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Abstract—Unmixing is a ubiquitous task in hyperspectral
image analysis which consists in jointly extracting typical
spectral signatures and estimating their respective proportions
in the voxels, providing an explicit spatial mapping of these
elementary signatures over the observed scene. Inspired by
this approach, this paper aims at proposing a new framework
for analyzing dynamic positron emission tomography (PET)
images. More precisely, a PET-dedicated mixing model and an
associated unmixing algorithm are derived to jointly estimate
time-activity curves (TAC) characterizing each type of tissues,
and the proportions of those tissues in the voxels of the
imaged brain. In particular, the TAC corresponding to the
specific binding class is expected to be voxel-wise dependent.
The proposed approach allows this intrinsic spatial variability
to be properly modeled, mitigated and quantified. Finally,
the main contributions of the paper are twofold: first, we
demonstrate that the unmixing concept is an appropriate
analysis tool for dynamic PET images; and second, we
propose a novel unmixing algorithm allowing for variability,
which significantly improves the analysis and interpretation
of dynamic PET images when compared with state-of-the-art
unmixing algorithms.

I. INTRODUCTION

Dynamic positron emission tomography (PET) is a

medical imaging technique that provides time-activity

curves (TACs) representing the variations over time of

the concentration of a radiotracer in the body. It yields

useful quantitative information on the physiological and

biochemical processes. Nevertheless, dynamic PET images

of the brain suffer from a relatively low spatial resolution

along with a high statistical noise due to their short intervals

of acquisition, making image analysis a challenging task.

To overcome these limitations, several factorial methods

have been proposed to analyze dynamic PET images of

the brain, including principal component analysis (PCA)

and independent component analysis (ICA) [1]. These

techniques aims at linearly decomposing the measured

voxel TACs into a set of elementary signatures and

associated weights quantifying the respective relevance of

these signatures within each voxel. Interestingly, these

weights could provide a surrogate sub-voxel mapping of

the elementary signatures, as a way to face with partial

volume effects. However, PCA and ICA assumes statistical

uncorrelation or independence of the elementary signatures,

which could be rarely ensured in practice. Moreover within
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a specific binding region (SBR), the exchange rate of

tracer between the specific binding compartment and the

free compartment may fluctuate [2]–[4], inducing spatial

variations on the considered elementary signature.

Meanwhile, linear unmixing has been advocated as a

relevant and efficient technique to analyze multi-band

images acquired in various applicative contexts, ranging

from Earth science [5] to experimental physics [6]. Contrary

to PCA and ICA, this concurrent factorial technique is

specifically suited for non-negative data and does not

require any statistical assumptions. Akin to non-negative

matrix factorization techniques [7], it only imposes the

non-negativity of the elementary signatures (herein referred

to as endmembers) and mixing coefficients (or abundances),

providing a constructive part-based decomposition of the

multivariate data. In addition, driven by the ease of

interpretability, linear unmixing generally looks for an

exhaustive description of the data by imposing an additional

sum-to-one constraint to abundance coefficients associated

with each measurement.

Up to authors’ knowledge, this work consists of the first

attempt to demonstrate the relevance of linear unmixing

to analyze dynamic PET images. Besides, inspired by

recent works conducted in the hyperspectral image literature

to describe spatial variability of the endmembers [8],

the proposed model allows the SBR endmember to be

voxel-wise dependent, explaining the variations of the

exchange rate of the tracer. More precisely, taking advantage

of available typical signatures associated with the SBR, this

intrinsic variability is physically described by decomposing

it on a pre-determined subspace identified by a principal

component analysis. Finally, in addition to the endmember

signatures and corresponding abundances, the resulting

unmixing algorithm is able to recover the SBR endmember

variability assumed to be spatially sparse.

The paper is organized as follows. The observation

model is described in Section II. Section III presents

the PALM-based algorithm designed to estimate the

endmembers, the abundances and the variability maps.

Simulation results obtained with synthetic yet realistic

dynamic PET images are reported in Section IV. Section

V concludes the paper.
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II. PROBLEM STATEMENT

A. Observation model

Let xn denote the TAC associated with the nth voxel

in a 3d PET image acquired in L time-frames when the

partial volume effect is neglected, i.e., without considering

the spatial blurring induced by the point spread function

(PSF) of the instrument. Each TAC is assumed to be a linear

combination of K endmembers mk

xn =

K∑

k=1

mkak,n (1)

where mk = [m1,k, . . . ,mL,k]
T denotes the TAC from a

pure voxel of the kth tissue type, ak,n is the proportion

of the kth signature in the nth voxel. The endmember

signatures mk (k = 1, . . . ,K) can for instance correspond

to the kinetic of the radiotracer in gray matter without

specific binding, white matter, blood and gray matter

with specific binding. In the case considered in this

study, the variation of the specific binding endmember

(SBE) denoted m1 will be modeled as a spatially-variant

additive perturbation affecting a nominal SBE signature m̄1

according to the linear expansion

m1 = m̄1 +

Nv∑

i=1

bi,nvi (2)

The L × Nv matrix V = [v1, . . . ,vNv
] gathers Nv basis

elements used to describe the SBE variability. Similarly to

the approach proposed in [9], the nominal SBE signature

m̄1 and the basis elements vi (i = 1, . . . , Nv) can be

identified in a pre-processing step by conducting a PCA

on a learning set composed of measured or simulated SBE

TACs. Finally, the coefficients bi,n quantifies the variability

associated with the ith elements in the nth voxel, explicitly

leading to a spatially variation of the SBE. Coupling (1) with

the spatially varying SBE in (2), results in the following

so-called perturbed SBE linear mixing model (PSBE-LMM)

xn = a1,n

(

m̄1 +

Nv∑

i=1

bi,nvi

)

+
K∑

k=2

ak,nmk. (3)

Furthermore, this work proposes to handle the partial

volume effect that affects PET images by combining this

PSBE-LMM with a spatially invariant PSF. The resulting

blurring matrix H ∈ R
N×N is then assumed to be a

block-circulant matrix with circulant blocks. Using standard

matrix notations, the set of measurements can finally be

written as

Y = MAH+
[

E1A ◦VB)
]

H
︸ ︷︷ ︸

∆

+R, (4)

where Y = [y1, . . . ,yN ] is an L×N matrix containing the

N measured TACs, M = [m̄1, . . . ,mK ] is an L×K matrix

containing the endmember signatures, A is a K×N matrix

composed of the abundance vectors an, “◦” is the Hadamard

point-wise product, E1 is the matrix [1L,10L,K−1], B is the

Nv × N matrix containing the internal abundances bn =
[b1,n, . . . , bNv,n] and R is a L×N matrix which stands for a

residual term accounting for acquisition noise and modeling

errors, herein considered additive, Gaussian with zero mean

the noise. Moreover, the direct model (4) is complemented

with the following constraints

A � 0K,N , AT1k = 1N ,

M � 0L,K and B � 0Nv,N

(5)

where � defines the component-wise inequality. In other

words, the abundance coefficients ak,n ∈ [0, 1] are assumed

to be positive and summing to 1 for each voxel, providing

a close description of the voxel TAC. The variability is

also assumed to be positive since a systematic negative bias

will be introduced on the nominal SBE m̄1. This constraint

allows one to overcome the high correlation between the

remaining TAC endmembers and
∑Nv

i=1
vibi,n when bi,n is

negative.

B. Problem formulation

The PSBE-LMM (4) is combined with the constraints

(5) to derive a constrained optimization problem. The

estimation of M, A, B requires a proper cost function.

Since the residual matrix R is assumed to be composed

of independent and identically Gaussian distributed entries,

the data-fitting term can be derived by considering the

Frobenius distance ‖·‖2F between the observations Y and

the reconstructed data MAH + ∆. Besides, since the

problem is ill-posed and non-convex, additional regularizers

are mandatory. A priori knowledge on M, A and B is taken

into account through the penalization functions Ψ(·), Φ(·)
and Ω(·), respectively. The optimization problem is then

defined as

(M̂, Â, B̂) ∈ argmin
M,A,B

J (M,A,B) s.t. (5) (6)

with

J (M,A,B) =
1

2

∥
∥
∥Y −MAH−

[

E1A ◦VB)
]

H

∥
∥
∥

2

F

+αΦ(A) + βΨ(M) + λΩ(B)

where the penalization parameters α, β and λ control the

trade-off between the data fitting term and the penalties

Φ(A), Ψ(M) and Ω(B), described hereafter.

Abundance penalization: The abundance vectors an
(n = 1, . . . , N ) are expected to vary smoothly between

neighboring voxels, which motivates the use of a spatial

smoothness penalization expressed in matrix form as

Φ(A) =
1

2
‖AS‖2F (7)

where S is a matrix computing the first-order finite

differences between the abundance vectors in a given voxel

and the ones of its neighbors in each dimension.

Endmember penalization: Given an initial rough

estimate M0 of the endmember matrix, the endmember

penalization considered in this work promotes similarity

between this initial guess and the recovered endmembers,

through the following square distance

Ψ(M) =
1

2
‖M−M0‖

2

F . (8)



Variability penalization: For the study considered in

this paper, the SBE variability is expected to be spatially

localized and described by only a few contributions of the

element basis in V. Thus, a sparsity-promoting ℓ1-norm

penalization [10] is considered

Ω(B) = ‖B‖1. (9)

III. A PALM-BASED ALGORITHM

Since the problem (6) is genuinely nonconvex and

nonsmooth but naturally exhibits a block-wise structure in

terms of A, M and B, we propose to resort to the proximal

alternating linearized minimization (PALM) algorithm [11].

It consists in performing proximal gradient descent steps

with respect to each block, following the algorithmic sketch

summarized in Algo. 1. Each step is detailed in what

follows.

Algorithm 1: PSBE-LMM unmixing: PALM algorithm

Input: Y
Initialization: A0, M0 and B0

begin
k ← 0
while stopping criterion not satisfied do

Mk+1 ← P+

(

Mk −
γM

Lk
M

∇MJ (Mk,Ak+1,Bk)

)

Ak+1 ← PAR

(

Ak −
γA

Lk
A

∇AJ (Mk,Ak,Bk)

)

Bk+1 ←

proxλγB

Lk
B

‖·‖1

(

Bk −
γB

Lk
B

∇BJ (Mk+1,Ak+1,Bk)

)

k ← k + 1

Output: Â , Ak+1, M̂ , Mk+1 and B̂ , Bk+1.

A. Optimization with respect to M

Given the assumptions in Section II, optimizing J with

respect to M under the constraints (5) is expressed as

Mk+1 = P+

(

Mk −
γM

Lk
M

∇MJ (Mk,Ak+1,Bk)

)

(10)

where P+ is the projection on the nonnegative plane

{X|X � 0L,R}, γM < 1 is a constant assuring

convergence and Lk
M is a bound on the Lipschitz constant

of ∇MJ (Mk,Ak+1,Bk) with

∇MJ (M,A,B) = ((E1A ◦VB)H−Y) ÃT

+M(AHHTAT ) + β(M−M0).
(11)

The constant to be used is set as

LM =
∥
∥AHHTAT

∥
∥+ β. (12)

B. Optimization with respect to A

Similarly, under the constraints defined in (5), the

updating rule for the abundance matrix is

Ak+1 = PAR

(

Ak −
γA

Lk
A

∇AJ (Mk,Ak,Bk)

)

(13)

where PAR
is the projection onto AR, described by the

abundance constraints in (5), which can be efficiently

computed following the strategy in [12]. Moreover, γA < 1

is a constant that assures convergence of the algorithm and

Lk
A is the Lipschitz constant of ∇AJ (Mk,Ak,Bk) defined

by

∇AJ (M,A,B) = −MT (DA)−ET
1 (DA◦VB)+αASST ,

with DA = (Y − MAH − (E1A ◦ VB)H)HT . The

following value for the Lipschitz constant is defined

LA = α
∥
∥SST

∥
∥+ ‖H‖

2

(
∥
∥MTM

∥
∥

+ ‖E1‖ ‖VB‖ (2 ‖M‖∞ + ‖E1‖ ‖VB‖∞)

) (14)

where the spectral norm ‖X‖ = σmax(X) is the largest

singular value of X and ‖X‖∞ = max1≤i≤m

∑n

j=1
|xij | is

the absolute value of the row-sum of the matrix entries. It is

worthy to note that this value is not optimal, thus opening

the way to possible accelerations of the updating rule.

C. Optimization with respect to B

Finally, the updating rule of the variability matrix B can

be written as

Bk+1 = proxλγB

Lk
B

‖·‖1

(

Bk −
γB

Lk
B

∇BJ (Mk+1,Ak+1,Bk)

)

,

where the proximal operator prox·‖·‖1
is the classical

soft-thresholding operator, γB < 1 is a constant

assuring convergence and Lk
B is the Lipschitz constant of

∇BJ (Mk+1,Ak+1,Bk) defined as

∇BJ (M,A,B) = V T ((E1A) ◦ (−Y +MAH+∆)HT )

with

LB = ‖E1A‖
2

∞‖V‖
2
‖H‖

2
.

IV. EXPERIMENTS

A. Data generation

The proposed method has been evaluated on a 128×128×
64-voxel synthetic dynamic PET image resulting from linear

mixtures of K = 4 endmembers with L = 20 time-frames.

The ground-truth of abundances and endmembers is

generated from a numerical phantom with labeled ROIs of

high resolution, for which real time activity curves measured

on clinical acquisitions were used [13]. A PCA has been

conducted on a learning set of physically-based simulated

SBE signatures to describe its variability under the model

(2). Thanks to a careful inspection of the eigenvalues

associated with the corresponding eigenvectors, the basis V

has been set to a unique element (i.e., Nv = 1). A non-zero

SBE variability has been considered in the SBR branched

into 4 subregions. In each of these subregions located in Fig.

1(left), the corresponding variability coefficients defining

B have been randomly generated according to a Gaussian

distribution with different mean values. A preliminary study

conducted on the realistic replicas of [13] shows that the

SNR ranges from approximately 10dB on the earlier frames

to 20dB on the latter ones. As a consequence, an additive

Gaussian noise with SNR= 15dB has been considered in

the following experiments.



Ground truth PSBE-PALM 

Fig. 1. Real (left) and estimated (right) SBE variability.

B. Compared methods

The proposed method, referred to as PSBE-PALM, has

been compared to unmixing techniques borrowed from the

hyperspectral imagery literature. First, the VCA algorithm

[14] has been considered as an endmember extraction

algorithm and coupled with the abundance estimation

provided by SUnSAL [15]. Moreover, to illustrate the

interest of considering SBE variability, a depreciated

counterpart of the proposed PALM-based algorithm has

been considered, without including the variability-related

term in (3). This algorithm, referred to as LMM-PALM,

only performs unmixing under a standard LMM. Both

PALM-based algorithms have been initialized with K-means

classification, where the SBE has been afterwards assigned

the minimum TAC among the SBE TACs belonging to the

learning set. The stopping criteria defined as the decreasing

rate of the objective function has been set at ε is set to

10−3. All algorithmic parameters are empirically tuned to

the valued reported in Table IV-B. More automatized ways

to choose these hyperparameters can be envisaged, such as

cross-validation, grid search, random search and empirical

Bayesian estimation but these choices seem to be sufficient

to assess the performance of the methods.

TABLE I
ALGORITHMIC PARAMETERS.

LMM-PALM PSBE-PALM

α 0.010 0.010

β 0.010 0.010

λ - 0.020

ε 0.001 0.001

Normalized mean square error (NMSE) have been

considered to evaluate the estimation performance of the

algorithms with respect to each quantity of interest

NMSE(Θ) =
‖Θ̂−Θ‖2F

‖Θ‖2F
(15)

where Θ̂ is the estimated variable and Θ the corresponding

ground truth. In particular, to emphasize the role of the

SBE variability, NMSEs have been computed separately

for unknown parameters whose estimates are expected to

be affected or non-affected by this variability. Thus, the

estimation performance has been evaluated for i) the SBE

abundance A1 , [a1,1, . . . , a1,N ] and non-SBE abundance

A2:K (where A2:K denotes the matrix A whose 1st row

has been removed) and ii) the varying SBE signatures

M̃1 = [m̃1,1, . . . , m̃1,N ] with m̃1,n , m̄1 +
∑Nv

i=1
bi,nvi

and the non-SBE signatures M2:K (where M2:K denotes

here the matrix M whose 1st column has been removed).

C. Results

The estimated abundance maps and associated TACs

corresponding to the first two endmembers are shown in

Fig. 2 for a given brain slice while Table II reports the

NMSE. The three methods provides endmember estimates

that are overall in good agreement with the expected kinetics

of the specific-binding compartment (1st row) and grey

matter (2nd row) as well as the white matter and blood (not

depicted here for brevity). However, the proposed method

outperforms both VCA/SUnSAL and LMM-PALM in all

cases except for A2:K , in which LMM-PALM presents

better performance. This result confirms the necessity of

considering the variability. Moreover, the high correlation

between endmember signatures makes LMM-PALM to

converge to irrelevant local optima while PSBE-PALM

provides better results in terms of the SBR abundance

a1, by decreasing the variability error to almost 27%.

However, some artifacts due to convolution process prevents

the estimation error related to B to get smaller. Finally,

while VCA associated with SUnSAL shows interesting

results assessing the relevance of the unmixing concept for

PET quantification, PALM-based results are even of higher

interest. For all quantities of interest, both PALM-based

algorithms outperform VCA/SUnSAL, where PSBE-PALM

presents better results for the quantities related to the

SBR and the remaining endmembers whereas LMM-PALM

achieves smaller errors for the abundances outside the

SBR. Therefore, this result shows the potential interest of

considering a variability attached to the SBE in dynamic

PET.

TABLE II
NMSE OF ESTIMATED PARAMETERS FOR VCA/SUNSAL,

LMM-PALM AND PSBE-PALM.

VCA/SUnSAL LMM-PALM PSBE-PALM

a1 0.518 0.469 0.378

A2:K 0.491 0.454 0.482

M̃1 0.507 0.264 0.027

M2:K 0.332 0.202 0.174

B - - 0.273

V. CONCLUSION AND FUTURE WORKS

In this paper, a new linear mixing model including a

perturbation on the SBE was introduced for the unmixing

of dynamic PET images. Specific binding variations were

modeled through a previously learnt basis and its respective

matrix of proportions. Unmixing was performed by an

alternating linearized minimization algorithm benefiting

from proximal regularizations. The interest of the proposed

solution was illustrated with simulations on synthetic yet

physically-motivated data. In this study, PET noise was
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Fig. 2. Abundance maps (left) and corresponding TACs (right) associated with the SBR (top) and gray matter (bottom).

considered Gaussian. The inclusion of a Poisson-fitting

divergence measure on the cost function will be considered

in future work.

REFERENCES

[1] M. Naganawa, Y. Kimura, K. Ishii, K. Oda, K. Ishiwata, and
A. Matani, “Extraction of a plasma time-activity curve from dynamic
brain PET images based on independent component analysis,” IEEE

Trans. Biomed. Eng., vol. 52, no. 2, pp. 201–210, 2005.

[2] C. Schiepers, W. Chen, M. Dahlbom, T. Cloughesy, C. K. Hoh,
and S.-C. Huang, “18F-fluorothymidine kinetics of malignant brain
tumors,” Eur. J. Nuclear Med. Molecular Imag., vol. 34, no. 7, pp.
1003–1011, Feb 2007.

[3] M. E. Kamasak, “Computation of variance in compartment model
parameter estimates from dynamic PET data,” Proc. IEEE Int. Symp.

Biomed. Imag. (ISBI), 2012.

[4] R. Boellaard, A. van Lingen, and A. A. Lammertsma, “Experimental
and clinical evaluation of iterative reconstruction (OSEM) in dynamic
PET: Quantitative characteristics and effects on kinetic modeling,” J.

Nuclear Med., vol. 42, no. 5, pp. 808–817, 2001.

[5] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du,
P. Gader, and J. Chanussot, “Hyperspectral unmixing overview:
Geometrical, statistical, and sparse regression-based approaches,”
IEEE J. Sel. Topics Appl. Earth Observations Remote Sens., vol. 5,
no. 2, pp. 354–379, April 2012.

[6] N. Dobigeon and N. Brun, “Spectral mixture analysis of EELS
spectrum-images,” Ultramicroscopy, vol. 120, pp. 25–34, Sept. 2012.

[7] J. S. Lee, D. D. Lee, S. Choi, K. S. Park, and D. S. Lee,
“Non-negative matrix factorization of dynamic images in nuclear
medicine,” in IEEE Nuclear Science Symposium Conference Record.
IEEE, 2001.

[8] P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “Hyperspectral
unmixing with spectral variability using a perturbed linear mixing
model,” IEEE Trans. Signal Process., vol. 64, no. 2, pp. 525–538,
2016.

[9] S.-U. Park, N. Dobigeon, and A. O. Hero, “Variational semi-blind
sparse deconvolution with orthogonal kernel bases and its application
to MRFM,” Signal Process., vol. 94, pp. 386–400, Jan. 2014.

[10] R. Tibshrani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society, vol. 58, no. 1, pp. 267–288,
1996.

[11] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating
linearized minimization for nonconvex and nonsmooth problems,”
Mathematical Programming, vol. 146, no. 1-2, pp. 459–494, Jul 2013.

[12] L. Condat, “Fast projection onto the simplex and the l1-ball,” Math.

Program., vol. 158, no. 1-2, pp. 575–585, Sep 2015.

[13] S. Stute, C. Tauber, C. Leroy, M. Bottlaender, V. Brulon, and
C. Comtat, “Analytical simulations of dynamic PET scans with
realistic count rates properties,” IEEE Nuclear Sci. Symp. Medical

Imag. Conf., pp. 113–122, May 2015.

[14] J. Nascimento and J. Dias, “Vertex component analysis: a fast
algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote

Sens., vol. 43, no. 4, pp. 898–910, Apr 2005.
[15] J. M. Bioucas-Dias and M. A. T. Figueiredo, “Alternating

direction algorithms for constrained sparse regression: Application
to hyperspectral unmixing,” in Proc. IEEE GRSS Workshop

Hyperspectral Image SIgnal Process.: Evolution in Remote Sens.

(WHISPERS), 2010.




