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An Algebraic Control Approach Based on the Estimation of an

Ultra-Local Bröıda Model

Hajer Thabet1, Mounir Ayadi1 and Frédéric Rotella2

Abstract—This paper deals with a new parameter
estimation method for an ultra-local model of Bröıda.
The proposed approach is based on the algebraic
derivation techniques and the linear system resolution
method, in order to estimate the ultra-local model
parameters, such that the variable time-delay. The
closed-loop control is achieved via an adaptive PI
controller to reject the influence of noises and dis-
turbances. A simulation results of a thermal process
application are given to validate the effectiveness of
the proposed strategy. A performance comparison
with a classical PID controller is achieved.

Index Terms—Ultra-local model control, Adaptive
PI controller, Algebraic derivation, Time-delay, Lin-
ear system resolution method, Parameter estimation,
Robustness, Trajectory tracking.

I. INTRODUCTION

Writing down simple and reliable differential equations
for describing a concrete plant is almost always a difficult
task. For this reason, the industrial world is not willing to
employ most techniques based on a precise mathematical
modeling in spite of considerable advances in the last
years. This unfortunate situation is overcome thanks to
the ultra-local model control which is recently introduced
by M. Fliess and C. Join [6], [7], [8], [28], [29]. The
concept of this approach is based on an elementary con-
tinuously updated local modeling via the unique knowl-
edge of the input-output behavior. This recent control
strategy has already applied in several applications [8],
[10], [15], [16]. For the sake of simplicity presentation,
we assume that the system is single-input and single-
output. The input-output behavior is assumed to be well
approximated within its operating range by an ordinary
differential equation E

(
y, ẏ, . . . , y(a), u, u̇, . . . , u(b)

)
= 0.

Replace this unknown, or at least poorly known, system
equation by the ultra-local model that can be written as:

y(ν) (t) = F (t) + α (t)u (t) (1)

which is continuously updated, where:

• The time-varying functions F (t) and α (t) which are
estimated via the input and the output measure-
ment, subsume the structural properties.
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• The order ν ∈ N is necessarily a design parameter
that can be arbitrarily chosen. This order of deriva-
tion is always chosen to be equal to 1 or 2.

Assume that ν = 1, the desired behavior is achieved
via an adaptive Proportional-Integral controller, or a-

PI. Based on the knowledge of the ultra-local model
parameters (2), the control input is defined as follows:

u (t) =
−F̂ (t) + ẏd (t) +KP e (t) +KI

∫
e (t)

α̂ (t)
(2)

where:

• yd (t) is the output reference trajectory, which is
obtained according to the rules of flatness-based
trajectory planning [11], [26].

• e (t) = yd (t)− y (t) is the tracking error.
• KP and KI are the usual PI gains.

The ultra-local model is updated via the online algebraic
and non-asymptotic techniques [9], [12], [13], [14], [27]
which offer a quite simple and considering robust esti-
mates. These recent techniques have attracted a lot of
attention in several concrete applications [2], [22].
The occurrence of delays is manifold in engineering

systems such as transport, communication, biomedicine,
signal processing. The real time delay identification is one
of the most crucial open problems in the field of delay
systems (see, e.g., [25]), and several on line estimation
methods have been suggested in the literature for the
identification of delay. Recent developments in [3], [4]
have considered the on line identification of delay systems
with an algebraic approach.
The delays have been taken into account by the model-

free control strategy [6], [7], [8]. However, this control
approach has shown that the delayed terms are found
in the unknown variables of the ultra-local model, which
implies that the identification of delays is not necessary.
In this work, the identification of the delay can be

possible by using the algebraic derivation techniques. For
this, a temporally variable delay, TR (t), is introduced
in the control input of the ultra-local model (1). The
expression of the ultra-local model with delay becomes:

y(ν) (t) = F (t) + α (t)u (t− TR (t)) (3)

The online estimation of delay and the others parameters
of ultra-local model, presents the main contribution of
this paper. The proposed control strategy and their cor-
responding adaptive PID controller allow to estimate the
ultra-local model of Bröıda using the algebraic derivation
techniques with the linear system resolution method.
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This paper is organized as follows. Section II presents
the algebraic derivation of noisy signals. The proposed
parameter identification approach to estimate the ultra-
local model of Bröıda is developed in Section III. Section
IV describes some numerical simulations of a thermal
process with the proposed algebraic approach, and sev-
eral simulation results are provided. Some concluding
remarks may be found in section V.

II. ALGEBRAIC DERIVATION OF NOISY
SIGNALS

The algebraic derivation techniques for nonlinear es-
timation and identification boils down to the obtention
of fast and robust derivative estimations of noisy time
signals. These techniques of estimation consist in the
design of FIR filters by resolving a classical polynomial
approximation of signals. From the algebraic manipula-
tion of signals in the operational domain, the polynomial
approximation is obtained. The objective is to estimate
the derivative of time signal s (t) which is defined by the
power series:

s (t) =

∞∑

n=0

s(n) (0)
tn

n!
(4)

This analytic time function (4) is assumed to be conver-
gent around 0. Approximate s (t) by the truncated Taylor
expansion, of degree N , as follows:

sN (t) =

N∑

n=0

s(n) (0)
tn

n!
(5)

The usual notations of operational calculus [19], [30]
yield:

SN (p) =

N∑

n=0

s(n) (0)

sn+1
(6)

Multiply both sides by positive powers of
d

dp
. The

quantities s(n) (0), n = 0, 1, . . . , N , which are linearly
identifiable [12], [13], satisfy the following triangular
system of linear equations:

dκpN+1SN

dpκ
=

dκ

dpκ

(
N∑

n=0

s(n) (0) pN−n

)
(7)

where 0 6 κ 6 N − 1. Noting that it is possible to
isolate each coefficient s(n) (0) appearing in the previous
expression (7) by applying a convenient operator to
SN (p) [17], [18]. Multiplying both sides of (7) by p−M ,
M > N is sufficiently large, permit to get rid of time

derivatives, i.e., of pσ
dιSN

dpι
, σ = 1, . . . , N , 0 6 ι 6 N .

The conversion to the temporal domain is based on the
two following formulas of operational calculus [19], [30]:

• The operator
1

pk
, k ! 1, corresponds to the function

t→
tk−1

(k − 1)!
.

• The operator
d

dp
corresponds to the multiplication

by −t.

Moreover, the Cauchy’s integral formula to transform a
multiple integral to simple integral is defined by:

T∫

0

τk−1∫

0

. . .

τ1∫

0

(−1)
n
µns (µ) dµdτ1 . . . dτk−1 =

(−1)
n

(k − 1)!

T∫

0

(T − µ)
k−1

µns (µ) dµ

(8)

Consequently, the calculation of s(i) (0) is obtained, from
an integral on the time interval [0, T ] for a given small
T > 0, as follows:

s(i) (0) =

∫ T

0

P (µ, T ) sN (µ) dµ (9)

where P (µ, T ) is polynomial in µ and T [23], [24]. As
dis (t− µ)

dµi

∣∣∣∣
µ=0

= (−1)
i
s(i) (t), the derivative i of the

signal s (t) can be expressed as an integral which implies
the values of sN on the time interval [t− T, t]:

s(i) (t) = (−1)
i

∫ T

0

P (µ, T ) sN (t− µ) dµ (10)

Noting that the integral operation plays the role of low-
pass filter and reduces the noise that corrupts the signal
s (t). The choice of T and N results such that: the larger
is T , the smaller is the effect of the noise (the better
integrals low pass filtering) and the larger is the error
due to truncation. The larger is N , the smaller is the
error due to truncation and the larger is the error due to
noise.

III. PROPOSED ALGEBRAIC APPROACH

The proposed control approach, also called general-

ized Bröıda, allows to estimate the ultra-local model of
Bröıda. Indeed, the linear model of Bröıda is defined by
the following operator transfer [1], [21]:

F (p) =
K

(1 + τp)
ν e

−TRp (11)

where K is the model gain, τ the model time constant
and TR the model time-delay. The expression of ultra-
local model with time-delay (3) can be generalized from
the ultra-local model of Bröıda which is defined by the
differential equation (12). This equation is deduced from
(11), in the temporal domain, as follows:

y(ν) (t) = −
1

τ (t)
y (t) +

K (t)

τ (t)
u (t− TR (t)) (12)

The correspondence between the two equations (3) and
(12) aids to identify the parameters of the ultra-local
model of Bröıda from those of the ultra-local model with
time-delay, such that:

K (t) = −
α (t)

F (t)
y (t) , τ (t) = −

y (t)

F (t)
(13)



In order to estimate the parameters of the ultra-local
model with time-delay (3), assuming that F (t), α (t)
and TR (t) are constant. Then, we obtain the following
relation for ν = 1:

ẏ (t) = F + αu (t− TR) (14)

The delay can be expressed in the operational domain
by the simplified Pade approximation such as e−TRp

≃

1− TRp/2

1 + TRp/2
, hence, the operational form of the equation

(14) is written as follows:

py − y (0) +
TR

2

(
p2y − py (0)− ẏ (0)

)

=
F

p
+ αu− α

TR

2
(pu− u (0))

(15)

Take three derivatives of (15) with respect to the complex
variable p to get rid of the initial conditions y (0), ẏ (0)
and u (0):

p
d2y

dp2
+ 2

dy

dp
= −

TR

2

(
2y + 4p

dy

dp
+ p2

d2y

dp2

)

+2
F

p3
+ α

d2u

dp2
− α

TR

2

(
p
d2u

dp2
+ 2

du

dp

)

(16)
Multiplying the equation (16) by p3 gives:

p4
d2y

dp2
+ 2p3

dy

dp
= −

TR

2

(
2p3y + 4p4

dy

dp
+ p5

d2y

dp2

)

+2F + αp3
d2u

dp2
− αTR

(
p4

d2u

dp2
+ 2p3

du

dp

)

(17)

Applying the operator
d

dp
with the aim of eliminating

the parameter F from the equation (17):

p4
d3y

dp3
+ 6p3

d2y

dp2
+ 6p2

dy

dp

= −
TR

2

(
p5

d3y

dp3
+ 9p4

d2y

dp2
+ 18p3

dy

dp
+ 6p2y

)

+α

(
p3

d3u

dp3
+ 3p2

d2u

dp2

)

−α
TR

2

(
p4

d3u

dp3
+ 6p3

d2u

dp2
+ 6p2

du

dp

)

(18)
Finally, Multiplying both sides by p−6 in order to elim-
inate any non causal term and to avoid differentiations
with respect to time:

1

p2
d3y

dp3
+ 6

1

p3
d2y

dp2
+ 6

1

p4
dy

dp

= −
TR

2

(
1

p

d3y

dp3
+ 9

1

p2
d2y

dp2
+ 18

1

p3
dy

dp
+ 6

1

p4
y

)

+α

(
1

p3
d3u

dp3
+ 3

1

p4
d2u

dp2

)

−α
TR

2

(
1

p2
d3u

dp3
+ 6

1

p3
d2u

dp2
+ 6

1

p2
du

dp

)

(19)

Returning to the time domain, the previous relation (19)
can be represented as follows:

Y (t) = −
TR

2
h1 (t) + αh2 (t)− α

TR

2
h3 (t) (20)

where:

Y (t) =

∫ T

0

[
5µ4

− 10Tµ3 + 6T 2µ2
− T 3µ

]
y (µ) dµ

h1 (t) =

∫ T

0

[
−20µ3 + T 3

− 12T 2µ+ T
(
12µ2 + 18µ3

)]

y (µ) dµ

h2 (t) =

∫ T

0

[
µ5 +

5

2
Tµ4

− 2T 2µ3 +
1

2
T 3µ2

]
u (µ) dµ

h3 (t) =

∫ T

0

[
5µ4

− 4Tµ3
− T 3µ+ 6T 2µ2

]
u (µ) dµ

Noting that [0, T ], for T > 0, represents the time interval
of integration. We can generate a linear system from the
equations of (20), that is:

Y = Hθ (21)

where θT =

[
−
TR

2
α −α

TR

2

]
, and the vector H =

[
h1 h2 h3

]
.

In the present approach, the parameters θ in (21) are
updated at each sampling time Te from the measure-
ments of the output and the knowledge of the input. At
sampling time k (i.e. t = kTe), the unknown parameters
are estimated by solving the linear system Yk = Hkθk
such that the general expression of estimation is defined
as:

θk = H
{1}
k Yk +

(
Im −H

{1}
k Hk

)
λk (22)

where:

• Hk is a vector of size (1×m);

• H
{1}
k , which verifies Hk = HkXHk, denotes any

generalized inverse of Hk;
• λk is an arbitrary column vector of size (m× 1). The

coefficients of the vector λk can be used to satisfy
other constraints of the system control.

After the estimation of the two parameters α̂ and T̂R

of the ultra-local model using the algebraic derivation
techniques, it remains to estimate the third parameter F̂
which is given by:

F̂ = ̂̇y − α̂u
(
t− T̂R

)
(23)

where ̂̇y presents the estimate of the first derivative of
the output which is obtained, by applying the algebraic
derivations, as follows:

̂̇y = −
3!

T 3

∫ T

0

(T − 2µ) y (µ) dµ (24)

where the identification window T is chosen such that
T ! 2Te, which is very short in order to get an estimate
at each instant.



The principle of the proposed control approach is pre-
sented in the figure 1. The ultra-local model parameters
in (3) (F , α, TR) are estimated, from the measurements
of the output and the input, based on the algebraic
derivation techniques and the linear system resolution
method. Thanks to these estimated parameters, we iden-
tify the parameters of the ultra-local model of Bröıda
in (12) (K, τ , TR) which allow the setting of the PID
controller gains (KP , KI , KD) in an adaptive way in
order to obtain the feedback control.

Fig. 1. Principle of proposed control approach.

IV. APPLICATION: THERMAL PROCESS

Figure 2 shows the considered thermal process which
is constituted by a tube of constant volume V

[
m3

]
and

a heating resistor Rc [Ohm] connected to a DC power
supply u (t). The parameter C

[
J.m−3.◦K−1

]
is the spe-

cific heat constant of air. The voltage u (t), applied to
the resistance, allows to heat the air entering at the
tube by Joule effect [20]. Indeed, TE [◦K] is the ambient
temperature, and fj

[
m3.s−1

]
is the air rate flow entering

according to the valve opening angle j. The purpose
of the control system is to regulate the temperature
TS [◦K] of the outgoing air at the constant temperature,
given that the air flows into the tube with an initial
temperature TE [◦K] and at the flow rate fj

[
m3.s−1

]
.

Fig. 2. Simplified schema of thermal process [5].

The flow rate signal is assumed to piecewise constant
and can be vary by changing the throttle position j.
By applying a variation to the amplifier input, two
phenomena are noted:

• The heat capacity of the resistor which is an abrupt
voltage change translates into a slower evolution
of the resistor temperature. This phenomenon is
defined by a transfer function of first order char-
acterized by the time constant τ .

• The delay of the temperature measurement due to
the distance between the resistor and the thermistor
measurement. This phenomenon is reflected by a
time delay TR in the transfer function.

This leads to a first approximation whose the theoretical
transfer function of the model is given by [5]:

H (p) = K
e−TRp

1 + τp
(25)

where K is the overall static gain, τ is the time constant
and TR is the time-delay. The numerical parameters
values of the considered thermal process, for an ambient
temperature equal to 20◦C, are given in the Table I.

TABLE I

Parameter values of the considered system [5].

Parameter Value
K 0.86
τ 0.49 s
TR 0.27 s

The most well-known tuning method of the PID con-
troller parameters is that of Ziegler-Nichols (Z-N) which
is suggested in [21]. The tuning parameters of adaptive
PI controller, using Z-N method, is given by the following
expressions:

KP =
0.9τ

KTR

, KI =
KP

3.33TR

(26)

In order to show the robustness of the proposed alge-
braic approach, a performance comparison with a clas-
sical PID controller is implemented. The PID controller
parameters, KP = 1.83, KI = 3.72 and KD = 0.2, are
settled by applying the Z-N method.

In the simulations, a desired trajectory yd (t) is gen-
erated to satisfy the system constraints. The integrals
used in the parameter estimation, are numerically ap-
proximated by the trapezoidal rule. For this, we choose
a sample time Te = 0.1 s and a sliding identification
window T = 5Te. A centered white noise with variance
of 0.001 is added to the system output in order to test
the robustness of proposed controller. At t = 125 s, a
disturbance given by the sensor of 0.5 V is applied to
the output temperature measurement.
The simulation results given in the figures 3, 4, 5 and

6 underline the importance of the proposed adaptive PI
controller in terms of robustness and trajectory tracking.
In fact, we notice that the tracking error (see figure 4) in
the case of classical PID control is significant compared
with that obtained by ultra-local model control. Thus,
the on line estimation of time-delay and the others
parameters is very interesting for the development of
a closed-loop system control with good performances.
Figure 3 shows that the thermal perturbation is rejected
faster by the a-PI controller than the PID one. Moreover,
the control inputs depicted in the figure 5 show that the



ultra-local model control input is smoother. In spite of
the system output is noisy and disturbed, the proposed
algebraic approach allows to estimate the variable time-
delay (see figure 6) thanks to the algebraic derivation
techniques and the adaptive controller.
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XXIIe Colloque GRETSI, Dijon, 2009.

[15] C. Join, G. Robert and M. Fliess, Model-free based water
level control for hydroelectric power plants, IFAC Conference on
Control Methodologies and Tecnologies for Energy Efficiency,
CMTEE’2010, Vilamoura, 2010.

[16] F. Lafont, N. Pessel, J.F. Balmat and M. Fliess, On the model-
free control of an experimental greenhouse, Proceedings of the
World Congress on Engineering and Computer Science, USA,
vol. 2, 2013.

[17] M. Mboup, C. Join and M. Fliess, A revised look at numerical
diffrentiation with an application to nonlinear feedback control,
15th Mediterranean Conference on Control and Automation-
MED’2007, Greece, 2007.

[18] M. Mboup, C. Join and M. Fliess, Numerical differentiation
with annihilators in noisy environment, Numerical Algorithms,
vol. 50, pp. 439-467, 2009.
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