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LTV controller flatness-based design for MIMO systems

Mohamed Ben Abdallah · Mounir Ayadi ·

Frédéric Rotella · Mohamed Benrejeb

Abstract In this paper, a flatness-based control strategy
for multi-input multi-output linear time-varying systems is
proposed in order to track desired trajectories. The control
design, based on the use of an exact observer, leads to a poly-
nomial two-degree-of-freedom controller without resolving
Bézout’s equation in a time-varying framework. The pro-
posed approach is illustrated with the control of a nonlinear
model of the satellite SPOT-5.

Keywords Linear time-varying systems · Multi-input
multi-output systems · Trajectory linearization · Flatness ·

Path tracking · Exact observer · Polynomial controller

1 Introduction

For finite-dimensional and time-invariant linear systems,
a well-known control design technique named polynomial
two-degree-of-freedom (2DOF) controllers [1–3], was intro-
duced fifty years ago by Horowitz [4]. This powerful method
is based on pole placement and presents one drawback: it
needs to know where to place all the poles of the closed-loop
system at the outset. In dealing with polynomial matrices in
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the case of multi-input multi-output (MIMO) systems, a par-
ticular problem which is important for both, mathematical
[5,6] and system theory [7,8] points of view, is the computa-
tion of the solution of the generalized polynomial Bézout’s
equation. There are many works to solve the diophantine
equation [9,10]. Generally, all methods can be classified
into three main categories: the state-space related approaches
[11,12], the Taylor series treatment [10,13], and methods
involving coefficient matching [9,14].

The 2DOF design controller problem is not easy to tran-
scribe in the case of linear time-varying (LTV) systems due
to the fact that the coefficients do not commute with the time
derivative operator. Besides, the structure of the set of the
poles of the closed-loop system is more complex.

In this case, the pole placement problem was solved
recently by Marinescu [15] who proposes some technical
methods for the factorization of linear time-varying transfer
matrices. These key points lead to solve Bézout’s equation
written in time-varying framework.

In the case of single-input single-output (SISO) linear
time-invariant (LTI) systems, the problem of pole placement
which consists in imposing closed loop system dynamics can
be related to track desired trajectories using flatness property
to design a polynomial controller [16]. A 2DOF controller
is then designed with very natural choices with high level
performances. In this design, we are led to a solution for
Bézout’s equation without its resolution.

In order to overcome these two points, namely the choice
of desired poles at the outset and the determination of a solu-
tion for Bézout’s equation, we propose in this paper to extend
the flatness-based control strategy developed in [16] to the
case of MIMO LTV systems. It will be seen that applying
the guideline induced by a flatness based control to a MIMO
LTV system leads to express it in a natural 2DOF controller
form.



The paper is organized as follows: in Sect. 2, some back-
ground notions about MIMO LTV systems and flatness are
presented. In Sect. 3, we propose to design a polynomial
controller based on flatness using an exact observer of a state
vector which is constituted by the flat output and its deriva-
tives. This approach is illustrated, in Sect. 4, with the control
of a nonlinear model of the SPOT satellite.

2 Background notions

2.1 MIMO linear time-varying systems

Following [15], in the algebraic framework initiated by [17]
and popularized in systems theory by [18] and related refer-
ences, a linear system is a finitely presented module M over
the ring R = K [s] of differential operators in s = d/dt with
coefficients in an ordinary differential field K (i.e., a com-
mutative field equipped with a unique derivative). If K does
not exclusively contain constants (i.e., elements of deriva-
tive zero), M is an LTV system. In this paper, the following
notations will be used: u(n) (t) = dnu(t)

dtn = snu(t).
When dealing with LTV systems, polynomials as function

of s is skew, i.e., belong to the noncommutative ring R =

K [s] equipped with the commutation rule: sa = as + ȧ

(a is a time-varying function), which is the Leibniz rule of
derivation of a product. Noting the integration operator by
s−1 where:

s−1h (t) =

t
∫

−∞

h (τ )dτ (1)

where h(τ ) = 0 for (τ ≤ τ̄ ). This last hypothesis ensures
commutativity between s and s−1.

For finite-dimensional, several input-output descriptions
have been introduced for MIMO LTV systems. Here, a time-
varying linear system is described by the following state
space model of dimension n:

ẋ(t) = A(t)x(t) + B(t)u(t) t ∈ T =
[

t1 t2
]

y(t) = C(t)x(t) (2)

where x(t) is an n-dimensional state vector, u(t) is an m-
dimensional input vector, y(t) is an m-dimensional output
vector, and the matrices A(t), B(t) and C(t) are time-variable
matrices of proper order. Consider the set of matrices K i (t)

for i = 0, 1, . . . such that:

K 0(t) = B(t)

K i (t) = −A(t)K i−1(t) + K̇ i−1(t) if i ≥ 1

If there is an integer µ such that the matrix:

K(A(t),B(t))(t) =
(

K 0(t) · · · K µ−1(t)
)

(3)

is of rank n for every t ∈ T , then the system is uniformly con-
trollable [19] and K(A(t),B(t))(t) is the controllability matrix.
Consider the set of matrices L i (t), for i = 0, 1, . . . such that:

L0(t) = C (t)

L i (t) = L i−1 (t) A (t) + L̇ i−1 (t) if i ≥ 1

If there is an integer ν such that the matrix:

L(A(t),C(t)) (t) =











L0(t)

L1(t)
...

Lν−1(t)











(4)

is of rank n for every t ∈ T , then the system is uniformly
observable. In this condition, L(A(t),C(t)) (t) is the observ-
ability matrix of the pair (A(t), C(t)). In the case of LTI
systems, the indexes µ and ν are equal to n. The result of
Silverman-Meadows [19] has shown that, if the system is
uniformly controllable then there exists a nonsingular trans-
formation on T , such that:

Z(t) = PC (t)x(t) (5)

which can be constructed by the Seal-Stuberud algorithm
[20], implies that:

Ż(t) = AC (t)Z(t) + BC (t)u(t)

y(t) = CC (t)Z(t) (6)

where:

CC (t) = C (t) P−1
C (t) , BC (t) = PC (t)B(t) (7)

AC (t) = PC (t)A(t)P−1
C (t) + ṖC (t)P−1

C (t)

=
[

ACi j (t)
]

i, j=1...m
(8)

AC,i i (t) =

















0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
× × × × ×

















(9)

are µi × µi matrices such that:
n

∑

i=1

µi = n

AC,i j (t) =

















0 · · · · · · · · · 0
...

...
...

...

0 · · · · · · · · · 0
× × · · · × ×

















(10)

are (µi ×µ j ) matrices, the symbol × is a time-varying func-
tion. The scalars µi for i = 1 to m are the controllability



indices determined by the the Seal-Stuberud algorithm [20].
The interested reader may find more details about this algo-
rithm in the quoted literature and the references therein.

Defining a new input vector uC (t) by:

uC (t) = HC (t)u(t) (11)

where HC (t) is an (m × m) upper triangular matrix with ones
along the diagonal and hence invertible. It’s constructed by
the

∑i
j=1 µ j th rows of BC (t):

HC (t) =













1 × · · · ×

0
. . .

...
...

. . .
. . . ×

0 · · · 0 1













(12)

Equation (6) becomes:

Ż(t) = AC Z(t) + B̄C uC (t)

y(t) = CC Z(t)
(13)

such that:

B̄C = BC (t)HC (t)−1

=











bc1 0 · · · 0
0 bc2 · · · 0
...

...
...

0 0 bcm











(14)

where:

bci =
(

0 · · · 0 1
)T

(15)

is an µi vector.

Remark 1 Another problem is that even though the time-
varying linear system is controllable and observable, its con-
trollability indices and/or observability indices may not be
fixed. Such system is called non-lexicographically-fixed sys-
tem. For this problem, the algorithm of Seal and Stuberud
can’t be implemented in an efficient way because the set
of vectors which are linearly independent for every t on T

change. In this work, we only deal lexicographically-fixed
system [21] where the controllability indices are fixed. In the
next section, the flatness property is presented and we will
see that the state vector in the previous canonical form is used
to determine the flat output and its derivatives.

2.2 Short survey on flatness

Flatness property which was introduced by [22], for continu-
ous-time nonlinear systems, leads to interesting results for
control design. The existence of a set of variables called
flat outputs permits to define all other system variables. The
dynamic of such process can be then deduced without solving
the differential equations. Therefore, it is possible to express

the state, as well as the input and the output of the system, as
differential functions of flat outputs [22,23]. Let us consider
the nonlinear system described by the following differential
equation:

ẋ(t) = f (x(t), u(t)) (16)

where x(t) ∈ ℜn is the state vector and u(t) ∈ ℜm is the input
vector. Roughly speaking, this system is called differentially
flat if there exists a set of variables z(t) ∈ ℜm of the form:

z(t) = h(x(t), u(t), u̇(t), ..., u(r)(t)) (17)

such that the state and the input of the system are given by:

x(t) = A(z(t), ż(t), ..., z(α)(t)) (18)

u(t) = B(z(t), ż(t), ..., z(α+1)(t)) (19)

where α is an integer. The set of variables z(t) is called the flat
output of the system or the endogenous variables. It makes
possible to parameterize any variable of the system [23]. The
components of z(t) must be differentially independent. The
real output of the process is written as follows:

y (t) = g (x (t) , u (t)) (20)

and from Eqs. (18) and (19), this output is written in function
of the flat output as:

y(t) = C(z(t), ż(t), ..., z(σ )(t)) (21)

where σ is an integer. In the linear case, the explicit expres-
sions of the output y(t) and the input u(t) allow to relate
the flat output to the partial state which was defined by [7].
The trajectories of the system are deduced from the definition
of the flat output trajectory without integrating any differen-
tial equations. All these points, which have been formalized
through the Lie-Bäcklund equivalence of systems in [24,25],
lead to propose a nonlinear feedback which ensures a stabi-
lized tracking of a desired motion for the flat output. This
methodology has been applied on many industrial processes
as it was shown previously, for instance, on magnetics bear-
ings [26], chemical reactors [27], cranes or flight control [28]
or turning process [29], among many other examples.

A necessary and sufficient condition for the flatness of
a linear system is its controllability involving that the con-
cepts flatness and controllability coincide [30]. In this case,
the Brunovsky output from the controllable canonical form
are considered as flat outputs. The Lie-Bäcklund equivalence
[24] shown that: dim z(t) = dim u(t).
In the case of MIMO linear systems, let us consider the canon-
ical form in Eq. (13), the state vector can be expressed in the
following form:



Z (t) =

































z1 (t)
...

z(µ1−1)
1

(t)

z2 (t)
...

zm (t)
...

z(µm−1)
m

(t)

































(22)

then the flat output or the Brunovsky output is given by:

z(t) =











z1(t)

z2(t)
...

zm(t)











(23)

Remark 2 The necessary and sufficient condition for the flat-
ness of a linear system is proved in the LTI case in [30]. In the
LTV case, uniform controllability implies, according to the
results of Malrait et al. in [31], that the system is equivalent to
a linear time invariant system in Brunovsky canonical form
(i.e. a chain of n integrators) after a static change of coordi-
nates and a state-dependent re-definition of the control input.
The system is thus differentially flat [32]. The flat output, or
Brunovsky output, is directly obtained as a time-varying lin-
ear combination of the original states.

After introducing the flatness property and the determina-
tion of a flat output from the controllable form, the flatness-
based control will be presented in the next section.

3 Flatness-based control

By denoting by uC,i (t) the i-th component of uC (t) and
αi, j,k(t) the k-th coefficient of the last row of the matrix
AC,i j (t) in Eq. (9) and Eq. (10), the following relation is
satisfied:

uc,i (t) = z
(µi )
i (t) +

m
∑

j=1





µi −1
∑

k=0

αi, j,k(t)z
(k)
j (t)



 (24)

For a given planned trajectory of the flat output, zd(t), the
control law based on flatness is as follows:

uc,i (t) = z
(µi )
d,i (t) +

µi
∑

k=0

κi,k

(

z
(k)
d,i (t) − z

(k)
i (t)

)

+

m
∑

j=1





µ j −1
∑

k=0

αi, j,k(t)z
(k)
j (t)



 (25)

where the κi,k are chosen such that:
κi (s) = sµi +

∑µi

k=1 κi,ksµi −k is a Hurwitz polynomial. By
introducing the polynomial matrix:

K (s) = diag (κi (s)) (26)

where s is the derivation operator, the previous control law
can be written as:

u(t) = (HC )−1 (t) (K (s)zd(t) − 3(t)Z(t)) (27)

where:

3(t) =
[

3i, j (t)
]

i, j=1···m

=







[

κi,0 − αi,i,0(t) · · · κi,µi −1 − αi,i,µi −1(t)
]

if i = j
[

−αi, j,0(t) · · · −αi, j,µi −1(t)
]

if i 6= j

(28)

When this control is applied, the tracking error is verifying:

lim
t→∞

(zd (t) − z (t)) = 0 (29)

and the closed-loop dynamics are given by the roots of κi (s).
To implement the control (27), we need to estimate the vector
Z(t) with an observer. A full-order observer can be used, but
in this solution, the difficulty appears in the choice of the
observers poles in the LTV framework. To overcome this
point, an enlightening idea suggested in [33] and applied in
[34] and [16] can be used. The realization of this controller,
using the exact observer, will be the subject of the next part.

3.1 Exact observers

By successive derivations of the output plant y(t) in the equa-
tion (13) until the order (ν − 1), we get:

y (t) = CC (t) Z (t) = O0 (t) Z (t)

ẏ (t) =
(

ĊC (t) + CC (t) AC (t)
)

Z (t) + CC (t) B̄C uC (t)

= O1 (t) Z (t) + M1 (t) uC (t)

y(2) (t) =
(

Ȯ1 (t) + AC (t) O1 (t)
)

Z (t) +
(

O1 (t) B̄C (t) + Ṁ1 (t)
)

uC (t) + M1 (t) u̇C (t)

= O2 (t) Z (t) + M2 (t) uC (t) + M1 (t) u̇C (t)

...

y(ν−1) (t) = Oν−1 (t) Z (t) + Mν−1 (t) uC (t)

+ Mν−1,2 (t) u̇C (t) + Mν−1,3 (t) u
(2)
C (t)

+ · · · + M1 (t) u
(ν−2)
C (t) (30)

where Mi (t) are (m × m)-dimensional matrices given by:

– M1(t) = CC (t) B̄C ,
– for i = 2 to ν − 1, Mi (t) = Ṁi−1(t) + Oi (t) B̄C ,
– Mν−1,2(t) = Mν−2(t) +

∑ν−3
i=1 M

(ν−2−i)
i (t) ,

– Mν−1,3(t) = Mν−3(t) +
∑ν−4

i=1 (ν − i − 2) M
(ν−3−i)
i (t),

etc.

Equation (30) can be written as follows:

Y (t) = O(t)Z(t) + M(t)U (t) (31)



where

Y T (t) =
(

yT (t) ẏT (t) · · · y(ν−1)T (t)
)

(32)

U T (t) =
(

uT
C (t) u̇T

C (t) · · · u
(ν−2)T
C (t)

)

(33)

O (t) =











O0 (t)

O1 (t)
...

Oν−1 (t)











(34)

O (t) is the observability matrix of the pair
(AC (t) , CC (t)) and M (t) is the transmission matrix given
by:

M(t) =











M0 M0 · · · M0 M0
M1(t) M0 M0

.

.

.
. . .

. . .
.
.
.

Mν−2(t) M1(t) M0
Mν−1(t) Mν−1,2(t) Mν−1,3(t) · · · M1(t)











(35)

such that M0 is an (m × m)-dimensional zero matrix.
In the next development, we assume the uniform observ-

ability of the system leading to:

rank (O (t)) = n (36)

such that O (t) is an (mν × n)-dimensional matrix. It appears
that:

rank (O (t)) = rank
([

O (t) Y (t) − M (t) U (t)
])

= n

thus, following [35], the system of linear equations (31) is
said compatible having a unique and an exact solution for
Z (t) given by:

Z (t) =
(

OT (t) O (t)
)−1

OT (t) (Y (t) − M (t) U (t))

(37)

Besides, by integrating Eq. (13) of the canonical form, we
get:

Z (t) = s−1 (AC (t) Z (t)) + s−1 (

B̄C uC (t)
)

(38)

By replacing, in the right side of Eq. (38), Z(t), by the expres-
sion from the left side, we obtain:

Z (t) = s−1
(

AC (t) s−1 (AC (t) Z (t))
)

+ s−1 AC (t) s−1 (

B̄C uC (t)
)

+ s−1 (

B̄C uC (t)
)

(39)

Reiterating the last operation until the (ν − 1) order:

Z (t) = s−1 (

AC (t)s−1 (AC (t) · · · s−1 (AC (t)Z (t))

+ s−1 (

AC (t)s−1 (AC (t) · · · s−1 (

AC (t)B̄C s−1uC (t)
))

+ · · · + s−1 (

AC (t)B̄C s−1uC (t)
)

+ B̄C s−1uC (t) (40)

By replacing, in the second term of Eq. (40), Z(t) by the
expression from Eq. (37), implies that:

Z (t) = s−1
(

AC (t)s−1 (AC (t) . . .

s−1
(

AC (t)
(

OT (t) O (t)
)−1

OT (t) (Y (t)−M (t) U (t))

))

+ s−1
(

AC (t)s−1 (AC (t) · · · s−1
(

AC (t)B̄C s−1uC (t)
)

+ · · · + s−1
(

AC (t)B̄C s−1uC (t)
)

+ B̄C s−1uC (t) (41)

By using integration by parts, it leads to the following expres-
sion of the state vector:

Z (t) = s−1 (Θ1 (t) y (t)) + s−2 (Θ2 (t) y (t)) + · · ·

· · · + s−ν (Θν (t) y (t)) + s−1 (∆1 (t) uC (t))

· · · + s−2 (∆2 (t) uC (t)) + · · ·

· · · + s−(ν−1) (∆ν−1 (t) uC (t)) + B̄C s−1uC (t)

(42)

where Θi (t) and ∆i (t) are (n × m)-dimensional matrices.

3.2 2DOF controller form in the LTV case

By replacing (42) into (27), the control law becomes:

u(t) =
(

HC (t)
)−1

(K (s)zd(t) − 3(t)
[

s−1 (Θ1 (t) y (t))

+ s−2 (Θ2 (t) y (t)) + · · · + s−ν (Θν (t) y (t))

+ s−1 (∆1 (t) uC (t)) + s−2 (∆2 (t) uC (t))

+ · · · + s−(ν−1) (∆ν−1 (t) uC (t))+ B̄C s−1uC (t)
])

(43)

By denoting:

R
(

s−1, u (t)
)

= u(t) + (HC (t))−1 3(t)

×
(

s−1 (∆1 (t) uC (t))+s−2 (∆2 (t) uC (t))

+ · · · + s−(ν−1) (∆ν−1 (t) uC (t))

+ B̄C s−1uC (t)
)

(44)

and

S
(

s−1, y (t)
)

= (HC (t))−13(t)
(

s−1 (Θ1 (t) y (t))

+ s−2 (Θ2 (t) y (t))

+ · · · + s−ν (Θν (t) y(t))
)

(45)

the control law (43) can be written finally in the 2DOF con-
troller form as follows:

R
(

s−1, u (t)
)

= (HC (t))−1 K (s)zd(t) − S
(

s−1, y (t)
)

(46)

The proposed control design can be seen as a 2DOF controller
in the LTV framework without the resolution of Bézout’s
equation. Now the design is focused on the choice of the



trajectory zd(t) to follow and the tracking dynamics given
by K (s).

4 Application: control of a nonlinear model of a satellite

4.1 Nonlinear model of a satellite

In this section, the proposed approach in the case of MIMO
LTV systems is applied to the model of a satellite SPOT-5.
SPOT (Système Pour l’Observation de la Terre) is a high-
resolution, optical imaging Earth observation satellite system
operating from space. Spot-5 satellites are the third genera-
tion of SPOT satellites. Following [32,36,37], the nonlinear
model of the satellite is given by:

r̈ = r (t) ω2 (t) −
k

r2 (t)
+

u1 (t)

m

ω̇ (t) = −2
ṙ (t) ω (t)

r (t)
+

u2 (t)

mr2 (t)
(47)

where:

– r (t) represents the distance from the center of the Earth.
– θ (t) is the angular displacement with respect to an arbi-

trary but fixed direction in the orbiting plane.
– m is the mass of the satellite (3,048 kg),
– k is a gravitational constant determining the Earth force

of attraction on the satellite given by k = G MT such that
G = 6.672559 × 10−11m3/s2 kg and MT = 5.9736 ×

1024 kg is the mass of the Earth.
– ω (t) is the angular velocity, ω (t) = θ̇ (t).

(r (t) , θ (t)) is the polar coordinates for the position of the
satellite. The control inputs u1 (t) and u2 (t) represent the
radial and tangential thrust forces exercised by the satellite
respectively. By denoting:

x1 (t) = r (t) = y1(t)

x2 (t) = ẋ1 (t) = ṙ (t) (48)

x3 (t) = ω = y2(t)

the model of the system (47) can be written into the following
form:

ẋ1 (t) = x2 (t)

ẋ2 (t) = x1 (t) x2
3 (t) −

k

x2
1 (t)

+
u1 (t)

m
(49)

ẋ3 (t) =
−2x2 (t) x3 (t)

x1 (t)
+

u2 (t)

mx2
1 (t)

and their derivatives. Denoting:
{

z1 (t) = r (t)

z2 (t) = θ (t)
(50)

then the system variables can be written as:

x1 (t) = z1 (t)

x2 (t) = ż1 (t)

x3 (t) = ż2 (t) (51)

u1 (t) = m

(

z̈1 (t) − z1 (t) ż2
2 (t) +

k

z2
1 (t)

)

u2 (t) = mz2
1 (t)

(

z̈2 (t) +
2ż1 (t) ż2 (t)

z1 (t)

)

4.2 Linearization around a given trajectory

Consider the desired trajectories for the two flat outputs, suf-
ficiently differentiable, which take the system from an initial
state to an equilibrium final state defined by:

z1d (t) = rd (t) =
(

− cos
(

π t
6084

)

+ 1
)

× 39 + 7200

z2d (t) = θd (t) =
(

− cos
(

π t
6084

)

+ 1
)

× π
(52)

Figure 1 shows the desired trajectories of the flat outputs.
From Eq. (51), the trajectories

Td(t) = (x1d (t) , x2d (t) , x3d (t) , u1d (t) , u2d (t)) can
be then deduced. Figure 2 shows the desired trajectories for
the inputs of the nonlinear system.

Let us define in the following the set of variables:

δxi (t) = xid (t) − xi (t) for i = 1, 2, 3

δui (t) = u1d (t) − u1 (t) for i = 1, 2

The linearized model of (51) around the desired trajectories
Td(t) is given by
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Fig. 1 Desired trajectories of the two flat outputs z1d (t) and z2d (t)

A set of flat outputs for (47) can be easily found as 
(r (t) , θ (t)) then the considered model is flat. Indeed, all the 
system variables are expressed in terms of these variables
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Fig. 2 Desired trajectories of the radial and tangential thrust forces,
u1d (t) and u2d (t)

δ ẋ1 (t) = δx2 (t)

δ ẋ2 (t) =

(

x2
3d + 2

k

x3
1d

)

δx1 (t) + (2x1d x3d) δx3 (t)

+
δu1 (t)

m

δ ẋ3 (t) =

(

−
2u2d

mx3
1d

+
2x2d x3d

x2
1d

)

δx1 (t) −
2x3d

x1d

δx2 (t)

−

(

2x2d

x1d

)

δx3 (t) +
1

mx2
1d

δu2 (t) (53)

By denoting:

δx (t) = (δx1 (t)δx2 (t)δx3 (t))T (54)

the state space representation of the system can be written
as:

δ ẋ (t) = A (t) δx (t) + B (t) u (t)

δy (t) = C (t) δx (t)
(55)

where:

δy (t) = (δy1 (t)δy2 (t))T

δu (t) = (δu1 (t)δu2 (t))T
(56)

A(t) =











0 1 0
(x2

3d + 2 k

x3
1d

) 0 (2x1d x3d)
(

− 2u2d

mx3
1d

+ 2x2d x3d

x2
1d

)

− 2x3d

x1d
−

(

2x2d

x1d

)











(57)

B(t) =







0 0
1
m

0
0 1

mx2
1d






(58)

C(t) =

(

1 0 0
0 0 1

)

(59)

Clearly that rank (B (t)) = 2.

Now, partition B (t) into column vectors:

B (t) = [b1 (t)b2 (t)] (60)

To check the uniform controllability, we construct:

K{2}(t) = (K 0(t) K 1(t))

=







0 0 − 1
m

0
1
m

0 0 − 2x3d

mx1d

0 1
mx2

1d

2x3d

mx1d

2(x2d−ẋ1d )

mx3
1d






(61)

The controllability matrix K{2} (t) has rank 3 ∀ t , then
the system (55) is uniformly controllable and the time-
varying linearized system (53) is flat. According the pro-
cedure referred in [20], the two indices of controllability are
calculated: µ1 = 2 and µ2 = 1.

We construct the matrix V (t):

V (t) =







0 − 1
m

0
1
m

0 0
0 2x3d

mx1d

1
mx2

1d






(62)

Clearly, V (t) is invertible ∀ t . After calculating V −1 (t), the
second and third rows of this matrix are extracted to con-
struct the matrix Pc (t). The transformation Pc (t) reduces
the system (55) to the canonical form:

δ Ż (t) = AC (t) δZ (t) + B̄C (t) δuC (t)

δy (t) = CC (t) δZ (t) (63)

where:

AC (t) = PC (t)A(t)P−1
C (t) + ṖC (t)P−1

C (t)

AC (t) =





0 1 0
α11,0 (t) α11,1 (t) α12,0 (t)

α21,0 (t) α21,1 (t) α22,0 (t)





B̄C (t) =





0 0
1 0
0 1



, HC =

(

1 0
0 1

)

CC (t) = C (t) P−1
C (t)

4.3 Trajectory tracking by LTV flatness-based control

Let’s denote δZ(t) the vector containing the flat outputs of
the linearized system:

δZ (t) = (δz1 (t)δż1 (t)δz2 (t))T (64)

The previous control law (25) can be written as:

uC1 (t) = z̈1d (t) + κ1,0z1d (t) + κ1,1 ż1d (t)

−
(

κ1,0z1 (t) + κ1,1 ż1 (t)
)

+ α1,1,0 (t) z1 (t)

+ α1,1,1 (t) ż1 (t) + α1,2,0 (t) z2 (t) (65)



becomes:

uC1 (t) − uC1,d (t) = κ1,0δz1 (t) + κ1,1δż1 (t)

− α1,1,0 (t) δz1 (t) − α1,1,1 (t) δż1 (t)

− α1,2,0 (t) δz2 (t) (66)

to obtain:

δuC1 (t) =
(

α1,1,0 (t) − κ1,0
)

δz1 (t)

+
(

α1,1,1 (t) − κ1,1
)

δż1 (t) + α1,2,0 (t) δz2 (t)

(67)

the same:

δuC2 (t) =
(

α2,2,0 (t) − κ2,0
)

δz2 (t)

+ α2,1,0 (t) δz1 (t) + α2,1,1 (t) δż1 (t)

(68)

implies that:

δuC (t) = 3(t) δZ (t) (69)

where:

δuC (t) = [δuC1(t)δuC2(t)]
T (70)

3(t) =





(

α1,1,0 (t) − κ1,0
)

α2,1,0 (t)
(

α1,1,1 (t) − κ1,1
)

α2,1,1 (t)

α1,2,0 (t)
(

α2,2,0 (t) − κ2,0
)





T

(71)

We construct the observability matrix of the pair
(A(t), C(t)):

L{2}(t) =













1 0 0
0 0 1
0 1 0

(

− 2u2d

mx3
1d

+ 2x2d x3d

x2
1d

)

− 2x3d

x1d
−

(

2x2d

x1d

)













(72)

has rank 3 ∀ t , the system is then uniformly observable. (31)
can be written as:

δY (t) = O(t)δZ (t) + M(t)δuC (t) (73)

where:

δY (t) =

(

δy (t)

δ ẏ (t)

)

, O(t) =

(

CC (t)

ĊC (t) + CC (t) AC (t)

)

and:

M(t) =

(

M0

CC (t) B̄C

)

O(t) is the observability matrix of the set (AC (t) , CC (t)).
By denoting as:
(

OT (t) O (t)
)−1

· OT (t) = F (t) (74)

(75)

Equation (63) can be written as:

δZ (t) = s−1 (

AC (t) δZ (t) + B̄CδuC (t)
)

(76)

By replacing the expression of δZ (t), from Eq. (75), in the
right side of Eq. (76), we get:

δZ (t) = s−1 (AC (t)F (t)δY (t))

− s−1 [AC (t)F (t)M(t)δuC (t)]

+ s−1 (

B̄δuC (t)
)

(77)

with:

AC (t)F (t) =





τ1 (t) τ2 (t)

τ3 (t) τ4 (t)

τ5 (t) τ6 (t)



 (78)

A (t)F (t) M (t) =





β1 (t)

β2 (t)

β3 (t)



 (79)

where τi (t) and βi (t) are (1×2) time-varying matrices. By
using integration by parts such that δ ẏ(0) = 0, Eq. (77) leads
to the following expression:

δZ (t) =





τ2 (t)

τ4 (t)

τ6 (t)



 δy (t)

+ s−1









τ1 (t) − τ̇2 (t)

τ3 (t) − τ̇4 (t)

τ5 (t) − τ̇6 (t)



 δy(t)





+ s−1









−β1 (t)

−β2 (t)

−β3 (t)



 δuC (t)





+ s−1 (

B̄CδuC (t)
)

(80)

By replacing the expression of δZ (t) into the control law
(69):

δu (t) = H−1
C 3(t)









τ2 (t)

τ4 (t)

τ6 (t)



 δy (t)

+ s−1









τ1 (t) − τ̇2 (t)

τ3 (t) − τ̇4 (t)

τ5 (t) − τ̇6 (t)



 δy(t)





+ s−1









−β1 (t)

−β2 (t)

−β3 (t)



 δuC (t)





+ s−1 (

B̄CδuC (t)
)

)

(81)

we deduce that:

δu (t) = S
(

s−1, δy (t)
)

+ R
(

s−1, δuC (t)
)

(82)

we get:

δ Z (t) = F (t) (δY (t) − M(t)δuC (t))



where:

S
(

s−1, δy (t)
)

= H−1
C 3(t)









τ2(t)

τ4(t)

τ6(t)



 δy (t)

+ s−1





τ1 (t) − τ̇2 (t)

τ3 (t) − τ̇4 (t)

τ5 (t) − τ̇6 (t)



 δy(t)



 (83)

R
(

s−1, δuC (t)
)

= H−1
C 3(t)

×



s−1









−β1(t)

−β2(t)

−β3(t)



 δuC (t)





+ s−1 (

B̄CδuC (t)
)

]

(84)

Figure 3 illustrates the structure of the proposed method
based on the flatness property with the use of an exact
observer.

The tracking model is set with the two polynomials
κ1 (s) = s2 + κ1,1s + κ1,0 and κ2 (s) = s + κ2,0.

For the numerical simulations, the tracking model is set
with a time response of 100 min for κ1 (s) and 200 min
for κ2 (s). The errors resulting from the inaccurate measure-
ments perturbations used in the simulations are δy1 (0) =

10 km and δy2 (0) = −0.2 rad/s (the initial conditions due to
the inaccurate measurements). The results obtained in Figs.
4, 5, 6 and 7, show that the trajectories of the nonlinear system
follow the desired trajectories with good performance.

The control law obtained by application of the flatness-
based controller, allows to obtain high performance in terms
of path tracking with errors which tend asymptotically to zero
(see Fig. 7). These results point out the effectiveness of the
use of the flatness-based approach for the LTV systems in a
path tracking context.

The robustness of the control scheme is investigated when
there is a change in the mass of the satellite, m, from
(3,048 kg) to (3,000 kg) and in the gravitational constant,
k, from 1443493.11439264 m3/s2 to 1443220.28 m3/s2 at
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Fig. 3 Structure of the proposed control

0 1000 2000 3000 4000 5000 6000

7200

7220

7240

7260

7280

Time (min)

(K
m

)

0 1000 2000 3000 4000 5000 6000

0

1

2

3
x 10

−3

Time (min)

(r
a
d
/s

)

Desired angular velocity

Angular velocity

Desired altitude

Altitude

Fig. 4 Outputs of the nonlinear system y1 (t) and y2 (t)
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Fig. 5 The radial and tangential thrust forces, u1 (t) and u2 (t)
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Fig. 6 Desired flat outputs and system flat outputs trajectories

the time 3,000 min. These parameters are changed in the
nonlinear model but not in the controller.

With the same tracking model and the previous initial con-
ditions, the performance in tracking of angular velocity still
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Fig. 7 Tracking errors of the two outputs of the nonlinear system
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Fig. 8 Outputs of the nonlinear system y1 (t) and y2 (t) when there is
a change in m and k at the time 3,000 min
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and 10 min for κ2 (s). Regarding the simulation results, it
can be inferred that we have a robust tracking of the desired
outputs.

In this design strategy, following Eq. (25), the set of
flat outputs of the system (r (t) , θ (t)) tracks the desired
flat outputs (z1d (t) , z2d (t)). So that, the system outputs
(y1(t) = r (t) , y2(t) = ω (t) = θ̇ (t)) track the set of vari-
ables (z1d (t) , ż2d (t)) and we get then a robust tracking of
the desired outputs. It can be noted that if there are paramet-
ric variations in the relation between the flat outputs and the
system outputs then we have a bad performance in terms of
tracking of the desired outputs.

The errors on the outputs resulting from its inaccurate
measurements perturbations used in the simulations are
δy1 (0) = 10 km and δy2 (0) = −0.2 rad/s (the initial con-
dition due to the inaccurate measurement). If this inaccurate
measurement is big, the outputs will not track the desired tra-
jectory in the case of the use of an exact observer. In fact, it
should be clear from the previous developments that the rela-
tion linking the integral reconstructor, δZ (t), and the actual
value of the state, is given by [38,39]:

δZ (t) = δ Ẑ (t) +

ν−2
∑

i=1





t
∫

0

Ai−1
C (t) δZ0 (t) dt





(i−1)

(85)

where δZ0 (t) is the initial condition due to the inaccurate
measurement. In a further development within the context
of flatness and exact observer, our main concern is how to
appropriately compensate the effects of the unknown initial
conditions when the actual value of the state is replaced by
its integral reconstructor in a given state-based feedback con-
troller design.

5 Conclusion

In this paper, a flatness-based control for tracking desired
trajectories in the case of MIMO LTV systems is proposed
and developed. The proposed controller is based on an exact
observer with a direct calculation of the state vector which
contains the flat output and its derivatives. This regulator-
observer permits to the system outputs to track desired tra-
jectories without using observer dynamics. The proposed
method leads to a control design which can be seen as
a 2DOF controller but without the resolution of Bézout’s
equation. The control law applied on a nonlinear model of
a satellite gives a high level of performances in terms of
the trajectory tracking. Beyond the framework of LTV sys-
tems, the result presented here open the way to the control
of nonlinear systems using their linearizations around given
trajectories.

Fig. 9 Outputs of the nonlinear system y1 (t) and y2 (t) when there is 
a change in the parameters and the time response of the tracking model

correct (see Fig. 8). We remark a bad performance in terms of 
tracking of the altitude after the time 3,000 min (see Fig. 8). 

Figure 9 presented below shows simulation results when 
there is a change of parameters at the time 3,000 min and the 

tracking model is set with a time response of 5 min for κ1 
(s)
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