
Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/19119

Official URL: https://ieeexplore.ieee.org/document/8308297

DOI : http://doi.org/10.1109/AICCSA.2017.76

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Abdelhédi, Fatma and Ait Brahim, Amal
and Atigui, Faten and Zurfluh, Gilles UMLtoNoSQL: Automatic
Transformation of Conceptual Schema to NoSQL Databases. (2017)
In: 14th International Conference on computer Systems And
Applications (AICCSA 2017), 30 October 2017 - 3 November 2017
(Hammamet, Tunisia).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/163104722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UMLtoNoSQL: Automatic Transformation of Conceptual Schema to NoSQL

Databases

Fatma ABDELHEDI Amal AIT BRAHIM Faten ATIGUI Gilles ZURFLUH
 CBI2 – TRIMANE IRIT, Toulouse Capitole CEDRIC- CNAM IRIT, Toulouse Capitole

 University University

 Paris, France Toulouse, France Paris, France Toulouse, France

fatma.abdelhedi@irit.fr amal.ait-brahim@irit.fr faten.atigui@cnam.fr gilles.zurfluh@irit.fr

Abstract—Volume, Variety and Velocity are the three

dimensions that have definitely changed the tools we need to

store and process Big Data effectively, giving rise to NoSQL

systems for faster data access, better scalability and higher

flexibility. While NoSQL systems have proven their

efficiency to handle Big Data, it is still an unsolved problem

how the automatic storage of Big Data in NoSQL systems

could be done. One solution for addressing this problem is

to model Big Data, and then define mapping rules towards

the physical level. This paper proposes an automatic MDA-

based approach that translates conceptual models expressed

using the Unified Modeling Language (UML) into NoSQL

physical models. Our approach rely on an intermediate

logical model compatible with column, document and graph

oriented systems which allows to choose the system type that

suits the best with business rules and technical constraints.

Keywords-UML conceptual model; NoSQL; Big Data

storage; MDA; Models Transformation

I. CONTEXT AND RESEARCH PROBLEM

Big data have received a great deal of attention in
recent years. Not only the amount of data is on a
completely different level than before, but also we have
different type of data including factors such as format,
structure, and sources. In addition, the speed at which
these data must be collected and analyzed is increasing.
This has definitely changed the tools we need to benefit
from Big Data, giving rise to new kinds of data
management tools. NoSQL systems are a widely
accepted tool able to support larger volumes of data by
providing faster data access, better scalability and higher
flexibility [16].

The lack of a model when creating a database is a key
feature in NoSQL systems. In a table, attributes names
and types are specified as and when the row is entered
[8]. Unlike relational systems, where the model must be
defined when creating the table, the schema less appears
in NoSQL systems. This property offers undeniable
flexibility that facilitates the evolution of models in
NoSQL systems; but, it concerns exclusively the physical
level (implementation) of a database [2]. A conceptual
model is still required to define how data are stored and
related in the database [3]. It provides a high level of
abstraction and a semantic knowledge element close to
human logic, which guarantees efficient data
management [1]. The Unified Modeling Language
(UML) has gained much attention in this area [1].

While NoSQL systems have proven their efficiency to
handle Big Data, it is still an unsolved problem how the
automatic storage of Big Data in NoSQL systems could
be done. In our view, it is important to have a precise and
automatic approach that helps and assists developer in the
Big Database implementation task within NoSQL
systems. One solution for addressing this problem is to
model Big Data, and then define mapping rules towards
the physical level. As discussed in the related work (see
section 5), there are only few solutions that focus on
mapping UML conceptual models into NoSQL physical
models.

To overcome this situation, we propose the
UMLtoNoSQL approach that automatically translates
conceptual models expressed using the Unified Modeling
Language (UML) into several NoSQL physical models.
This approach is based on the Model Driven Architecture
(MDA) especially known as a framework for models
automatic transformations and allows the developer to
choose the system type (column, document or graph) that
suits the best with business rules and technical
constraints.

The rest of the paper is structured as follows: Section
2 motivates our work using a case study in the healthcare
field. Section 3 introduces our approach; two
transformations processes are presented in this section,
the first one creates a NoSQL generic model starting
from a UML conceptual model, and the second one
generates NoSQL physical models from this generic
model; Section 4 details our experiments; Section 5
reviews previous work on models transformation; Section
6 provides a discussion on our approach and announces
future work. Finally, Section 7 concludes the paper.

II. ILLUSTRATIVE EXAMPLE

To motivate our work and illustrate the different steps
of our approach, we introduce in this section an example
of Big Data application in the healthcare filed. This
application concerns international scientific programs for
monitoring patients suffering from serious diseases. The
main goal of this program is (1) to collect data about
diseases development over time, (2) to study interactions
between different diseases and (3) to evaluate the short
and medium-term effects of their treatments. The medical
program can last up to 3 years.

DOI 10.1109/AICCSA.2017.76

Data collected from establishments involved in this
kind of program have the features of Big Data (the 3 V):
Volume: the amount of data collected from all the

establishments in three years can reach several terabytes.

Variety: data created while monitoring patients come in

different types; it could be (1) structured as the patient's

vital signs (respiratory rate, blood pressure, etc.), (2)

semi-structured document such as the package leaflets of

medicinal products, (3) unstructured such as consultation

summaries, paper prescriptions and radiology reports.

Velocity: some data are produced in continuous way by

sensors; it needs a [near] real time process because it

could be integrated into a time-sensitive processes (for

example, some measurements, like temperature, require

an emergency medical treatment if they cross a given

threshold).
This is a typical example in which the use of a

NoSQL system is suitable. As mentioned. This kind of
systems operate on schema less data model enabling
users to quickly and easily incorporate new data into their
applications without rewriting tables. Nevertheless, there
is still a need for a semantic model to know how data are
structured and related in the database; this is particularly
necessary to write declarative queries where tables and
columns names are specified.

UML is widely accepted as a standard modelling
language for describing complex data. In the medical
application, briefly presented above, the database
contains structured data, data of various types and
formats (explanatory texts, medical records, x-rays, etc.),
and big tables (records of variables produced by sensors).
Therefore, we choose the UML class diagram to describe
the medical data.

III. CONTRIBUTION

Our purpose in this paper is to assist developers in
storing Big Data in NoSQL systems. For this, we propose
the UMLtoNoSQL approach that automatically
transforms a UML conceptual model describing Big Data
into a NoSQL physical model.

In our approach, we introduce a logical level between

conceptual (business description) and physical (technical
description) levels in which a generic logical model is
developed. This logical model exhibits a sufficient degree
of independence so as to enable its mapping to one or
more NoSQL platforms. Developers will benefit from it
in two ways: (1) it describes data according to the
common features of NoSQL models (column, document
and graph), which allow it’s mapping on several
platforms. (2) it abstracts out technical details of NoSQL
systems, this mean that the logical level remains stable,
even though the NoSQL system evolves over time. In this
case, it would be enough to evolve the physical model,
and of course adapt the transformation rules; this
simplifies the transformation process and saves time for
developers.

To formalize and automate UMLtoNoSQL process,
we use the Model Driven Architecture (MDA) proposed
by the OMG [4]. One of the main aims of MDA is to
separate the functional specification of a system from the
details of its implementation in a specific platform. This
architecture defines a hierarchy of models from three
points of view: Computation Independent Model (CIM),
Platform Independent Model (PIM), and Platform
Specific Model (PSM) [5]. Among this proposed models,
we use:

UMLtoGenericModel (1) is the first transformation
(section 3.1) in UMLtoNoSQL process. It is in charge of
converting the input UML class diagram (conceptual
PIM) into the generic logical model (2) conforming to the
generic logical metamodel proposed in Section 3.1.2; this
metamodel describes a data structure compatible with the
three types of NoSQL systems.
GenericModeltoPhysicalModel (3) is the second
transformation (section 3.2) in UMLtoNoSQL process. It
is in charge of transforming the generic logical model
into NoSQL physical models (PSMs) (4).

We note that UMLtoNoSQL process generates
several NoSQL physical models from a UML class
diagram. In order to do this, it’s necessary to register, for
each physical model, its specific parameters
(transformation rules). To illustrate our work, we have
taken as example three physical models that correspond

Figure 1. Overview of UMLtoNoSQL process.

to: Cassandra, MongoDB and Neo4j systems. If the
developer chooses to use another system, the process
must be completed by adding new parameters specific to
this system.

A. UMLtoGenericModel Transformation

In this section we present the UMLtoGenericModel
transformation, which is the initial step in our approach
presented in Figure 1. We first define the source (UML
Class Diagram) and the target (Generic Logical Model),
and then we focus on the transformation itself.

Source: A Class Diagram (CD) is defined as a tuple
(N, C, L), where:
N is the class diagram name,
C is a set of classes. Classes are composed from
structural and behavioral constituents; in this paper, we
consider only the structural part. Since the operations are
linked to the behavior, we will not take them into
account. The schema of each class c C is a tuple (N, A,

), where:

• c.N is the class name.

• c.A = { } is a set of q attributes. The

schema of each attribute A is a pair (N,C)
where “ .N” is the attribute name and “ .C”
the attribute type; C can be a predefined class, i.e.
a standard data type (String, Integer, Date ...) or a
business class (class defined by user).

• c. is a special attribute of c; it has a
name .N and a type called “Oid”. In this
paper, an attribute whose type is “Oid” represents
a unique object identifier, i.e. an attribute whose
value distinguishes an object from all other
objects of the same class.

L is a set of links. Each link l between n classes, with

n>=2, is defined as a tuple (N, Ty,), where:

• l.N is the link name.

• l.Ty is the link type. In this paper, we will only
consider the three main types of links between
classes: Association, Composition and
Generalization.

• l. = { } is a set of n pairs. i

{1,..,n}, = (c,), where .c is a linked

class and . is the cardinality placed next to

c. Note that . can contain a null value if no
cardinality is indicated next to c (like in
generalization link).

Class diagram metamodel is shown in Figure 2; this
metamodel is adapted from the one proposed by the
OMG [7].

Target: The target of UMLtoGenericModel
transformation corresponds to a generic logical model
that describes data according to the common features of
the three types of NoSQL systems: column-oriented,
document-oriented and graph-oriented. In the generic
logical model, a DataBase (DB) is defined as a tuple (N,
T, R), where:
N is the database name,

T is a set of tables. The schema of each table t T is a

tuple (N, A,), where:

• t.N is the table name.

• t.A = { } is a set of q attributes that will

be used to define rows of t; each row can have a

variable number of attributes. The schema of
each attribute A is a pair (N,Ty) where
“ .N” is the attribute name and “ .Ty” the
attribute type.

• t. is a special attribute of t; it has a name
.N and a type called “Rid”. In this paper,

an attribute whose type is “Rid” represents a
unique row identifier, i.e. an attribute whose
value distinguishes a row from all other rows of
the same table.

R is a set of binary relationships. In the generic logical

model there are only binary relationships between tables.

Each relationship r R between and is defined as a

tuple (N,), where:

• r.N is the relationship name.

• r. = { } is a set of two pairs. i
{1,2}, = (t,), where .t is a related table
and . is the cardinality placed next to t.

Metamodel of the proposed generic logical model is
shown in Figure 3. Note that the attribute value may be
either atomic or complex (set of attributes). We represent
this by using the XOR constraint (UML predefined
constraint).

Figure 2. Source Metamodel.

Figure 3. Target Metamodel.

{XOR}

Transformation Rules:
R1: each class diagram CD is transformed into a database
DB, where DB.N = CD.N.
R2: each class c C is transformed into a table t DB,
where t.N = c.N, .N = .N.
R3: each attribute c.A is transformed into an
attribute , where .N = .N, .Ty = .C, and added
to the attribute list of its transformed container t such as

 t.A.
R4: each binary link l L (regardless of its type:
Association, Composition or Generalization) between the
classes and is transformed into a relationship r R
between the tables and representing and ,
where r.N = l.N, r. = {(,),(,)}, and

 are the cardinality placed respectively next to and
.

Example:
As an example, consider the classes “Prescriptions”

and “Protocols”, and the link “Update”. Applying the
transformation rules R2 and R3 generates the tables “T-
Prescriptions” and “T-Protocols”. As soon as R4 applies,
the appropriate transformation is made, and the link
“Update” is transformed into a relationship “R-Update”
as follow:

R5: each link l L between n classes { } (n>=3)

is transformed into (1) a new table , where .N = l.N

and .A = , and (2) n relationships { }, i

{1,..,n} links to another table representing a related

class , where .N = (.N)_(.N) and . = {(,
null), (, null)}.

Example:
In the example shown below, the n-ary link “Consult”

that relates the classes: “Patients”, “Doctors” and “Dates”
is transformed by applying R5 into: (1) a new table “T-
Consult” that does not contain attributes and (2) three
relationships: “R-Consult_Patients”, “R-
Consult_Doctors” and “R-Consult_Dates” that relate “T-
Consult” respectively to “T-Patients”, “T-Doctors” and
“T-Dates”.We note that the tables “T-Patients”, “T-
Doctors” and “T-Dates” were created by applying R2 and
R3.

R6: each association class between n classes
{ } (n>=2) is transformed like a link between
multiple classes (R5) using (1) a new table , where

.N = l.N, and (2) n relationships { }, i
{1,..,n} links to another table representing a
related class , where .N = (.N)_(.N) and . =
{(, null), (, null)}. Like any other table, contain
also a set of attributes A, where .A = .A.

Example:
The association class “Category” that links the

classes: “Patients” and “Antecedents” is transformed by
applying R6 into: (1) a new table “T-Category” that
contain the attribute “category” and (2) two relationships:
“R-Category_Patients” and “R-Category_Antecedents”
that relate “T-Category” respectively to “T-Patients” and
“T-Antecedents”.

These transformation rules have also been specified
with QVT (Query / View / Transformation), which is a
standard defined by OMG for expressing models
transformation. An excerpt from QVT rules is shown in
Figure 6.

B. GenericModeltoPhysicalModel Transformation

In this section we present the
GenericModeltoPhysicalModel transformation, which is
the second step in our approach UMLtoNoSQL (figure
1). It is in charge of creating NoSQL physical models
from the proposed generic logical model.

Source: The source of
GenericModeltoPhysicalModel transformation is the
target of the previous UMLtoGenericModel
transformation.

Target: To illustrate our approach, we have chosen:
Cassandra (column-oriented), MongoDB (documents-
oriented) and Neo4j (graph-oriented); three well known
NoSQL systems.

In Cassandra physical model, KeySpace (KS) is the
top-level container that owns all the elements. It’s
defined as a tuple (N, F), where:
N is the keyspace name,

F is a set of columns-families. The schema of each

columns family f F is a tuple (N, Cl,),

where:

• f.N is the columns-family name,

• f.Cl = { } is a set of q columns that will

be used to define rows of f; each row can have a
variable number of columns. The schema of each
column cl Cl is a pair (N,Ty) where “cl.N” is
the column name and “cl.Ty” the column type.

• f. is a special column of f; it has a

name .N and a type

.Ty (standard data type).

 identifies uniquely each row of f.

In MongoDB physical model, DataBase () is
the top-level container that owns all the elements. It’s
defined as a tuple (N, Cll), where:
N is the database name,

Cll is a set of collections. The schema of each collection

cll Cll is a tuple (N, Fl,), where:

• cll.N is the collection name,

• cll.Fl = is a set of atomic and complex
fields that will be used to define rows, called
documents, of Cll. Each document can have a
variable number of fields. The schema of an

atomic field is a tuple (N,Ty) where
“ .N” is the field name and “ .Ty” is the field

type. The schema of a complex field is
also a tuple (N, Fl’) where .N is the field

name and .Fl’ is a set of fields where Fl’⊂ Fl.

• cll. is a special field of cll; it has a name

.N and a type .Ty (standard data

type). identifies uniquely each document of
cll.

In Neo4j physical model, Graph (GR) is the top-level
container that owns all the elements. It’s defined as a
tuple (V, E), where:
V is a set of vertex. The schema of each vertex v V is a
tuple (L, Pro,), where:

• v.L is the vertex label,

• v.Pro = { } is a set of q properties.

The schema of each property pro Pro is a pair
(N,Ty), where “pro.N” is the property name and
“pro.Ty” the property type.

• v. is a special property of v; it has a name
.N, a type .Ty and the constraint “Is

Unique ”. It identifies uniquely v in the graph.

E is a set of edges. The schema of each edge e E is a

tuple (L, ,), where:

• e.L is the edge label,

• e. and e. are the vertexes related by e.
Transformation Rules: For some NoSQL systems,

many solutions can ensure the implementation of the
generic logical model. In order to choose the most
suitable solution, the developer can use the performance
measurement shown in Section 4.2. These measurements
concern the response time of queries that accesses to two
related tables; the relationship between these tables has
been implemented according to the different solutions
shown below. The developer will make his choice
according to the characteristics of queries he wants to
perform and the expected performances.

We note that the set of solutions proposed in this
section is not inclusive; more marginal solutions may be
considered.
To Cassandra physical model:
R1: each database DB is transformed into a keyspace KS,
where KS.N = DB.N.
R2: each table t DB is transformed into a columns-

family f KS, where f.N = t.N, .N =
.N.

R3: each attribute t.A is transformed into a column
cl, where cl.N = .N, cl.Ty = .Ty, and added to the
column list of its transformed container f such as cl
f.Cl.

R4: As Cassandra does not support imbrication; the only
solution we can use to express relationships between
columns-families consists in using reference columns. A
reference column is a monovalued or multivalued column
in one columns-family whose values must have matching
values in the primary key of another columns-family; we
note that this constraint is not automatically managed by
the system Cassandra; it remains the responsibility of the
user to check it.

For each relationship r between two tables and ,
three solutions could be considered:
Solution 1: r is transformed into a reference column cl
referencing (the columns-family representing),

where cl.N = (.N)_Ref and cl.Ty = .Ty,
and then added to the columns list of (the columns-
family representing) such as cl .Cl. While
instantiating , the value of the reference column cl will
correspond to one or many values in the primary key of

.
Solution 2: r is transformed into a reference column cl
referencing (the columns-family representing),

where cl.N = (.N)_Ref et cl.Ty = .Ty,
and then added to the columns list of (the columns-
family representing) such as cl .Cl. While
instantiating , the value of the reference column cl will
correspond to one or many values in the primary key
of .
Solution 3: r is transformed into a new columns-family f
composed of two reference columns referencing the
columns-families and representing the related tables

 and , where f.N = r.N, f.Cl = { }, .N =

(.N)_Ref, .Ty = .Ty, .N =

(.N)_Ref and .Ty = .Ty.
A reference column can either be monovalued or

multivalued. Table 1 indicates the type of the reference
column according to the relationship cardinalities and the
transformation solution used.

TABLE I. DESCRIPTIVE TABLE OF REFERENCE COLUMN TYPES

Relationship Solution Reference

column type

r =

(N,{(,*),(,1)})

Solution 1 Monovalued

Solution 2 Multivalued

Solution 3 Monovalued

r =

(N,{(,1),(,1)})

Solution 1 Monovalued

Solution 2 Monovalued

Solution 3 Monovalued

r =

(N,{(,*),(,*)})

Solution 1 Multivalued

Solution 2 Multivalued

Solution 3 Monovalued

To MongoDB physical model:
R1: each database DB is transformed into a MongoDB

database , where .N = DB.N.
R2: each table t DB is transformed into a collection cll

 , where cll.N = t.N et .N = .N.
R3: each attribute t.A is transformed into an atomic
field , where .N = .N, .Ty = .Ty, and added to

the field list of its transformed container cll such as fl

cll. .
R4: relationships in MongoDB could be transformed by
using reference fields or embedding. A reference field is
a monovalued or multivalued field in one collection
whose values must have matching values in the Id of
another collection; checking this constraint remains the
responsibility of the user.

For each relationship r between two tables and ,
five solutions could be considered:
Solution 1: r is transformed into a reference field fl
referencing (the collection representing), where

fl.N = (.N)_Ref and fl.Ty = .Ty, and then added
to the fields list of (the collection representing)

such as fl . .
Solution 2: r is transformed into a reference field fl
referencing (the collection representing), where

fl.N = (.N)_Ref and fl.Ty = .Ty, and added to
the field list of (the collection representing) such

as fl . .
Solution 3: r is transformed by embedding the collection

 representing in the collection representing ,

where .
Solution 4: r is transformed by embedding the collection

 representing in the collection representing ,

where .
Solution 5: r is transformed into a new collection cll,
where cll.N = r.N, cll.Fl = { }, .N = (.N)_Ref,

.Ty = .Ty, .N = (.N)_Ref and .Ty =

.Ty, where and are the collections
representing and .

Each reference field used in Solution 1, 2 and 5 can
either be monovalued or multivalued. Table 2 indicates
the type of the reference field according to the
relationship cardinalities and the transformation solution
used.

TABLE II. DESCRIPTIVE TABLE OF REFERENCE FIELD TYPES

Relationship Solution Reference field

type

r =

(N,{(,*),(,1)})

Solution 1 Monovalued

Solution 2 Multivalued

Solution 5 Monovalued

r =

(N,{(,1),(,1)})

Solution 1 Monovalued

Solution 2 Monovalued

Solution 5 Monovalued

r =

(N,{(,*),(,*)})

Solution 1 Multivalued

Solution 2 Multivalued

Solution 5 Monovalued

To Neo4j physical model:

R1: each table t DB is transformed into a vertex v V,
where v.L = t.N, .N = .N.
R2: each attribute t.A is transformed into a property
pro, where pro.N = .N, pro.Ty = .Ty, and added to the
property list of its transformed container v such as pro
v.Pro.
R3: Each relationship r between two tables and is
transformed into an edge e, where e.L = r.N, relating two

vertex and , where and are the vertex
representing and .

IV. EXPERIMENTS

In this section we show how to implement the
UMLtoNoSQL process according to each transformation
solution proposed in section 3.2. Then we evaluate the
performances of each solution in order to assist developer
in choosing the most effective one.

A. Implementation

We have implemented UMLtoGenericModel and
GenericModeltoPhysicalModel transformations using a
set of tools provided by Eclipse Modeling Framework
(EMF). Each transformation is expressed as a sequence
of elementary steps that builds the resulting model step
by step from the source model. First, we create the source
and the target metamodels. Second, we build an instance
of the source metamodel; for this, we use the standard-
based XML Metadata Interchange (XMI) format. Third,
we implement the transformation rules by means of the
Query / View / Transformation (QVT) language (the
OMG standard language for specifying model
transformations). Finnaly, we test the transformation by
running the QVT script; the result is provided in the form
of XMI file. Note that due to lack of space, we only
present excerpts from models and QVT scripts.

UMLtoGenericModel is the first transformation in
UMLtoNoSQL process. It transforms the input UML
class diagram (figure 4) into the proposed generic logical
model (figure 5). This model is conform to the generic
logical metamodel (figure 3) presented in Section 3.1.
This transformation is performed by means of the
transformation rules defined in section 3.1.3. An excerpt
from the QVT script is shown in Figure 6; the comments
in the script indicate the rules used.

GenericModeltoPhysicalModel is the second
transformation in UMLtoNoSQL process. It takes as
input the generic logical model generated by the previous
transformation (UMLtoGenericModel) and return as
output a NoSQL physical model. As presented in section
3.2, the generic logical model proposed in this paper does
not imply a specific system; several instances can be
generated from this model to target a specific NoSQL
system (Cassandra, MongoDB or Neo4j). Depending on
the target system functionalities, relationships of the
logical model could be converted into different forms.
We have proposed different solutions to transform these
relationships under Cassandra and MongoDB (3 solutions
for Cassandra and 5 for MongoDB). Lacks of place, we
only present two implementations of the generic logical
model. The first one was performed on Cassandra
according to solution 1 (figure 7) and the second one was
done within MongoDB according to solution 4 (figure 8).

 Figure 4. Source Model. Figure 5. Target Model.

Figure 6. UMLtoGenericModel Transformation

Figure 7. CassandraModel. Figure 8. MongoDBModel.

B. Evaluation

Once the NoSQL physical model (Cassandra or
MongoDB model) has been created according to each
proposed solution, an evaluation has to be performed to
study the impact that the choice of the solution used may
have on the execution time of queries. The graph-oriented
system Neo4j does not offer many solutions to implement
relationships; therefore, the developer does not need to
choose between several solutions.

We carry out the experimental assessment using a
cluster made up of 3 machines. Each machine has the
following specifications: Intel Core i5, 8GB RAM and
2TB disk. On the other hand, we have used data
generator tools to generate a dataset of about 1TB with

CSV format for Cassandra and JSON format for
MongoDB; these files are loaded into the systems using
shell commands.

We have written 6 queries; each query concerns two
tables and the relationship between them. The complexity
of these queries increases gradually; the simplest one
applies a filter to a table and returns attributes of the other
table; the most complex applies several filters and returns
attributes of the two related tables. We note that the
concepts “table” and “attribute” correspond respectively
to “columns-family” and “column” in Cassandra or
“collection” and “field” in MongoDB.

An excerpt from our experiment results is depicted in
Figure 9. For each query, we indicate the obtained
response time according to (1) the relationship
cardinalities and (2) the used transformation solution.

Figure 9. Experimental Results.

To implement a relationship under Cassandra or
MongoDB, the developer can use our experiment results
and choose the most suited solution according to the
following criteria: (1) The features of each query that
uses this relationship (number of filters, number of
attributes to return), (2) The time response and (3) How
frequently this query is used.

V. RELATED WORK

NoSQL systems have proven their efficiency in terms
of flexibility and handling Big Data. In the literature, a
number of researchers have proposed approaches for
transforming the multidimensional conceptual model to a
NoSQL model. For example, Dehdouh et al. [12] propose
three approaches to map a multidimensional model into a
logical model adapted to column-oriented NoSQL
systems. While this approach has the advantage to start
from the conceptual level, the proposed models are
Domain-Specific (Data Warehouses system). So they

modeltype UML uses "http://UMLClassDiagram.com";

modeltype COLM uses "http://GenericLogicalModel.com";

transformation TransformationUmlToColumnsOrientedModel

(in Source: UML, out Target: COLM);main()

{Source.rootObjects()[ClassDiagram]

 -> map toDataBase();}

-- Transforming Class Diagram to DataBase

mapping ClassDiagram::toDataBase():DataBase{name := self.name;

table:=self.classes -> map toClass();relationship:=self.links -> toRelationship();}

-- Transforming Class to Table

mapping UML ::Class::toClass():COLM::Table{name:=self.name;attributet:=

self.attributec -> map toAttribute();}

-- Transforming Attribute to Column

mapping UML ::Attribute::toAttribute():COLM::Attribute{name:=self.name;

typea:=self.typea -> map toType(); }

mapping UML ::Type::toType():COLM::Type{typea:=self.typea;}

mapping UML ::Link::toRelationship():COLM::RelationShip{name:=self.name;

li k dt bl self li k d l > map t Li k dT bl ()

consider fact, dimension, and typically one type of links
only.

Other studies [10] and [9] have investigated the
process of transforming relational databases into a
NoSQL model. Li [10] have proposed an approach for
transforming a relational database into HBase (column-
oriented system). Vajk et al. [9] defined a mapping from
a relational model to document-oriented model using
MongoDB. These works rely on the relational model that,
unlike UML class diagram, lacks of semantic richness,
especially through the several types of relationships that
exist between classes.

To the best of our knowledge, only few works have
presented approaches to implement UML conceptual
model into NoSQL systems. Li et al. [11] propose a
MDA-based process to transform UML class diagram
into column-oriented model specific to HBase. Starting
from the UML class diagram and HBase metamodels,
authors have proposed mapping rules between the
conceptual level and the physical one. Obviously, these
rules are applicable to HBase, only. Gwendal et al. [3]
describe the mapping between a UML conceptual model
and graph databases via an intermediate graph
metamodel. In this work, the transformation rules are
specific to graph databases used as a framework for
managing complex data with many connections.
Generally, this kind of NoSQL systems is used in social
networks where data are highly connected. Reagrding
this state of the art, [11] and [3] consider, each, a
single type of NoSQL systems (column-oriented in [11]
and graph-oriented in [3]). However, it makes more sense
to choose the target system according to the user’s needs.
For example, if processing operations requires access to
hierarchically structured data, the document-oriented
system proves to be the most adapted solution.

The main purpose of our work is to assist developers
in storing Big Data in NoSQL systems. For this, we have
proposed a new MDA-based approach that transforms a
UML conceptual model describing Big Data into several
NoSQL physical models. This automatic process allows
the developer to choose the system type (column,
document or graph) that suits the best with business rules
and technical constraints.

VI. DISCUSSION & FUTURE WORK

Big Data applications developers have to deal with
the question: how to store Big Data in NoSQL systems?
To address this problem, we have proposed the
UMLtoNoSQL approach, a MDA-based approach, to
implement UML conceptual models describing Big Data
in NoSQL systems. Our approach rely on a pivotal model
(the “Generic Logical Model” in the paper) designed for
NoSQL systems. Instances of this model can be
generated to target specific NoSQL system (Cassandra,
MongoDB, Neo4j, etc.).

In this approach, we have considered some
constraints such as data type and identifier uniqueness.
However, other constraints are required as context
restrictions to further refine the semantics of the UML
conceptual model elements. These constraints are defined
by well-formedness rules expressed using the Object
Constraint Language (OCL). It’s a widely accepted
standard allowing the specification of formal constraints

on conceptual models in a declarative way similar to
predicate logic [13].

Once the NoSQL physical model is created, another
process has to be performed to check the OCL constraints
defined in the conceptual model. Checking OCL
constraints at the physical level is a real challenge within
NoSQL systems since the vast majority of NoSQL
approaches lack any advanced mechanism for integrity
constraint checking. Considering this limitation, we plan
to complete and generalize the UMLtoNoSQL approach
by taking into account other more complex constraint.

VII. CONCLUSION

This paper is about an investigation on the
implementation of Big Data base within NoSQL systems.
We have proposed respectively, two transformations for
this purpose, UMLtoGenericModel and
GenericModeltoPhysicalModel, in order to generate a
physical model from a UML class diagram. Using MDA
formalism, we define rules to transform the conceptual
model to NoSQL systems automatically. Our contribution
illustrates an intermediate unified logical model between
UML conceptual model and NoSQL physical model. Our
logical model is compatible with column, document and
graph oriented systems. This model uses tables and
binary relationships that link them. The independence
between the three physical models is ensured.
Furthermore, we propose different solutions to transform
the binary relationships of the logical model under
Cassandra and MongoDB. Depending on the system
functionalities, the binary relationships could be
converted into different forms.

Our experimental work demonstrates an evaluation of
NoSQL physical model, Cassandra or MongoDB model,
according to each proposed solution. The developer can
then use our experimental results and choose the most
suited solution according to the criteria considered in the
paper.

REFERENCES

[1] A. Abello, “Big Data Design”. In DOLAP, 2015.

[2] Herrero, V., Abelló, A., & Romero, O. NOSQL Design for
Analytical Workloads: Variability Matters. In ER, 2016.

[3] D. Gwendal, S. Gerson, C. Jordi. “UMLtoGraphDB: Mapping
Conceptual Schemas to Graph Databases”. In ER, 2016.

[4] J. Hutchinson, M.Rouncefield, and J.Whittle. "Model-driven
engineering practices in industry". In ICSE, 2011.

[5] J. .Bézivin and O. Gerbé. "Towards a Precise Definition of the
OMG/MDA Framework". In ASE, 2001.

[6] D.Abadi , S.Madden , N.Hachem, "Column-stores vs. row-stores".
In international conference on Management of data, 2008.

[7] http://www.omg.org/spec/UML/2.5/

[8] A. Angadi, Ak. Angadi, Karuna. Gull. “Growth of New Databases
& Analysis of NOSQL Datastores”. In IJARCSSE. 2013.

[9] T. Vajk, P. Feher, K. Fekete, H. Charaf. “Denormalizing data into
schema-free databases”. In CogInfoCom, 2013.

[10] C. Li. "Transforming relational database into HBase: A case
study". In ICSESS, 2010.

[11] Yan Li, Ping Gu. "Transforming UML Class Diagrams into HBase
Based on Meta-model. Information Science". In ISEEE, 2014

[12] Dehdouh, K., Bentayeb, F., Boussaid, O., Kabachi, N. Using the
column oriented model for implementing big data warehouses. In
PDPTA, 2015.

[13] http://www.omg.org/spec/OCL/2.4/

