
Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/19148

Official URL: https://ieeexplore.ieee.org/document/8038413

DOI : http://doi.org/10.1109/ICCCN.2017.8038413

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Gonzalez, Santiago and Camp, Tracy Kay
and Jaffres-Runser, Katia The Sticking Heartbeat Aperture
Resynchronization Protocol. (2017) In: 26th International
Conference on Computer Communications and Networks (ICCCN
2017), 31 July 2017 - 3 August 2017 (Vancouver, Canada).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/163104748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Sticking Heartbeat Aperture

Resynchronization Protocol

Santiago Gonzalez

Department of Computer Science

University of Texas at Austin

2317 Speedway

Austin, TX 78705

slgonzalez@utexas.edu

Tracy Camp

Department of Computer Science

Colorado School of Mines

1610 Illinois Street

Golden, CO 80401

tcamp@mines.edu

Katia Jaffrès-Runser

Institut de Recherche en Informatique de Toulouse

Université de Toulouse, INPT

2 Rue Charles Camichel. BP 7122

31061 Toulouse Cedex 7, France

kjr@enseeiht.fr

Abstract—As wireless sensor networks become more ubiqui-
tous in the world, the need for lightweight, resilient time synchro-
nization protocols is apparent. Wireless nodes’ internal clocks are
subject to drift over time due to manufacturing imperfections
and environmental changes. While various protocols have been
introduced that attempt to correct for this drift, they each have
their own peculiarities and issues.

This paper presents a new protocol, the Sticking Heartbeat
Aperture Resynchronization Protocol (SHARP), that reduces
synchronization error and resolves shortcomings of existing pro-
tocols. We have implemented and compared SHARP to two exist-
ing (and noteworthy) time synchronization protocols, Reference
Broadcast Synchronization (RBS) and Simple Synchronization
Protocol (SISP), on Atmel ATMega328p based microcontroller
platforms with IEEE 802.15.4 Xbee radio modules. We show
that SHARP exhibits a higher level of synchronization than SISP
(which in turn exhibited much better performance than RBS),
while requiring significantly fewer messages.

Index Terms—Time synchronization, wireless sensor networks,
network protocols.

I. INTRODUCTION

Precise time synchronization in wireless networks is es-

sential to a wide variety of disciplines and can enable new

applications of wireless networks that have previously been

unfeasible. The internal clocks in a network have the tendency

to become increasingly inaccurate as time goes on, allowing

the nodes in a network to exhibit different times. Time

synchronization protocols help to mitigate both clock drift and

clock skew by periodically adjusting erroneous clocks. Ideally,

time synchronization protocols are lightweight, scalable, and

capable of synchronizing a network’s clocks to a sufficient

degree with few network message transmissions and without

major disruption to the task at hand.

Adequate time synchronization is particularly useful in

wireless sensor networks, where clock drift and skew can

introduce error, especially at high sampling rates. One man-

ifestation of clock desynchronization is improperly times-

tamping data from a network; accurate clocks are of high

importance in several applications, such as geophysical or

structural health monitoring, where knowing the time-of-flight

of acoustic waves is essential. GPS has often been proposed as

a solution to the time synchronization problem; however, GPS

units are unusable in indoor or subterranean environments and

often incur significant energy usage.

Section II provides a brief overview of time synchronization.

Two noteworthy protocols are described with a high level of

detail: Reference Broadcast Time Synchronization (RBS) [1]

and Simple Synchronization Protocol (SISP) [2].

Section III elaborates on our experimental setup and how we

implemented RBS and SISP on lightweight, wireless motes.

The GeoMote platform that we developed, and subsequently

used, is described in detail. We also provide results and

analysis on the performance of RBS and SISP. We observe that

SISP offers synchronization that is superior to that of RBS, in

both synchronization accuracy and precision. This leads us to

use SISP as a baseline to compare with our new protocol.

Section IV presents our new time synchronization protocol,

the Sticking Heartbeat Aperture Resynchronization Protocol

(SHARP). We discuss the advantages that SHARP inherently

provides over RBS and SISP, including the minimal amount

of network activity necessary to achieve synchronization.

In Section V, we provide a detailed analysis and comparison

of SHARP with SISP. We calculate rolling means with varying

window sizes for different test runs and present results graph-

ically. Additionally, Root-Mean-Square Error (RMSE) values

are calculated for test runs of RBS, SISP, and SHARP. We

find that SHARP performs admirably.

Finally, Section VI provides concluding remarks. SHARP

does an excellent job of synchronizing the nodes in a wireless

network with minimal overhead.

II. BACKGROUND

The field of wireless sensor networks has been rapidly

growing over the past decade; wireless sensor networks have

been applied in different domains, ranging from zebra mi-

gration tracking [3] to structural integrity monitoring [4].

Wireless sensor networks face several challenges due to their

lightweight nature, one of which is time synchronization. Due

to various imperfections, a given mote’s internal clock can

deviate from other motes’ clocks over time. This clock drift

can be detrimental to networks where data timestamping must

be accurate, such as in geophysical system monitoring, or

where timing is important for sustaining a network’s wireless

communications protocols. The goal of time synchronization

is to remedy internal clock drift via network protocols that

adjust a network’s internal clocks to create consistency.

Due to the importance of time synchronization in a wide va-

riety of applications, researchers have devised several new time

synchronization protocols for use in the rapidly growing field

of wireless sensor networks [5]. These protocols seek to reduce

a network’s synchronization error through various means. In

many cases, researchers have tailored their protocols to specific

types of radio hardware, or with specific applications in mind.

There are a large number of time synchronization protocols in

the literature, several of which are discussed in detail in [6].

Our proposition is inspired by beacon-based protocols where a

single node emits a message to synchronize a group of sensors

in range periodically.

In the following two sections, we describe two noteworthy

time synchronization protocols: Reference Broadcast Synchro-

nization (RBS) [1], a representative beacon-based solution, and

the Simple Synchronization Protocol (SISP) [2], a noteworthy

distributed solution where all sensors are in range of all

beacon messages. RBS was selected for analysis because of

its low complexity, performance cited in the literature, and

ubiquity. SISP was selected for analysis as a consequence of

its innovative approach towards synchronization, potential for

good performance, and simplicity.

A. Reference Broadcast Synchronization

The Reference Broadcast Synchronization (RBS) [1] pro-

tocol is a time synchronization protocol for wireless sensor

networks that is capable of maintaining either an absolute

network time or a shared, relative time within the network

through the use of reference broadcasts. At a set interval,

a server node transmits a reference broadcast. The reference

broadcast does not contain a timestamp or other data. Each

reference broadcast triggers the exchange of local clocks

within the network. This allows nodes to calculate a local

clock shift given adjacent clocks.

RBS operates on the premise that every node receives the

reference broadcast at nearly the same time. By sending the

reference broadcast from as close to the PHY as is viable, the

critical path between when the broadcast is sent to the network

stack and when it is received by other nodes can be shortened,

resulting in better synchronization.

As noted by the RBS authors, a principle drawback inherent

in RBS is the fact that a network requires a low-level physical

broadcast channel to try and reduce the server node’s reference

broadcast nondeterminism. Broadcast nondeterminism results

from the variable time a packet spends inside the protocol

stack before actual emission.

Elson et al. have shown [1] that RBS is able to outperform

the ubiquitous Network Time Protocol (NTP) [7]. RBS was

originally implemented in the IEEE 802.11 MAC on Berkeley

Motes running TinyOS and then on Linux-based systems, for

more equitable comparisons with NTP. The RBS authors state

that RBS performed well on the Berkeley Motes, but argue

that this may be attributable to the motes’ tightly integrated

processor and radio. Still, on the Linux-based systems, RBS

was able to achieve a mean synchronization error of under

10µs, significantly better than NTP. Variations in the choice

of platform and radio can significantly impact the performance

of a time synchronization protocol, e.g., [8] was only able to

achieve an average synchronization accuracy of approximately

30µs with their implementation of RBS. The authors of [8]

attribute the performance difference to higher quality crystals

and a “superior” operating system used by Elson et al.

B. Simple Synchronization Protocol

SISP (Simple Synchronization Protocol) [2] is another

lightweight time synchronization protocol for wireless sensor

networks. In SISP, the network’s nodes converge on a shared,

relative time in a distributed manner. SISP does not require

a master node, making it more resilient to hardware failures

than centralized protocols (e.g., RBS).

SISP functions through a sisp procedure that is called at a

locally defined interval (10ms in the researchers’ evaluations).

SISP implements two counters, LCLK (local clock) and SCLK

(shared clock), which are each incremented each time that the

sisp procedure is called. Each time a set number of sisp

calls occur, a SYNC broadcast containing the node’s SCLK is

transmitted to all listening nodes. In [2], a SYNC broadcast is

transmitted every 640ms. During every other invocation of the

sisp procedure, the node checks to see if any messages have

been received. In the event that a message has been received,

a new SCLK is found by averaging the local SCLK with

the received message’s SCLK. In this manner, a consensus

is reached on the network’s shared clock.

Van Den Bossche et al. note that SYNC messages are

transmitted as close to the PHY layer as possible [2], similar to

RBS. Specifically, SYNC messages are broadcast through an

IEEE 802.15.4 beacon payload to shorten the transmission’s

critical path. Thus, a reduction in performance will occur in

networks without PHY level broadcast capabilities.

SISP was tested both experimentally and in a custom

simulator. A SISP implementation study was performed on

Freescale MC1231x based nodes. The nodes’ hardware timer

was set to a resolution of 10ms and the network’s packets were

monitored using a Daintree network analyzer. Van Den Boss-

che et al. conducted three tests: one with four nodes and two

with two nodes [2]. Results provided show synchronization

error over time, and demonstrated SISP’s ability to converge

the network nodes to a shared clock.

III. EXPERIMENTAL SETUP

We now describe our wireless sensor mote platform along

with procedures and implementation details for the time syn-

chronization protocols RBS and SISP. We elected to perform

all experiments on a set of custom developed Arduino-based

motes due to their ubiquitous and lightweight character. Im-

plementation details and design decisions for RBS and SISP

are also discussed.

Fig. 1. GeoMote 3.0 Platform for Geophysical Wireless Sensor Networks

A. Target Platform

Our experimental setup is on an array of Arduino Fio

embedded microcontroller platforms equipped with IEEE

802.15.4 Xbee radios and external Microchip 32k256 se-

rial 32 kilobyte SRAM chips. The Arduino Fio embedded

platform is based on the ubiquitous Atmel ATMega328p 8-

bit AVR microcontroller, running at 8MHz. This hardware

(called GeoMote, see Figure 1) was originally developed

by students in the interdisciplinary SmartGeo program, a

program focused on geophysical monitoring [9]. For this work,

we developed version three of the GeoMote. GeoMote 3 is

a redesign that improves upon previous versions by using

surface-mount components, including a temperature sensor

and a triaxial accelerometer, adding a dedicated power switch

and programming port, improving the layout and routing to

reduce signal noise, and adopting a smaller, more usable form-

factor.

B. Experimentation

All motes were physically located in close proximity to

ensure adequate wireless connectivity. Not including the base

station, four motes were used for RBS, while three motes were

used for SISP (since a server node isn’t needed). For each

test run, the motes were turned on manually, which produced

a slight initial discrepancy between the motes’ clocks in the

network. As the experiment continued, local clock values (i.e.,

the hardware clock value + clock shift) were saved to each

mote’s external SRAM at discrete intervals. Upon completion,

the motes are commanded to transmit their data. Due to

occasional data loss within transmission bursts, we transmit

data twice to ensure a complete data set. Additionally, clock

data is indexed upon transmission to aid in alignment and

facilitate data correctness checking.

For our implementations of RBS and SISP, all messages

were transmitted above the Xbee radios’ MAC layers. This

decision was both a limitation imposed by the Xbee radios,

which do not allow low level message access, as well as a

purposeful design decision to (1) compare different protocols

on fair grounds and (2) ensure full platform and network stack

portability. Furthermore, to avoid the potentially unreliable

nature of IEEE 802.15.4 broadcast mode, the wireless radios

were configured to unicast mode. Every radio was configured

to have the same address; we then transmit to this address to

emulate broadcast behavior.

In our implementations, all synchronized motes have func-

tionality to transmit collected measurements to a base station.

The base station is simply a data sink for results consisting of

an Xbee radio connected through a dongle to a computer.

For RBS, the reference broadcast interval was set to 500ms

(i.e., the network was synchronized twice per second), a fairly

typical value in research studies. The synchronization interval

for SISP was set to 500ms to match RBS and to be close

to the SISP researchers’ 640ms interval. Each synchronization

interval contains 100 sisp calls, resulting in a 5ms sisp

procedure call interval.

C. Quantitative Comparison of RBS and SISP

Our initial results suggest that SISP both functions sig-

nificantly better than RBS and is more than capable of

maintaining sub-millisecond time synchronization. A variety

of experiments have been conducted to evaluate the synchro-

nization error between nodes in RBS-synchronized and SISP-

synchronized networks, including different synchronization

interval lengths and experiment durations.

Figure 2 shows a graphical comparison of the RBS and

SISP protocols for a two node network. The synchronization

iteration (i.e., time samples) is on the X-axis and absolute

clock error (i.e., the absolute value of the difference between

the nodes’ synchronized clocks, called deviation) is on the Y-

axis. This absolute clock error, or deviation, is measured from

two motes. Each local clock sample is collected just prior to

when synchronization occurs to obtain the likely maximum

clock error for each time sample. Table I exhibits mean error,

standard deviation, and 50%, 95%, and 99% percentile bounds

for each protocol (e.g., for a 95% percentile bound, 95% of

the absolute synchronization errors — that is, the absolute

values of the synchronization errors — in a synchronization’s

distribution are between 0 and the 95% percentile bound). Our

results show that RBS is both significantly more imprecise

(i.e., noisy) and inaccurate than SISP with equivalent config-

urations on the same hardware. The large disturbances that

occur during the start of the experiment for SISP are due

to start-up costs in the network (i.e., the initial convergence

to consensus). This period has not been included in the

calculation of statistics in the “SISP (stable)” row of Table I.

That is, the SISP row statistics in Table I take results from all

synchronization intervals into account; while the SISP (stable)

row statistics only make use of data from intervals after the

start-up period (i.e., after 200 synchronization iterations).

While SISP has been shown to perform significantly better

than RBS, can we design a protocol that does better than

SISP? We want a time synchronization protocol that minimizes

network traffic, is scalable, is resilient to dropped messages,

is stable over significant periods of time, and is simple

and lightweight in its implementation while also achieving

a high degree of synchronization. In an n node network, a

TABLE I
RBS AND SISP SYNCHRONIZATION ERROR STATISTICS

Protocol Mean Error (µs) Std Dev 50% Bound 95% Bound 99% Bound

RBS 1509 108 1528 1640 1744

SISP 119 78 96 192 421

SISP (stable) 96 5 96 104 104

Fig. 2. Comparison of RBS and SISP Synchronization Error

single SISP synchronization interval requires n transmissions

and n ∗ (n − 1) receptions. If a new protocol was able to

send and receive fewer messages per interval, the network’s

synchronization frequency could be increased; furthermore,

increasing the network’s synchronization frequency would lead

to a higher level of synchronization, while still requiring fewer

message transmissions and receptions per length of time than

SISP.

IV. THE STICKING HEARTBEAT APERTURE

RESYNCHRONIZATION PROTOCOL

To improve upon existing protocols’ shortcomings, we

have developed a master-slave, heartbeat-based protocol

called Sticking Heartbeat Aperture Resynchronization Proto-

col (SHARP). SHARP uses heartbeats emitted by a master

node to synchronize slave nodes, without expressly knowing

the master’s clock. The protocol is resilient to lost heartbeats

and integrates seamlessly with networks that have scheduled

protocols, such as TDMA. Additionally, SHARP does not

require additional, non-standard radio hardware.

The Sticking Heartbeat Aperture Resynchronization Proto-

col (SHARP) uses heartbeats (i.e., network messages contain-

ing no data) for synchronization, and synchronization occurs

even if heartbeats are dropped. Figure 3 provides an overview

of SHARP, and illustrates how the protocol functions using a

simple master-slave heartbeat propagation technique. A master

node, which may or may not be synchronized with an external,

absolute clock source, transmits a heartbeat to its slave nodes

after every time period λ. This network’s synchronization

interval length, λ, may be changed to fit a specific network’s

time synchronization requirements. Figure 3 shows there are

large, free spaces in the network where no synchronization

takes place, allowing for the network to send other network

communication or sleep the radios.

Fig. 3. SHARP Overview

A defining feature of SHARP is the existence of heartbeat

apertures, i.e., time intervals where a heartbeat should occur.

The length of the network’s heartbeat apertures is determined

by a bound on a mote’s clock drift. When a heartbeat is

received by a slave, the current aperture ends and the slave’s

clock is adjusted to the master’s time, essentially nλ, where n
is the number of heartbeat apertures that have passed since the

initial synchronization. The existence of heartbeat apertures

enables TDMA to function with SHARP, i.e., the apertures

can be easily included into the TDMA schedule.

Figure 4 demonstrates how the current interval’s clock skew,

∆n, is calculated for a given slave mote. Given a known λ,

we calculate a node’s local clock shift change, δn, whenever

a heartbeat is received:

δn = nλ − tlocaln +∆n−1,

where tlocaln is the value of the local clock (i.e., the incorrect

clock that is provided by the hardware) at interval n. The

current synchronization interval’s clock shift change, δn, is

added to the previous interval’s clock shift, ∆n−1, to find the

current synchronization interval’s clock shift: ∆n = ∆n−1 +
δn.

A. Resilience

Heartbeat apertures provide resilience against lost heart-

beats. We note the λ between heartbeats is constant, and that

a mote’s clock does not drift significantly over a short period

of time. Thus, a mote can estimate how many heartbeats, γn,

it has missed since its last received heartbeat, i.e., a mote can

count how many empty heartbeat apertures have passed. When

the next heartbeat arrives, the mote’s clock can then snap to the

Fig. 4. Example Slave Clock Deviation

correct time, since the mote knows that γnλ time has passed

since the last heartbeat. Specifically, SHARP may calculate a

local clock shift change δn when a heartbeat is received, as

before, by:

δn = nλ − tlocaln +∆n−1.

For heartbeat apertures where no heartbeat is received, the

previous interval’s δn−1 is used as the current interval’s clock

shift change. Whenever a slave node misses a heartbeat, it

adjusts the size of its next heartbeat aperture to be equal to

the base aperture size multiplied by (γn+1). That is, SHARP

assumes the slave’s clock’s skew increases as more heartbeats

are missed, requiring larger heartbeat apertures to ensure that

a future heartbeat is not missed. Once a heartbeat is received,

the next heartbeat aperture can be restored to the base aperture

size. SHARP is resilient to lost heartbeats up to the point

where adjacent heartbeat apertures begin to overlap with each

other.

B. Analytical Example

Figure 5 presents an example execution diagram for

SHARP, detailing a master node and a slave node. LCLK

represents the slave hardware’s reported clock value, tlocal,
and SHIFT represents the slave’s local clock shift, ∆. SHARP

begins with an initial synchronization (i.e., a reliable, initial

heartbeat that is acknowledged by all slaves), represented by

Y in the figure. Following the initial synchronization, the

master node transmits heartbeats periodically, every 100 units

of time (i.e., λ = 100). When the first heartbeat arrives, Slave

A calculates that the heartbeat fits within the first heartbeat

aperture; thus, Slave A adjusts its clock shift, ∆, so that

∆n + tlocaln = n ∗ λ, where n is 1. The resultant δ1 = −10,

meaning that the Slave A’s new ∆1 = ∆0 + (−10). This

procedure continues for subsequent heartbeats. We note that

the third heartbeat transmitted is not received by Slave A; this

missed heartbeat is handled gracefully by setting the current

clock shift, δ3, to be the same as the previous clock shift, δ3−1.

Slave A then continues functioning normally.

C. SHARP Advantages

SHARP is computationally light, both spatially and tem-

porally, requiring minimal data processing and state memory.

Additionally, the protocol is energy efficient, requiring only

Fig. 5. SHARP Execution Example

0

5

10

15

20

25

CPU TX RX IDLE SLEEPSENSORS

C
u
rr

e
n
t
(m

A
)

Fig. 6. Tmote Sky Current Draw [10]

one data reception per mote per synchronization interval. Thus,

SHARP would work well in embedded networks requiring

prompt data transmission and high data throughput.

Table II provides a comparison of radio usage between

SHARP and other time synchronization protocols. We detail

transmission and reception counts symbolically for a network

with an arbitrary number of motes, x, along with actual

transmission and reception counts for networks with 2 and

100 motes. In this analysis, we assume a fully connected

network. All figures are for a single synchronization interval.

As shown, SHARP has significantly fewer messages sent and

received than RBS and SISP. We note that high reception

rates are sometimes more undesirable, energy-wise, than high

transmission rates. For example; consider Figure 6, which

details the current draw for different subsystems on a Tmote

Sky wireless mote, a widely used wireless sensor network

platform [10]. Lastly, note that Table II does not account for

varying message sizes. That is, SHARP messages always have

a zero-length payload, while SISP and RBS messages usually

have a non-zero payload size.

Another major advantage of SHARP is that slave motes

can be synchronized to an absolute time scale, unlike SISP

which forms a relative time scale. For example, if the SHARP

master is connected to an absolute time source, such as a

rubidium frequency standard, then tlocal would be the absolute

time. This advantage exists in RBS as well, by providing

the server node with an absolute time source. This feature

is advantageous in applications where it is important to know

TABLE II
COMPARING RADIO USAGE OF THREE SYNCHRONIZATION PROTOCOLS

Protocol Transmissions Receptions
Messages Sent Messages Received

(x = 2) (x = 100) (x = 2) (x = 100)

RBS 1 + x x+ x ∗ (x− 1) 3 101 4 10000

SISP x x ∗ (x− 1) 2 100 2 9900

SHARP 1 x 1 1 2 100

the actual, absolute time that an event occurred.

V. SHARP RESULTS

We provide results and analyze the performance of SHARP

in this section. We perform several test runs with different

synchronization intervals. In our study, we report general

statistics for each test run, along with absolute synchronization

error plots, absolute synchronization error rolling mean plots

with various window sizes, and calculated Root-Mean-Square

Error (RMSE) values.

As expected, as the length of the synchronization interval,

λ, is reduced, SHARP achieves progressively more accurate

levels of synchronization. We find that SHARP exhibits a

slightly higher synchronization error than SISP when compar-

ing test runs with equal length synchronization intervals; how-

ever, SHARP has a significantly lower number of messages

transmitted and received. Thus, we can reduce the synchro-

nization interval length, λ, in SHARP, allowing us to achieve a

significantly lower network-normalized synchronization error

than SISP, and still send fewer messages across the network.

A. Analysis of Aggregate Statistics

Table III presents the mean error, standard deviation, and

50%, 95%, and 99% percentile bounds for SHARP, across

different synchronization interval lengths. All provided statis-

tics are from ∼ 7, 500 sample runs. As expected, the absolute

clock error in the network generally reduces as the length of

the synchronization interval, λ, is decreased.

Figure 7 presents how well SHARP synchronizes the clocks

in a two-mote network for a synchronization interval of

250ms1. Time samples (taken just before each synchronization

iteration, as before) are on the X-axis and absolute synchro-

nization error (i.e., the absolute value of the difference between

the two nodes’ synchronized clocks) is on the Y-axis. Each

local clock sample is collected just prior to when synchro-

nization actually occurs, in order to measure the maximum

clock error.

B. Rolling Mean Analysis

Figure 7 illustrates how SHARP is extremely stable over

time. This fact is especially clear in Figure 8, which presents

rolling mean curves for the absolute synchronization errors

in a network running SHARP at a synchronization interval

of 250ms2. Rolling means were calculated for window sizes,

1Additional synchronization error graphs for intervals of 1000, 500, and
100 milliseconds are similar and available in [6].

2Additional rolling mean graphs for synchronization intervals of 1000, 500,
and 100 milliseconds are similar and available in [6].

Fig. 7. SHARP Synchronization Error — λ = 250ms

Fig. 8. SHARP Synchronization Error Rolling Mean — λ = 250ms

n, of 51, 201, and 501 samples, i.e., there are n/2 samples

on each side of a center value that are averaged to produce

a data point. The high level of stability offered by SHARP

is important in the vast majority of wireless networks, where

nodes are kept running for extended periods of time.

As window sizes are enlarged, e.g., yellow lines in the

figures represent a larger window size than the blue lines in

the figures, rolling mean data becomes progressively smoother.

This result is expected since means are calculated from more

data points when window sizes are larger.

C. RMSE Analysis

Root-Mean-Square Error (RMSE), sometimes referred to

as Root-Mean-Square Deviation (RMSD), is an error metric

that is commonly used. For a set of residuals, x1 through xk,

RMSE is defined as follows:

RMSE =

√

∑

k

i=1
x2

i

k

We compare the three time synchronization protocols —

RBS, SISP, and SHARP — using RMSE in this section.

RMSE does not need to be normalized for our comparisons

TABLE III
SHARP SYNCHRONIZATION ERROR STATISTICS

Interval (ms) Mean Error (µs) Std Dev 50% Bound 90% Bound 95% Bound

1000 180 145 152 368 448

500 152 114 136 320 376

250 123 108 96 272 344

100 135 97 120 272 312

TABLE IV
COMPARISON OF SYNCHRONIZATION PROTOCOLS VIA RMSE

Protocol Interval (ms) RMSE (µs) Mean Error (µs)

RBS 500 1512 1509

SISP 500 124 112

SISP 1000 189 179

SHARP 100 167 135

SHARP 250 162 123

SHARP 500 190 152

SHARP 1000 231 180

of the three protocols since the residuals all take place on the

same time scale. RMSE is a good metric for evaluating time

synchronization protocols as it penalizes error variability, i.e.,

peaks are taken into account more than troughs.

Table IV provides an RMSE comparison of SISP, RBS,

and SHARP with different synchronization intervals. As an-

ticipated, both SISP and SHARP exhibit significantly lower

RMSE values than RBS. Additionally, when comparing runs of

SISP and SHARP with equal synchronization interval lengths,

SISP exhibits a slightly lower RMSE value. This result is

due to the variability that is present in SHARP’s absolute

synchronization error. We note, however, that SHARP is a

successful protocol due to its low network usage, which

allows for shorter synchronization intervals to be used. That is,

SHARP can achieve a level of synchronization accuracy that

is superior to that provided by SISP, while also transmitting

and receiving fewer messages. For example, compare RMSE

for SHARP, with λ = 500 (190µs), to RMSE for SISP, with

λ = 1000 (189µs). These two RMSE values are similar,

but SHARP only transmitted 2 messages per second while

SISP transmitted 6 messages per second. This difference in

transmission counts becomes more pronounced as network

sizes are increased.

VI. CONCLUSION

As the number of wireless sensor network applications

grows, the need for effective time synchronization has become

clear. We present SHARP, a new protocol that improves upon

the shortcomings of other protocols, while maintaining a high

level of synchronization.

We initially evaluated RBS and SISP, two notable time

synchronization protocols in the literature. RBS operates on

the periodic transmission of “reference broadcasts” from a

server node to trigger synchronization within a network. SISP

operates in a completely distributed manner, where nodes

achieve synchronization in a consensus based manner. Our

early results demonstrate that SISP is able to achieve a

significantly lower average synchronization error than RBS

on the same experimental setup. We note that RBS functions

best on radios that support beacon messages (the Xbee radio

modules do not), providing a possible explanation for the poor

synchronization results we observed.

While SISP can achieve a reasonably high level of synchro-

nization, it has several shortcomings, including the fact that

many messages are transmitted per synchronization interval.

As such, we developed the Sticking Heartbeat Aperture Resyn-

chronization Protocol (SHARP), a simple, scalable, heartbeat-

based protocol that meshes well with existing networks, espe-

cially those that use TDMA. We then implemented SHARP on

our GeoMote platform and extensively tested it. Experimenta-

tion and analysis have deemed SHARP to be a great success;

SHARP achieves synchronization accuracy that is comparable

or better than that provided by SISP, while transmitting and

receiving vastly fewer messages, resulting in lower network

and energy usage.

Our hope is that SHARP can be augmented over time

to become a de facto protocol for time synchronization in

TDMA-based networks and wireless sensor networks. SHARP

provides numerous advantages that, coupled with its excellent

synchronization performance, make it a great choice for wire-

less applications.

We plan to improve SHARPs synchronization accuracy in

future works by learning relative clock drifts between slave

nodes and the master node and compensating for them over

time. An important issue to be tackled as well is to determine

an energy-efficient aperture size [11] and beaming period λ
[12]. Relevant recent works tackle similar issues that could be

leveraged to augment the network lifetime together with an

improved synchronization precision.

ACKNOWLEDGMENT

The authors are thankful for the support of the National

Science Foundation under Grant No. OISE-1243539. Any

opinions, findings, conclusions, or recommendations expressed

in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

REFERENCES

[1] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” Proceedings of OSDI, 2002.

[2] A. V. D. Bossche, T. Val, and R. Dalce, “SISP: a lightweight synchro-
nization protocol for wireless sensor networks,” Proceedings of ETFA,
pp. 1 – 4, 2011.

[3] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with zebranet,” Proceedings of ASPLOS-X, 2002.

[4] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon, “Health monitoring of civil infrastructures using wireless
sensor networks,” Proceedings of IPSN, 2007.

[5] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks:
A survey,” IEEE Network, vol. 18, pp. 45–50, 2004.

[6] S. Gonzalez, “Improving time synchronization protocols in wireless
sensor networks,” Master’s thesis, Colorado School of Mines, 2015.

[7] D. L. Mills, “Internet time synchronization: The network time protocol,”
IEEE Transactions on Communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[8] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” Proceedings of SenSys, pp. 138–149, 2003.

[9] T. Camp, M. Rubin, and S. Gonzalez, “Challenges in developing
intelligent geosystems (and the pros/cons of interdisciplinary research),”
Proceedings of ICNC, 2015.

[10] W. Heinzelman. Wireless sensor networks: Past, present, and
future. Accessed on October 14, 2015. [Online]. Available:
http://www.cs.rit.edu/ spr/CLQABS/wendi.pdf

[11] Y. Chen, F. Qin, and W. Yi, “Guard beacon: An energy-efficient beacon
strategy for time synchronization in wireless sensor networks,” IEEE

Communications Letters, vol. 18, no. 6, pp. 987–990, June 2014.
[12] J. P. B. Nadas, R. D. Souza, M. E. Pellenz, G. Brante, and S. M. Braga,

“Energy efficient beacon based synchronization for alarm driven wireless
sensor networks,” IEEE Signal Processing Letters, vol. 23, no. 3, pp.
336–340, March 2016.

