

Open Archive Toulouse Archive Ouverte

OATAO is an open access repo	sitory that	collects t	he work of	Toulouse
researchers and makes it freely	v available	over the	web where	possible

This is an author's version published in: http://oatao.univ-toulouse.fr/19993

To cite this version:

Trajin, Baptiste and Haussener, Marion Caractéristiques des polymères encapsulants en électronique de puissance. (2014) In: ICPMS 2014, October 2014 (Tarbes, France). (Unpublished)

Caractéristiques des polymères encapsulants en électronique de puissance

Baptiste TRAJIN - <u>baptiste.trajin@enit.fr</u> Marion Haussener - <u>mhaussen@enit.fr</u>

31/10/2014 ICPMS 2014 1

Introduction

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

Conclusion

Projet GENOME

- Synthèse, caractérisation et modélisation d'encapsulants haute température pour les modules d'électroniques de puissance
- Partenaires(non exhaustif) :
 - Institut Charles Gerhardt de Montpellier (ICGM) → Synthèse d'un polymère encapsulant silicone fluoré
 - Laboratoire Génie de Production (LGP)
 - → Equipe Interface et Matériaux Fonctionnels (IMF) pour la caractérisation physique du polymère
 - → Equipe Décision, Interaction et Dynamique des Systèmes (DIDS) pour la modélisation électro-thermo-mécanique de l'encapsulant et de son interaction avec les module de puissance

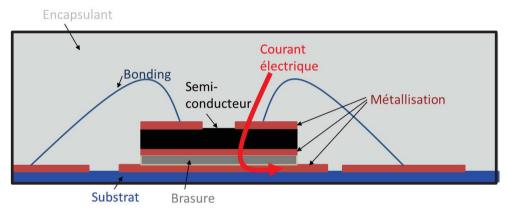
Contexte technologique

- L'encapsulant est un polymère pouvant être de type epoxy pour les système de microélectronique (boitier TO220 par exemple)
- Dans les modules de forte puissance, afin de tenir compte des températures d'utilisation ainsi que des contraintes thermo-mécaniques, un polymère encapsulant viscoélastique de type silicone est préféré.

Introduction

Introduction

Rôles des encapsulants


Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

Conclusion

• Un module d'électronique de puissance est constitué d'un substrat, d'éléments conducteurs (pistes, bondings, bumps...), de semi-conducteurs (diode, IGBT, MOS...), d'un encapsulant, et d'un boitier externe.

- L'encapsulant est un polymère (généralement un silicone) assurant plusieurs fonctions de base
- Des recherches se concentrent pour intégrer à ces polymères des fonctionnalités supplémentaires afin d'améliorer le fonctionnement global du module ou de répondre à des verrous technologiques
- Des modèles électriques, thermiques, mécaniques et chimiques permettent de dimensionner et caractériser les polymères ainsi que de prévoir leur vieillissement.

Protection électrique, mécanique et thermique

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

- L'encapsulant doit assurer l'isolation entre les conducteurs portés à des potentiels différents
 - Rigidité diélectrique élevée
 - Conductivité électrique faible
 - Permittivité diélectrique minimisée pour éviter les capacités parasites.
- L'encapsulant doit dissiper les contraintes mécaniques exercées au sein des modules de puissance
 - Contraintes d'origines thermique ou électro-magnétique générant des fatigues mécaniques dans les brasures, soudures, puces...
 - Visco-élasticité des encapsulants pour absorber les vibrations et les contraintes thermo-mécaniques en cours de fonctionnement
- L'encapsulant doit fonctionner sur une large gamme de température sans perdre ses propriétés
 - Etat caoutchouteux dans le domaine d'utilisation = température de transition vitreuse faible et température de fusion élevée
 - L'encapsulant ne dissipe pas la chaleur produite par les composants de puissance → refroidissement par la semelle

Protection aux agressions

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

- En électronique de puissance, l'encapsulation consiste à protéger un ensemble de composants des agressions de l'environnement extérieur, tout en assurant les fonctions électriques et thermiques nécessaires au fonctionnement du module
- Un module de puissance peut être amené à fonctionner en environnement sévère : basse pression et à forte amplitude thermique (aéronautique, spatial...), en milieu pollué et ou humide (ferroviaire...) ou encore en milieu chimiquement agressif (milieu oxydant...)
 - Protection contre les poussières
 - Protection contre l'humidité → encapsulant hydrophobe
 - Protection contre les contaminations oxydantes → en cas de contamination externe, l'encapsulant subit l'oxydation, se détériore et empêche l'oxydant d'atteindre les surfaces métalliques
 - Protection contre l'oxydation interne → encapsulant avec une bonne mouillabilité sur les surfaces métalliques pour assurer l'adhérence et la non présence d'oxydant pouvant corroder les métaux

Caractéristiques générales

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

- Mise en évidence de fonctions dévolues à l'encapsulant
 - Isoler électriquement les conducteurs
 - Etre stable thermiquement
 - Posséder des qualités d'expansion thermo-mécanique adaptées aux modules de puissance
 - Posséder des qualités d'adhérence
 - Protéger des attaques extérieures
- Centrage sur la modélisation, la paramétrisation et la caractérisation
 - Isolation et diélectrique
 - Caractéristiques et modèles thermiques
 - Caractéristiques et modèles mécaniques
 - Liens électro-thermo-mécaniques
 - Caractéristiques physico-chimiques

Isolation électrique

Introduction

Rôles des encapsulants

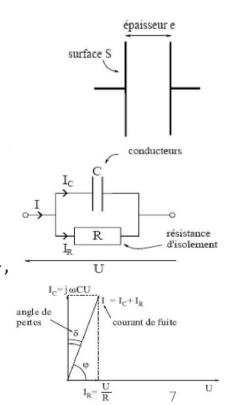
Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

Conclusion

Isolant et diélectrique


- Résistivité très élevée > 10 MΩ.m
- Peu d'électrons libres dans la structure moléculaire
- En pratique, courant de fuite très faible sous tension continue
- Courant capacitif très faible sous tension alternative

Permittivité diélectrique

- Capacité d'un condensateur plan $C = \varepsilon_r C_0 = \varepsilon_r \varepsilon_0 \frac{s}{e}$
- Permittivité des polymères supérieure à celle du vide (ou de l'air)

Pertes diélectriques

- Modèle RC parallèle d'un diélectrique
- − L'angle de perte diélectrique se défini par $tan(\delta) = \frac{1}{RC\omega}$, il est dépendant des paramètres diélectriques du polymère ainsi que de la fréquence des grandeurs → augmenter R ou C (f=cste) ou diminuer f

Isolation électrique

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

Conclusion

La rigidité diélectrique dépend de :

- Fréquence, forme et durée d'application de la tension
- Température, pression et humidité du milieu extérieur pour les gaz → des dépendances similaires pour les polymères
- Présence d'impuretés dans le polymère (air, eau…)

Claquage diélectrique dans les isolants liquides et gazeux

- La grande mobilité des particules assure une réorganisation rapide et conduit à une régénération quasi complète de l'isolant
- Risque de changement des propriétés intrinsèques de l'isolant qui deviendrait conducteur → cas des plasmas

Claquage diélectrique dans les isolants solides

- L'arc créé peut provoquer des phénomènes de fusion, brûlure ou perforation
- Création d'un canal de conduction au sein de l'isolant → perte des propriétés de rigidité → 2^{ème} claquage selon le canal engendré et à tension inférieure
- Le claquage dans les isolants solides nécessite leur remplacement impératif

Impact thermique

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

- La conductibilité thermique caractérise la propagation d'un flux de chaleur
 - La conductibilité thermique des polymères est < 0,1 W.K⁻¹.m⁻¹
 - − Les polymères sont considérés comme des isolants thermiques (cependant loin des standards de l'habitat : RT2012 $\rightarrow \lambda$ < 0,065W.K⁻¹.m⁻¹)
 - Cela justifie le refroidissement des modules par la semelle ainsi que l'utilisation de modules multi-couches
- La chaleur spécifique caractérise la capacité à stocker l'énergie thermique
 - La chaleur spécifique des polymères est > 1kJ.K⁻¹.kg⁻¹ grande devant celle des métaux (<0,4 kJ.K⁻¹.kg⁻¹ pour le cuivre)
 - Les polymères peuvent jouer un rôle de tampon thermique pour éviter les brusques variations thermiques dans les modules
- Résistance à la chaleur et dégradation physico-chimique
 - Fatigue du matériau → exposition courte à des températures élevées ⇔ exposition longue à des températures plus basses
 - L'augmentation de la température accélère la dégradation oxydante due à la présence d'oxygène dans l'environnement du module
 - Environnement thermique et chimique déterminant dans le vieillissement des polymères → contrôle des process, étanchéité...

Constitution des silicones

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

Conclusion

Synthèse des silicones

Les silicones s'obtiennent par polymérisation du siloxane

HO
$$\longrightarrow$$
 Si \longrightarrow OH \longrightarrow CO \longrightarrow R' \longrightarrow Ho \longrightarrow R' \longrightarrow R'

Propriétés générales

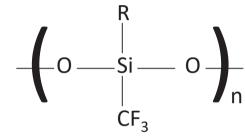
- Si O : liaison iono-covalente
- Bonne stabilité thermique (Tg = -60°C, T_{fusion} 250°C)
- Sensibilité aux acides électroattracteurs et aux bases électro-donneuses, stable aux pH neutres
- Hydrophobe
- Etat visqueux à T_{ambiante}

Propriétés électriques

- Symétrie et mobilité de la molécule Si O
- Moment dipolaire résultant faible
- Polarisation d'orientation négligeable

Cas des silicones fluorés

Introduction


Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

- Caractéristiques du Fluor
 - Lipophobe et hydrophobe
 - Stable thermiquement
 - Possède de bonnes propriétés diélectriques
 - Mauvaise adhésion

- Association silicone Fluor
 - Isolation thermique renforcée, augmentation de la T_{fusion} , diminution de la Tg = -100°C
 - Résistance aux milieux corrosifs
 - Isolation électrique renforcée
 - Moments dipolaires résultants très faibles
 - Incompatibilité avec l'eau ou les milieux aqueux → supprime les risques de claquage liés à des phénomènes de dissociation de sels
 - Augmentation de la durée de vie
 - Le fluor ayant une mauvaise adhérence, il faut doser le fluor au plus juste de manière à ce que le mélange silicone fluoré adhère suffisamment au substrat

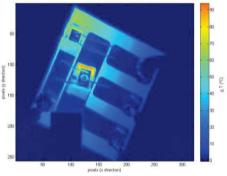
Fonctions thermiques

Introduction

Rôles des encapsulants

Caractéristiques attendues

> **Fonctions** particulières


Modélisation et vieillissement

Conclusion

Assurer une meilleure dissipation thermique

- Disparité du champ thermique surfacique dans les modules
- Inclusion de charges conductrices thermiques (Diamant, nitrure de Bore, nitrure d'Aluminium, oxydes métalliques). Des charges métalliques sont également conductrices électriques (perte de rigidité diélectrique) et soumises à l'oxydation

Gradient de concentration des charges afin de cibler les points chaud du module

Amélioration de la tenue en température

- L'apparition des semi-conducteurs grand-gap (SiC, GaN, Diamant) permet des densités de courant accrues ainsi que des températures d'utilisation plus élevées
- Chimie → Inclusion de Fluor dans les gels silicone pour augmenter la température de dégradation
- Mécanique du solide → Minimisation des coefficients de dilatation thermique Mécanique du contact → Assurer l'adhérence de l'encapsulant aux surfaces de contact 12

Fonctions électriques

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

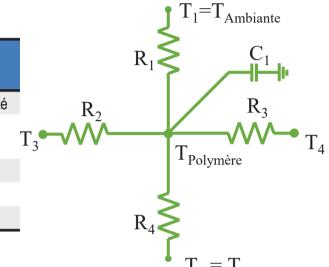
- Création de chemin de conduction électrique
 - Création d'équipotentielles électriques pour assurer la conduction de puissance → nanotubes de carbones pour les conductions de puissance
 - Création d'équipotentielles à la masse pour des application de blindage CEM → attention aux effets inverses de miroir EM pouvant perturber le fonctionnement des interrupteurs commandés
 - Remplacement des brasures par des polymères adhésifs conducteurs → problématique d'adhérence, de conductivité, de tenue en température...
- Minimisation des pertes diélectriques tout en améliorant la rigidité diélectrique
 - Eviter les phénomènes de polarisation d'orientation principalement qui augmentent la conductivité électrique → influence de structure physico-chimique du polymère
 - Améliorer les claquages diélectriques → contrôle du process, pas d'impuretés, mouillabilité accrue du polymère sur les surfaces de contact, viscosité faible afin de remplir tout le volume libre, coefficient de dilatation thermique faible
 - Minimiser les capacités parasites → diminution de la constante diélectrique et de sa dépendance à la fréquence

Modèle thermique

Introduction

Rôles des encapsulants

Caractéristiques attendues


Fonctions particulières

Modélisation et vieillissement

Conclusion

Analogie électrique thermique : réseau RC

Quantités Thermiques				Quantités Electriques		
	Paramètre	Unité		Paramètre	Unité	
ΔΤ	Echauffement	K°	ΔV	Différence de potentiel	V	
Q	Flux thermique	W		Courant	Α	
R _{th}	Résistance Thermique	K/W	R	Résistance	Ω	
C _{th}	Capacité Thermique	J/K	С	Capacité	F	

14

- Résistance thermique : $R_{th} = \frac{e}{\lambda S} \rightarrow \text{modélisation statique}$
- Capacité thermique : $C_{th} = \rho$. C_P . $V \rightarrow$ modélisation dynamique
 - λ : conductivité en W.K⁻¹.m⁻¹
 - ρ: masse volumique en kg. m⁻³
 - Cp : chaleur spécifique en J.Kg⁻¹.K⁻¹
- Obtention d'une équation différentielle → définition de variables d'états
- Permet d'obtenir la température du polymère localement par discrétisation de l'espace avec l'aide d'un logiciel de simulation électrique

Modèle mécanique

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

Conclusion

Modèle de Burger
 Modèle de Maxwell
 Liquide viscoélastique

Modèle de Kelvin-Voigt Solide viscoélastique

- Association en série d'un modèle de Maxwell et de Kelvin-Voigt :
- On obtient donc $\varepsilon(t) = \sigma_0 \left(\frac{1}{E_1} + \frac{t}{\eta_1} + \frac{1}{E_2} \left(1 e^{-t/\tau_2} \right) \right)$ réponse amortie
- Comportement d'un matériau viscoélastique en fonction du temps
- Modèle de Maxwell utilisé afin de simuler le comportement élastique et la viscosité irréversible, modèle de Kelvin–Voigt utilisé pour modéliser la viscosité réversible

15

• Analogie électrique mécanique

Quantités Mécaniques				Quantités Electriques		
	Paramètre	Unité		Paramètre	Unité	
F	Effort	N	ΔV	Différence de potentiel	V	
V	Vitesse	m/s	I	Courant	Α	
f	Frottement visqueux	kg/s	R	Résistance	Ω	
k	Raideur	N/m	С	Capacité	F	

Modèle thermomécanique

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

- Principe d'équivalence temps-température
 - Entre Tg et Tg+50°C, la relation empirique de Williams-Landel-Ferry permet de connaître l'évolution de la viscosité des polymères en fonction de la température :

$$\ln(\eta) = \ln(\eta_0) - \frac{C_1(T - T_0)}{C_2 + T - T_0}$$

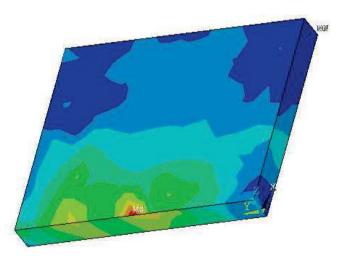
- Les constantes C1 (sans unité) et C2 (en°) dépendent du polymère considéré et de T₀
- Au-delà de Tg+100°C, la viscosité d'un matériau polymère varie en fonction de la température en suivant une loi d'Arrhénius :

$$\eta = \eta_0 \cdot \exp\left(\frac{E}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right)$$

- E : énergie d'activation de la viscosité
- R est la constante des gaz parfaits (8,3145 J.mol⁻¹.K⁻¹)
- η₀ est la viscosité à la température de référence T₀
- Possibilité de couplage entre les modèles énergétiques macroscopiques mécanique et thermique
 - Couplage déjà existant entre modèles électrique et thermique

Modélisation numérique

Introduction


Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

- Etude de l'influence de la température
 - Utilisation du principe d'équivalence fréquence-température
 - Etudes fréquentielles (pour les viscoélastiques) se servant de l'analyse de Prony :
 - Consiste à décomposer un signal en une série de sinusoïdes amorties
 - Une sollicitation fréquentielle est appliquée sur le matériau qui répond de manière amortie, permet d'extraire plusieurs termes de l'analyse de Prony et de remonter au comportement en température
 - Permet donc de représenter le comportement viscoélastique d'un matériau
 - Il est aussi possible de rentrer des coefficients non linéaires tels que la viscosité fonction de la température

Conclusions et perspectives

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

Conclusion

Conclusions

- Etude bibliographique sur les polymères encapsulants de l'électronique de puissance
- Extraction des caractéristiques principales et étude des polymères spécifique pour les hautes températures
- Etude de fonctions spécifiques pouvant intervenir dans les modules
- Présentation des modèles macroscopiques énergétiques thermiques et mécaniques ainsi que des liens existants

Perspectives

- Modèles multi-physiques à créer et études de leurs interactions, application aux modules de puissance
- Caractérisation physico-chimique de nouveaux polymères pour les hautes températures → Silicones fluorés (Projet GENOME)
- Validation expérimentale des modèles sur un système simple (hacheur buck) en sollicitation active

Questions

Introduction

Rôles des encapsulants

Caractéristiques attendues

Fonctions particulières

Modélisation et vieillissement

Conclusion

Questions?

