

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/19111

Official URL:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8081506

DOI : http://doi.org/10.23919/EUSIPCO.2017.8081506

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Pellegrini, Thomas Densely Connected
CNNs for Bird Audio Detection. (2017) In: 25th European Signal
and Image Processing Conference (EUSIPCO 2017), 28 August
2017 - 2 September 2017 (Kos island, Greece).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/163104714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract—Detecting bird sounds in audio recordings automat-
ically, if accurate enough, is expected to be of great help to the
research community working in bio- and ecoacoustics, interested
in monitoring biodiversity based on audio field recordings. To
estimate how accurate the state-of-the-art machine learning ap-
proaches are, the Bird Audio Detection challenge involving large
audio datasets was recently organized. In this paper, experiments
using several types of convolutional neural networks (i.e. standard
CNNs, residual nets and densely connected nets) are reported in
the framework of this challenge. DenseNets were the preferred
solution since they were the best performing and most compact
models, leading to a 88.22% area under the receiver operator
curve score on the test set of the challenge (ranked 3

rd/30)1.
Performance gains were obtained thank to data augmentation
through time and frequency shifting, model parameter averaging
during training and ensemble methods using the geometric mean.
On the contrary, the attempts to enlarge the training dataset
with samples of the test set with automatic predictions used as
pseudo-groundtruth labels consistently degraded performance.

I. INTRODUCTION

Automatic detection of animal vocalizations, such as singing

birds, besides being a scientific challenge in itself, can be

helpful for monitoring biodiversity. Researchers involved in

bioacoustics and/or the recent field named ecoacoustics [1]

gather ever-growing quantities of in-situ recordings that need

to be manually analyzed. Automatic tools that label the

recordings accurately are very much in demand to ease the

time-consuming task of listening to hours of them [2].

Bird sounds are a topic of intensive research given their

richness and variety, but also due to the fact that birds are

more easily detectable through the audio modality rather than

vision. Bird species’ identification have been the target of

several international evaluation campaigns such as LifeCLEF

(BirdCLEF), a yearly contest including bird species identi-

fication in in-situ audio recordings2. A variety of machine

learning techniques have been explored for this task. For a

complete survey, the reader may refer to [3], which also

describes the Bird Audio Detection (BAD) challenge in which

the work described in the present paper took place. The

winning solutions of last year BirdCLEF edition were based

on deep convolutional neural networks (CNNs) [4]. Indeed,

the success of deep learning (DL) and deep neural networks

(DNN) in many domains involving classification tasks, offers

new and appealing perspectives.

In the context of the BAD challenge, concerned with the

detection of bird sound in short duration recordings, the solu-

1Challenge solution source code available at https://github.com/topel/bird
audio detection challenge

2http://www.imageclef.org/

TABLE I
DATASET PARTITIONS GIVEN IN NUMBER OF FILES

Train Valid Test

Freefield1010 (FF) 6,152 384 1,154
Warblr (W) 6,800 500 700

Freefield1010 + Warblr (FF W 1) 12,952 884 1,854
Freefield1010 + Warblr (FF W 2) 14,806 884

Official test set 8,620

tion reported in this paper is based on CNNs, more specifically

on densely connected CNNs, also called denseNets [5]. The

paper is organized as follows. First, brief descriptions of the

BAD challenge task and dataset partitions are given, followed

by sections on features, models and experiments carried out

on the challenge data. Finally, Section VII is an attempt to

broaden the technical scope of the paper by describing the

generation of ”saliency maps”, used as a visualization tool

and a way to re-synthesize the original audio samples with

strengthened time-frequency blobs salient for the networks.

II. CHALLENGE OVERVIEW

The BAD challenge’s task was to design automatic systems

that, given a short audio recording, returns a binary decision

for the presence/absence of bird sound [3]. The participants

were provided with two large development corpus and had

to provide predictions of the presence of bird sound on the

8,620 files comprising an official held-out test set. Each team

could submit up to 20 predictions. The official performance

metric was the Area Under the Curve (AUC) score calculated

on the receiver operator curve (ROC). For each submission,

a preview estimate of a ROC-AUC score was returned to the

teams, calculated on a small subset of files. The final AUC

scores on the whole test set were given after the deadline of the

contest. Throughout the paper, we will report AUC scores, and

also global accuracy values (ACC), true positive and negative

rates (TPR, TNR).

III. DATA PARTITION

Three datasets recorded in situ in different places and

with different acoustic conditions were made available to the

challenge participants: two for development — Freefield1010

(FF) and Warblr (W) — and one for the final evaluation.

These datasets are comprised of 10-second 16-bit 44.1 kHz

audio recordings that were manually labeled with binary labels

indicating the presence/absence of bird sounds at file-level.

2

Densely Connected CNNs for Bird Audio Detection

Thomas Pellegrini

IRIT, Université de Toulouse, Toulouse, France

Email: thomas.pellegrini@irit.fr

Fig. 1. DenseNet architecture.

Manual labels were available for FF and W, with about 25%

of positive samples (files with bird sounds) for FF and 75%

in the case of WW. For more details about these data, the

reader may refer to the challenge Website3 and the challenge

description article [3].

Table I shows how the two development datasets were

randomly split into three subsets, in number of files. The

Train/Valid/Test proportions were respectively 0.8/0.05/0.15

for FF and 0.85/0.0625/0.0875 for W. Preliminary experiments

were carried out on each dataset separately and on the merge

subsets FF W 1. Then, the final models were trained on

FF W 2, in which the train and test subsets were merged.

IV. FEATURES

As input to the networks, 56 log-Mel triangular-shaped

filter-bank (F-BANK) coefficients were extracted every 50 ms

on 100 ms duration frames, with 50 Hz and 22050 Hz as

minimum and maximum extreme frequency values to compute

the Mel bands, respectively. Hence, for each 10 second file, a

200×56 matrix was extracted. This matrix is used as a single

input image fed to the networks.

Other types of features were tested: delta and delta-delta

added to the static F-BANK coefficients, 13 or 56 Mel-

Frequency Cepstral Coefficients, raw FFT coefficients (dimen-

sion: 430×512), fingerprints (dimension: 192×200), etc. All

these features were extracted with different resolutions, but in

the end the set of 56 static F-BANK features always performed

better.

Several pre-processing techniques were also tested, such as

global mean removal, mean and variance standardization, ZCA

whitening, but no gain and even sometimes performance de-

creases were observed compared to raw F-BANK features. In

particular, centering the data based on the average spectrogram

computed over the training set did not help.

V. MODELS

Several types of CNNs were tested: standard CNNs, residual

CNNs (resNets), and densely connected CNNs (denseNets).

If we denote the convolution operation of the ith layer by

a function Fi of the output of the preceding layer xi−1, the

output xi of the ith layer is given by the following equations

for the three model types:

• standard CNNs [6]: xi = Fi(xi−1)
• resNets [7]: xi = Fi(xi−1) + xi−1

• denseNets [5]: xi = Fi([x0, x1, . . . , xi−1])

3http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge/

In the literature, performance was shown to degrade when

adding too many layers in standard CNNs due to the increased

difficulty to train very deep CNNs [7]. ResNets were created to

build successful very deep models by modeling the residuals

of the input instead of the input itself. DenseNets are an

extension of resNets, in which the outputs of the preceding

convolution layers are concatenated rather than summed to the

current layer output, within so-called ”dense blocks” [5]. To

ensure shape consistency between the layers used in residual

or dense blocks, a stride of one and the convolution mode

’same’ were used. One advantage of denseNets lies in the

fact that they achieve comparable or even better performance

than resNets with orders of magnitude less parameters. Indeed,

in preliminary experiments, denseNets with 328K parameters

outperformed standard CNNs comprised of 1-2M parameters

and performed as well as resNets of 4M weights. For this rea-

son, denseNets were the preferred solution for the challenge.

Figure 1 shows the architecture details of the denseNets

used in this work. They are comprised of an initial convolution

layer (Conv) followed by three dense blocks of five batch-

normalization/ReLu/Conv layers each, each block followed by

a transition block comprised of 1×1-Conv-max-Pooling layers.

In the dense blocks, squared 3 × 3 convolution and 2 × 2
pooling filters were used. Decisions are taken after a global

mean-pooling layer and a dense output layer with a Softmax

non-linearity activation function. The total number of layers

and parameters are 74 and 328K, respectively. Theano [8] and

Lasagne were used to perform the experiments on two GPUs:

a TITAN X and a 1080 devices.

VI. EXPERIMENTS

A. Training setup

Preliminary experiments were carried out on each dataset

separately and then on the merged datasets as reported in Table

I. For instance, it appeared that FF contains samples more

difficult to classify than W. CNNs trained on FF gave an AUC

score of 91.6% on the FF Test subset, while the same kind of

models trained on W reached a 95.2% score on the W Test

set.

The FF and W subsets were then merged into the FF W 1

corpus as referred to in Table I, in order to optimize several

hyperparameters: the number of convolution layers, residual

and dense blocks, the filter sizes and number of feature maps,

the learning rate (LR) and its decay strategy, the mini-batch

size (10 samples), the number of training epochs (30 epochs),

the data augmentation methods (time and frequency randoms

shifts, described in the next Section), etc. In particular, LR was

Fig. 2. Left: training and valid losses (left y-axis), valid error and 1-AUC scores (right y-axis) as a function of the training epochs. Right: ROC curve on the
884-sample valid subset. The two figures were obtained with one of the best denseNet models.

TABLE II
COMPARISON BETWEEN DATA AUGMENTATION STRATEGIES

AUC(%) ACC(%) TNR(%) TPR(%)

no-augment 95.2±0.1 89.9±0.2 92.9±0.2 86.0±0.3
cropping 95.7±0.1 90.7±0.2 93.5±0.1 87.1±0.3
time-reversing 94.2±0.1 88.3±0.2 96.0±0.2 78.4±0.3
crop. + time-rev. 95.3±0.1 89.4±0.2 91.8±0.2 86.4±0.3

tuned through random search on a log-scale [9]. Parameter

updates were performed with Nesterov momentum updates

with a standard 0.9 momentum value optimizing a categorical

cross-entropy cost function. A binary cross-entropy objective,

although theoretically equivalent to its categorical counterpart

used in multiclass problems, led to slightly worse performance,

and so did a binary hinge cost function as well. Hence, we kept

two outputs in all the models. The best learning rate strategy

has been to divide by a factor of 2 the learning rate after the

first eight training epochs with a fixed LR of 0.019326.

Figure 2 illustrates training monitoring curves (loss on the

train and valid subsets, error rate and (1-AUC score) on the

valid subset as a function of the 30 total training epochs) and

the ROC curve calculated on the valid subset. A plateau is

reached after about 10 epochs as shown by the loss and error

curves on the valid subset. On the contrary, the loss curve on

the train set continues to decrease after 10 epochs showing

that slight overfitting still occur. A 95% AUC ROC score was

obtained on the valid subset, as shown in the right-hand side

of the figure.

Finally, the FF W 1 train and test subsets were merged into

FF W 2, totaling 14,806 files used to train the best models.

B. Data augmentation

Data augmentation refers to artificially enlarging the training

dataset using label-preserving transformations in order to

reduce overfitting. In image processing tasks, a very simple

and common form of data augmentation consists in generating

image reflections and image translations using zero-padding

and cropping, both transformations performed on-the-fly dur-

ing training only, which has the advantage of avoiding to store

the transformed images on disk [10]. In audio tasks, cropping

pixels in the spectrogram is equivalent to time and frequency

shifts, and a reflection or horizontal flip corresponds to revers-

ing the time axis. Both transformations were investigated in

this work.

In this work, cropping consisted in the following: 1) the

input images are zero-padded with 2 pixels at both extremities

of the time and frequency axes, 2) two integers to be used as

offset values in both dimensions are randomly drawn from

a uniform distribution with possible output values of 0, 1

and 2. Corresponding time and frequency shift values are

0 ms, 50 ms or 100 ms, and 0 Hz, 66.7 Hz or 133.4 Hz,

respectively. It should be noted that no tests were made to

optimize the upper limit of 2 pixel shifts. Reflection (time-

reversing), when activated, was randomly applied on-the-fly

during training with a 0.5 probability drawn for each new

incoming training sample.

Results on the FF W 1 test subset are given in Table II:

without data augmentation, with cropping only, with time-

reversing only and with both cropping and time-reversing. A

first model was trained on the FF W 1 train subset with no

data augmentation and the randomly initialized initial model

was saved to be used in the next data augmentation conditions.

This ensures model initialization has no impact on the result

comparison between the data augmentation strategies. There is

still some randomness due to the random shuffle of the training

samples at each epoch. The 95% confidence intervals given

in the table were estimated nonparametrically by bootstrap

sampling with a hundred samples of size 1000 data points.

As shown in the table, cropping only is best, with 95.7%

AUC and 90.7% ACC scores compared to 95.2% AUC and

89.9% ACC obtained without data augmentation. Interestingly,

time-reversing degrades performance by 1.0% and 1.6% ab-

solute in both AUC and ACC scores, compared to not using

data augmentation. Time-reversing seems to significantly help

in the detection of the negative class (no-birds, TNR: 96.0%,

+3.1%) but degrades even more the detection of the positive

class (birds, TPR: 78.4%, -7.6%). This may be explained

by the fact that the temporal structure of bird singing is

Fig. 3. Probability normalized histograms for a denseNet trained on FF W 2
(baseline) and one trained with FF W 2 enlarged with test predictions
(pseudo-labels).

meaningful for the model and randomly reverting time loses

this structure.

C. Experiments on the official test set

In this section, comparisons between interesting submis-

sions are explained, and the strategies that led to the final

score of 88.22% (rank: 3rd/30 participants) are described. It is

interesting to observe that performance consistently decreased

of about 0.5% when comparing the preview and the final

scores. For instance, the best submission scored 88.79% and

88.22% on the preview and final test sets, respectively. This

drop in performance is a sign of lack of generalization power

of the models together with a possible effect of the small

size of the preview test subset in number of samples. In the

remainder, only the final scores are reported.

All the submissions were based on denseNets, except one

based on a CNN. The CNN submission led to the worst AUC

score of 85.46%, far from the 87.41% score obtained with a

baseline DenseNet. Using as much training data as possible

proved to be useful: training a denseNet on FF only gave

a 86.29% to be compared to a 87.41% score, when using

FF W 2 for training.

The following ideas led to improvements over the denseNet

87.41% baseline:

• Fine-tuning on adversarial training samples,

• Model parameter averaging over the highest scoring train-

ing epochs,

• Ensemble probability averaging.

A non-negligible proportion of training files were mis-

classified by baseline denseNets: about 1200 files correspond-

ing to 8% of the 14.8K training files. This was due to the

fact that some files had been incorrectly labeled by the human

annotators (manual annotation was crowdsourced), but also to

the fact that some files were more difficult to classify than

others, due to noisy conditions, predominance of insect or

water sounds, etc. Thus, one idea has been to fine-tune models

on these difficult training samples. Using the same learning

rate as the one used with the whole training dataset proved

to be too harsh but a learning rate 3-order magnitude smaller

than the original one led to small improvements. Only 10 fine-

tuning training epochs on the 1,200 files were performed and

the accuracy on these files increased from 0% to about 40%.

Although statistically not significant, a slight gain of about

0.1% absolute in the final test scores was obtained with this

fine-tuning strategy.

During training, the usual way to select the final model

parameters is done by saving the model that achieved the

best performance on a valid subset. This could be called the

”single-best-epoch” models. Another common idea consists of

averaging the model parameters over several training epochs.

This is known to be usually helpful as it can be seen as a

kind of parameter regularization. These models are expected

to benefit from a larger generalization power. In our case, we

observed that even if the global score on the Valid subset

increases during training, there are fluctuations in the true pos-

itive and true negative rates between two successive epochs, so

that parameter averaging was expected to be beneficial. Indeed,

parameter averaging over the best epochs brought about 0.2-

0.3% absolute gains compared to using ”single-best-epoch”

models. A minimum AUC threshold of 94% on the valid subset

was used to select the best training epochs. In general, about

20 epochs out of the 30 training epochs usually verified this

criterion.

Finally, the third successful idea has been to perform

ensemble averaging on the output probabilities provided by

several models. The final best submission with a 88.22% AUC

score was obtained by averaging the prediction probabilities

of four different models, using the geometric mean. These

were obtained by using two models with different weight

random initializations, with parameter averaging over the best

epochs, together with their two counterparts fine-tuned on the

mis-classified files of the training set. The idea to take the

geometric mean came from preliminary experiments, in which

it consistently outperformed other averaging methods such as

arithmetic and harmonic means. This is an interesting result

that needs to be further studied.

Several ideas revealed unsuccessful but one is maybe more

worth to be reported: the idea of using predictions on the

official test set as pseudo-groundtruth labels to enlarge the

training dataset with data from the test set. Only the most

confident predictions were kept: the ones with probabilities

below 0.3 or greater than 0.7. With these thresholds, about

7800 files out of 8620 test files were selected and merged to

the 14.8K training files. New denseNets were trained on this

augmented dataset but a significant decrease in the AUC score

was observed, with values around 87.2%. What was notable

with these models has been the change in the probability

distributions on the test set that were much less spread than

the ones of the previous models, as shown in Figure 3. In

this figure, two normalized histograms are represented: the

one with red bars filled with an ’x’ pattern corresponds to

the probabilities outputted by a model trained on the enlarged

training data, and the one with plain blue bars to a denseNet

trained on FF W 2 only. It appears that the first histogram

Fig. 4. Example of a noisy file of the positive class. Top: original spectrogram,
middle: saliency map, bottom: saliency-masked output spectrogram.

is much more peaky around the two extreme probabilities

0 and 1. Pseudo-labeling had the effect to push the two

probability modes, usually around 0.2-0.3 and 0.7-0.9, towards

the extrema 0 and 1, which seems satisfying in terms of

confidence measures but unfortunately led to more errors in

the end. More selective probability thresholds such as 0.1 and

0.9, and also majority voting, were tested, but these led to the

same worse results.

VII. SALIENCY MAPS

Recently, several methods have been proposed in the lit-

erature to compute so-called ”saliency maps” with a trained

neural network [11], [12], [13]. Saliency maps are a visu-

alization of which input pixels are important for the model

to make a prediction. The common idea of these approaches

consists of computing the gradient of the network prediction

for a given input sample with respect to the input. The best

approach was reported to be the one by Springenberg called

guided backpropagation [13].

With this method, the saliency maps of the test samples were

computed to illustrate which parts of the F-BANK coefficient

time series were important to predict if birds sounds were

present. Figure 4 is an example on a file of the positive class.

Two small salient blobs clearly appear on the saliency map,

and they indeed correspond to bird sound components.

Besides simple illustration purposes, a saliency map can be

multiplied to the Fourier spectrogram of the original audio

sample to enhance the crucial frequency bins supposed to

belong to bird sounds. Since 56 F-BANK coefficients were

used as input features to the models, we adapted the saliency

maps by simply assigning the saliency value of a given F-

BANK coefficient to all the frequency bins contained in

the frequency range of the filter bank coefficient. Then, the

saliency-masked spectrogram is inversed back to the time

domain by an overlap-add synthesis through inverse FFT.

Audio samples can be listened to online4.

4Audio samples available at https://www.irit.fr/∼Thomas.Pellegrini/

VIII. CONCLUSIONS

In this paper, experiments using several types of convolu-

tional neural networks (i.e. standard CNNs, residual nets and

densely connected nets) were reported in the framework of

the BAD challenge. DenseNets were the preferred solution

since they were the best performing and most compact models,

leading to a 88.22% area under the ROC curve score on

the test set of the challenge (rank: 3/30). Performance gains

were obtained thank to data augmentation through time and

frequency shifting, model parameter averaging during training

and ensemble methods using the geometric mean. On the

contrary, attempts to enlarge the training dataset with samples

of the official test set with the automatic predictions used as

pseudo-groundtruth labels consistently degraded performance.

Further experiments in this semi-supervised setting need to

be conducted, for instance one may try to use a hat-shaped

loss penalty in order to penalize pseudo-labels with low

confidence [14].

REFERENCES

[1] J. Sueur and A. Farina, “Ecoacoustics: the ecological investigation and
interpretation of environmental sound,” Biosemiotics, pp. 1–10, 2015.
[Online]. Available: http://dx.doi.org/10.1007/s12304-015-9248-x

[2] P. Guyot, A. Eldridge, Y. C. Eyre-Walker, A. Johnston, T. Pellegrini,
and M. Peck, “Sinusoidal modelling for ecoacoustics,” in Proc. of

INTERSPEECH, San Franscico, 2016.
[3] D. Stowell, M. Wood, Y. Stylianou, and H. Glotin, “Bird detection

in audio: a survey and a challenge,” in Machine Learning for Signal

Processing (MLSP), 2016 IEEE 26th International Workshop on. IEEE,
2016, pp. 1–6.

[4] E. Sprengel, Y. Martin Jaggi, and T. Hofmann, “Audio based bird species
identification using deep learning techniques,” Working notes of CLEF,
2016.

[5] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” arXiv preprint arXiv:1608.06993,
2016.

[6] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, 1995.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 770–778.
[8] Theano Development Team, “Theano: A Python framework for

fast computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, May 2016. [Online]. Available: http://arxiv.org/abs/
1605.02688

[9] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-

mation processing systems, 2012, pp. 1097–1105.
[11] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-

tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[12] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
arXiv preprint arXiv:1312.6034, 2013.

[13] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” arXiv preprint

arXiv:1412.6806, 2014.
[14] X. Zhu, “Semi-supervised learning literature survey,” University of

Wisconsin, Madison, Tech. Rep. 1530, 2005.

