introduced in the anodic compartment, brings the required

proton molar flux to maintain a constant pH and to avoid pro-

duction of NaOCl directly at the electrode; consequently, the

use of sulfuric acid (which provide two H+/mole) can be

avoided.

The plot (b) of Fig. 7 shows the temporal evolution of the chlo-

ride ions conversion; conversion appears to be higher when sulfu-

ric acid was used because the depletion of the chloride

concentration in the anolyte is faster; indeed, adding H2SO4 causes

the dilution of Clÿ ions in the anolyte, while HCl provides the same

quantity of chloride as NaCl.

Let us note that use of sulfuric acid causes interferences in the

potentiometric titration of chloride ions by Ag+, and implies the

use of other techniques (Ionic liquid chromatography), so we

choose to use hydrochloric acid to control the pH of the anolyte.

3.4. Determination of the theoretical profiles of Cl2 concentration and

Clÿ conversion and comparison with the experimental evolutions

In order to formulate a predictive tool to optimize the proposed

divided and stirred electrochemical reactor (Fig. 2) for swimming

pools, complete macroscopic mass balances were written for vari-

ous species present in both anodic and cathodic compartments. All

the parameters used were defined in Appendix 2/Nomenclature.

Resolution of the obtained equation system (Appendix 1) enables

obtaining theoretical concentration profiles, here mainly hypo-

chlorite/chlorine and chloride, and performing comparison

between experimental and theoretical conversion/concentrations,

in order to validate the theoretical model.

3.4.1. Mass balance

Reactions which take place within the reactor are:

On the anode: (1) and as side reaction (3), Table 1.

On the cathode: (5) or, as function of the pH (6), Table 1.

The overall mass balance equation for a specie can be written in

terms of molar flux (mol sÿ1) as follow:

Input flux ÿ output flux = Reaction flux + accumulation flux +

migration/convection/diffusion across the ceramic diaphragm flux +

loss by gas (H2 and /or Cl2) distillation

F in ÿ Fo ¼ Fr þ Facc þ Fm þ Fc þ FD þ F loss ð20Þ

On the anodic compartment, this can be made explicit as

follows:

ðQCÞinlet ÿ ðQCÞoutlet ¼ �
yf I

nF
þ Va

dC

dt
�

tj I

nF
þ QdC � SdDgradC

þ loss ð21Þ

where: C: molar concentration (mol mÿ3); D: diffusion coeffi-

cient (m2 sÿ1); F: Faraday constant (C molÿ1);

I: current (A); n: electron number; Q: volumetric flow (m3 sÿ1);

Sd geometric area of the ceramic diaphragm; tj is the transference

number of specie j ¼
z2
j
�F2 �Cjuj

P

z2
j
�F2 �Cjuj

; t: time (s); zj: valence number of

specie j; uj: ionic mobility of the ion j (m2 sÿ1 Vÿ1); V: volume

(m3); yf: faradic yield (%).

Resolution of mass balance equations for chloride ions on both

the anodic and the cathodic compartments (these equations are

dependent, see Appendix 1) was performed by an iterative method

for various time steps: e.g. for the first step (1 h electrolysis dura-

tion), first equation was solved assuming the other concentration

constant, then knowing the conversion, the second concentration

can be calculated by solving the second equation for the next step

(see Appendix 1).

The appendix also presents the mass balance equations for

other species: water, cumulated NaOCl, H+, (resolution not

presented).

X ¼ 1þ
I
nF
ðyf ÿ tClÿ Þ ÿ Q1C

0 ÿ Q 0C 0 ÿ DClÿ
Sd
‘
C3

Q2 þ DClÿ
Sd
‘

� �

Cin

0

@

1

A

� 1ÿ exp ÿ
Q2 þ DClÿ

Sd
‘

Va

t

!!

ð22aÞ

The expression providing the concentration of chloride ions in

the outlet of the reactor is given by:

½Cl
ÿ
�cathodic compartment ¼C3ðtÞ¼

Sksÿ I tClÿ

nF

Q2þ
DClÿ Sd

‘

1ÿexp ÿ
Q2þ

DClÿ Sd
‘

VC

t

!" #

þCinð1ÿXÞ ð22bÞ

3.4.2. Comparison between theoretical and experimental results

Comparison between theoretical and experimental temporal

evolution of the chloride conversion was achieved for galvanostatic

Fig. 7. Effect of both the acidic nature and the applied current density on the temporal evolution of: (a): Cl2 cumulated under NaOCl form in the ‘gaseous Cl2 trapping solution

(element 9, Fig. 2)’. (b): Clÿ conversion. Qacid at 6 mol Lÿ1 = QNaCl at 5 mol Lÿ1: 15 cm3/h. Sanode DSA Cl = Scathode Ti = 39 cm2; Vanodic compartment = 150 cm3; 30 < T°C K 45.



electrolyses, conducted under three current densities. Data, param-

eters and results are summarized in Fig. 8.

Obtained theoretical results correlate with the experimental

one (DX < 2% for t = 4 h), for the lowest current density

(1.3 kA mÿ2), that confirms the validity of the theoretical approach.

Discrepancies between theory and experience arise for electrol-

ysis durations greater than 3 h, and for higher current densities (at

6 h, DX reaches �8% and �10% for 1.7 and 2.3 kA mÿ2 respec-

tively); theoretical conversion is �10% higher than the experimen-

tal one (which reaches 43%). These differences were due to the

fraction of the current used for water oxidation when chloride con-

centration decreases, and the potential of the anode increases.

Indeed, under 2.3 kA mÿ2, after 6 h electrolysis, the experimental

conversion of chloride reaches 43% and the potential of the anode

is in the range of 1.2 V/Ag/AgCl/Clÿ. This value correlates with the

potential measured on the i = f(E) curve (Fig. 1) obtained with

2.5 M of NaCl (�50% of conversion/similar to the 43% obtained

under 2.3 kA mÿ2).

To reduce discrepancies between theoretical and experimental

results, it will be interesting to take account of the kinetic law of

water oxidation in the various mass balances previously

established.

4. Conclusion

The aim of the achieved study was to design and to optimize an

electrochemical reactor for the chlorination of swimming pools,

operating without electrodes polarity inversion.

Plotting of current potential curves for various conditions

allows empiric equations to be established providing the chloride

concentration dependence on the magnitude of the initial current

density, and to select the current to apply in order to operate under

favorable faradic yield conditions.

The proposed two-compartment asymmetric electrochemical

reactor treats concentrated brine elaborated with demineralized

water (no limescale); this acidified brine solution feeds the anodic

compartment and after electrolysis solution moves to the cathodic

one crossing the ceramic diaphragm. Gaseous chlorine, produced

in the anode and absorbed in the alkalinized catholyte (in the out-

let of the cathodic compartment), provides the hypochlorite solu-

tion. The overall low cost device is simple and can be operated

automatically without specific treatment.

Experimental optimization of the effect of the various operating

parameters for the chlorine production was achieved, and results

show that concentrated brine could treat with a chloride conver-

sion close to 50% in a few hours. The faradic yields remain higher

than 80%. Ratios of Vanolyte/Vcatholyte higher than 2 could increase

the obtained chloride conversion. Besides, a controlled porosity

Teflon disk could easily replace the ceramic diaphragm used, to

increase the life-time of the overall device. Achieved chlorine pro-

duction reaches 1 kmol/day/m2 and 4 mol/day for the present

device; respecting the defined operating parameters, the extrapo-

lation of the proposed device in the appropriate scale does not

present difficulties.

Macroscopic mass balance, taking into account the various

transfers arising in the reactor (including losses and back diffusion)

was performed and the obtained theoretical results correlate with

the experimental ones (Xtheor:Clÿ ÿ Xexper:Clÿ < 10%).
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Appendix 1

A.1. Mass balance for chloride ions on the anodic compartment

Mass balance requires the estimation of the transference num-

ber of Clÿ :

tClÿ ¼
CðtÞuClÿ

CðtÞuClÿ þ ½Hþ�uHþ þ ½Naþ�uNaþ

Using the following values for mobilities (10+8 � uin m
2 sÿ1

Vÿ1): Na+ = 5.2; Cl+ = 7.9; H+ = 36.

Because the concentration of Clÿ varies versus time, tClÿ was

calculated at the beginning and the end of the electrolysis and

the average value, calculated as follows, was assumed to be

constant.

t = 0;

X = 0%.

[Clÿ] = [Na+]

= 5 kmol/m3;

[H+] = 1 mol/m3

) tClÿ = 0.6 ) tClÿaverage = 0.52

t = 6 h;

X � 50%

[Clÿ] = 2.5 kmol/m3;

[Na+] = 5

kmol/m3;

[H+] = 1mol/m3

) tClÿ = 0.43

Chloride input flux corresponds to the introduction of both sodium

chloride (Q1C
�

) and hydrochloric acid (Q 0C0Þ required to maintain a

constant pH: F in ¼ Q1C
�

þ Q 0C0 ¼ ðQ1 þ Q 0ÞCin

Fig. 8. Comparison between theoretical and experimental ‘temporal evolution of the chloride conversion for galvanostatic electrolyses conducted, under three current

densities. Vanolyte: 150 cm3; Vcatholyte: 90 cm3; yf assumed:100%; Cacid = C0 = 16 mol Lÿ1; CNaCl = C° = 5 mol Lÿ1; sCl2 = 0.08 mol Lÿ1; QNaCl = Qacid = 15 cm3/h; Sanode DSA = Scathode Ti

= 39 cm2; Sd = 1.25�10ÿ3 m2; ‘ = 4 mm; Parameters used for the calculation of the theoretical conversion: k = 1.76�10ÿ6 m sÿ1; Diffusion coefficients (in m2 sÿ1): H+ = 9.3�10ÿ9;

Clÿ = 2.0�10ÿ9; 30 < T°C K45; Mobilities (in m2 sÿ1 Vÿ1): Na+ = 5.2�10ÿ8; Clÿ = 7.9�10ÿ8; H+ = 3.6�10ÿ7; HOÿ = 2�10ÿ7.



where: Cin = overall input concentration of chloride in the

anodic compartment.

Chloride output flux across the diaphragm corresponds to:

Fo ¼ Q2ð1ÿ XÞCin ¼ Q2ð
Q1C

�
þQ 0C0

Q1þQ 0 Þð1ÿ XÞ

where X is the overall conversion of Clÿ.

Flux of reaction (oxidation), migration (to the cathodic com-

partment) and diffusion (from the cathodic to the anodic compart-

ment) are respectively: Fr ¼
I
nF
yf; Fm ¼ ÿtClÿ

I
nF

and FD ¼ ÿDClÿ
Sd
‘

ðC3 ÿ Cinð1ÿ XÞÞ.

Unidirectional diffusion was assumed to involve across dia-

phragm (surface area Sd; thickness ‘).

The volume of the anodic compartment (Va) is constant and

equal to the initial volume (V°a); indeed the height of the anodic

compartment is similar to the height of the cathodic one, and reg-

ulated by the outlet in the cathodic compartment. So

Va þ ðQ1 þ Q 0Þt ÿ Q2t ÿ tQ3 =V°a
where: Q2t and Q3t are respectively the volumes of solution

leaving the anodic compartment by convection and removed by

stream distillation (Cl2).

Accumulation flux: Facc ¼
dn
dt
¼ Va

dC
dt
¼ Va

dð1ÿXÞCin

dt
¼ ÿCinVa

dX
dt

Finally, mass balance for Clÿ in the anodic compartment

(Eq. (21)) can be written as:

Q1C
0 þ Q 0C0 ÿ Q2Cinð1ÿ XÞ

¼
I

nF
ðyf ÿ tClÿ Þ ÿ DClÿ

Sd
‘
ðC3 ÿ Cinð1ÿ XÞÞ ÿ CinVa

dX

dt

And after rearrangement of the previous equation:

dX

dt
þ

Q2 þ DClÿ
Sd
‘

Va

!

X ¼
I
nF
ðyf ÿ tClÿ Þ ÿ Q1C

0 ÿ Q 0C 0 ÿ DClÿ
Sd
‘
C3ðtÞ

VaCin

þ
Q2 þ DClÿ

Sd
‘

Va

ð23Þ

A.2. Mass balance for chloride ions on the cathodic compartment

Chloride input flux corresponds to the transfer of the solution

from the anodic compartment across the diaphragm:

F input cath: comp: ¼ Q2ð1ÿ XÞCin ¼ Q2
Q1C

�
þQ 0C0

Q1þQ 0

� �

ð1ÿ XÞ

Chloride output flux: Fo ¼ Q5C3

Flux of migration (to the anodic compartment), diffusion (from

the cathodic to the anodic compartment) and accumulation are

respectively: Fm ¼ tClÿ
I
nF
, FD ¼ DClÿ

S
‘
ðC3 ÿ Cinð1ÿ XÞÞ and

Facc ¼ V c
dC3

dt

Reduction of dissolved chlorine (solubility sCl2 ) in the solution

supplied by the anodic compartment, produces chloride with the

Fr ¼ ÿ
Ilim of Cl2

nF
¼ ÿ

nFSD sof Cl2

nFd
¼ ÿSk sCl2 where k is the mass transfer

coefficient.

Current potential curves plotted for chlorine (hypochlorite in

fact at 1%, curves not shown here) was used to get a rough estima-

tion of the mass transfer coefficient: k ¼ 1:7610ÿ6 m=s.

Mass balance chloride ions on the cathodic compartment can be

written:

Q2ð1ÿ XÞCin ÿ Q2C3 ¼ tClÿ
I

nF
þ DClÿ

Sd
‘
ðC3 ÿ Cinð1ÿ XÞÞ þ V c

dC3

dt

ÿ Sk sCl2

After rearrangement and simplification of the previous equation

can be written:

dC3

dt
þ

Q2þDClÿ
Sd
‘

V c

!

C3 ¼þ
Q2þDClÿ

Sd
‘

V c

!

Cin

ÿ
Q2þDClÿ

Sd
‘

V c

!

CinXþ
sCl2k

V c

sÿ
tClÿ

I
nF

V c

ð24Þ

Eqs. (23) and (24) are dependant. They can be solved by iterative

method for various time steps: e.g. for the first step (1 h electrolysis

duration), Eq. (23) was solved assuming C3 constant. Then knowing

X, C3 can be calculated by solving Eq. (24) for the next step.

So, solution of Eq. (23) with C3 = Constant can be written as:

X ¼ K exp ÿ
Q2 þ DClÿ

Sd
‘

Va

t

!

þ
I
nF

yf ÿ tClÿ
ÿ �

ÿ Q1C
0 ÿ Q 0C 0 ÿ DClÿ

Sd
‘
C3

Q2 þ DClÿ
Sd
‘

� �

Cin

þ 1

where K is a constant determined using the initial conditions:

at t ¼ 0 ! X ¼ 0 ¼ K þ
I
nF

yf ÿ tClÿ
ÿ �

ÿ Q1C
0 ÿ Q 0C 0 ÿ DClÿ

Sd
‘
C3

Q2 þ DClÿ
Sd
‘

� �

Cin

þ 1

! K = -1-A where A =
I
nF yfÿtClÿð ÞÿQ1C

0ÿQ 0C0ÿDClÿ
Sd
‘ C3

Q2þDClÿ
Sd
‘

ÿ �

Cin

!

Substitute in the previous solution led to:

X ¼ ð1þ AÞ 1ÿ exp ÿ
Q2þDClÿ

Sd
‘

Va
t

� �� �

Finally: [Clÿ]cathodic compartment = C3 ¼ Cinð1ÿ XÞ ¼ Cin

�

ÿAþ

ðAþ 1Þ exp ÿ
Q2þDClÿ

Sd
‘

Va
t

� ��

Concerns Eq. (24), for the corresponding step and X (e.g. C = Cin

(1 ÿ X)), we can write:

dC3

dt
þ

Q2 þ DClÿ
Sd
‘

V c

!

C3 ¼ þ
Q2 þ DClÿ

Sd
‘

V c

!

Cinð1ÿ XÞ þ
Sk

V c

sÿ
tClÿ

I
nF

V c

So, solution of this Eq. (24), assuming C = Cin (1 ÿ X) constant in

the corresponding step, can be written as:

C3ðtÞ ¼ K 0 exp ÿ
Q2 þ DClÿ

Sd
‘

V c

t

!

þ
Sksÿ I:tClÿ

nF

Q2 þ DClÿ
Sd
‘

þ Cinð1ÿ XÞ

K0 was determined using the initial condition:

A t = 0 ; C3 = C° !C3 ¼ K 0 þ
Sksÿ

I:tClÿ

nF

Q2þDClÿ
Sd
‘

þ C
�

! K 0 ¼ ÿ
Sksÿ

I:tClÿ

nF

Q2þDClÿ
Sd
‘

Finally C3ðtÞ ¼
Sksÿ

I:tClÿ

nF

Q2þDClÿ
Sd
‘

1ÿ exp ÿ
Q2þDClÿ

Sd
‘

Vc
t

� �� �

þ Cinð1ÿ XÞ

For other species, mass balance was written as follow (equa-

tions were not solved):

A.3. Mass balance for water on the anodic compartment

Fin ÿ Fo = Fr + Facc + Floss !
Q1q

MðH2OÞ
ÿ Q2q

0

MðH2OÞ
¼

ð1ÿyf ÞI

nF
þ a I

nF

A.4. Mass balance for water on the cathodic compartment

Fin ÿ Fo = Fr + Floss !
Q2q

0

MðH2OÞ
ÿ Q5q

00

MðH2OÞ
¼ I

2F
þ b I

2F

A.5. Mass balance for cumulated NaOCl in the ‘gaseous chlorine

trapping solution (250 ml of 5M NaOH; Fig. 2 elem. 9)

Fin ÿ Fo = Fr + Facc ! 0 = ÿ I
nF
þ ðVp þ Q3tÞ

d½ClOÿ �
dt

Reaction here corresponds to the ‘instantaneous’ disproportion-

ation of chlorine (11) in alkali media



A.6. Mass balance for hydrogen ions (H+) on the anodic compartment

Fin ÿ Fo = Fr + Fm + Facc +FD ! Q aC
0 ÿQ2C

00 ¼ ÿ
Ið1ÿyf Þ

nF
þ tHþ

I
nF
þ

Va
dC00

dt
ÿ DHþ

Sd
‘
ðC0 ÿ C00Þ

which can be rearranged as follows: dC00

dt
þ

Q2þDHþ
Sd
‘

Va

� �

C00 ¼

QaC
0ÿtHþ

I
nF
þ
Ið1ÿyf Þ

nF
þDHþ

Sd
‘ C

0

Va

Solution of this equation is: C00ðtÞ ¼ K exp ÿ
Q2þDHþ

Sd
ed

Va
t

� �

þ

QaC
0ÿtHþ

I
nF
þ
Ið1ÿyf Þ

nF
þDHþ

Sd
‘ C

0

Q2þDHþ
Sd
‘

where K determined from the initial conditions: C00ð0Þ ¼ C0 )

K ¼ C0 ÿ
QaC

0ÿtHþ
I
nF
þ
Ið1ÿyf Þ

nF
þDHþ

Sd
‘ C

0

Q2þDHþ
Sd
‘

Final solution can be written as:

[H+]anodic compartment = C00ðtÞ ¼
QaC

0ÿtHþ
I
nF
þ
Ið1ÿyf Þ

nF
þDHþ

Sd
‘ C0

Q2
þ DHþ

Sd
‘

�

!

1ÿ exp ÿ
Q2þDHþ

Sd
‘

Va
t

� �� �

þ C0 exp ÿ
Q2þDHþ

Sd
‘

Va
t

� �

where:

q = specific gravity of the brine at the inlet of the anode

q0 = specific gravity of the brine at the outlet of the anode or the

inlet of the cathode

q00 = specific gravity of the brine at the outlet of the cathode

a = number of moles of water removed by Cl2 stream distillation

b = number of moles of water removed by H2 stream

Appendix 2:. Nomenclature

CJ molar concentration (mol mÿ3) of:
-J =

° brine (ions Clÿ and Na+) supply the

anodic compartment,
-J = 0 acidic solution (H+ from HCl or H2SO4)

supply the anodic compartment,
-J = 00 H+ flowing across the diaphragm to the

cathodic compartment,
-J = 000 H+ at the outlet of the cathodic

compartment,

Cj molar concentration (mol mÿ3) of:
-j = 1 Clÿ flowing across the diaphragm to

the cathodic compartment,
-j = 2 Na+ flowing across the diaphragm to

the cathodic compartment,
-j = 3 Clÿ at the outlet of the cathodic

compartment,
-j = 4 Na+ at the outlet of the cathodic

compartment,
-j = 5 ions ClOÿ at the outlet of the cathodic

compartment,

Cin inlet concentration of chloride in the anodic

compartment (after mixing of brine and acid),

D diffusion coefficient (m2 sÿ1),

F Faraday constant (C molÿ1),

Fin, Fo inlet and output molar flux respectively

(mol sÿ1),

I, i current and current density (A or A mÿ2),

k mass transfer coefficient (m sÿ1),

K integration constant,

n e- exchanged electron number,

Qj volumetric flow (m3 sÿ1) of:
-J = 1 acidified brine supply the anodic

compartment,

-J = 2 anolyte flowing across the diaphragm

to the cathodic compartment,
-J = 3 solution (water) removed by stream

distillation (Cl2),
-J = 4 water removed by the gaseous hydro-

gen from the cathode,
-J = 5 solution at the outlet of the cathodic

compartment,

Q
0

acidic solution supply the anodic

compartment,

‘: thickness of the ceramic diaphragm,

Sd geometrical area of the ceramic diaphragm,

S geometrical area of the electrode used,

sof Cl2 solubility of chlorine,

t time (s, or h),

tj transference number of species j,

T temperature (°C),

uj ionic mobility of the ion j (m2 sÿ1.Vÿ1),

Va and Vc volume of the anolyte and catholyte

respectively (m3),

Vp volume of the NaOH trapping solution of the

produced gaseous chlorine (9, Fig. 3) (m3),

X conversion (%),

yf faradic yield (%),

zj valence number of the ion j.

Greek letters

a, b number of moles of water removed

respectively by Cl2 and H2 stream distillation,

d thickness of the diffusion layer (m),

q, q0 specific gravity of the brine respectively at the

inlet and at the outlet of the anode (kg mÿ3),

q00 specific gravity of the brine at the outlet of the

cathode (kg mÿ3),

s residence time (s).

Appendix Additional. sub/super scripts

‘‘ in, o, d, °, r, m, c, D, acc and lim’’ are respectively: inlet, outlet,

diaphragm, initial, reaction, migration, convection, diffusion, accu-

mulation and limiting.
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