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Abstract—Volume, Variety and Velocity are the three 

dimensions that have definitely changed the tools we need to 

store and process Big Data effectively, giving rise to NoSQL 

systems for faster data access, better scalability and higher 

flexibility. While NoSQL systems have proven their 

efficiency to handle Big Data, it is still an unsolved problem 

how the automatic storage of Big Data in NoSQL systems 

could be done. One solution for addressing this problem is 

to model Big Data, and then define mapping rules towards 

the physical level. This paper proposes an automatic MDA-

based approach that translates conceptual models expressed 

using the Unified Modeling Language (UML) into NoSQL 

physical models. Our approach rely on an intermediate 

logical model compatible with column, document and graph 

oriented systems which allows to choose the system type that 

suits the best with business rules and technical constraints.  

Keywords-UML conceptual model; NoSQL; Big Data 

storage; MDA; Models Transformation 

I. CONTEXT AND RESEARCH PROBLEM

Big data have received a great deal of attention in 
recent years. Not only the amount of data is on a 
completely different level than before, but also we have 
different type of data including factors such as format, 
structure, and sources. In addition, the speed at which 
these data must be collected and analyzed is increasing. 
This has definitely changed the tools we need to benefit 
from Big Data, giving rise to new kinds of data 
management tools. NoSQL systems are a widely 
accepted tool able to support larger volumes of data by 
providing faster data access, better scalability and higher 
flexibility [16]. 

The lack of a model when creating a database is a key 
feature in NoSQL systems. In a table, attributes names 
and types are specified as and when the row is entered 
[8]. Unlike relational systems, where the model must be 
defined when creating the table, the schema less appears 
in NoSQL systems. This property offers undeniable 
flexibility that facilitates the evolution of models in 
NoSQL systems; but, it concerns exclusively the physical 
level (implementation) of a database [2]. A conceptual 
model is still required to define how data are stored and 
related in the database [3]. It provides a high level of 
abstraction and a semantic knowledge element close to 
human logic, which guarantees efficient data 
management [1]. The Unified Modeling Language 
(UML) has gained much attention in this area [1]. 

While NoSQL systems have proven their efficiency to 
handle Big Data, it is still an unsolved problem how the 
automatic storage of Big Data in NoSQL systems could 
be done. In our view, it is important to have a precise and 
automatic approach that helps and assists developer in the 
Big Database implementation task within NoSQL 
systems. One solution for addressing this problem is to 
model Big Data, and then define mapping rules towards 
the physical level. As discussed in the related work (see 
section 5), there are only few solutions that focus on 
mapping UML conceptual models into NoSQL physical 
models.  

To overcome this situation, we propose the 
UMLtoNoSQL approach that automatically translates 
conceptual models expressed using the Unified Modeling 
Language (UML) into several NoSQL physical models. 
This approach is based on the Model Driven Architecture 
(MDA) especially known as a framework for models 
automatic transformations and allows the developer to 
choose the system type (column, document or graph) that 
suits the best with business rules and technical 
constraints. 

The rest of the paper is structured as follows: Section 
2 motivates our work using a case study in the healthcare 
field. Section 3 introduces our approach; two 
transformations processes are presented in this section, 
the first one creates a NoSQL generic model starting 
from a UML conceptual model, and the second one 
generates NoSQL physical models from this generic 
model; Section 4 details our experiments; Section 5 
reviews previous work on models transformation; Section 
6 provides a discussion on our approach and announces 
future work. Finally, Section 7 concludes the paper. 

II. ILLUSTRATIVE EXAMPLE

To motivate our work and illustrate the different steps 
of our approach, we introduce in this section an example 
of Big Data application in the healthcare filed. This 
application concerns international scientific programs for 
monitoring patients suffering from serious diseases. The 
main goal of this program is (1) to collect data about 
diseases development over time, (2) to study interactions 
between different diseases and (3) to evaluate the short 
and medium-term effects of their treatments. The medical 
program can last up to 3 years. 
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Data collected from establishments involved in this 
kind of program have the features of Big Data (the 3 V): 
Volume: the amount of data collected from all the 

establishments in three years can reach several terabytes.  

Variety: data created while monitoring patients come in 

different types; it could  be (1) structured as the  patient's 

vital signs (respiratory rate, blood pressure, etc.), (2) 

semi-structured document such as the package leaflets of 

medicinal products, (3) unstructured such as consultation 

summaries, paper prescriptions and radiology reports.  

Velocity: some data are produced in continuous way by 

sensors; it needs a [near] real time process because it 

could be integrated into a time-sensitive processes (for 

example, some measurements, like temperature, require 

an emergency medical treatment if they cross a given 

threshold). 
This is a typical example in which the use of a 

NoSQL system is suitable. As mentioned. This kind of 
systems operate on schema less data model enabling 
users to quickly and easily incorporate new data into their 
applications without rewriting tables. Nevertheless, there 
is still a need for a semantic model to know how data are 
structured and related in the database; this is particularly 
necessary to write declarative queries where tables and 
columns names are specified.  

UML is widely accepted as a standard modelling 
language for describing complex data. In the medical 
application, briefly presented above, the database 
contains structured data, data of various types and 
formats (explanatory texts, medical records, x-rays, etc.), 
and big tables (records of variables produced by sensors). 
Therefore, we choose the UML class diagram to describe 
the medical data. 

III. CONTRIBUTION

Our purpose in this paper is to assist developers in 
storing Big Data in NoSQL systems. For this, we propose 
the UMLtoNoSQL approach that automatically 
transforms a UML conceptual model describing Big Data 
into a NoSQL physical model. 

In our approach, we introduce a logical level between 

conceptual (business description) and physical (technical  
description) levels in which a generic logical model is 
developed. This logical model exhibits a sufficient degree 
of independence so as to enable its mapping to one or 
more NoSQL platforms. Developers will benefit from it 
in two ways: (1) it describes data according to the 
common features of NoSQL models (column, document 
and graph), which allow it’s mapping on several 
platforms. (2) it abstracts out technical details of NoSQL 
systems, this mean that the logical level remains stable, 
even though the NoSQL system evolves over time. In this 
case, it would be enough to evolve the physical model, 
and of course adapt the transformation rules; this 
simplifies the transformation process and saves time for 
developers. 

To formalize and automate UMLtoNoSQL process, 
we use the Model Driven Architecture (MDA) proposed 
by the OMG [4]. One of the main aims of MDA is to 
separate the functional specification of a system from the 
details of its implementation in a specific platform. This 
architecture defines a hierarchy of models from three 
points of view: Computation Independent Model (CIM), 
Platform Independent Model (PIM), and Platform 
Specific Model (PSM) [5]. Among this proposed models, 
we use:   

UMLtoGenericModel (1) is the first transformation 
(section 3.1) in UMLtoNoSQL process. It is in charge of 
converting the input UML class diagram (conceptual 
PIM) into the generic logical model (2) conforming to the 
generic logical metamodel proposed in Section 3.1.2; this 
metamodel describes a data structure compatible with the 
three types of NoSQL systems. 
GenericModeltoPhysicalModel (3) is the second 
transformation (section 3.2) in UMLtoNoSQL process. It 
is in charge of transforming the generic logical model 
into NoSQL physical models (PSMs) (4).   

We note that UMLtoNoSQL process generates 
several NoSQL physical models from a UML class 
diagram. In order to do this, it’s necessary to register, for 
each physical model, its specific parameters 
(transformation rules). To illustrate our work, we have 
taken as example three physical models that correspond 

Figure 1. Overview of UMLtoNoSQL process. 



to: Cassandra, MongoDB and Neo4j systems. If the 
developer chooses to use another system, the process 
must be completed by adding new parameters specific to 
this system. 

A. UMLtoGenericModel Transformation

In this section we present the UMLtoGenericModel
transformation, which is the initial step in our approach 
presented in Figure 1. We first define the source (UML 
Class Diagram) and the target (Generic Logical Model), 
and then we focus on the transformation itself. 

Source: A Class Diagram (CD) is defined as a tuple 
(N, C, L), where: 
N is the class diagram name,  
C is a set of classes. Classes are composed from 
structural and behavioral constituents; in this paper, we 
consider only the structural part. Since the operations are 
linked to the behavior, we will not take them into 
account. The schema of each class c C is a tuple (N, A,

), where:

• c.N is the class name.

• c.A = { } is a set of q attributes. The

schema of each attribute   A is a pair (N,C)
where “ .N” is the attribute name and “ .C”
the attribute type; C can be a predefined class, i.e.
a standard data type (String, Integer, Date ...) or a
business class (class defined by user).

• c.  is a special attribute of c; it has a
name .N and a type called “Oid”. In this
paper, an attribute whose type is “Oid” represents
a unique object identifier, i.e. an attribute whose
value distinguishes an object from all other
objects of the same class.

L is a set of links. Each link l between n classes, with 

n>=2, is defined as a tuple (N, Ty, ), where:

• l.N is the link name.

• l.Ty is the link type. In this paper, we will only
consider the three main types of links between
classes: Association, Composition and
Generalization.

• l.  = { } is a set of n pairs. i 

{1,..,n},  = (c, ), where .c is a linked

class and .  is the cardinality placed next to

c. Note that .  can contain a null value if no
cardinality is indicated next to c (like in
generalization link). 

Class diagram metamodel is shown in Figure 2; this 
metamodel is adapted from the one proposed by the 
OMG [7].   

Target: The target of UMLtoGenericModel 
transformation corresponds to a generic logical model 
that describes data according to the common features of 
the three types of NoSQL systems: column-oriented, 
document-oriented and graph-oriented. In the generic 
logical model, a DataBase (DB) is defined as a tuple (N, 
T, R), where:    
N is the database name,  

T is a set of tables. The schema of each table t T is a

tuple (N, A, ), where:

• t.N is the table name.

• t.A = { } is a set of q attributes that will

be used to define rows of t; each row can have a

variable number of attributes. The schema of 
each attribute   A is a pair (N,Ty) where
“ .N” is the attribute name and “ .Ty” the
attribute type. 

• t.  is a special attribute of t; it has a name
.N and a type called “Rid”. In this paper,

an attribute whose type is “Rid” represents a
unique row identifier, i.e. an attribute whose
value distinguishes a row from all other rows of
the same table.

R is a set of binary relationships. In the generic logical 

model there are only binary relationships between tables. 

Each relationship r R between  and  is defined as a

tuple (N, ), where:

• r.N is the relationship name.

• r.  = { } is a set of two pairs. i 
{1,2},  = (t, ), where .t is a related table
and .  is the cardinality placed next to t.

Metamodel of the proposed generic logical model is 
shown in Figure 3. Note that the attribute value may be 
either atomic or complex (set of attributes). We represent 
this by using the XOR constraint (UML predefined 
constraint).  

Figure 2. Source Metamodel. 

Figure 3. Target Metamodel. 

{XOR}



Transformation Rules:  
R1: each class diagram CD is transformed into a database 
DB, where DB.N = CD.N. 
R2: each class c  C is transformed into a table t  DB,
where t.N = c.N, .N = .N.
R3: each attribute   c.A is transformed into an
attribute , where .N = .N, .Ty = .C, and added
to the attribute list of its transformed container t such as 

  t.A.
R4: each binary link l  L (regardless of its type:
Association, Composition or Generalization) between the 
classes  and  is transformed into a relationship r  R
between the tables and  representing  and ,
where r.N = l.N, r.  = {( , ),( , )},  and

 are the cardinality placed respectively next to  and
.

Example: 
As an example, consider the classes “Prescriptions” 

and “Protocols”, and the link “Update”. Applying the 
transformation rules R2 and R3 generates the tables “T-
Prescriptions” and “T-Protocols”. As soon as R4 applies, 
the appropriate transformation is made, and the link 
“Update” is transformed into a relationship “R-Update” 
as follow: 

R5: each link l  L between n classes { } (n>=3)

is transformed into (1) a new table , where .N = l.N

and .A = , and (2) n relationships { },  i 

{1,..,n}  links  to another table  representing a related

class , where .N = ( .N)_( .N) and .  = {( ,
null), ( , null)}.

Example:  
In the example shown below, the n-ary link “Consult” 

that relates the classes: “Patients”, “Doctors” and “Dates” 
is transformed by applying R5 into: (1) a new table “T-
Consult” that does not contain attributes and (2) three 
relationships: “R-Consult_Patients”, “R-
Consult_Doctors” and “R-Consult_Dates” that relate “T-
Consult” respectively to “T-Patients”, “T-Doctors” and 
“T-Dates”.We note that the tables “T-Patients”, “T-
Doctors” and “T-Dates” were created by applying R2 and 
R3. 

R6: each association class between n classes
{ } (n>=2) is transformed like a link between
multiple classes (R5) using (1) a new table , where

.N = l.N, and (2) n relationships { },  i 
{1,..,n}  links  to another table  representing a
related class , where .N = ( .N)_( .N) and .  =
{( , null), ( , null)}. Like any other table,  contain
also a set of attributes A, where .A = .A.

Example:  
The association class “Category” that links the 

classes: “Patients” and “Antecedents” is transformed by 
applying R6 into: (1) a new table “T-Category” that 
contain the attribute “category” and (2) two relationships: 
“R-Category_Patients” and “R-Category_Antecedents” 
that relate “T-Category” respectively to “T-Patients” and 
“T-Antecedents”. 

These transformation rules have also been specified 
with QVT (Query / View / Transformation), which is a 
standard defined by OMG for expressing models 
transformation. An excerpt from QVT rules is shown in 
Figure 6. 

B. GenericModeltoPhysicalModel Transformation

In this section we present the 
GenericModeltoPhysicalModel transformation, which is 
the second step in our approach UMLtoNoSQL (figure 
1). It is in charge of creating NoSQL physical models 
from the proposed generic logical model. 

Source: The source of 
GenericModeltoPhysicalModel transformation is the 
target of the previous UMLtoGenericModel 
transformation. 

Target: To illustrate our approach, we have chosen: 
Cassandra (column-oriented), MongoDB (documents-
oriented) and Neo4j (graph-oriented); three well known 
NoSQL systems.  

In Cassandra physical model, KeySpace (KS) is the 
top-level container that owns all the elements. It’s 
defined as a tuple (N, F), where:    
N is the keyspace name,  

F is a set of columns-families. The schema of each 

columns family f F is a tuple (N, Cl, ),

where:     

• f.N is the columns-family name,

• f.Cl = { } is a set of q columns that will

be used to define rows of f; each row can have a
variable number of columns. The schema of each
column cl  Cl is a pair (N,Ty) where “cl.N” is
the column name and “cl.Ty” the column type.

• f.  is a special column of f; it has a

name .N and a type 

.Ty (standard data type). 

 identifies uniquely each row of f.



In MongoDB physical model, DataBase ( ) is
the top-level container that owns all the elements. It’s 
defined as a tuple (N, Cll), where:    
N is the database name,   

Cll is a set of collections. The schema of each collection 

cll Cll is a tuple (N, Fl, ), where:

• cll.N is the collection name,

• cll.Fl =   is a set of atomic and complex
fields that will be used to define rows, called
documents, of Cll. Each document can have a
variable number of fields. The schema of an

atomic field    is a tuple (N,Ty) where
“ .N” is the field name and “ .Ty” is the field

type. The schema of a complex field    is
also a tuple (N, Fl’) where .N is the field

name and .Fl’ is a set of fields where Fl’⊂ Fl.

• cll.  is a special field of cll; it has a name

.N and a type .Ty (standard data

type).  identifies uniquely each document of
cll.

In Neo4j physical model, Graph (GR) is the top-level 
container that owns all the elements. It’s defined as a 
tuple (V, E), where:    
V is a set of vertex. The schema of each vertex v V is a
tuple (L, Pro, ), where:

• v.L is the vertex label,

• v.Pro = { } is a set of q properties.

The schema of each property pro  Pro is a pair
(N,Ty), where “pro.N” is the property name and
“pro.Ty” the property type.

• v.  is a special property of v; it has a name
.N, a type .Ty and the constraint “Is

Unique ”. It identifies uniquely v in the graph.

E is a set of edges. The schema of each edge e E is a

tuple (L, , ), where:

• e.L is the edge label,

• e.  and e.  are the vertexes related by e.
Transformation Rules: For some NoSQL systems,

many solutions can ensure the implementation of the 
generic logical model. In order to choose the most 
suitable solution, the developer can use the performance 
measurement shown in Section 4.2. These measurements 
concern the response time of queries that accesses to two 
related tables; the relationship between these tables has 
been implemented according to the different solutions 
shown below. The developer will make his choice 
according to the characteristics of queries he wants to 
perform and the expected performances. 

We note that the set of solutions proposed in this 
section is not inclusive; more marginal solutions may be 
considered. 
To Cassandra physical model:  
R1: each database DB is transformed into a keyspace KS, 
where KS.N = DB.N. 
R2: each table t  DB is transformed into a columns-

family f  KS, where f.N = t.N, .N =
.N.

R3: each attribute   t.A is transformed into a column
cl, where cl.N = .N, cl.Ty = .Ty, and added to the
column list of its transformed container f such as cl 
f.Cl.

R4: As Cassandra does not support imbrication; the only 
solution we can use to express relationships between 
columns-families consists in using reference columns. A 
reference column is a monovalued or multivalued column 
in one columns-family whose values must have matching 
values in the primary key of another columns-family; we 
note that this constraint is not automatically managed by 
the system Cassandra; it remains the responsibility of the 
user to check it.  

For each relationship r between two tables  and ,
three solutions could be considered:   
Solution 1: r is transformed into a reference column cl 
referencing  (the columns-family representing ),

where cl.N = ( .N)_Ref and cl.Ty = .Ty,
and then added to the columns list of  (the columns-
family representing ) such as cl  .Cl. While
instantiating , the value of the reference column cl will
correspond to one or many values in the primary key of 

.
Solution 2: r is transformed into a reference column cl 
referencing  (the columns-family representing ),

where cl.N = ( .N)_Ref et cl.Ty = .Ty,
and then added to the columns list of  (the columns-
family representing ) such as cl  .Cl. While
instantiating , the value of the reference column cl will
correspond to one or many values in the primary key 
of .
Solution 3: r is transformed into a new columns-family f 
composed of two reference columns referencing the 
columns-families  and representing the related tables

 and , where f.N = r.N, f.Cl = { }, .N =

( .N)_Ref, .Ty = .Ty, .N =

( .N)_Ref and .Ty = .Ty.
A reference column can either be monovalued or 

multivalued. Table 1 indicates the type of the reference 
column according to the relationship cardinalities and the 
transformation solution used. 

TABLE I. DESCRIPTIVE TABLE OF REFERENCE COLUMN TYPES 

Relationship Solution Reference 

column type 

r = 

(N,{( ,*),( ,1)}) 

Solution 1 Monovalued 

Solution 2 Multivalued 

Solution 3 Monovalued 

r = 

(N,{( ,1),( ,1)}) 

Solution 1 Monovalued 

Solution 2 Monovalued 

Solution 3 Monovalued 

r = 

(N,{( ,*),( ,*)})

Solution 1 Multivalued 

Solution 2 Multivalued 

Solution 3 Monovalued 

To MongoDB physical model:   
R1: each database DB is transformed into a MongoDB 

database , where .N = DB.N.
R2: each table t  DB is transformed into a collection cll

 , where cll.N = t.N et .N = .N.
R3: each attribute   t.A is transformed into an atomic
field , where .N = .N, .Ty = .Ty, and added to



the field list of its transformed container cll such as fl 

cll. .
R4: relationships in MongoDB could be transformed by 
using reference fields or embedding. A reference field is 
a monovalued or multivalued field in one collection 
whose values must have matching values in the Id of 
another collection; checking this constraint remains the 
responsibility of the user. 

For each relationship r between two tables  and ,
five solutions could be considered:  
Solution 1: r is transformed into a reference field fl 
referencing  (the collection representing ), where

fl.N = ( .N)_Ref and fl.Ty = .Ty, and then added
to the fields list of  (the collection representing )

such as fl  . .
Solution 2: r is transformed into a reference field fl 
referencing  (the collection representing ), where

fl.N = ( .N)_Ref and fl.Ty = .Ty, and added to
the field list of  (the collection representing ) such

as fl  . .
Solution 3: r is transformed by embedding the collection 

 representing  in the collection  representing ,

where   .
Solution 4: r is transformed by embedding the collection 

 representing  in the collection  representing ,

where   .
Solution 5: r is transformed into a new collection cll, 
where cll.N = r.N, cll.Fl = { }, .N = ( .N)_Ref,

.Ty = .Ty, .N = ( .N)_Ref and .Ty =

.Ty, where  and are the collections
representing  and .

Each reference field used in Solution 1, 2 and 5 can 
either be monovalued or multivalued. Table 2 indicates 
the type of the reference field according to the 
relationship cardinalities and the transformation solution 
used.  

TABLE II. DESCRIPTIVE TABLE OF REFERENCE FIELD TYPES 

Relationship Solution Reference field 

type 

r = 

(N,{( ,*),( ,1)})

Solution 1 Monovalued 

Solution 2 Multivalued 

Solution 5 Monovalued 

r = 

(N,{( ,1),( ,1)})

Solution 1 Monovalued 

Solution 2 Monovalued 

Solution 5 Monovalued 

r = 

(N,{( ,*),( ,*)})

Solution 1 Multivalued 

Solution 2 Multivalued 

Solution 5 Monovalued 

To Neo4j physical model: 

R1: each table t  DB is transformed into a vertex v  V,
where v.L = t.N, .N = .N.
R2: each attribute   t.A is transformed into a property
pro, where pro.N = .N, pro.Ty = .Ty, and added to the
property list of its transformed container v such as pro 
v.Pro.
R3: Each relationship r between two tables  and is
transformed into an edge e, where e.L = r.N, relating two 

vertex  and , where  and are the vertex
representing  and .

IV. EXPERIMENTS

In this section we show how to implement the 
UMLtoNoSQL process according to each transformation 
solution proposed in section 3.2. Then we evaluate the 
performances of each solution in order to assist developer 
in choosing the most effective one.  

A. Implementation

We have implemented UMLtoGenericModel and
GenericModeltoPhysicalModel transformations using a 
set of tools provided by Eclipse Modeling Framework 
(EMF). Each transformation is expressed as a sequence 
of elementary steps that builds the resulting model step 
by step from the source model. First, we create the source 
and the target metamodels. Second, we build an instance 
of the source metamodel; for this, we use the standard-
based XML Metadata Interchange (XMI) format. Third, 
we implement the transformation rules by means of the 
Query / View / Transformation (QVT) language (the 
OMG standard language for specifying model 
transformations). Finnaly, we test the transformation by 
running the QVT script; the result is provided in the form 
of XMI file. Note that due to lack of space, we only 
present excerpts from models and QVT scripts. 

UMLtoGenericModel is the first transformation in 
UMLtoNoSQL process. It transforms the input UML 
class diagram (figure 4) into the proposed generic logical 
model (figure 5). This model is conform to the generic 
logical metamodel (figure 3) presented in Section 3.1. 
This transformation is performed by means of the 
transformation rules defined in section 3.1.3. An excerpt 
from the QVT script is shown in Figure 6; the comments 
in the script indicate the rules used. 

GenericModeltoPhysicalModel is the second 
transformation in UMLtoNoSQL process. It takes as 
input the generic logical model generated by the previous 
transformation (UMLtoGenericModel) and return as 
output a NoSQL physical model. As presented in section 
3.2, the generic logical model proposed in this paper does 
not imply a specific system; several instances can be 
generated from this model to target a specific NoSQL 
system (Cassandra, MongoDB or Neo4j). Depending on 
the target system functionalities, relationships of the 
logical model could be converted into different forms. 
We have proposed different solutions to transform these 
relationships under Cassandra and MongoDB (3 solutions 
for Cassandra and 5 for MongoDB). Lacks of place, we 
only present two implementations of the generic logical 
model. The first one was performed on Cassandra 
according to solution 1 (figure 7) and the second one was 
done within MongoDB according to solution 4 (figure 8).  



  Figure 4. Source Model.    Figure 5. Target Model. 

Figure 6. UMLtoGenericModel Transformation 

Figure 7. CassandraModel.    Figure 8. MongoDBModel. 

B. Evaluation

Once the NoSQL physical model (Cassandra or
MongoDB model) has been created according to each 
proposed solution, an evaluation has to be performed to 
study the impact that the choice of the solution used may 
have on the execution time of queries. The graph-oriented 
system Neo4j does not offer many solutions to implement 
relationships; therefore, the developer does not need to 
choose between several solutions.  

We carry out the experimental assessment using a 
cluster made up of 3 machines. Each machine has the 
following specifications: Intel Core i5, 8GB RAM and 
2TB disk. On the other hand, we have used data 
generator tools to generate a dataset of about 1TB with 

CSV format for Cassandra and JSON format for 
MongoDB; these files are loaded into the systems using 
shell commands.  

We have written 6 queries; each query concerns two 
tables and the relationship between them. The complexity 
of these queries increases gradually; the simplest one 
applies a filter to a table and returns attributes of the other 
table; the most complex applies several filters and returns 
attributes of the two related tables. We note that the 
concepts “table” and “attribute” correspond respectively 
to “columns-family” and “column” in Cassandra or 
“collection” and “field” in MongoDB.  

An excerpt from our experiment results is depicted in 
Figure 9. For each query, we indicate the obtained 
response time according to (1) the relationship 
cardinalities and (2) the used transformation solution. 

Figure 9. Experimental Results. 

To implement a relationship under Cassandra or 
MongoDB, the developer can use our experiment results 
and choose the most suited solution according to the 
following criteria: (1) The features of each query that 
uses this relationship (number of filters, number of 
attributes to return), (2) The time response and (3) How 
frequently this query is used. 

V. RELATED WORK 

NoSQL systems have proven their efficiency in terms 
of flexibility and handling Big Data. In the literature, a 
number of researchers have proposed approaches for 
transforming the multidimensional conceptual model to a 
NoSQL model. For example, Dehdouh et al. [12] propose 
three approaches to map a multidimensional model into a 
logical model adapted to column-oriented NoSQL 
systems. While this approach has the advantage to start 
from the conceptual level, the proposed models are 
Domain-Specific (Data Warehouses system). So they 

modeltype UML uses "http://UMLClassDiagram.com"; 

modeltype COLM uses "http://GenericLogicalModel.com"; 

transformation TransformationUmlToColumnsOrientedModel 

(in Source: UML, out Target: COLM);main() 

{Source.rootObjects()[ClassDiagram] 

 -> map toDataBase();} 

-- Transforming Class Diagram to DataBase 

mapping ClassDiagram::toDataBase():DataBase{name := self.name; 

table:=self.classes -> map toClass();relationship:=self.links -> toRelationship();}  

-- Transforming Class to Table 

mapping UML ::Class::toClass():COLM::Table{name:=self.name;attributet:= 

self.attributec -> map toAttribute();}  

-- Transforming Attribute to Column 

mapping UML ::Attribute::toAttribute():COLM::Attribute{name:=self.name; 

typea:=self.typea -> map toType(); } 

mapping UML ::Type::toType():COLM::Type{typea:=self.typea;} 

mapping UML ::Link::toRelationship():COLM::RelationShip{name:=self.name; 

li k dt bl self li k d l > map t Li k dT bl ()



consider fact, dimension, and typically one type of links 
only. 

Other studies [10] and [9] have investigated the 
process of transforming relational databases into a 
NoSQL model. Li [10] have proposed an approach for 
transforming a relational database into HBase (column-
oriented system). Vajk et al. [9] defined a mapping from 
a relational model to document-oriented model using 
MongoDB. These works rely on the relational model that, 
unlike UML class diagram, lacks of semantic richness, 
especially through the several types of relationships that 
exist between classes.   

To the best of our knowledge, only few works have 
presented approaches to implement UML conceptual 
model into NoSQL systems. Li et al. [11] propose a 
MDA-based process to transform UML class diagram 
into column-oriented model specific to HBase. Starting 
from the UML class diagram and HBase metamodels, 
authors have proposed mapping rules between the 
conceptual level and the physical one. Obviously, these 
rules are applicable to HBase, only. Gwendal et al. [3] 
describe the mapping between a UML conceptual model 
and graph databases via an intermediate graph 
metamodel. In this work, the transformation rules are 
specific to graph databases used as a framework for 
managing complex data with many connections. 
Generally, this kind of NoSQL systems is used in social 
networks where data are highly connected. Reagrding 
this state of the art, [11] and [3] consider, each, a 
single type of NoSQL systems (column-oriented in [11] 
and graph-oriented in [3]). However, it makes more sense 
to choose the target system according to the user’s needs. 
For example, if processing operations requires access to 
hierarchically structured data, the document-oriented 
system proves to be the most adapted solution.   

The main purpose of our work is to assist developers 
in storing Big Data in NoSQL systems. For this, we have 
proposed a new MDA-based approach that transforms a 
UML conceptual model describing Big Data into several 
NoSQL physical models. This automatic process allows 
the developer to choose the system type (column, 
document or graph) that suits the best with business rules 
and technical constraints.   

VI. DISCUSSION & FUTURE WORK

Big Data applications developers have to deal with 
the question: how to store Big Data in NoSQL systems? 
To address this problem, we have proposed the 
UMLtoNoSQL approach, a MDA-based approach, to 
implement UML conceptual models describing Big Data 
in NoSQL systems. Our approach rely on a pivotal model 
(the “Generic Logical Model” in the paper) designed for 
NoSQL systems. Instances of this model can be 
generated to target specific NoSQL system (Cassandra, 
MongoDB, Neo4j, etc.). 

In this approach, we have considered some 
constraints such as data type and identifier uniqueness. 
However, other constraints are required as context 
restrictions to further refine the semantics of the UML 
conceptual model elements. These constraints are defined 
by well-formedness rules expressed using the Object 
Constraint Language (OCL). It’s a widely accepted 
standard allowing the specification of formal constraints 

on conceptual models in a declarative way similar to 
predicate logic [13].   

Once the NoSQL physical model is created, another 
process has to be performed to check the OCL constraints 
defined in the conceptual model. Checking OCL 
constraints at the physical level is a real challenge within 
NoSQL systems since the vast majority of NoSQL 
approaches lack any advanced mechanism for integrity 
constraint checking. Considering this limitation, we plan 
to complete and generalize the UMLtoNoSQL approach 
by taking into account other more complex constraint. 

VII. CONCLUSION 

This paper is about an investigation on the 
implementation of Big Data base within NoSQL systems. 
We have proposed respectively, two transformations for 
this purpose, UMLtoGenericModel and 
GenericModeltoPhysicalModel, in order to generate a 
physical model from a UML class diagram. Using MDA 
formalism, we define rules to transform the conceptual 
model to NoSQL systems automatically. Our contribution 
illustrates an intermediate unified logical model between 
UML conceptual model and NoSQL physical model. Our 
logical model is compatible with column, document and 
graph oriented systems. This model uses tables and 
binary relationships that link them. The independence 
between the three physical models is ensured. 
Furthermore, we propose different solutions to transform 
the binary relationships of the logical model under 
Cassandra and MongoDB. Depending on the system 
functionalities, the binary relationships could be 
converted into different forms. 

Our experimental work demonstrates an evaluation of 
NoSQL physical model, Cassandra or MongoDB model, 
according to each proposed solution. The developer can 
then use our experimental results and choose the most 
suited solution according to the criteria considered in the 
paper. 
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