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A direct design procedure for linear state functional observers✩
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a b s t r a c t

We propose a constructive procedure to design a Luenberger observer to estimate a linear multiple linear
state functional for a linear time-invariant system. Among other features the proposed design algorithm
is not based on the solution of a Sylvester equation nor on the use of canonical state space forms. The
design is based on the solution set of a linear equation and a realization method. The consistency of this
equation and the stability of the observer can be used as a functional observability test.

1. Introduction

Since Luenberger’s works (Luenberger, 1963, 1964, 1966) a
significant amount of research has been devoted to the problem of
observing a linear functional of the state of a linear time-invariant
system. The main developments are detailed in O’Reilly (1983),
in Aldeen and Trinh (1999), Trinh and Fernando (2007) and Tsui
(1985, 1998) and, in the recent books Korovin and Fomichev (2009)
and Trinh and Fernando (2012) and the reference therein. The
problem at first glance can be formulated as follows. For the linear
state-space model

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(1)

where, for every time t inR
+, x(t) is then-dimensional state vector,

u(t) the p-dimensional measured input, y(t) the m-dimensional
measured output, and, A, B and C are constant matrices of adapted
dimensions, the objective is to get,

v(t) = Lx(t), (2)

where L is a constant (l× n) matrix. The observation of v(t) can be
carried out with the design of a Luenberger observer

ż(t) = Fz(t) + Gu(t) + Hy(t),
w(t) = Pz(t) + Vy(t),

(3)
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where z(t) is a q-dimensional state vector. Constant matrices F , G,
H , P and V are determined such that

lim
t→∞

(v(t) − w(t)) = 0.

Weknow fromFortmann andWilliamson (1972) and Fuhrmann

and Helmke (2001) that the observable linear functional observer

(3) exists if and only if there exists a (q × n) matrix T such that:

G = TB,

TA − FT = HC, (4)

L = PT + VC, (5)

where F is an Hurwitz matrix, namely, when all the real parts of

the eigenvalues of F are strictly negative. When these conditions

are fulfilled we have limt→∞(z(t) − Tx(t)) = 0. It is also well

known that when rank
([

L⊤ C⊤
])

= m + l the order q of the

multiple state functional observer is such that q ≥ l (Roman &

Bullock, 1975; Sirisena, 1979). Darouach in Darouach (2000) has

then proposed existence conditions for a Luenberger observer of

the functional (2) with a minimum order l. Moreover, when the

model (1) is detectable we have q ≤ n − m. Indeed, n − m is

the order of the reduced-order observer or Cumming–Gopinath

observer (Cumming, 1969; Gopinath, 1971) which can be built to

observe x(t) and, consequently, v(t).

Until now the direct design of aminimal observer of a given lin-
ear functional is an open question. Since Fortmann andWilliamson
(1972), a lot of design schemes have been proposed to reduce the
order of the observer (3). One way is to determine the matrices(I. Zambettakis).



T and F such that the Sylvester equation (4) is fulfilled (Trinh,
Nahavandi, & Tran, 2008; Tsui, 2004). Unfortunately, F and T are
unknown in (4) and some conditions are added to get a solu-
tion (e.g. fixed eigenvalues for the observer, canonical state space
forms). Another way, implied by the functional observability no-
tion (Fernando, Jennings, & Trinh, 2010a,b; Fernando, Trinh, & Jen-
nings, 2010; Fernando & Trinh, 2013; Jennings, Fernando, & Trinh,
2011), consists in expanding thematrix Lwith amatrix R such that
there exists a s-order Luenberger observer of the linear state func-
tional Sx(t) where

S =

[

R
L

]

,

and s = rank(S). It is underlined in Trinh and Fernando (2012,

p. 66) that ‘‘how to find a matrix R with the smallest number

of rows is an intriguing and challenging problem’’. Nevertheless,

based on singular value decompositions (Fernando et al., 2010b),

on eigenspace projections (Jennings et al., 2011), on canonical

forms (Korovin,Medvedev, & Fomichev, 2010), or on computations

for row-space extensions (Fernando & Trinh, 2013), some proce-

dures have been proposed to tackle the observer design where the

matrix F can have arbitrary eigenvalues. Indeed, the design of an

observer must be thought in two different frameworks: on the one

hand, the fixed-pole observer problem where the poles are fixed

at the outset and, on the other hand, the stable observer prob-

lem where the poles are permitted to lie anywhere in the left half-

plane. Themain contributions on the design of functional observers

tackle the first problem.

In the opposite, in order to seek for minimality of the observer

order we focus here on the stable observer problem and develop

a constructive procedure to design a Luenberger observer of the

functional (2) for the system (1). Our algorithm is based on the

solution set of a linear equation and linear algebraic operations

in a state space setting. It can be seen as an extension of the

algorithm proposed in Rotella and Zambettakis (2011) for single

linear functional observers. With respect to other procedures the

design procedure does not require the solution of the Sylvester

equation. Moreover, the proposed solution exhibits free design

parameters in the candidate observer to achieve asymptotic

stability. Let us mention that we do not suppose any canonical

form for the system neither for the observer. The main objectives

of the paper are thus to provide a simple test for functional

observability and a constructive procedure to design a stable

Luenberger observer of a linear functional for a linear system. The

paper is organized as follows. In the first section the procedure

to design the observer structure is detailed. From the consistency

condition of a linear equation are deduced a minimal index and

the state space equation of the observer. The second section is

devoted to analyze the stabilizability of thematrix F . The proposed

procedure is exemplified in a third section. Finally, a method is

proposed in the fourth section to reduce the order of the stable

observer and to get it minimal. It has been underlined in Tsui

(1998), that the calculus of thematrix T is not a necessary step. This

point is a specific feature of the procedure we propose. Indeed, we

exhibit the closed-form of this matrix as a collateral result.

2. A constructive procedure

Let us suppose that there exists an integer ν such that

rank

([

LAν

Σν

])

= rank (Σν) , (6)

where the matrix Σν is defined as Σν = C when ν = 0 and,

Σν =























CAν

LAν−1

CAν−1

...

LA
CA
L
C























, (7)

when ν > 0. In other words, the linear equation

LAν = ΦΣν, (8)

is consistent, namely, there exist matrices FL,i, i = 0 to ν − 1, and
FC,i, i = 0 to ν, such that

LAν =

ν−1
∑

i=0

FL,iLA
i +

ν
∑

i=0

FC,iCA
i. (9)

Remark 1. Due to Cayley–Hamilton theorem the hypothesis (6)
can always be fulfilled.

Let us notice as well that we have, for k = 0, 1, . . .

v(k)(t) = LAkx(t) +

k−1
∑

i=0

LAk−1−iBu(i)(t),

so, from (9) we can write

v(ν)(t) =

ν−1
∑

i=0

FL,iLA
ix(t) +

ν
∑

i=0

FC,iCA
ix(t)

+

ν−1
∑

i=0

LAν−1−iBu(i)(t). (10)

2.1. Structural design of the observer

This section is devoted to the determination of matrices F , G, H ,
P and, V in (3) from the existence of the relationship (9). Firstly, to
eliminate x(t) in (10) we use

• for i = 1 to ν − 1, v(i)(t) =
∑i−1

j=0 LA
jBu(i−1−j)(t) + LAix(t), thus

LAix(t) = v(i)(t) −

i−1
∑

j=0

LAi−1−jBu(j)(t); (11)

• for i = 1 to ν, y(i)(t) =
∑i−1

j=0 CA
jBu(i−1−j)(t) + CAix(t), thus

CAix(t) = y(i)(t) −

i−1
∑

j=0

CAi−1−jBu(j)(t). (12)

Taking into account (11) and (12) in (10) we get then

v(ν)(t) =

ν−1
∑

i=0

FL,iv
(i)(t) +

ν
∑

i=0

FC,iy
(i)(t) +

ν−1
∑

i=0

Giu
(i)(t), (13)

where Gν−1 =
(

L − FC,νC
)

B and, for ν ≥ 2 and j = 0 to ν − 2,

Gj =

(

LAν−1−j −

ν−1
∑

i=j+1

FL,iLA
i−1−j −

ν
∑

i=j+1

FC,iCA
i−1−j

)

B. (14)



The next step consists in the realization of the differential
equations (13). Following Kailath (1980), (13) can be written as

v(t) = FC,νy(t)

+ p−1
[

FL,ν−1v(t) + FC,ν−1y(t) + Gν−1u(t)

...

+ p−1
[

FL,1v(t) + FC,1y(t) + G1u(t)

+ p−1
[

FL,0v(t) + FC,0y(t) + G0u(t)
]]

· · ·
]

,

where p stands for the derivative operator and, p−1 for the
integration. Let us introduce the vectors

z0(t) = p−1
[

FL,0v(t) + FC,0y(t) + G0u(t)
]

,

z1(t) = p−1
[

FL,1v(t) + FC,1y(t) + G1u(t) + z0(t)
]

,

...

zν−1(t) = p−1
[

FL,ν−1v(t) + FC,ν−1y(t) + Gν−1u(t) + zν−2(t)
]

.

With v(t) = zν−1(t) + FC,νy(t) we obtain

z0(t) = p−1
[

FL,0zν−1(t) + HC,0y(t) + G0u(t)
]

,

z1(t) = p−1
[

FL,1zν−1(t) + HC,1y(t) + G1u(t) + z0(t)
]

,

...

zν−1(t) = p−1
[

FL,ν−1zν−1(t) + HC,ν−1y(t) + Gν−1u(t)

+ zν−2(t)] ,

where, for i = 0 to ν − 1, HC,i = FC,i + FL,iFC,ν . The vector

z(t) =
[

z0(t)
⊤ z1(t)

⊤ · · · zν−1(t)
⊤
]⊤

is the state of the Luenberger observer structure (3) with

F =













FL,0
Il FL,1

. . .
...

Il FL,ν−2

Il FL,ν−1













, G =













G0

G1

...

Gν−2

Gν−1













,

H =
[

H⊤
C,0 H⊤

C,1 · · · H⊤
C,ν−2 H⊤

C,ν−1

]⊤
,

P =
[

0 · · · 0 Il
]

, V = FC,ν .

(15)

Remark 2. Notice that the realization (15) is observable.

Remark 3. The matrix H can be written as

H =













FC,0

FC,1

...

FC,ν−2

FC,ν−1













+













FL,0
FL,1
...

FL,ν−2

FL,ν−1













FC,ν . (16)

Remark 4. For sake of completeness, let us consider here the cases
ν = 0 and ν = 1. When ν = 0 there exists Λ such that L = ΛC .
The observer of the functional (2) is w(t) = Λy(t). When ν = 1,
namely,

rank













LA
CA
L
C












= rank

([

CA
L
C

])

,

there exist FC,1, FL,0 and FC,0 such that

LA = FC,1CA + FL,0L + FC,0C .

This case has been detailed in Rotella and Zambettakis (2011) and
leads to the Darouach–Luenberger observer structure (3) with

F = FL,0, G =
(

L − FC,1C
)

B, H = FC,0 + FL,0FC,1,

P = Il, V = FC,1.

The following section ensures that, when F is an Hurwitz

matrix, we have designed an asymptotically stable Luenberger

observer.

2.2. Main result

Theorem 5. If there exist ν ∈ N, and constant matrices FL,i, i = 0
to ν − 1, and FC,i, i = 0 to ν , such that (9) is fulfilled and the matrix
F = FL,0, for ν = 1, or

F =













FL,0
Il FL,1

. . .
...

Il FL,ν−2

Il FL,ν−1













, (17)

for ν > 1, is an Hurwitz matrix then the Luenberger observer (3) de-

fined by (15) is an asymptotic observer of v(t).

Proof. The proof lies on the determination of T which fulfills
the necessary conditions (4) and (5). For sake of simplicity let us
consider the case ν ≥ 2. Firstly, let us remark that the relationship
G = TBwith

G =
[

G⊤
0 G⊤

1 · · · G⊤
ν−2 G⊤

ν−1

]⊤

where the matrices Gj are defined in (14), leads to the hypothesis

T =
[

T⊤
1 T⊤

2 · · · T⊤
ν−1 T⊤

ν

]⊤
,

where, for j = 1 to ν − 1

Tj = LAν−j −

ν−1
∑

i=j

FL,iLA
i−j −

ν
∑

i=j

FC,iCA
i−j,

and Tν = L − FC,νC . In the following, we state this matrix T is a
solution of TA− FT = HC where F and H are defined in (15). Let us
denote

TA =













(TA)1
(TA)2

...

(TA)ν−1

(TA)ν













and FT =













(FT )1
(FT )2

...

(FT )ν−1

(FT )ν













,

where, for j = 1 to ν, the blocks (TA)j and (FT )j have l rows. On the
one hand, we have

(TA)ν = LA − FC,νCA,

and, for j = 1 to ν − 1,

(TA)j = LAν−j+1 −

ν−1
∑

i=j

FL,iLA
i−j+1 −

ν
∑

i=j

FC,iCA
i−j+1.

On the other hand, we have

(FT )1 = FL,0L − FL,0FC,νC,



and, for j = 2 to ν,

(FT )j = Tj−1 + FL,j−1Tν,

= LAν+1−j −

ν−1
∑

i=j−1

FL,iLA
i+1−j + FL,j−1L

−

ν
∑

i=j−1

FC,iCA
i+1−j − FL,j−1FC,νC . (18)

For j = 2 to ν − 1, (18) can be written as

(FT )j = LAν+1−j −

ν−1
∑

i=j

FL,iLA
i+1−j

−

ν
∑

i=j

FC,iCA
i+1−j −

(

FC,j−1 + FL,j−1FC,ν

)

C,

and, for j = ν,

(FT )ν = LA − FC,νCA −
(

FC,ν−1 + FL,ν−1FC,ν

)

C .

Let us remark that (9) leads to write

LAν −

ν−1
∑

i=1

FL,iLA
i −

ν
∑

i=1

FC,iCA
i =

ν−1
∑

i=0

FL,iLA
i

+

ν
∑

i=0

FC,iCA
i −

ν−1
∑

i=1

FL,iLA
i −

ν
∑

i=1

FC,iCA
i

= FL,0L + FC,0C .

Thus, (TA)j − (FT )j can be read

• for j = 1, FL,0L+FC,0C−
(

FL,0L − FL,0FC,νC
)

=
(

FC,0 + FL,0FC,ν

)

C;
• for j = 2 to ν − 1,

LAν−j+1 −

ν−1
∑

i=j

FL,iLA
i−j+1 −

ν
∑

i=j

FC,iCA
i−j+1

−

(

LAν+1−j −

ν−1
∑

i=j

FL,iLA
i+1−j −

ν
∑

i=j

FC,iCA
i+1−j

×

ν
∑

i=j

FC,iCA
i+1−j −

(

FC,j−1 + FL,j−1FC,ν

)

C

)

=
(

FC,j−1 + FL,j−1FC,ν

)

C;

• for j = ν, LA− FC,νCA− LA+ FC,νCA+
(

FC,ν−1 + FL,ν−1FC,ν

)

C =
(

FC,ν−1 + FL,ν−1FC,ν

)

C .

Taking into account that, for j = 0 to ν − 1, HC,j = FC,j + FL,jFC,ν ,
we deduce that T fulfills the Sylvester equation TA − FT = HC .
Moreover,

P =
[

0 · · · 0 Il
]

and V = FC,ν,

lead to

PT + VC = L − FC,νC + FC,νC = L,

which ends the proof. ⋄

When F is not an Hurwitz matrix, we propose to increase the
integer ν. In the following section we see how to get, when it is
possible, a stable observer.

Remark 6. We have not supposed, as usually, that

rank

[

C
L

]

= m + l.

Indeed, the proposed design procedure includes this case as well.

3. Analysis of the linear system

3.1. The solution set

The design procedure is based on the existence of the
decomposition (9) when (8) is consistent. The matrices FL,i, i = 0
to ν − 1, and FC,i, i = 0 to ν, are given through the solution set of
the consistent linear equation (8) by
[

FC,ν FL,ν−1 FC,ν−1 · · · FL,0 FC,0

]

= LAνΣ [1]
ν + Ω

(

Iρ − ΣνΣ
[1]
ν

)

, (19)

where ρ = m+ν(m+ l), Ω is an arbitrary (l×ρ)matrix and, Σ [1]
ν

a generalized inverse of Σν (Ben-Israel & Greville, 2003)

Σ [1]
ν ∈

{

X ∈ Rn×ρ, ΣνXΣν = Σν

}

.

Remark 7. If rank (Σν) = ρ the solution (19) is unique and given
by LAνΣ [1]

ν . This solution is independent of the particular choice of

Σ [1]
ν (Ben-Israel & Greville, 2003). A convenient partition of (19)

leads then to F (17). An eigenvalues inspection is then required to
verify that F is an Hurwitz matrix.

3.2. Stabilizability test for F

Let us consider that the matrix Σν defined in (7) is such that
r = rank (Σν) < ρ. Namely, the matrices FL,i, i = 0 to ν − 1, and
FC,i, i = 0 are not unique. In order to give a closed-form of these
matrices and to test the existence of a matrix Ω such that F is an
Hurwitz matrix, let us consider the singular values decomposition
(SVD) of Σν (Golub & Van Loan, 1996)

Σν = UνSνV
⊤
ν , (20)

where Uν and Vν are two orthogonal matrices with size (ρ × ρ)

and (n × n) respectively, and Sν is the (ρ × n) diagonal matrix of
the singular values of Σν

Sν = diag {σ1, . . . , σr , 0, . . . , 0} ,

with σ1 ≥ · · · ≥ σr > 0. From the SVD (20) we can build
the pseudo-inverse (Ben-Israel & Greville, 2003) of Σν , which is
in Σν [1], as

ΣĎ
ν = VνS

−⊤
ν U⊤

ν ,

where S−⊤
ν = diag

{

σ−1
1 , . . . , σ−1

r , 0, . . . , 0
}

. This choice for the
generalized inverse of Σν , leads to write

Iρ − ΣνΣ
Ď
ν = Iρ − Uν

[

Ir 0
0 0

]

U⊤
ν = Uν

[

0 0
0 Iρ−r

]

U⊤
ν .

Let us denote U⊤
2,ν the ρ − r last lines of U⊤

ν , Γ2, the ρ − r last
columns of the arbitrary matrix Γ = ΩUν and,

Φb =
[

F b
C,ν F b

L,ν−1 F b
C,ν−1 · · · F b

L,0 F b
C,0

]

= LAνΣĎ
ν .

We get then
[

FC,ν FL,ν−1 FC,ν−1 · · · FL,0 FC,0

]

= Φb + Γ2U
⊤
2,ν,

after partitioning U⊤
2,ν according to

U⊤
2,ν =

[

ΥC,ν ΥL,ν−1 ΥC,ν−1 · · · ΥL,0 ΥC,0

]

,

where the sizes of thematricesΥC,i andΥC,i are ((ρ − r) × m) and
((ρ − r) × l) respectively, we can write F as

F =















F b
L,0 + Γ2ΥL,0

Il F b
L,1 + Γ2ΥL,1

. . .
...

Il F b
L,ν−2 + Γ2ΥL,ν−2

Il F b
L,ν−1 + Γ2ΥL,ν−1















. (21)



So the asymptotic observer exists if it is possible to find a
(ρ × (ρ − r)) matrix Γ2 such that (21) is an Hurwitz matrix. The
application of the Routh–Hurwitz stability test on det (λIνl − F)
allows to build existence conditions for such a Γ2.

Remark 8. Following Bernstein (2009) and Gantmacher (1960),
we can notice that det (λIνl − F) is given by

det

(

Λν −

ν−1
∑

j=0

(

F b
L,j + Γ2ΥL,j

)

Λj

)

= det

((

Λν −

ν−1
∑

j=0

F b
L,jΛ

j

)

− Γ2

(

ν−1
∑

j=0

ΥL,jΛ
j

))

where Λ = λIl. So, just the determinant of a (l × l) matrix has to
be calculated.

4. Illustrative example

In order to illustrate the different steps of our designmethod let
us consider an example inspired from Trinh and Fernando (2012)
and Tsui (1998), with

A =

















−1 0 0 1 0 0 0
2 0 1 −1 1 0 0
0 3 0 0 1 1 0
0 0 0 −3 0 1 1
0 0 0 0 1 0 −1
1 0 0 0 0 −1 0
0 1 0 0 1 0 −2

















, B =

















1
0
0
0
0
0
0

















,

C =

[

1 0 0 0 0 0 0
0 1 0 0 0 0 0

]

,

L =

[

0 0 1 0 0 0 0
0 0 0 1 0 0 0

]

.

The first step deals with the determination of ν. Denoting rν =

rank
([

LAν

Σν

])

− rank (Σν), we obtain r0 = r1 = 2, and r2 = 0. Thus

we deduce ν = 2, and the linear equation (8) with

Σ2 =































1 0 0 −4 0 1 1
−2 3 0 5 2 0 −2
0 3 0 0 1 1 0
0 0 0 −3 0 1 1

−1 0 0 1 0 0 0
2 0 1 −1 1 0 0
0 1 0 0 1 0 −2
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0































,

LA2 =

[

3 0 3 −3 4 −1 −1
1 1 0 9 1 −4 −5

]

.

With Σ
[1]
2 = Σ

Ď

2 the pseudo-inverse of Σ2, and

Ω =

[

−0.4 0.3 −0.6 1 −0.5 0 0 0.4 0.5 0.9
−0.4 0.3 −0.6 1 −0.5 0 0 0.4 0.5 0.9

]

,

we obtain from (19)

FL,0 =

[

−1.00 −0.90
0 −1.87

]

, FL,1 =

[

−1.15 0.56
−1.73 −1.80

]

,

FC,0 =

[

−0.42 1.73
0.92 2.01

]

, FC,1 =

[

−0.95 4
−3.26 0

]

,

FC,2 =

[

−0.38 0.58
−0.44 −1.36

]

.

Following (17) the second step consists in the definition of

F =







0 0 −1.00 −0.90
0 0 0 −1.87
1 0 −1.15 0.56
0 1 −1.73 −1.80






.

The eigenvalues of F are −1.33 ± 1.73i and −0.14 ± 0.61i. Thus F
is an Hurwitz matrix and we can design a fourth-order Luenberger
asymptotically stable observer for the linear functional Lx(t).

The observer design is achieved with the third step. Applying
the formulas (14) and (16) we get

G =







−0.58
0.08
0.38
0.44






, H =







0.35 −0.02
1.73 −0.40

−0.75 4.07
1.78 −3.49






.

The design of the observer is complete with V = FC,2, and

P =

[

0 0 1 0
0 0 0 1

]

.

5. Reduction of the observer

When theorem5 is fulfilled the order of the designed observer is
νl. In order to obtain aminimumstable observer an order reduction
is needed. Let us suppose that F is anHurwitzmatrix and thematrix
T , which depends on the choice of Ω is such that

rank(T ) = κ < lν.

Let us consider then the full rank decomposition

T =

[

Φ1

Φ2

]

Γ , (22)

where Φ1 is a (κ × κ) non singular matrix and, Γ a full row rank
matrix. Finally, let us define thematrices T1 = Φ1Γ and T2 = Φ2Γ ,
the following partitions

F =

[

F11 F12
F21 F22

]

, G =

[

G1

G2

]

, H =

[

H1

H2

]

,

P =
[

P1 P2
]

,

(23)

where F11, G1 and, H1 are matrices with κ rows, P1 is a matrix
with κ columns and the vectors η(t) = Φ

−1
1 z1(t) and z2(t) =

Φ2η(t). We know that limt→∞ z1(t) = T1x(t) and limt→∞ η(t) =
Φ

−1
1 T1x(t) = Γ x(t). On the one hand, the state space equation for

η(t) is given by

η̇(t) = Φ
−1
1 ż1(t),

= Φ
−1
1 (F11z1(t) + F12z2(t) + G1u(t) + H1y(t))

= Φ
−1
1 (F11Φ1 + F12Φ2) η(t) + Φ

−1
1 G1u(t) + Φ

−1
1 H1y(t).

On the other hand, we have w(t) = (P1Φ1 + P2Φ2) η(t) + Vy(t),
and,

lim
t→∞

w(t) = (P1Φ1 + P2Φ2) Γ x(t) + Vy(t),

= (P1T1 + P2T2) x(t) + Vy(t),

= (PT + VC) x(t) = Lx(t) = v(t).

We have proved the following result which leads to a minimal
order stable functional observer of v(t).

Corollary 9. If theorem 5 is fulfilled, the κth order system

η̇(t) = Φ
−1
1 (F11Φ1 + F12Φ2) η(t)

+ Φ
−1
1 G1u(t) + Φ

−1
1 H1y(t),

w(t) = (P1Φ1 + P2Φ2) η(t) + Vy(t),

where the involved matrices are defined in (22) and (23) is a stable
functional Luenberger observer of the linear functional (2) for the
linear system (1).



6. Conclusion

In this paper, we have proposed a constructive procedure to
design a stable Luenberger functional observer for a linear system.
Specific features are, on the one hand, the solution of the Sylvester
equation is not necessary, and, on the other hand, no canonical
form is required. Let us remark that the Sylvester equation is
nonlinear due to the fact that F and T are unknown. Our method
encompasses this drawback. Indeed, the design is based on the
solution set of a linear equation and on a realization method. The
consistency of this equation and the stability of the matrix F can
be seen as a functional observability test. Future works will deal
with the determination of conditions on the matrix Ω to lead to a
minimal order stable observer.
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